

Projet d'amélioration du réseau routier à Vaudreuil-Dorion

Vaudreuil-Dorion

6211-06-119

Réponses à la 2^{ème} série de questions et commentaires du MDDEP

Amélioration du réseau artériel de la Ville de Vaudreuil-Dorion

Étude d'impact sur l'environnement

Réf. GENIVAR : projet P102703

Document déposé au

Ministère du Développement durable, de l'Environnement et des Parcs (MDDEP)

Mai 2007

Notes préliminaires

Les réponses fournies dans le présent document découlent de questions adressées par certains spécialistes du MDDEP qui, même si elles sont datées du 5 février 2007, n'ont été acheminées à la Ville de Vaudreuil-Dorion par courriel que le 10 mai 2007.

LISTE DES ANNEXES

- Annexe 1 Nouvelle version du texte de l'annexe 6 du document de réponses aux questions du MDDEP suite aux commentaires émis par M. Gilles Boulet dans sa note de service du 5 février 2007.
- Annexe 2 Compléments pour les réponses aux questions QC-58 et QC-59 demandés par M. Pierre Aubé, ing., dans sa note de service du 5 février 2007.

Commentaires contenus dans la note de service de Gilles Boulet du 5 février 2007 relatifs à l'addenda de janvier 2007 portant sur la qualité de l'air

Réponse :

Une nouvelle version des réponses fournies en janvier 2007 (addenda à l'étude de décembre 2005) est jointe à l'annexe 1 du présent document. Cette nouvelle version intègre les demandes de M. Boulet. Les annexes accompagnant les réponses fournies en janvier 2007 ne sont cependant pas reproduites de nouveau. Les principaux changements touchent les tableaux 4.2, 4.3 et 5.2 du document produit en janvier 2007, ainsi que l'ajout d'un tableau 5.3. Des ajustements au texte ont été apportés pour tenir compte des changements effectués et des exigences du MDDEP. Parmi ces exigences, notons principalement l'utilisation de nouvelles valeurs pour les niveaux de fond en ce qui concerne les NO₂ et les PM_{2.5}. Ainsi, les points a) et b) des commentaires de M. Boulet sont répondus dans la nouvelle version du document. Le commentaire c) de sa note de service une observation générale ne demandant pas de modification au rapport.

QC-56 Note de service de Pierre Aubé du 5 février 2007 relative aux aspects hydriques.

Réponse :

Nous savons que la zone inondable de la rivière Quinchien, combinant un débit de crue important sur cette rivière et un événement également important sur le lac des Deux-Montagnes, pourrait différer de la zone cartographiée par le programme fédéral-provincial.

QC-57 Note de service de Pierre Aubé du 5 février 2007 relative aux aspects hydriques.

Réponse :

Il faut garder à l'esprit que la cartographie des plaines inondables de la rivière Quinchien n'a rien à voir avec les travaux d'ingénierie et de construction relatifs aux boulevards qui sont visés par l'étude d'impact. Comme le laisse entendre la note de M. Aubé, la cartographie des plaines inondables est une intervention planifiée dans le cadre de la gestion et de l'application du schéma d'aménagement régional et des instruments d'urbanisme qui en découlent, le tout dans le cadre de l'application de la Loi sur l'aménagement et l'urbanisme et de la Politique de protection des rives, du littoral et des plaines inondables. Ce cadre légal régissant notamment la planification urbaine d'un territoire est bien différent de celui encadrant la réalisation d'une étude d'impact environnemental pour un projet donné. À titre indicatif, un comité technique de suivi vient d'être institué à la CMM pour les travaux de cartographie des plaines inondables du lac des Deux-Montagnes

QC-58 Note de service de Pierre Aubé du 5 février 2007 relative aux aspects hydriques.

Réponse :

Voir la réponse fournie à l'annexe 2 du présent document.

QC-59 Note de service de Pierre Aubé du 5 février 2007 relative aux aspects hydriques.

Réponse :

Voir la réponse fournie à l'annexe 2 du présent document.

QC-74 Note de service de Pierre Aubé du 5 février 2007 relative aux aspects hydriques.

Réponse :

La superficie du bassin versant du tributaire qui alimente le marais près du Boisé Charlot sera moindre que présentement après le réaménagent du cours d'eau Dorion. Toutefois, le projet de réaménagement de ce cours d'eau prévoit expressément l'aménagement d'un seuil pour que le lit du cours d'eau soit rempli d'eau en permanence de manière à pourvoir alimenter le marais, ce qui n'est pas nécessairement le cas à l'heure actuelle. Ainsi, il y a un aspect positif en ce sens avec la réalisation du projet de réaménagement du cours d'eau Dorion. Tous ces paramètres seront précisés dans la demande d'autorisation en vertu de l'article 22 qui touche spécifiquement le projet de réaménagement du cours d'eau Dorion. Les plans et devis supportant cette demande viennent tout juste d'être complétés et ils pourront être consultés une fois que le Conseil municipal en aura pris connaissance et qu'ils auront été acheminés à votre bureau du MDDEP à Longueuil. La Ville de Vaudreuil-Dorion est elle aussi préoccupée par la pérennité de ce marais, mais il faut encore une fois garder à l'esprit que l'avenue André-Chartrand n'a aucun impact sur ce milieu humide.

ANNEXE 1

AMÉLIORATION DU RÉSEAU ARTÉRIEL DE LA VILLE DE VAUDREUIL-DORION ÉTUDE D'IMPACT SUR L'ENVIRONNEMENT VOLET : QUALITÉ DE L'AIR

NOUVELLE VERSION DU <u>TEXTE</u> DE L'ANNEXE 6 DU DOCUMENT DE RÉPONSES AUX QUESTIONS DU MDDEP SUITE AUX COMMENTAIRES ET OBSERVATIONS ÉMIS PAR M. GILLES BOULET DANS SA NOTE DE SERVICE DU 5 FÉVRIER 2007

(LES ANNEXES 1, 2 ET 3 ACCOMPGANANT CE TEXTE ET PRODUITES EN JANVIER 2007 NE SONT PAS REPRISES DE NOUVEAU ICI)

PRÉSENTÉ

À

M. Bernard Fournier, a.-g., M.ATDR

Groupe conseil GENIVAR Inc. 5858, chemin de la Côte-des-Neiges Montréal (Québec) H3S 1Z1

PAR

Rabah Hammouche, M.Sc

Enviromet International Inc. 2404, rue Fleury Est Montréal (Québec) H2B 1L2

Mai 2007

ENVIROMET - GENIVAR 200511_____

Page i

TABLE DES MATIÈRES

F	Page
I INTRODUCTION	1
II DÉTERMINATION DES TAUX D'ÉMISSION DES PARTICULES PM _{2,5} ET PM ₁₈	3
III ÉVALUATIONS DES ÉMISSIONS ANNUELLES DANS LA ZONE D'ÉTUDE	4
IV ÉMISSIONS DES CONTAMINANTS DE L'AIRE DE STATIONNEMENT DU FLYING J	6
V CONCENTRATIONS DES PM10 ET PM2.5 DANS LA ZONE D'ÉTUDE	12
VI DISCUSSION ET CONCLUSION	19
Annexe 1 : Note technique de GENIVAR concernant le camionnage sur le site du FlyingJ. (n'est pas incluse au présent texte - voir le document de réponses au MDDEP de janvier 200.	7)
Annexe 2 : Cartes des concentrations des contaminants dans le voisinage du FlyingJ. (n'est pas incluse au présent texte - voir le document de réponses au MDDEP de janvier 2007	7)
Annexe 3 : Cartes des concentrations des particules dans toute la zone d'étude. (n'est pas incluse au présent texte - voir le document de réponses au MDDEP de janvier 2007	<i>7)</i>

LISTE DES TABLEAUX

		Page
TABLEAU 2.1	TAUX D'ÉMISSION (G/VÉH-KM) DES PARTICULES PM ₁₀ ET PM _{2.5} POUR 2006 ET 2021	3
TABLEAU 3.1	ESTIMATION DES ÉMISSIONS ANNUELLES DES POLLUANTS CO, NOX ET HC ÉMIS DANS L'ATMOSPHÈRE PAR LES VÉHICULES À VAUDREUIL- DORION POUR 2005	4
TABLEAU 3.2	ESTIMATION DES ÉMISSIONS ANNUELLES DES POLLUANTS CO, NOX ET HC ÉMIS DANS L'ATMOSPHÈRE PAR LES VÉHICULES À VAUDREUIL- DORION POUR 2021	4
TABLEAU 3.3	ESTIMATION DES ÉMISSIONS ANNUELLES EN TONNES DES PARTICULES (PM ₁₀ ET PM _{2.5}) ÉMIS DANS L'ATMOSPHÈRE PAR LES VÉHICULES À VAUDREUIL-DORION POUR LES ANNÉES 2006 ET 2021	5
TABLEAU 4.1	TAUX D'ÉMISSION (G/VÉH-KM) DES CONTAMINANTS AU SITE DU FLYING J POUR LES ANNÉES 2006 ET 2021	7
TABLEAU 4.2	VALEURS DES CONCENTRATIONS MAXIMALES HORAIRES DES PM ₁₀ , PM _{2.5} , NO ₂ ET CO CALCULÉES PAR CALINE4 AUTOUR DE L'AIRE DE STATIONNEMENT DU FLYING J POUR CHACUN DES DEUX SCÉNARIOS (2006 ET 2021)	10
TABLEAU 4.3	VALEURS DES CONCENTRATIONS MAXIMALES EN 24 HEURES DES PM ₁₀ ET PM ₂₅ ET DES CONCENTRATIONS MAXIMALES HORAIRES DE NO ₂ ET CO OBTENUES AUTOUR DE L'AIRE DE STATIONNEMENT DU FLYING J POUR CHACUN DES DEUX SCÉNARIOS (2006 ET 2021).	11
TABLEAU 5.1	VALEURS DES CONCENTRATIONS MAXIMALES DE PM ₁₀ ET PM ₂₅ EN 24 HEURES CALCULÉES POUR CHACUN DES RÉSEAUX ROUTIERS ET POUR LES SCÉNARIOS DE 2006 ET 2021	17
TABLEAU 5.2	VALEURS DES CONCENTRATIONS MAXIMALES DE PM ₁₀ ET PM ₂₅ EN 24 HEURES, AUXQUELLES LA VALEUR DE LA CONCENTRATION AMBIANTE RESPECTIVE A ÉTÉ AJOUTÉE POUR CHACUN DES RÉSEAUX ROUTIERS (RÉSEAU MUNICIPAL ET AUTOROUTES) À L'HORIZON 2006 (SITUATION ACTUELLE) ET L'HORIZON 2021 (SITUATION PROJETÉE)	17

TABLEAU 5.3	VALEURS DES CONCENTRATIONS MAXIMALES DE PM, ET PM, EN 24	
	HEURES, AUXQUELLES LA VALEUR DE LA CONCENTRATION AMBIANTE	
	respective a été ajoutée pour l'ensemble des réseaux routiers à	
	L'HORIZON 2006 (SITUATION ACTUELLE) ET L'HORIZON 2021	
	(SITUATION PROJETÉE)	17 <u>8</u>
TABLEAU 6.1	FRACTION (%) DES CONCENTRATIONS MAXIMALES DE PM_{10} ET $PM_{2.5}$ EN	
	24 HEURES CALCULÉES PAR RAPPORT À LA VALEUR DE LA	
	CONCENTRATION AMBIANTE RESPECTIVE POUR CHAQUE SECTEUR DE	
	LA ZONE DE TRAVAIL ET POUR CHAQUE ANNÉE	20

ENVIROMET - GENIVAR 200511________Page v

Le présent rapport constitue un addenda au rapport initial réalisé par Environnet International en décembre 2005. Il comporte les études complémentaires demandées par le ministère du Développement durable, de l'Environnement et des Parcs (MDDEP) dans le cadre de l'étude d'impact sur l'environnement relative au projet d'amélioration du réseau artériel de la Ville de Vaudreuil-Dorion. On rappelle que lors de l'étude initiale de décembre 2005, les principaux éléments du volet sur la qualité de l'air qui ont été examinés sont les suivants :

- 1. Analyse des données météorologiques recueillies entre 1999 et 2004. Cette analyse a permis de faire ressortir les statistiques de base des paramètres météorologiques essentiels devant servir à l'étude de la qualité de l'air. Il s'agit de la vitesse et la direction du vent, la température de l'air sous abri et les précipitations recueillies sur le site de station de l'aéroport P.E Trudeau à Dorval.
- 2. Analyse des mesures sur la qualité de l'air effectuées sur une période allant de 1999 à 2004 aux stations de Sainte-Anne-de-Bellevue, de l'aéroport P.E Trudeau, de Pointe-Claire et de Dorval. Ces quatre stations de mesures et d'échantillonnage font partie intégrante du *Réseau de surveillance de la qualité de l'air* (RSQA) de la Ville de Montréal. L'analyse des données recueillies a permis de déterminer le niveau de la qualité actuelle de l'air ambiant dans l'Ouest de l'Île de Montréal. Nous avons convenu que ces conditions peuvent être facilement représentatives de la qualité de l'air ambiant de la zone d'étude du projet à Vaudreuil-Dorion.
- 3. Identification des sources d'émission des polluants atmosphériques dans la zone d'étude et détermination des taux d'émission des contaminants correspondant à des scénarios pour 2005 et 2021. Les contaminants qui ont été étudiés sont le monoxyde de carbone (CO), le dioxyde d'azote (NO₂) et les hydrocarbures (HC). Ces taux d'émission seront utilisés dans les travaux de modélisation numérique de la dispersion. Les années 2005 et 2021 sont retenues car ils correspondent respectivement à la situation actuelle et aux conditions de circulation anticipées une fois que le développement urbain aura été complété dans le périmètre urbain de Vaudreuil-Dorion.
- 4. Modélisation de la dispersion des polluants atmosphériques retenus tels que le monoxyde de carbone (CO) et le dioxyde d'azote (NO₂) de part et d'autre de l'ensemble des tronçons routiers prévus dans le projet. Ces travaux de modélisation sont effectués sur la base des données de la circulation disponibles pour la zone d'étude. Les résultats obtenus sous la forme de concentrations des contaminants sont ensuite comparés aux normes de la qualité de l'air en vigueur au Québec. La modélisation a été réalisée pour les mêmes années cibles à savoir : 2005 et 2021.

Comme convenu avec GENIVAR S.E.C. la présente étude est réalisée en complément de l'étude initiale citée ci-dessus. Elle comporte les principaux aspects suivants :

- Évaluation de la masse totale annuelle en tonnes de toutes les émissions spécifiques dans la zone d'étude en procédant par contaminant et pour chaque année (2005 et 2021). Ces émissions annuelles sont évaluées par type de réseau routier en considérant séparément les émissions du réseau urbain de la Ville de Vaudreuil-Dorion et les émissions du réseau d'autoroutes (40, 540 et 20).
- ➢ Intégration de la problématique posée par l'aire de stationnement connue sous le nom de « Flying J » située sur le côté est de l'autoroute 540 à la hauteur du boulevard de la Cité des Jeunes et la rue Félix-Leclerc. Il s'agit de calculer les concentrations des contaminants émis par les véhicules qui transitent par le Flying J. Les polluants concernés sont le monoxyde de carbone (CO), le dioxyde d'azote (NO₂) et les particules (PM₁₀) et (PM₂ѕ).
- Compléter l'étude par une modélisation des particules PM₁₀ et PM_{2,5} en calculant les concentrations correspondantes sur l'ensemble de la zone d'étude et en tenant compte des contributions respectives de chaque réseau (réseau urbain municipal et réseau des autoroutes) et des concentrations ambiantes dans la région.

Le modèle utilisé pour calculer les concentrations des particules s'appelle CALINE4. Il permet de déterminer les concentrations moyennes horaires des contaminants en tenant compte des conditions météorologiques les plus défavorables en matière de dispersion atmosphérique. Ces conditions météorologiques permettent de reproduire les concentrations les plus élevées à l'extérieur de la zone de mélange propre à chacun des axes routiers recensés dans le territoire d'étude. La zone de mélange est définie par la largeur totale de l'axe routier, à laquelle on ajoute 3 mètres de part et d'autre de la route. Bien que la largeur de cette zone de mélange peut varier selon le type de tronçon routier, nous avons considéré une largeur de 42 m pour les autoroutes, une largeur de 12 m pour les rues et boulevards en place dans la Ville et de 24 m pour le nouvel axe à quatre voies de l'avenue André-Chartrand.

Les conditions météorologiques les plus défavorables qui ont été retenues pour le calcul des concentrations des contaminants sont celles qui se produisent le plus souvent au cours de l'année. Ces conditions météorologiques sont généralement caractérisées par la présence d'air très stable au niveau de la surface du sol (-15° C; hauteur de la couche de mélange à 200 m; classe de stabilité de l'air de type G, vitesse du vent de 2 m/s, avec écart-type de 12° pour la direction).

De la même manière que l'étude précédente de décembre 2005, les débits horaires de circulation des véhicules en période de pointe sont estimés à 10% des DJMA établis pour les boulevards, les rues et les avenues composant le réseau routier de la Ville de Vaudreuil-Dorion. Les débits horaires de circulation en période de pointe sur les autoroutes 20, 40 et 540 sont quant à eux estimés à 6% des DJMA correspondants.

II DÉTERMINATION DES TAUX D'ÉMISSION DES PARTICULES PM, ET PM,

De la même manière que l'étude précédente, nous avons retenu les deux scénarios suivants :

- Le Scénario 2005 concerne la situation actuelle en 2005. Les débits journaliers moyens annuels (DJMA) et les taux d'émission des contaminants utilisés sont déterminés pour l'année 2005.
- ➤ Le Scénario 2021 se rapporte à la situation incluant tous les aménagements prévus dans le périmètre urbain de Vaudreuil-Dorion. Les DJMA et les taux d'émission des contaminants utilisés sont calculés pour l'année cible 2021.

Les DJMA représentatifs des deux scénarios ont été établis par GENIVAR S.E.C.. Les DJMA utilisés considèrent les débits du réseau routier local appartenant à la Ville de Vaudreuil-Dorion et le réseau autoroutier environnant du MTQ composé des autoroutes 40, 540 et 20.

Les taux d'émission des particules PM_{2,4} et PM₁₀ sont estimés en utilisant la version canadienne du modèle Mobile6C. Les taux d'émission des particules ont été calculés pour les deux années cibles 2006 et 2021. Dans ce cadre, le Service de modélisation des systèmes de transport du ministère des Transports du Québec (MTQ) a mis à notre disposition des bases de données très utiles comportant toutes les informations requises sur les taux d'émission des principaux contaminants émis par les véhicules dans la région de Montréal (A. Babin, 2004). Ces bases de données ont été constituées dans le cadre d'un projet d'envergure visant à réaliser un modèle d'émission des polluants, de gaz à effet de serre (GES) et un modèle de consommation des carburants pour la région de Montréal (MOTREM, version 3b). Les taux d'émission des particules exprimés en grammes par kilomètre (g/km) sont indiqués dans le tableau 2.1.

Tableau 2.1 Taux d'émission (g/véh-km) des particules PM₁₀ et PM_{2.5} pour 2006 et 2021.

	Taux d'émission des particules (g/véh-km)			
Scénarios	PM ₁₀	PM _{2.5}		
Scénario 1 - Année 2006	0,038	1,035		
Scénario 2 - Année 2021	0,017	0,009		

III ÉVALUATIONS DES ÉMISSIONS ANNUELLES DANS LA ZONE D'ÉTUDE

Les quantités totales annuelles des contaminants émis sous forme de particules par les véhicules sur l'ensemble de la zone d'étude ont été estimées en utilisant les taux d'émission utilisés, les DJMA et les distances de chaque tronçon routier actuel et projeté. À des fins comparatives, les tableaux 3.1 et 3.2 présentent un sommaire des émissions annuelles de CO, NOx et HC respectivement pour le réseau urbain de la Ville de Vaudreuil-Dorion et pour les autoroutes situées dans la région d'étude et ce, aux horizons des années 2005 et 2021. Le tableau 3.3 fait la même chose, mais cette fois avec les particules.

Tableau 3.1 Estimation des émissions annuelles des polluants CO, NOx et HC émis dans l'atmosphère par les véhicules à Vaudreuil-Dorion pour 2005

Réseau visé	CO (tonnes)		NOx (tonnes)		HC (tonnes)	
	Hiver	Été	Hiver	Été	Hiver	Été
Réseau urbain de Vaudreuil-Dorion	826,15	379,31	80,71	68,01	31,70	18,08
Réseau d'autoroutes (20, 40 et 540)	2 243,53	1 037,66	220,81	186,06	86,72	49,47
TOTAL	3 069,68	1 416,97	301,53	254,07	118,42	67,55

Tableau 3.2 Estimation des émissions annuelles des polluants CO, NOx et HC émis dans l'atmosphère par les véhicules à Vaudreuil-Dorion pour 2021

Réseau visé	CO (tonnes)		NOx (tonnes)		HC (tonnes)	
	Hiver	Été	Hiver	Été	Hiver	Été
Réseau urbain de Vaudreuil-Dorion	866,93	370,31	34,07	27,84	14,78	9,60
Réseau d'autoroutes (20, 40 et 540)	1 229,66	525,24	48,32	39,49	20,97	13,61
TOTAL	2 096,59	895,55	82,38	67,33	35,76	23,21

Tableau 3.3 Estimation des émissions annuelles en tonnes des particules (PM_{10} et $PM_{2.5}$) émis dans l'atmosphère par les véhicules à Vaudreuil-Dorion pour les années 2006 et 2021

	Année 2006		Année 2021	
Réseau visé	PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}
	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Réseau urbain de Vaudreuil-Dorion	6,13	4,88	2,74	11,53
Réseau d'autoroutes (20, 40 et 540)	16,78	13,35	3,89	16,35
TOTAL	22,91	18,23	6,64	27,88

IV ÉMISSIONS DES CONTAMINANTS DE L'AIRE DE STATIONNEMENT DU FLYINGJ

Lors de l'étude précédente de décembre 2005, nous n'avons pas tenu compte des émissions dues à l'aire de stationnement connue sous le nom de Flying J et située au bord de l'autoroute 540, à la hauteur du boulevard de la Cité des Jeunes. Les photos des figures 4.1 et 4.2 montrent des vues de l'aire du Flying J.

On suppose que l'aire de stationnement a une capacité globale de 220 véhicules environ incluant toutes les catégories de véhicules légers, lourds, à essence et au diesel (ce nombre est assez réaliste des vrais espaces de stationnement marqués par rapport à la capacité maximale présentée à l'annexe 1 du présent document et qui inclut les aires non marquées ainsi que les aires de service). Le calcul de facteur d'émission global est effectué sur la base des hypothèses suivantes :

- On considère que l'aire de stationnement du Flying J peut se remplir à pleine capacité et se vider complètement en 1 heure de temps.
- Parmi tous les véhicules qui transitent par cette aire de stationnement, on suppose aussi que 40% font du démarrage à froid (Cold-Start) et 60% du démarrage à chaud (Hot-Start).
- On suppose également que la vitesse utilisée à l'intérieur de l'air de stationnement ne dépasse pas 8 km/h (5mph) environ.

La formule utilisée pour calculer le taux d'émission globale en grammes par véhicule et par kilomètre :

EFL = (1/LLT) ((Etr * Fe) + (Efhot * SPD * Te))

LLT : Distance moyenne parcourue à l'intérieur de l'aire de stationnement.

Etr : Facteur d'émission au démarrage.

SPD : Vitesse moyenne dans l'aire de stationnement (8 km/h).

EFhot : Taux d'émission stabilisé à chaud à la vitesse SPD.Te : Temps moyen de transition (Average Egress Time).

Si on connaît le taux d'émission moyen de chaque contaminant d'un véhicule à la vitesse de 8 km/h et qu'on suppose que chacun des véhicules met environ 120 secondes pour parcourir les 150 mètres afin de sortir de l'aire de stationnement, on peut déterminer des taux d'émission globaux pour tous les contaminants.

Le tableau 4.1 présente les taux d'émission calculés en grammes par véhicule et par kilomètre destinés à l'utilisation dans le modèle CALINE4.

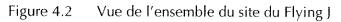
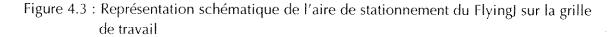
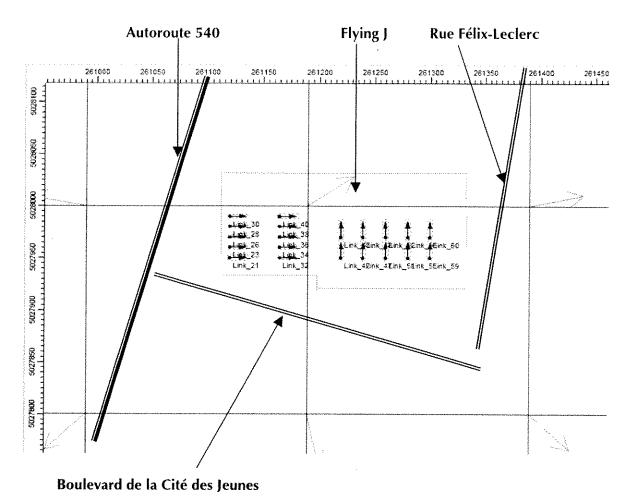

En ce qui concerne les débits horaires des véhicules incluant toutes les catégories de véhicules légers et lourds, nous nous sommes basés sur la note technique préparée par GENIVAR S.E.C concernant le camionnage sur le site du Flying J (B. Fournier, décembre 2006). Cette note technique, dont une copie est jointe à l'annexe 1 du présent document, fait ressortir un débit moyen journalier de camions (DJMC) de 2 200 véhicules par jour pour l'année 2006. De plus, les données compilées à ce jour montrent que l'achalandage de cette aire de stationnement n'a pas subi de grandes variations au cours des dernières années. C'est pourquoi, on suggère d'utiliser le même DJMC de 2 200 véhicules par jour pour l'horizon 2021. Pour les calculs des concentrations des contaminants autours du Flying J, nous avons considéré un volume maximal de 220 véhicules par heure représentant 10% du DJMC proposé dans la note technique.

Tableau 4.1 Taux d'émission (g/véh-km) des particules PM₁₀ et PM_{2.5} au site du Flying J pour les années 2006 et 2021.


	Taux d'émission des contaminants (g/veh-km)						
Scénarios	co	NOx	PM ₁₀	PM _{2.5}			
Année 2006	121,49	9,952	0,209	0,167			
Année 2021	38,73	2,269	0,064	0,040			


Figure 4.1 Vue de l'aire de stationnement du Flying J située au carrefour de l'autoroute 540, du boulevard de la Cité des Jeunes et du boulevard Félix-Leclerc

En tenant compte de tous les paramètres décrits ci-dessus, nous avons utilisé le modèle de dispersion CALINE4 avec l'option «Aire de stationnement» pour déterminer les concentrations de monoxyde de carbone (CO), de dioxyde d'azote (NO₂) et des particules PM₁₀ et PM_{2.5} dans la zone immédiate du site de l'aire de stationnement du FlyingJ. Les résultats obtenus sous forme de cartes contours donnant la répartition des concentrations de CO, NO2, PM₁₀ et PM_{2.5} sont indiqués à l'annexe 2 du présent document (le site du Flying J sur ces cartes contours est orienté de la même manière que sur le figure 3 de ci-haut, soit avec l'A-540 à gauche, la rue Félix-Leclerc à droite et le boulevard de la Cité des Jeunes tout juste au-dessous du site; le lecteur peut aussi se localiser avec les coordonnées géodésiques de la grille de travail).

La concentration maximale des PM₁₀ sur 24 heures enregistrée en 2001 à Sainte-Anne-de-Bellevue, située à quelques kilomètres à l'et de la zone d'étude, est de 49,4 µg/m³. Cette valeur maximale est utilisée comme valeur ambiante. Le critère de la qualité de l'air des PM₁₀, tel qu'il est appliqué au niveau de la Ville de Montréal, est de 50 µg/m³.

La concentration maximale des $PM_{2.5}$ sur une période de 24 heures, mesurée à Sainte-Anne-de-Bellevue en 2003, est de 54 µg/m³. En raison de la problématique particulière des $PM_{2.5}$ dans le sud du Québec et sur recommandation du MDDEP, la valeur utilisée comme concentration ambiante de fond avec ces $PM_{2.5}$ est de 36 µg/m³ pour 24 heures. Le critère de qualité de l'air pour 24h des $PM_{2.5}$ est 30 µg/m³.

La concentrations ambiante du CO utilisée dans CALINE4 est similaire à celle qui a été appliquée lors de l'étude de décembre 2005, soit 3 ppm. Toutefois, pour le NO_2 , la valeur de fond a changé suite à une recommandation à cet effet du MDDEP; l'ancienne valeur utilisée pour l'air ambiant était 96 μ g/m³ alors que la nouvelle valeur recommandée est de 157 μ g/m³.

Les concentrations maximales des PM_{2.5} et PM₁₀ sont ajoutées aux concentrations correspondantes des contaminants calculées par CALINE4. On peut mentionner que les concentrations horaires des particules calculées par CALINE4 sont converties en concentrations en 24 heures en utilisant la formule proposée par le MDDEP :

 $C(T) = C(1 \text{ heure}) * 0.97 * T^{0.25} \text{ avec T égal à 24 heures.}$

Les tableaux 4.2 et 4.3 présentent un sommaire des concentrations maximales calculées au point avec les coordonnées géodésiques suivantes : X = 261190,00 ; Y = 5028000,00).

Tableau 4.2 Valeurs des concentrations maximales horaires des PM₁₀, PM_{2.5}, NO₂ et CO calculées par CALINE4 autour de l'aire de stationnement du Flying J pour chacun des deux scénarios (2006 et 2021).

		CONTAMINANTS					
	PM ₁₆	PM _{2.5}	NO ₂	со			
	μg/m³	μg/m³	μg/m³	ppm			
Concentration ambiante dans l'air	49,4	36,0	157,0	3,00			
Année 2006	2,30	1,90	95,63	1,00			
Année 2021	0,80	0,50	76,50	0,30			

Tableau 4.3 Valeurs des concentrations maximales en 24 heures des $PM1_0$ et $PM_{2.5}$ et des concentrations maximales horaires du NO_2 et du CO obtenues autour de l'aire de stationnement du Flying J pour chacun des 2 scénarios (2006 et 2021).

		CONTAMINANTS					
	PM ₁₀ µg/m³	PM _{2.5} μg/m³	NO ₂ µg/m³	CO ppm			
Valeurs des critères horaires et 24h	24 heures	24 heures	horaire	horaire			
	50	30	400	30			
Année 2006	50,41	37,90	252,63	4,00			
Année 2021	49,75	36,50	233,50	3,30			

Note : les valeurs réglementaires des critères s'appliquant à chacun contaminants sont indiquées.

V CONCENTRATIONS DES PM₁₀ ET PM₂₅ DANS LA ZONE D'ÉTUDE

Les concentrations des particules PM₁₀ et PM_{2.5} ont été calculées sur la même zone d'étude que celle qui a été utilisée lors de l'étude précédente. Les tronçons routiers identifiés dans la zone sont généralement constitués par les routes, les rues, les boulevards et les avenues faisant partie du réseau de la Ville de Vaudreuil-Dorion. On a également inclus dans les tronçons étudiés les autoroutes 20, 40 et 540 qui traversent la grille de travail.

La figure 5.1 montre la partie nord de la zone d'étude selon les scénarios de 2005 et 2021. On peut distinguer sur la grille les routes et les artères municipales ainsi que les autoroutes 40 et 540 ayant fait l'objet des simulations numériques. La figure 5.2 illustre la partie sud de la zone d'étude selon le scénario 2005. On peut voir les tronçons de routes et artères municipales ainsi que les autoroutes 20 et 540. Les figures 5.3 (a) et (b) montrent enfin la partie sud-est et sud-ouest de la zone d'étude pour le scénario 2021. On peut constater, sur les figures, tous les tronçons de routes et artères municipales existants et projetés ainsi que les 'autoroutes 20 et 540.

Figure 5.1 : Partie-Nord de la grille de travail du modèle de dispersion (scénarios 2005 et 2021), incluant les routes municipales et les autoroutes 40 et 540

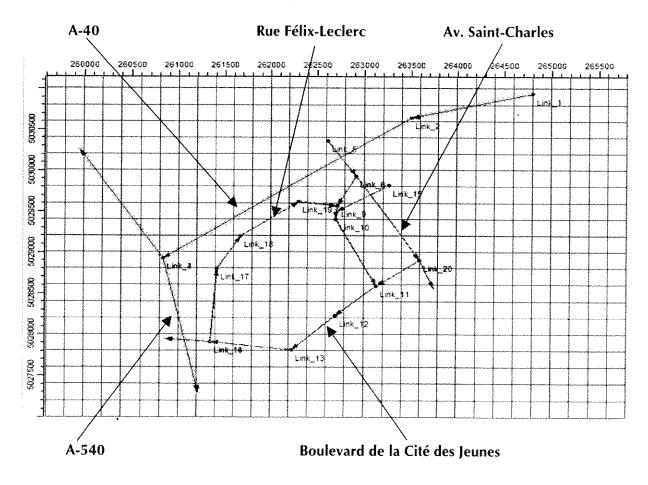


Figure 5.2 : Partie-Sud (scénario 2005) de la grille de travail du modèle de dispersion, incluant les routes municipales et les autoroutes 20 et 540.

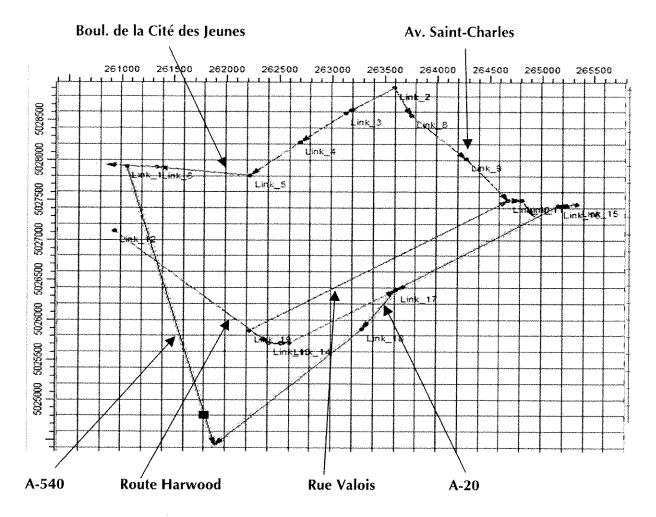


Figure 5.3 (a) : Partie Sud-Ouest (scénario 2021) de la grille de travail du modèle, incluant les routes municipales et les autoroutes 20 et 540

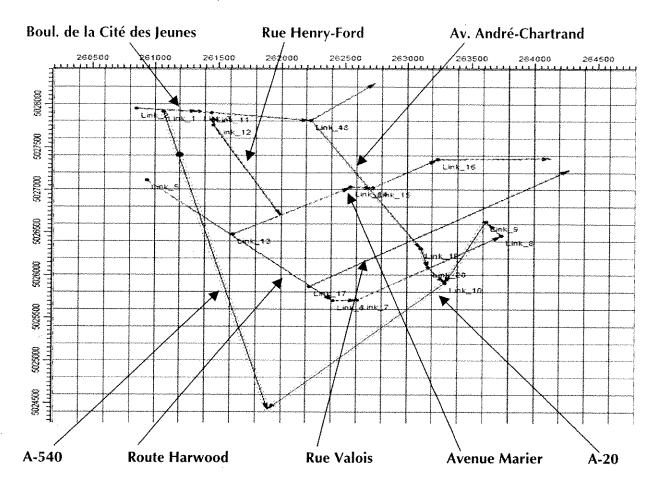
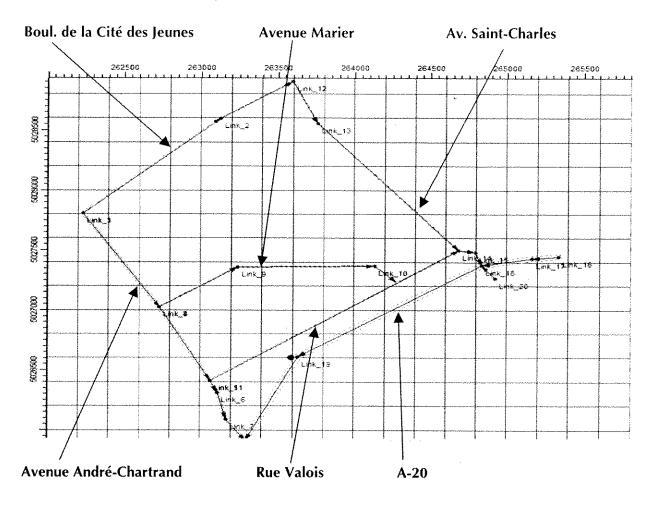



Figure 5.3 (b) : Partie Sud-Est (scénario 2021) de la grille de travail du modèle incluant les routes municipales et l'autoroute 20

De manière à mettre en évidence la contribution de chaque réseau routier dans la zone d'étude (réseau routier municipal et autoroutes), nous avons calculé dans une première étape les concentrations provenant des émissions de particules des véhicules circulant uniquement sur les autoroutes 20, 40 et 540; puis, dans une deuxième étape, nous avons déterminé les concentrations des particules émises par les véhicules circulant uniquement sur les routes, les rues et les boulevards urbains du réseau de la Ville de Vaudreuil-Dorion. De cette manière il était possible de déterminer la contribution de chacun des réseaux routiers aux concentrations totales de particules dans la région.

Les résultats, sous forme de cartes des différentes simulations effectuées dans chacun des secteurs de la zone d'étude et illustrés par un ensemble de cartes donnant les contours des concentrations des PM_{10} et $PM_{2.5}$ pour les deux scénarios retenus (2006 et 2021), sont indiqués à l'annexe 3 du présent document.

La concentration maximale des PM₁₀ enregistrée sur 24 heures à Sainte-Anne-de-Bellevue en 2001 est de 49,4 μg/m³ et c'est cette concentration qui est utilisée comme valeur ambiante. En 2002, cette concentration maximale a été de 73 μg/m³ et de 61 μg/m³ en 2003. L'indice de la qualité de l'air (IQA) des PM₁₀ qui est appliqué par la Ville de Montréal est de 50 μg/m³.

La concentration maximale des PM_{2.5} sur 24 heures recueillie en 2003 est de 54 µg/m³, toujours à la station de Sainte-Anne-de-Bellevue. À la demande du MDDEP, c'est une valeur de fond de 36 µg/m³ qui a été utilisée pour tenir compte de la problématique des PM_{2.5} dans le sud du Québec. Le critère de la qualité de l'air e4h pour les PM_{2.5} est de 30 µg/m³.

Les valeurs des concentrations ambiantes sont ajoutées aux concentrations maximales obtenues par CALINE4. La concentration maximale totale est ainsi comparée au critère de la qualité de l'air correspondant. Les valeurs des concentrations ambiantes utilisées peuvent êtres considérées élevées, mais il est important de mentionner que le but recherché dans cet exercice de modélisation est de déterminer les situations les plus défavorables pour la qualité de l'air.

Le modèle CALINE4 permet d'estimer les concentrations horaires des particules. Les critères de la qualité de l'air sont établis sur une période de 24 heures. Pour cela, nous avons utilisé la formule de conversion proposée par le MDDEP. Elle permet d'estimer les concentrations maximales des particules en 24 heures :

 $C(T) = C(1 \text{ heure}) * 0.97 * T^{0.25} \text{ avec T égal à 24 heures.}$

Tableau 5.1 Valeurs des concentrations maximales de PM_{10} et $PM_{2.5}$ en 24 heures calculées pour chacun des réseaux routiers et pour les scénarios de 2006 et 2021.

	24 heur	on maximale en es du réseau toroutes	24 heur	ion maximale en es du réseau unicipal
	PM ₁₀ PM _{2.5}		PM ₁₀	PM _{2.5}
	μg/m³	μg/m³	μg/m³	µg/m³
Partie Nord du site – Année 2006	3,77	3,46	2,54	2,37
Partie Sud du site – Année 2006	1,53	1,45	0,83	0,79
Partie Nord du site – Anne 2021	1,31	0,70	1,67	0,88
Partie Sud-Est du site – Année 2021	0,61	0,35	0,57	0,31
Partie Sud-Ouest du site – Année 2021	1,10	0,61	0,88	0,48

Tableau 5.2 Valeurs des concentrations maximales de PM₁₀ et PM_{2.5} en 24 heures, auxquelles la valeur de la concentration ambiante respective a été ajoutée pour chacun des réseaux routiers (réseau municipal et autoroutes) à l'horizon 2006 (situation actuelle) et l'horizon 2021 (situation projetée).

				ion maximale en es du réseau unicipal
	PM ₁₀ μg/m³	PM _{2.5} μg/m³	PM ₁₆ µg/m³	PM_{2.5} μg/m ³
Critères des particules PM10 et PM2.5	50,00	30,00	50,00	30,00
Partie Nord du site – Année 2006	53,17	39,46	51,94	38,37
Partie Sud du site – Année 2006	50,93	37,45	50,23	36,79
Partie Nord du site – Anne 2021	50,71	36,70	51,07	36,88
Partie Sud-Est du site – Année 2021	50,01	36,35	49,97	36,31
Partie Sud-Ouest du site – Année 2021	50,50	36,61	50,28	36,48

Note: les concentrations ambiantes sont de 49 ug/m³ pour les PM₁₀ et de 36 ug/m³ pour les PM₂₃

Tableau 5.3 Valeurs des concentrations maximales de PM₁₀ et PM₂₅ en 24 heures, auxquelles la valeur de la concentration ambiante a été ajoutée pour l'ensemble des réseaux routiers à l'horizon 2006 (situation actuelle) et l'horizon 2021 (situation projetée).

	Concentration maximale totale pour l'ensemble des deux réseaux routiers (Ville / MTQ)		
	PM₁₀ µg/m³	PM₁₀ μg/m³	
Critères des particules PM10 et PM2.5	50,00	30,00	
Partie Nord du site – Année 2006	53,17	39,51	
Partie Sud du site – Année 2006	50,93	37,53	
Partie Nord du site – Anne 2021	27,50	36,88	
Partie Sud-Est du site – Année 2021	50,01	36,39	
Partie Sud-Ouest du site – Année 2021	50,50	36,61	

Note : les concentrations ambiantes sont de 49 ug/m³ pour les PM₁₀ et de 36 ug/m³ pour les PM_{2.5}

VI DISCUSSION ET CONCLUSION

Dans une première étape, nous avons calculé les concentrations maximales des contaminants conventionnels tels que le CO, le NO_2 et les particules PM_{10} et $PM_{2.5}$ autour de l'aire de stationnement du FlyngJ pour les années 2006 et 2021.

Dans une deuxième étape, nous avons déterminé les concentrations maximales des particules PM_{10} et PM_{25} sur l'ensemble de la zone d'étude.

On rappelle que les résultats sont présentés sur une grille cartésienne dont la dimension de maille est fixée volontairement à 200 m. Les concentrations sont données sous la forme de cartes contours identifiant plusieurs partie de la zone d'étude. Compte tenu des limitations du modèle CALINE4 en terme de segments routiers et de la même manière que l'étude de décembre 2005, nous avons adopté volontairement le découpage suivant :

- 1. Concernant le scénario de 2006, nous avons partagé la zone d'étude en deux parties : une partie Nord délimitée au sud par le boulevard de la Cité des Jeunes, au nord par l'autoroute 40, à l'est par l'avenue Saint-Charles et à l'ouest par l'autoroute 540 ; la partie Sud du site est quant à elle délimitée respectivement par l'autoroute 20, l'autoroute 540, l'avenue Saint-Charles et le boulevard de la Cité des Jeunes et la rue Jeannotte au nord.
- 2. Pour ce qui est du scénario 2021, nous avons considéré trois parties : la première partie est située au nord du boulevard de la Cité des Jeunes et au sud de l'autoroute 40 ; la seconde partie située dans la portion Sud de la zone d'étude est elle-même divisée en deux zones distinctes : la première zone intitulée « Sud-Ouest » est située entre l'avenue André-Chartrand et l'autoroute 540, et la deuxième zone intitulée « Sud-Est » est localisée à l'est de l'avenue André-Chartrand.

Lorsqu'on examine les concentrations des particules PM_{2,5} et PM₁₀ obtenues aussi bien pour l'aire de stationnement du Flying J que pour l'ensemble des deux réseaux routiers, on constate qu'elles sont légèrement supérieures aux critères réglementaires applicables au Québec. On remarque aussi que si ces concentrations sont relativement élevées par rapport aux critères, c'est surtout en raison des concentrations ambiantes élevées que nous avons utilisées dans les calculs. On peut constater aussi que les concentrations délivrées par le modèle CALINE4 représentent environ 5 à 10% de la valeur ambiante dans la partie Nord de la zone d'étude en 2006 et 2 à 3,5% de la valeur ambiante pour 2021. Dans la partie Sud, les concentrations obtenues par le modèle varient entre 2 et 5% de la valeur ambiante pour 2006 et légèrement moins pour 2021. Le tableau 6.1 donnent le pourcentage des concentrations maximales obtenues par CALINE4 par rapport à la valeur ambiante considérée.

Tableau 6.1 Fraction (%) des concentrations maximales de PM₁₀ et PM_{2.5} en 24 heures calculées par rapport à la valeur de la concentration ambiante respective pour chaque secteur de la zone de travail et pour chaque année.

	Concentration maximale en 24 heures du réseau d'autoroutes		Concentration maximale en 24 heures du réseau municipal	
	PM ₁₀	PM _{2.5}	PM,0	PM _{2.5}
	μg/m³	μg/m³	μg/m³	ug/m³
Concentrations ambiantes des particules	49,00	36,00	49,00	36,00
Partie Nord du site – Année 2006	7,69%	9,61%	5,18%	6,58%
Partie Sud du site – Année 2006	3,12%	4,03%	1,69%	2,19%
Partie Nord du site – Anne 2021	2,67%	1,94%	3,40%	2,44%
Partie Sud-Est du site – Année 2021	1,24%	0,97%	1,16%	0,86%
Partie Sud-Ouest du site – Année 2021	2,24%	1,69%	1,79%	1,33%

On peut constater logiquement que les concentrations les plus élevées des particules sont situées au niveau des récepteurs les plus proches des tronçons routiers considérés. D'ailleurs, les cartes de l'annexe 3 du présent document mettent ce constat en évidence, les concentrations diminuant par la suite progressivement lorsqu'on s'éloigne des axes routiers considérés.

Les résultats concernant la contribution de l'aire de stationnement du Flying J sont également très proches des critères de la qualité de l'air des particules. En valeur absolue, les concentrations du Flying J ne sont cependant pas importantes. Il faut tout de même se rappeler que les valeurs des concentrations ambiantes utilisées dépassent les critères. En ce qui concerne le CO et le NO₂, on peut considérer que les concentrations maximales sont bien en dessous des critères pour le secteur du Flying J.

Enfin, on peut constater que le projet d'amélioration du réseau artériel n'a pas d'impact significatif dans les changements de la qualité de l'air du milieu d'étude, notamment pour ce qui est des particules fines. En effet, il n'y pas de modification drastique entre le situation en 2005/2006 et celle anticipée vers 2021.

RÉFÉRENCES

- 1. Amélioration du réseau artériel de la Ville de Vaudreuil-Dorion; Étude d'impact sur l'environnement; Volet : Qualité de l'air. Rapport d'étude, décembre 2005.
- CALINE4 A dispersion Model For Predicting Air Polluant Concentrations Near Roadways Final Report Nov. 1984; Revised June 1989.
- 3. User's guide to Mobile 6.2: Móbile Source Emission Factor Model. EPA. October 2002. Documentation pour Mobile 6.2C.
- 4. Guide de la Modélisation de la dispersion atmosphérique. Richard Leduc, Direction du suivi de l'état de l'environnement Ministère du développement durable, de l'environnement et des parcs du Québec. Janvier 2004.
- 5. Règlement sur l'assainissement de l'atmosphère; Loi sur la qualité de l'environnement.
- 6. Modèle d'émission des polluants et des GES et modèle de consommation des carburants pour MOTREM Version 3b. Utilisation de Mobile6.2C (document de travail). André Babi, Service de la modélisation des systèmes de transport Ministère des Transports du Québec (MTQ), octobre 2004.

ANNEXE 2

Annexe 2 : Document de Réponses 2^E SÉRIE DE QUESTIONS ET COMMENTAIRES DU MDDEP PROJET D'AMÉLIORATION DU RÉSEAU ARTÉRIEL DE VAUDREUIL-DORION

LES CONSULTANTS LBCD INC.

Préparé par

Michel Lalande, ing.

Dossier

29189

Date

Le 30 mai 2007

/lt

SALABERRY-DE-VALLEYFIELD

40 rue Sainte-Cécile

val@lbcd.org plan@lbcd.org

VAUDREUIL-DORION

Michel Lalande

40701

1900, av. St-Charles 10e étage, bureau 1008 Vaudreul-Dorion (Québec) J7V 8P5 Canada

Tél.: (450) 455-6119 Téléc : (450) 455-6388 voud@locd.org

MONTRÉAL

9675, Côte-de-Liesse Bureau 101 Darval (Québec) H9P 1A3 Conada Téi: (514) 339-1500 Téiéc: (514) 339-1599 montreal@trow.com

Réponses aux questions 58 et 59 en référence à la lettre du 5 février 2007 formulée par M. Pierre Aubé, ing. M. Sc.

Question 58

Dans le rapport, tableau 6.2 de l'annexe 6, les élévations des secteurs plus critiques du cours d'eau sont indiquées. Le plan 002, localisation des coupes secteurs urbanisés, représente la position de ces secteurs critiques. Ainsi les secteurs critiques ou de débordement sont couverts.

La page 30 de l'annexe 6 indique de façon générale que le logiciel peut donner des élévations simulées supérieures aux élévations du terrain.

En effet, si le débit d'eau simulé dépasse de plusieurs fois la capacité de la rivière, alors le niveau d'eau simulé pourrait être par exemple 2 m plus haut que le terrain de chaque côté de la rivière. En réalité cela est impossible car l'eau s'étendrait de chaque côté sur une largeur de plus de 200 m.

En analysant les diverses figures du rapport nous constatons que ce n'est pas le cas. Le débit simulé demeure toujours dans les limites du haut de la rivière.

Question 59

Les deux énoncés de la question ne sont pas contradictoires car dans le temps ils doivent se réaliser l'un à la suite de l'autre.

Les postes de pompage limitent la pointe de pluie résultant des secteurs résidentiels de Vaudreuil. Cette pointe de secteur résidentiel est environ 2 heures avant la pointe des secteurs amont constituée de la Municipalités de Les Cèdres et de la Ville de St-Lazare.

Les postes de pompage font de la rétention mais ce débit doit être évacué avant la pointe maximum des secteurs amont.

