6211-09-069

Ville de Montréal

Réponses aux questions et commentaires concernant le projet de construction d'un poste à 315-25 kV à la station d'épuration des eaux usées Jean-R.-Marcotte

Rapport principal et annexes

Date: Novembre 2016

N/Réf.: 129-P-0009177-0-01-003-EI-R-0001-00

Ville de Montréal

Réponses aux questions et commentaires concernant le projet de construction d'un poste à 315-25 kV à la station d'épuration des eaux usées Jean-R.-Marcotte

Rapport principal et annexes | 129-P-0009177-0-01-003-EI-R-0001-00

Préparé par :

Catherine Lalumière, biol. MBA

Chargée de projet

Vérifié par :

Sylvain Arseneault

Directeur de projet

Propriété et confidentialité

« Ce document est la propriété de la Ville de Montréal et est protégé par la loi. Ce rapport est destiné exclusivement aux fins qui y sont mentionnées.

Toute reproduction ou adaptation, partielle ou totale, est strictement prohibée sans avoir préalablement obtenu l'autorisation écrite de la Ville de Montréal.

Si des essais ont été effectués, les résultats de ces essais ne sont valides que pour l'échantillon décrit dans le présent rapport.

Les sous-traitants de la Ville de Montréal qui auraient réalisé des travaux au chantier ou en laboratoire sont dûment qualifiés selon la procédure relative à l'approvisionnement de notre manuel qualité. Pour toute information complémentaire ou de plus amples renseignements, veuillez communiquer avec votre chargé de projet. »

	REGISTRE DES RÉVISIONS ET ÉMISSIONS				
Nº de révision	Date	Description de la modification et/ou de l'émission			
00	2016-11-25	Rapport principal et annexes			

TABLE DES MATIÈRES

1	QUE	STIONS	S ET COMMENTAIRES	1
	1.1	Contex	xte et raison d'être du projet	1
	1.2	Descri	ption du projet et variantes de réalisation	4
	1.3	Zone d	d'étude du projet	8
	1.4	Descri	ption du milieu	10
		1.4.1 1.4.2	HydrogéologieQualité des sols	11
		1.4.3 1.4.4	Espèces exotiques envahissantesFaune et habitats	
		1.4.5	Milieu bâti	
		1.4.6	Archéologie	
		1.4.7	Climat sonore	
		1.4.8	Champs magnétiques	17
	1.5	Consu	Itation du milieu	18
	1.6	Évalua	ation des impacts	19
		1.6.1	Espèces exotiques envahissantes	
		1.6.2	Circulation	
		1.6.3	Paysage	
		1.6.4	Climat sonore	
		1.6.5	Champs magnétiques	
	1.7	Plan de	e mesures d'urgence	26
2	RÉF	ÉRENCI	ES	29

Tableaux		
Tableau 1	Besoins estimés en énergie pour l'usine de désinfection à l'ozone	.2
Tableau 2	Coordonnées géographiques des composantes du projet	.5
Tableau 3	Nombre de transformateurs et champs électromagnétiques de postes électriques	
	comparables	17
Cartes		
Carte 1-1	Zone d'étude et composantes du milieu	-1
Carte 3-2	Emplacement des colonies d'espèces floristiques exotiques envahissantes A-	-3
Carte 3-3	Emplacement de la clôture d'exclusion des couleuvres	-5
Annexes		
Annexe 1	Répertoire cartographique	
Annexe 2	Étude géotechnique et caractérisation environnementale des sols préliminaires	
Annexe 3	Note technique relative aux inventaires complémentaires sur le niveau sonore	

1 QUESTIONS ET COMMENTAIRES

1.1 CONTEXTE ET RAISON D'ÊTRE DU PROJET

QC-1 Pouvez-vous présenter l'échéancier de réalisation du projet de construction de l'usine de désinfection à la station d'épuration des eaux usées Jean R. Marcotte? Quels sont les principaux avantages de la réalisation de l'usine de désinfection?

Réponse:

La construction de l'usine de désinfection de la station d'épuration des eaux usées Jean-R.-Marcotte se déroulera sur 33 mois, entre octobre 2016 et juin 2019 (figure 1).

L'aménagement de cette usine de désinfection présente plusieurs avantages, à la fois pour le milieu naturel et pour le milieu humain. En effet, le type de procédé retenu (ozonation) réduit les teneurs en contaminants chimiques et en microorganismes, ce qui permettra :

- de rendre les activités aquatiques sécuritaires pour les usagers;
- d'améliorer la qualité générale du milieu aquatique utilisé par la faune et la flore par la réduction de la toxicité de l'effluent;
- de respecter la réglementation en vigueur.

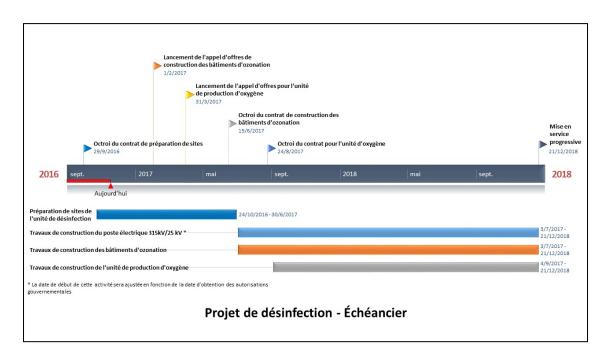


Figure 1 Échéancier prévu pour la construction de l'usine de désinfection de la station d'épuration des eaux usées Jean-R.-Marcotte

QC-2 Il est indiqué à la page 2 du rapport principal que la puissance installée requise est de 50 MW. L'initiateur devra présenter une démonstration détaillée des besoins estimés.

Réponse :

La puissance installée requise de 50 MW est justifiée par les besoins estimés détaillés au tableau 1.

Tableau 1 Besoins estimés en énergie pour l'usine de désinfection à l'ozone.

Système	Nombre d'unités	Puissance par unité (MW)	Puissance installée (MW)	Facteur d'utilisation (%)	Puissance totale utilisée (MW)
Unité d'oxygène	1 lot	13,540	13,540	90	12,186
Générateurs d'ozone et UAÉ 10 unités	10	2,500	25,000	95	23,750
Système de refroidissement Boucle fermée : 4 pompes (200 HP) + 1 réserve Boucle ouverte avec groupe froid :	4	0,149	0,597	90	0,537
• 4 pompes (150 HP)	4	0,112	0,448	90	0,403
4 compresseurs (1 500 HP)	4	1,119	4,476	90	4,028
4 ventilateurs (75 HP)	4	0,056	0,224	90	0,201
6 pompes pour filtration (15 HP)	6	0,011	0,067	90	0,060
Pompes d'injection (500 HP) 4 pompes + 1 réserve	4	0,373	1,492	90	1,343
Destructeurs d'ozone : Réchauffeur (200 MW) 4 réchauffeurs + 1 réserve Soufflante (50 HP)	4	0,200 0,037	0,800 0,149	65 65	0,520 0,097
4 soufflantes + 1 réserve					
Charges bâtiment	1 lot	2,300	2,300	70	1,610
Charges contrôle commande	1 lot	0,075	0,075	100	0,075
		Sous total	49,168	90,3	44,408
		Perte 10 %	4,917	90,3	4,44
		Total	54,085	90,3	48,849

QC-3 Il est indiqué à la page 5 du rapport principal que le projet est nécessaire notamment par le manque de capacité énergétique du poste du Bout-de-l'île. Pouvez-vous donner une estimation de la demande actuelle et projetée de la station d'épuration des eaux usées Jean-R.-Marcotte? Aussi, pouvez-vous définir ce qu'il est entendu comme « manque de capacité énergétique » du poste du Bout-de-l'île à la section 1.5 de l'étude d'impact? Enfin, est-ce que la notion de « manque de capacité énergétique » tient compte des travaux réalisés ou projetés par Hydro-Québec relativement à une nouvelle section à 735-315 kV au poste du Bout-de-l'Île et à la réorganisation des lignes?

Réponse:

Actuellement, la demande maximale de la station d'épuration des eaux usées Jean-R.-Marcotte est de 50 MW. Le projet d'ozonation prévoie une demande additionnelle estimée à 50 MW, principalement pour alimenter l'unité de production d'ozone et d'oxygène (tableau 1). En outre, la Direction de l'épuration des eaux usées (DEEU) envisage le transfert vers le poste projeté des charges actuelles de la station d'épuration qui est présentement alimentée à partir du poste du Bout-de-l'Île. Par ailleurs, la DEEU anticipe une augmentation de la demande énergétique due au remplacement d'équipements désuets et à l'ajout possible de nouveaux éléments de procédés qui seraient requis en raison du resserrement des exigences de rejets de procédés de traitement des eaux usées et de la politique de gestion des matières résiduelles qui comporte un volet sur le bannissement de l'enfouissement de la matière organique. Bien que le choix des technologies de remplacement ou d'ajout d'équipements n'ait été confirmé, la demande potentielle d'énergie devrait être croissante pour les 10 à 20 prochaines années.

Les scénarios proposés par Hydro-Québec pour alimenter l'unité de désinfection et étudiés par la DEEU tenaient compte du projet d'Hydro-Québec pour le poste du Bout-de-l'Île et de la réorganisation des lignes.

En effet, il appert que l'actuel poste du Bout-de-l'Île n'a pas la capacité suffisante jusqu'en 2022 pour un raccordement à 25 kV en raison de sa désuétude qui ne permettrait pas d'alimenter l'unité de désinfection. Dans le meilleur scénario envisagé, une alimentation assurant 30 MW pouvait être fournie à partir du poste du Bout-de-l'Île jusqu'au remplacement du poste prévu en 2022, ce qui est largement insuffisant. À partir de 2022, l'alimentation de la station pouvait entièrement être prise en charge par le poste du Bout-de-l'Île, mais cette option n'était pas envisageable puisque la mise en service de l'unité de désinfection est prévue à la fin de 2018.

QC-4 La carte 1-1 de l'étude d'impact indique deux zones, soit la « zone des travaux » (en pointillé orange) ainsi que le site numéro 1 (en orange). Nous comprenons que le poste sera construit seulement sur le site numéro 1. Pouvez-vous décrire les principales infrastructures qui seront construites ou les activités qui seront réalisées dans la « zone des travaux »?

Réponse :

Les infrastructures qui seront construites dans la zone des travaux (carte 1-1 de l'annexe 1) sont les suivantes :

- un stationnement;
- une zone réservée pour les besoins de la Ville;
- une aire d'entreposage;
- des roulottes pour l'administration et les travailleurs;
- un bloc sanitaire.

Quant aux activités qui s'y dérouleront pendant la construction, elles comprennent l'aménagement du chemin d'accès, l'excavation et le terrassement, le défrichage, la construction du poste ainsi que du transport et de la circulation.

QC-5 L'initiateur doit illustrer le tracé de la ligne de raccordement projetée sur la carte 1-1.

Réponse :

Le tracé de la ligne de raccordement projetée a été fourni par Hydro-Québec (carte 1-1 de l'annexe 1) puisque c'est la société d'État qui est responsable de la construction et de l'exploitation de la ligne à haute tension. De plus, Hydro-Québec précise que ce tracé pourrait être amené à changer ou à être amélioré en phase projet lors de la préparation de l'ingénierie de détail.

1.2 DESCRIPTION DU PROJET ET VARIANTES DE RÉALISATION

QC-6 La section 1.5 de l'étude d'impact documente les solutions de rechange au projet. D'autres alternatives au projet devront être documentées par l'initiateur comme une configuration d'alimentation à tension plus basse (en deçà de 315 kV) dans le poste Bout-de-l'Île et une alimentation souterraine à 25 kV directement à partir du poste Bout-de-l'Île.

Réponse :

Les solutions de rechange au projet à 25 kV et à 120 kV ont été proposées et décrites par Hydro-Québec à la Ville, mais aucune ne garantissait une alimentation ferme. En effet, il devait même être envisagé de réduire la charge de désinfection advenant la perte d'un des transformateurs de l'actuel poste du Bout-de-l'Île en raison de sa capacité actuelle insuffisante. Pour ces raisons, les options suggérées par le MDDELCC ne figuraient pas dans les solutions de rechange envisagées par Hydro-Québec.

QC-7 L'initiateur n'a pas présenté les coordonnées géographiques précises des composantes du projet (incluant le chemin d'accès temporaire), le zonage et la localisation cadastrale en vigueur des lots touchés par le projet ainsi que le statut de propriété des terrains, les servitudes et les droits de passage. L'initiateur devra répondre à cette exigence.

Réponse:

Les terrains visés pour la construction du poste projeté se trouvent sur le lot n° 5459043 du cadastre du Québec. Ils sont la propriété de la Ville de Montréal et leur zonage est identifié comme étant « utilité publique et parc et espaces verts ». Selon la Direction des affaires civiles du Service des affaires juridiques de la ville de Montréal, le registre foncier indique qu'il n'y a pas de servitude ou de droit de passage dans la zone des travaux.

Comme demandé, la position des composantes du projet est également fournie (tableau 2).

Tableau 2 Coordonnées géographiques des composantes du projet

COMPOSANTE DU PROJET	COORDONNÉES	GÉOGRAPHIQUES
COMPOSANTE DO PROJET	LATITUDE	LONGITUDE
Site retenu	45,67560936830	-73,52648326210
Stationnement	45,67710286180	-73,52568438840
Zone réservée pour les besoins de la Ville	45,67632691350	-73,52571795930
Aire d'entreposage	45,67671476310	-73,52590675490
Emplacement suggéré des roulottes et du poste électrique	45,67647882820	-73,52653791400
Roulotte – Administration	45,67651363550	-73,52649507650
Roulotte – Administration	45,67659490870	-73,52645727980
Roulotte	45,67618854240	-73,52664624720
Roulotte	45,67626981570	-73,52660845400
Roulotte	45,67635108900	-73,52657066060
Roulotte	45,67643236220	-73,52653286710
Bloc sanitaire à installer	45,67668893240	-73,52647528270

QC-8 Dans la mesure du possible, est-ce que les déblais générés lors des travaux seront réutilisés en tant que remblai? Quelle quantité de sols sera transportée vers l'extérieur? Est-ce que des sites ont déjà été identifiés pour la disposition des matériaux?

Réponse:

Les déblais générés lors des travaux (environ 6 500 m³) seront transportés pour être entreposés dans un lieu d'enfouissement technique (LET) autorisé par le ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC). Aucun site n'a encore été identifié pour la disposition des matériaux.

QC-9 À la section 2.3.1.2 du rapport principal, on mentionne qu'une excavation d'une profondeur de 7 m devra être réalisée pour la construction d'un sous-sol pour les deux bâtiments prévus. L'étude d'impact spécifie que la hauteur de la nappe phréatique dans la zone des travaux varie entre 2,44 et 5,94 m. Pouvez-vous discuter de l'impact d'une nappe phréatique haute sur la réalisation des travaux et les méthodes de construction? Est-ce que des mesures de gestion des eaux sont prévues?

Réponse :

Les conditions d'eau souterraine qui prévalent au site sont traitées à la section 4 du rapport d'étude géotechnique complémentaire (annexe 2). Les aspects liés au drainage des excavations sont, pour leur part, présentés à la section 5.2.2 du même rapport.

Les pressions d'eau mesurées dans les installations laissées en place dans les forages réalisés dans le contexte de l'étude géotechnique et de la caractérisation environnementale des sols réalisées pour ce projet indiquent des conditions hydrostatiques correspondant à une nappe phréatique située à une élévation variant entre 11 et 9 m (profondeur de l'ordre de 3 m sous le niveau de la surface).

Compte tenu de la nature imperméable du dépôt argileux en place, aucune infiltration d'eau majeure n'est anticipée au moment de la réalisation des travaux. Des infiltrations causées par des eaux de ruissellement ou encore par des nappes occluses au sein des remblais de surface pourraient toutefois survenir; celles-ci devraient pouvoir être contrôlées au moyen de tranchées et de pompes judicieusement placées, soit près des infiltrations, en périphérie des fouilles.

QC-10 Les caractéristiques de la ligne électrique projetée présentées à la section 1.6.2 du rapport principal pour le raccordement du poste au réseau de transport doivent être précisées en indiquant la hauteur, le type de câble, un plan de coupe visuel, etc.

Réponse:

Les caractéristiques de la ligne électrique projetée (tableau 2) sont fournies par Hydro-Québec, qui précise qu'il s'agit des informations actuellement disponibles sur le tracé et les pylônes, mais qu'elles pourraient être amenées à changer ou à être améliorées en phase projet lors de l'ingénierie de détail.

Tableau 2 Caractéristiques des conducteurs, des câbles de garde et des pylônes

Tableau 2 Odracteristiques des conducteurs, des cables de garde et des pylones					
CARA	CARACTÉRISTIQUES GÉNÉRALES DE LA DOUBLE DÉRIVATION À 315 KV				
Longueur		± 360 m L3210			
		± 385 m L3211			
Nombre de conducteu	irs	2 Bersfort par phase	, 35,56 mm dia.		
Câble de garde		1 câble de garde Alu	moweld 14,5 mm dia.		
CARACTÉRISTIQUES DES NOUVEAUX PYLÔNES					
Туре	Utilisation	Nombre	Hauteur (m)	Empattement au sol (m)	
EP1	Double dérivation	1	57,20	15,5 x 15,5	
EA1 – 3210	Double dérivation	1	14,35	6,8 x 6,8	
EA1 – 3211	Double dérivation	1	14,35	6,8 x 6,8	
EAY - 3210	Arrêt 0° - 90°	1	23,90	9,0 x 9,0	
EAY - 3211	Arrêt 0° - 90°	1	25,90	9,8 x 9,8	
EP2	Arrêt 0° - 90° à encombrement réduit	1	44,25	5,6 x5, 5	

Note: Le pylône 103 (existant) sera déplacé de 90 m dans l'axe de la ligne vers le pylône 104.

QC-11 La capacité de transformation ainsi que la puissance de chaque transformateur du poste présentées à la section 2.2.2 du rapport principal doivent être justifiées.

Réponse :

Afin d'assurer la sécurité opérationnelle de la station d'épuration, la DEEU a fait le choix d'installer trois transformateurs identiques qui peuvent fournir une alimentation de réserve en cas de bris d'un des transformateurs. La capacité des transformateurs a donc été évaluée en considérant qu'ils devront supporter le démarrage des groupes motopompes de la station d'épuration dont l'appel de puissance est le plus grand de tous les équipements de la station. Notons que les groupes motopompes sont constitués de 9 moteurs de 5 000 hp et de 8 moteurs de 3 000 hp. Cette stratégie de redondance est la moins coûteuse et permet le transfert des charges d'opération de la station à l'un ou l'autre des transformateurs de la phase I et III en cas de bris de celui de la phase II. Il a donc été considéré que les transformateurs doivent avoir une grande capacité de court-circuit pour éviter une chute de

tension de plus de 20 % lors du démarrage, ce qui provoquerait l'arrêt d'équipements plus sensibles et le déclenchement des relais de protection. À titre d'exemple, lors du démarrage de la station dans les années 80, Hydro-Québec avait dû ajouter un transformateur supplémentaire sur la barre 25 kV de son poste pour éviter que cette situation ne survienne.

QC-12 L'initiateur présente un calendrier de réalisation des travaux à la section 2.4 de l'étude d'impact. La phase 1 devrait ainsi être réalisée entre le printemps 2017 et le printemps 2018, soit pour une durée de 12 mois. Pouvez-vous donner une estimation de la durée des phases 2 et 3 du projet?

Réponse:

Les phases 2 et 3 du projet auront chacune une durée de trois à six mois.

1.3 ZONE D'ÉTUDE DU PROJET

QC-13 À la section 3.1 du rapport principal, la zone d'étude du projet est présentée succinctement. Seul l'arrondissement de Rivière-des-Prairies-Pointe-aux-Trembles de la Ville de Montréal est identifié. Cependant, à la section 3.4, la zone est contextualisée en précisant qu'elle est située sur le territoire de la Communauté métropolitaine de Montréal.

L'étude d'impact présente notamment les grandes lignes du Plan métropolitain d'aménagement et de développement (PMAD), du plan d'urbanisme de la Ville de Montréal et de la réglementation municipale. Outre ces documents, l'étude d'impact devrait référer au Schéma d'aménagement et de développement (SAD) de l'agglomération de Montréal. Il est à noter que le SAD a récemment fait l'objet d'une refonte complète, afin d'assurer la concordance au PMAD. Ainsi, il est demandé à l'initiateur de présenter ces documents ainsi que leur implication pour le projet.

Réponse :

Tout d'abord, la description de la zone d'étude a été bonifiée pour satisfaire la première partie de ce commentaire. Voici le texte de remplacement de la section 3.1 de l'ÉIE :

Comprise dans la région administrative de Montréal (région 06), la zone d'étude du projet (carte 1-1) est entièrement comprise dans l'arrondissement de Rivière-des-Prairies-Pointe-aux-Trembles de la Ville de Montréal, elle-même comprise dans la Communauté métropolitaine de Montréal (CMM). La zone d'étude couvre une superficie de 2,9 km². Plus précisément, elle est délimitée au nord par la Club de golf de l'île de Montréal, au nord-ouest par la rivière des Prairies, au sud-ouest par l'avenue Armand-Chaput, au sud par le boulevard Maurice-Duplessis et à l'est par l'autoroute 40. Cette zone d'étude a été établie dans le but de définir les limites d'inventaire des composantes des milieux naturel et humain,

lesquelles sont jugées suffisantes pour permettre de déterminer les impacts potentiels du projet.

Par la suite, la construction d'un poste à 315-25 kV à la station d'épuration des eaux usées Jean-R.-Marcotte doit s'inscrire en continuité et en respect du cadre administratif applicable, à savoir :

- ▶ le Plan métropolitain d'aménagement et de développement (PMAD) de la CMM (2012);
- le Plan d'urbanisme de la Ville de Montréal (2004);
- le schéma d'aménagement et de développement (SAD) de l'agglomération de Montréal (2015).

Le PMAD et le Plan d'urbanisme de la Ville de Montréal font déjà l'objet d'une présentation dans l'étude d'impact (sections 3.4.1.1 et 3.4.1.2).

Quant au SAD de l'agglomération de Montréal, sa refonte complète est entrée en vigueur le 1^{er} avril 2015. Le SAD constitue un document de planification qui établit les lignes directrices de l'organisation physique du territoire. Il permet de coordonner les choix et les décisions qui touchent l'ensemble des municipalités concernées, le gouvernement, ses ministères et ses mandataires. Le SAD est, avant tout, un document d'intention formulé et conçu de manière à faire ressortir une vision régionale.

Le SAD doit satisfaire les exigences de la Loi sur l'aménagement et l'urbanisme qui en définit le contenu obligatoire et facultatif. En plus de cette obligation, le SAD de l'agglomération de Montréal se doit d'être conforme aux propositions du Plan métropolitain d'aménagement et de développement (PMAD), lui-même conforme aux orientations gouvernementales.

Les plans et les règlements d'urbanisme des villes et des arrondissements doivent être conformes aux objectifs du SAD ainsi qu'aux dispositions de son document complémentaire, notamment par le biais de l'adoption de règlements de concordance dans les six mois suivant son entrée en vigueur.

Le SAD de l'agglomération de Montréal comprend cinq chapitres. Le chapitre 1 fait état de l'évolution des grandes caractéristiques socioéconomiques et démographiques du territoire au cours des dernières années.

Le chapitre 2 établit les orientations d'aménagement pour chacune des grandes thématiques liées à l'aménagement et au développement du territoire, à savoir :

- favoriser un cadre de vie de qualité;
- soutenir le dynamisme de l'agglomération et du centre de la métropole;
- mettre en valeur les territoires d'intérêt.

Le chapitre 3 énonce les propositions portant sur les grandes affectations du territoire et sur la densité de l'occupation du sol. Le chapitre 4 constitue le document complémentaire qui établit les règles dont devront tenir compte les règlements d'urbanisme des municipalités reconstituées de l'agglomération et des arrondissements de Montréal. Enfin, le chapitre 5 porte sur la mise en œuvre du SAD. Il comprend un plan d'action, de même qu'une indication des coûts approximatifs des équipements et des infrastructures intermunicipaux prévus.

Le poste électrique projeté est situé dans l'affectation du territoire « Grande emprise ou grande infrastructure publique ». Cette grande affectation sert à localiser les installations qui fournissent des services essentiels à la population et aux entreprises, mais qui peuvent, dans certains cas, exiger des mesures particulières afin d'assurer la saine cohabitation entre les usages. L'Agglomération de Montréal compte actuellement 34 postes électriques sur son territoire.

Le SAD identifie également les réseaux de transport électrique et d'hydrocarbures comme une contrainte à l'occupation du territoire et préconise leur intégration harmonieuse au milieu urbain. Toutefois, aucune norme spécifique additionnelle à celles établies par Hydro-Québec n'est énoncée, lesquelles sont :

- aucun bâtiment, aucune piscine ni aucun stationnement n'est autorisé dans l'emprise d'une ligne aérienne de transport d'énergie électrique;
- certains usages plus extensifs peuvent être tolérés (jardinage, agriculture urbaine, certains usages récréatifs (piste cyclable, sentier pédestre)), lesquels doivent faire l'objet d'une demande à Hydro-Québec à des fins d'analyse.

1.4 DESCRIPTION DU MILIEU

1.4.1 Hydrogéologie

QC-14 Existe-t-il des ouvrages de puits d'eau souterraine dans la zone d'étude?

Réponse :

Le Système d'information hydrogéologique (SIH) du MDDELCC (2016a) a été consulté pour déterminer la présence d'ouvrages de puits d'eau souterraine dans la zone d'étude. Il s'avère qu'un seul puits a été identifié, lequel se trouve sur le terrain des Sœurs recluses Missionnaires, à l'extrémité nord-ouest de la zone d'étude. Se trouvant à l'extérieur de la zone

des travaux, ce puits, datant de 1978, ne sera pas touché par la construction et l'exploitation du poste projeté.

1.4.2 Qualité des sols

QC-15 L'initiateur devra fournir une copie de l'étude d'évaluation environnementale Phase I. De plus, il devra fournir la localisation des sites visés par la caractérisation de site Phase II qui sera réalisée prochainement ainsi que les résultats de cette étude.

Réponse :

La Division de l'expertise et du soutien technique du Service des infrastructures, de la voirie et des transports a effectué, pour le compte de la DEEU, une étude géotechnique et une caractérisation environnementale des sols au droit du site projeté pour la construction du poste (annexe 2).

De plus, des aires de chantier, d'entreposage et de stationnement sont prévues à proximité du site du poste projeté (carte 1-1 de l'annexe 1). Ces aménagements seront temporaires et nécessiteront seulement un décapage et une excavation de surface pour la mise en place de la structure de chaussée temporaire. Il est prévu que le site soit remis dans son état actuel une fois l'ensemble des travaux réalisés. Par conséquent, la DEEU réalisera à l'automne 2016, une caractérisation environnementale des sols qui feront l'objet d'une excavation. Des échantillons seront donc prélevés dans la couche superficielle de sol d'une profondeur d'environ 300 mm afin d'évaluer la qualité chimique, notamment les hydrocarbures aromatiques polycycliques (HAP), les hydrocarbures pétroliers C₁₀-C₅₀ ainsi que les métaux extractibles et ainsi permettre de disposer adéquatement des déblais.

1.4.3 Espèces exotiques envahissantes

QC-16 Les renseignements fournis par l'initiateur sur la végétation de la zone à l'étude indiquent la présence de plusieurs plantes exotiques envahissantes, dont le roseau commun, le nerprun bourdaine, le gaillet mollugine, le panais sauvage, la valériane officinale, l'anthrisque des bois, le brome inerme et le chèvrefeuille de Tartarie.

L'emplacement ou les coordonnées de ces espèces ne sont toutefois par indiquées dans l'étude d'impact. Il est demandé à l'initiateur de transmettre les coordonnées et l'abondance de ces espèces.

Si elles n'ont pas été cartographiées, il est important qu'elles le soient avant le début des travaux afin d'être certains que les mesures d'atténuation proposées soient appliquées adéquatement.

Réponse:

L'emplacement des colonies d'espèces exotiques envahissantes (EEE) répertoriées lors des inventaires a été cartographié (carte 3-2 de l'annexe 1). Les coordonnées géographiques des groupements d'EEE ainsi que l'abondance relative de chacune des EEE sont également fournies (tableau 3).

Tableau 3 Coordonnées géographiques et abondance relative des EEE répertoriées

FORFOE	COORDONNÉES (ABONDANCE	
ESPÈCE	LATITUDE	LONGITUDE	RELATIVE (%)
Groupement 1 – Friche herba	acée au sud (A, B et C)		
Alpiste roseau			7,5
Gaillet mollugine			10,0
Nerprun bourdaine	AE 67E60A71000	72 52627104040	0,5
Panais sauvage	45,67569471280	-73,52637194940	6,0
Roseau commun			15,0
Valériane officinale			5
Groupement 2 – Friche arbu	stive au coin nord-ouest du s	site (I)	
Chèvrefeuille de Tartarie			3,0
Nerprun bourdaine	45,67791271610	-73,52565635500	7,0
Valériane officinale			10,0
Groupement 3 – Rives du co	urs d'eau sur 3 m de largeur	(J)	
Érable à Giguère		-73,52572219290	3,0
Roseau commun	45,67819012140		80,0
Nerprun bourdaine			5,0
Groupement 4 – Friche herba	acée au centre du site à l'étu	ide (E)	
Anthrisque des bois			0,5
Gaillet mollugine			25,0
Nerprun bourdaine	AE 6760A667700	72 52500077070	3,0
Panais sauvage	45,67694667780	-73,52580977870	0,5
Roseau commun			25,0
Valériane officinale			1,0
Groupement 5 – Zone d'entre	eposage (D)	1	
Roseau commun	4E 67620047240	72 52507427620	3,0
Valériane officinale	45,67638017340	-73,52597127630	0,5
Groupement 6 – Friche arbo	rescente (L)	'	
Alpiste roseau	4E 67706024E00	72 52404204620	1,0
Chèvrefeuille de Tartarie	45,67726934520	-73,52401201620	3,0

COORDONNÉES GÉOGRAPHIQUES ABOND.			
ESPECE	LATITUDE	LONGITUDE	RELATIVE (%)
Gaillet mollugine			0,5
Nerprun bourdaine		_	7,0
Valériane officinale			10,0
Groupement 7 – Friche arbus	stive au coin nord-est du site	e (M)	
Anthrisque des bois			10,0
Nerprun bourdaine	45 07750074000	70 50400440000	25,0
Roseau commun	45,67759274300	-73,52433440300	15,0
Valériane officinale			5,0
Groupement 8 – Fossé au no	ord du site		
Chèvrefeuille de Tartarie			1,0
Nerprun bourdaine		70 5047000040	5,0
Roseau commun	45,67765102640	-73,52473839040	97,0
Valériane officinale			0,5
Groupement 9 – Friche arbus	stive au sud du fossé et vers	s l'est (K)	
Anthrisque des bois		-73,52518209800	0,5
Chèvrefeuille de Tartarie			5,0
Gaillet mollugine	45,67752819460		2,0
Nerprun bourdaine			20,0
Valériane officinale			10,0
Groupement 10 – Friche arbi	ustive au sud du fossé et ve	rs l'ouest (G)	
Anthrisque des bois			65,0
Chèvrefeuille de Tartarie			2,0
Érable à Giguère	45.0770000000	70 50505040000	2,0
Gaillet mollugine	45,67768333020	-73,52585248990	2,0
Nerprun bourdaine			45,0
Valériane officinale			2,0
Groupement 11 – Friche herl	bacée au nord-est du site (H	l)	
Gaillet mollugine	,		20,0
Nerprun bourdaine	45,67776031360	-73,52613642960	0,5
Roseau commun			3,0
Groupement 12 – Zone d'ent	reposage (F)	1	
Chèvrefeuille de Tartarie	AE 0770070000	70 50404507000	1,0
Nerprun bourdaine	45,67720702260	-73,52481537800	2,0

1.4.4 Faune et habitats

QC-17 S'il y a lieu, l'initiateur devra présenter les habitats fauniques ainsi que les aires protégées présents dans la zone d'étude.

Réponse :

Selon le *Registre des aires protégées* (MDDELCC, 2016b), il n'y a aucun habitat faunique désigné ni aire protégée dans la zone d'étude.

QC-18 Selon l'avis du ministère de la Faune, des Forêts et des Parcs, dans le cadre du projet de construction des équipements d'ozonation de la station Jean R. Marcotte, une relocalisation des couleuvres a eu lieu. À cet effet, une clôture d'exclusion délimitant l'habitat résiduel hors chantier et un enclos ont été mis en place.

Pour la relocalisation des couleuvres, dans le cadre du présent projet de poste électrique, les mêmes installations pourront être utilisées. Toutefois, leur intégrité devra être vérifiée avant la relocalisation. Il est à noter que l'enclos, qui avait été mis en place de façon temporaire, devait être démantelé à ce moment.

Réponse:

À la suite d'une conversation avec un représentant du ministère de la Faune, des Forêts et des Parcs (MFFP), il est recommandé de faire une battue pour effrayer et pour déplacer les couleuvres, plutôt que de les relocaliser par capture. Cette battue se déroulera avant l'installation de la clôture d'exclusion, laquelle se trouve hors de la zone des travaux (carte 3-3 de l'annexe 1).

1.4.5 Milieu bâti

QC-19 À la section 3.4.6.4 Infrastructures souterraines, l'initiateur mentionne la présence de multiples conduites dans le sous-sol du réseau routier municipal. Est-ce que de telles infrastructures existent au droit du site des travaux projetés pour la construction du poste ?

Réponse :

Le sous-sol au droit du site des travaux projetés pour la construction du poste ne présente pas de conduites d'égout, de distribution d'eau potable ou d'installations électrique ou et de télécommunications.

QC-20 L'étude d'impact mentionne, à la section 3.4.7, les projets à proximité du site visé. L'initiateur devra présenter ces projets sur une carte et discuter de leurs impacts potentiels sur le poste à l'étude ou, à l'inverse, du poste sur les projets.

Réponse :

Tel qu'identifié dans l'étude d'impact, un vaste projet de développement résidentiel (le Faubourg Pointe-aux-Prairies) est situé au sud-ouest de la zone d'étude (carte 1-1 de l'annexe 1). Il s'agit d'un projet comportant plusieurs phases de développement.

Impacts pendant la phase de construction

Les phases de développement situées le plus près du site du projet sont les phases IX et XIII. Elles ne sont présentement pas en vente et ne devraient donc pas être développées ni habitées avant la construction du poste projeté, réduisant ainsi tout impact potentiel sur le milieu humain de ce secteur pendant la phase de construction. Il en est de même pour les phases du projet actuellement en vente (phases VI, XI et VIII), lesquelles pourraient être en cours de développement lors de la construction du poste, en raison de la distance qui les sépare de l'aire des travaux.

Pour les autres phases déjà construites, ainsi que pour l'ensemble des résidents avoisinant le site des travaux, ceux-ci seront peu touchés en phase de construction puisque les impacts résiduels sur la qualité de l'air, des sols, des eaux de surface et souterraines, sur le réseau routier et sur le climat sonore sont jugés mineurs dans l'étude d'impact.

L'accès à la piste cyclable sera interrompu pendant la phase de construction, mais un tracé alternatif sera proposé afin d'assurer le lien cyclable.

Impacts pendant la phase d'exploitation

À plus long terme, le développement de l'ensemble des phases du Faubourg Pointe-aux-Prairies augmentera la population présente à proximité du poste projeté. À cet égard, des préoccupations vis-à-vis du climat sonore (liés aux transformateurs) lors de la phase d'exploitation pourraient surgir.

Selon les simulations réalisées dans le contexte de l'étude d'impact, les niveaux sonores provenant de l'exploitation du future poste de transformation à la Station seront conformes aux exigences municipales (Règlement sur le bruit RCA06-30015) et provinciales (*Note d'instructions sur le bruit 98-01* du MDDELCC). L'évaluation indique que les niveaux sonores produits par le futur poste de transformation seront de l'ordre de 31 dBA et moins aux résidences les plus proches, soit celles de la phase VI du nouveau projet de développement résidentiel (rue Tréfflé-Berthiaume).

En ce qui concerne la question paysagère, les résidents des maisons unifamiliales déjà construites n'ont pas de vue sur le site du futur poste. Les nouvelles constructions pourraient

avoir des vues filtrées en direction du site du poste pendant l'hiver, lorsque les arbres auront perdu leurs feuilles. Ces vues théoriques resteront toutefois très partielles et sans grande importante. Les simulations visuelles réalisées dans le contexte de l'étude d'impact concluent que l'impact résiduel est mineur en raison des efforts de maintien du couvert végétal prévu au projet.

Finalement, la circulation routière est, dans une certaine mesure, susceptible d'être perturbée lorsque le projet domiciliaire sera complété. L'impact résiduel est toutefois considéré mineur compte tenu de son caractère ponctuel et de courte durée.

Par conséquent, le développement du projet Faubourg Pointe-aux-Prairies entraînera peu d'impacts sur le poste projeté tout comme le poste aura peu d'impacts sur le projet de développement résidentiel.

1.4.6 **Archéologie**

QC-21 Sur la base des documents soumis à l'attention du ministère de la Culture et des Communications (MCC), l'initiateur devra s'engager à réaliser, préalablement à la construction du projet, un inventaire archéologique avec sondages manuels dans la zone de potentiel archéologique comprise dans l'emprise du projet.

De plus, il devra aussi s'engager à fournir au MCC les résultats du sondage et de l'inventaire archéologique réalisé préalablement aux travaux.

Réponse :

Avant le début de la construction du poste, un inventaire archéologique avec sondages manuels sera réalisé dans la petite portion (environ 690 m²) du secteur d'intérêt archéologique à fort potentiel qui recoupe la zone des travaux. Cette partie de la zone des travaux vise essentiellement l'aménagement du chemin d'accès qui se connectera au chemin menant à l'usine de désinfection. Les résultats seront transmis au MCC dès que disponibles.

1.4.7 Climat sonore

QC-22 Étant donné la proximité du poste du Bout-de-l'Île, il serait préférable pour l'initiateur d'obtenir une analyse spectrale en bandes fines (voir figure 1) sur quelques minutes d'enregistrement de nuit, au point 2 de la carte 6-1 de l'étude d'impact. Cette analyse permettrait d'éviter que des tonalités générées par le poste électrique actuel du Bout-de-l'Île puissent être faussement attribuées aux nouvelles installations électriques du poste projeté à la station d'épuration des eaux usées Jean-R.-Marcotte.

Réponse :

Lors des relevés de bruit ambiant, aucun bruit en provenance du poste électrique du Bout-del'Île n'a été perçu. Par conséquent, il s'avère peu probable que des tonalités générées par le poste électrique actuel du Bout-de-l'Île puissent être faussement attribuées aux nouvelles

installations électriques du poste projeté. Pour le valider, un inventaire complémentaire a été réalisé dans la nuit du 26 au 27 octobre 2016 (annexe 3). Après l'analyse des résultats et des observations sur le terrain, il apparaît que le bruit produit par le poste du Bout-de-l'Île n'a pas d'influence au point 2 de la carte 6-1 de l'ÉIE.

1.4.8 Champs magnétiques

QC-23 L'étude d'impact indique à la section 6.3.10 que les champs magnétiques seront négligeables à l'extérieur des limites du poste projeté. Toutefois, comme c'est le cas pour les autres études d'impact de projets de postes électriques présentées dans le cadre de la procédure d'évaluation et d'examen des impacts sur l'environnement, l'initiateur devra estimer les valeurs de champs électriques et de champs magnétiques émis par le poste électrique à la limite de la zone du poste prévu.

Réponse:

En comparaison avec d'autres postes construits récemment par Hydro-Québec ou en cours d'autorisation (tableau 3), un poste de ce type entraîne des champs magnétiques de l'ordre de 0,5 à 1 µT à la limite de propriété (Hydro-Québec, 2014; 2013a; 2013b). Cette valeur est largement inférieure à la limite d'exposition publique de 200 µT établie par la CIPRNI.

En ce qui a trait aux champs électriques, ils sont faibles et inférieurs à la limite d'exposition publique de 4,2 kV/m recommandée. Pour un poste de ce type, ils seront comparables à ceux calculés par Hydro-Québec pour les postes de Baie-Saint-Paul à 315-25 kV et Saint-Patrick à 315-25 kV, soit variant de 0,02 à 1,80 kV/m (tableau 3).

Tableau 3 Nombre de transformateurs et champs électromagnétiques de postes électriques comparables.

POSTE	NOMBRE DE TRANSFORMATEURS	CHAMPS MAGNÉTIQUES (µT)	CHAMPS ÉLECTRIQUES (KV/M)
Poste de Baie-Saint-Paul à 315-25 kV	2 transformateurs	0,5 à 1	0,02 à 1,80
Poste de Limoilou à 230-25 kV	4 transformateurs de puissance triphasés à 230-25 kV	0,5 à 1	nd
Poste Saint-Patrick à 315-25 kV	3 transformateurs à 315-25 kV	0,5 à 1	0,02 à 1,80
Poste Fleury à 315-25 kV	2 transformateurs à 315-25 kV	<1	< 4,2
Poste au nord de Blainville à 315-25 kV	2 transformateurs à 315-25 kV	< 0,2	nd

1.5 CONSULTATION DU MILIEU

QC-24 À la section 4.3 de l'étude d'impact, l'initiateur mentionne qu'une rencontre est prévue en septembre 2016 sur le projet avec le Comité permanent de suivi des eaux usées de Montréal. Les conclusions de cette réunion devront être présentées lorsqu'elles seront disponibles.

Réponse:

Cette rencontre avec les membres du Comité permanent de suivi des eaux usées (CPSEUM) a eu lieu le 17 novembre 2016. Elle regroupait des représentants des comités ZIP Jacques-Cartier et des Seigneuries, de l'organisme STOP, de la Communauté métropolitaine de Montréal, du MDDELCC et de divers services de la Ville. Le projet de désinfection et de construction du poste de transformation ont été présentés de façon détaillée et l'étude d'impact sur l'environnement et ses principaux constats ont été présentés. La seule question qui en ressort concerne la date à laquelle le rapport d'étude d'impact sera rendu public par le BAPE.

Par ailleurs, une séance d'information publique a été tenue le 14 novembre 2016 à la Station d'épuration pour présenter, comme pour la rencontre avec le CPSEUM, le projet de désinfection ainsi que le projet de construction du poste de transformation et les résultats de l'étude d'impact sur l'environnement. Les citoyens de l'arrondissement Rivière-des-Prairies-Pointe-aux-Trembles ont été invités à participer à cette rencontre par la publication d'un avis publics dans les journaux locaux. De plus, les citoyens de quartiers résidentiels voisins ont reçu un avis aux résidents directement dans leur boîte postale les informant de la tenue de cette rencontre. Une cinquantaine de personnes étaient présentes, dont trois élus locaux, et quelques participants ont posé des questions concernant le poste de transformation portant principalement sur les coûts d'exploitation du poste, les champs électriques et magnétiques et la piste cyclable. Un citoyen a manifesté ses préoccupations quant au manque de capacité actuel des postes électriques d'Hydro-Québec et à l'ajout de charges additionnelles sur ces derniers engendrées par la mise en service de l'unité de désinfection. Ce citoyen a été rassuré d'apprendre que cette possibilité était éliminée par la décision de la Ville de construire un poste privé.

QC-25 À la section 4 et à l'annexe 6, l'étude d'impact présente la démarche et les résultats de la consultation effectuée à ce jour. L'initiateur devra présenter la démarche de consultation qui sera mise en place en phase de construction et de mise en service.

Réponse:

La Ville de Montréal a élaboré une stratégie de communication et mettra en œuvre diverses mesures pour informer le public de l'ensemble du projet et des travaux qui seront effectués sur le site de la station d'épuration dans le cadre du projet d'ajout d'une unité de désinfection à l'ozone. Les outils de communications retenus sont :

- une rencontre avec les citoyens de l'arrondissement, à proximité de la Station, pour les informer du projet et des travaux à venir;
- des courriels d'information aux partenaires, dont l'arrondissement Rivière-des-Prairies-Pointe-aux-Trembles, les services d'urgence, les entreprises avoisinant les travaux, etc.;
- une section du site Internet de l'eau de Montréal dédiée au projet (à confirmer);
- des avis aux résidents:
- une ligne d'information 311 et Info-travaux pour répondre aux questions citoyennes.

1.6 ÉVALUATION DES IMPACTS

QC-26 À notre avis, certains éléments pourraient être manquants du tableau 6-1. L'initiateur devra discuter de l'absence des interactions suivantes :

- entre la construction du chemin d'accès temporaire et la végétation;
- de toute interaction relativement aux espèces à statut particulier (particulièrement la couleuvre brune);
- ▶ de l'absence d'interaction entre les activités de transport et de circulation et le milieu sonore.

Réponse :

En effet, des interactions entre certaines composantes et source d'impact environnemental étaient manquantes dans le tableau 6-1, et ce, bien qu'elles aient été abordées dans l'analyse des impacts (section 6.3 de l'étude d'impact). Par conséquent, voici une version révisée du tableau 6-1.

Tableau 6-1 Matrice d'identification des impacts potentiels

	1	SOURCE D'IMPACT ENVIRONNEMENTAL								
		Phase de construction				Phase d'exploitation et d'entretien				
		Chemin d'accès	Excavation et terrassement	Défrichage	Construction du poste	Transport et circulation	Présence du poste	Fonctionnement des équipements	Entretien et réparation des équipements	Transport et circulation
	MILIEU PHYSIQUE									
COMPOSANTE DU MILIEU	Qualité de l'air	4	V	1	4	4		V		V
	Surface du sol	4	V	1		1		7		1
	Qualité des sols/eaux de surface et sout	1	N	1	V	V		V		9
	MILIEU BIOLOGIQUE			***		-		40.		
	Végétation	V	N	1						
	Faune et habitat	N	V	1	V	N				
	Espèce à statut particulier *	V	V	V	V	V				
	MILIEU HUMAIN									
	Activités et opérations de la Station					N.	+			
	Activités récréotouristiques	4		2		4		7		2
	Réseau routier					N				V
	Climat sonore	N	V	4	V	N		d	N	
	Sécurité du public / travailleurs de la Stal	V	N	1	V	N				1
	Patrimoine et archéologie		N							8
	Paysage						N			

- Impact potential positif
- √ Impact potentiel négatif
- * Aucune couleuvre n'a été trouvée sur le poste lors des inventaires d'automne 2015 inventaire 2016 à venir

1.6.1 Espèces exotiques envahissantes

QC-27 À la section 6.3.4, l'initiateur propose plusieurs mesures d'atténuation importantes qui permettront de limiter les impacts des espèces exotiques envahissantes (EEE) dans le cadre des travaux, notamment nettoyer la machinerie excavatrice avant son arrivée sur les sites des travaux et à nouveau si elles sont utilisées dans des secteurs touchés par des EEE, éliminer les résidus ainsi que le système racinaire des EEE sur au moins 1 m de profondeur.

Ces mesures doivent toutefois être précisées ou bonifiées. L'initiateur mentionne notamment que les résidus d'EEE seront dirigés vers des lieux d'enfouissement où ils devront être enfouis à une profondeur d'au moins 2 m. Il est important de préciser à cette mesure que les lieux d'enfouissement visés doivent être des lieux d'enfouissement techniques (LET) autorisés par le MDDELCC. De plus, il n'est pas nécessaire d'enfouir les résidus à plus de 2 m dans ces lieux. Les résidus touchés ne doivent toutefois par être utilisés comme matériel de recouvrement final. Il est également possible d'enfouir les résidus d'EEE sur place, dans les secteurs où des travaux d'excavation sont prévus. Le transport des résidus d'EEE hors des sites des travaux projetés et leur enfouissement dans un site non autorisé contrevient à la réglementation québécoise. Finalement, il est demandé à l'initiateur d'ajouter la végétalisation des sols mis à nu le long des chemins d'accès où il n'y aura pas d'infrastructures.

Ainsi, il est recommandé à l'initiateur de mettre à jour les mesures d'atténuation en tenant compte de l'information mentionnée ci-haut.

Réponse :

Tel que demandé, les mesures prévues pour atténuer les impacts de la construction du poste sur la végétation, particulièrement les espèces exotiques envahissantes (EEE), ont été mises à jour :

- À moins que la Ville de Montréal ne l'ait déjà fait, l'entrepreneur doit délimiter clairement, à l'aide de repères, les zones à défricher qui sont indiquées au contrat.
- ► Les espèces exotiques envahissantes ne seront pas simplement coupées, mais leurs racines seront arrachées sur une profondeur d'au moins 1 m de manière à limiter les risques de repousse.
- Les résidus d'espèces exotiques envahissantes pourront être enfouis sur place, dans les secteurs où des travaux d'excavation sont prévus, ou être dirigés vers des lieux d'enfouissement techniques (LET) autorisés par le MDDELCC. Les résidus ne seront pas utilisés comme matériel de recouvrement final.
- L'entrepreneur devra procéder au nettoyage de ses engins et s'assurer que ceux-ci sont exempts de boue, de fragments de plantes et d'animaux avant leur arrivée dans les aires de travaux et après avoir été employés dans des secteurs touchés par des espèces exotiques

envahissantes, pour éviter la dissémination de ces espèces dans des secteurs qui en sont exempts.

- Les zones de nettoyage seront localisées sur des surfaces ne permettant pas la germination des graines ou l'implantation des fragments végétaux et à au moins 30 m du cours d'eau intermittent. Les déchets de nettoyage seront éliminés de manière à éviter toute dispersion des matériaux végétaux.
- Les sols mis à nu le long de chemins d'accès où il n'y aura pas d'infrastructure seront végétalisés.

1.6.2 **Circulation**

QC-28 À la section 6.3.8 du rapport principal, il est question des impacts sur la circulation routière. Pouvez-vous fournir une estimation du nombre moyen et maximal de trajets par jour, sur le boulevard Maurice-Duplessis, qui seront nécessaires aux camions et à la machinerie pour réaliser les travaux?

Réponse :

Pour la charge régulière, le nombre moyen de trajets est évalué à entre 10 et 15 camions quotidiennement entre juillet 2017 et juillet 2018 sur le boulevard Maurice-Duplessis. Au cours de cette période, des pointes d'environ 35 camions par jour pourraient survenir. L'intensité maximale prévue de camionnage est anticipée pendant 4 à 6 mois à l'été 2017 (30 camions de béton par jour). À compter de juillet 2018, la route ne sera utilisée que pour des charges minimes.

QC-29 À la section 6.3.12, il est indiqué que le tronçon de piste cyclable sera fermé pendant la construction de l'unité de désinfection et que la fermeture pourrait être permanente puisque le tronçon deviendra un cul-de-sac. L'initiateur devrait présenter l'impact de la fermeture de cette piste cyclable. Est-ce que des alternatives pour les usagers seront présentées?

Réponse :

Les impacts de la fermeture de la piste cyclable seront atténués par l'aménagement d'une voie cyclable alternative. Afin de permettre la poursuite de la promenade dans ce secteur et de relier les sections du Parc-nature de la Pointe-aux-Prairies qui se trouvent de part et d'autre de l'autoroute 40, une nouvelle piste cyclable sera aménagée. Celle-ci empruntera le boulevard Maurice-Duplessis du côté est et rejoindra la piste existante sur le boulevard Gouin par la 87° Avenue. Les travaux de marquage des rues seront réalisés par la Division des transports actifs et collectifs de la Direction des transports dès le printemps 2017. Les publics touchés seront informés de la fermeture du tronçon de piste et du nouveau parcours proposé par divers outils de communication de proximité ou de masse (tableau 3).

Tableau 3 Outils de communication de proximité et de masse

PUBLIC	OUTILS DE COMMUNICATION				
Proximité	 Avis aux résidents. Courriels d'information aux chroniqueurs de l'hebdo local et aux partenaires (Vélo-Québec, Club de golf de l'île de Montréal, etc.). Panneaux et affiches dans le secteur du chantier de construction et dans les différents secteurs du Parc-nature. 				
Masse	 Publicité dans l'hebdo de l'arrondissement. Relais des informations à la ligne téléphonique Info-travaux et 311. Les téléphonistes de la ligne téléphonique 311 seront prêts à recevoir les appels des citoyens et à les informer du changement apporté au parcours de la piste cyclable et des raisons qui motivent ce dernier. 				
	 Publication d'information sur plusieurs sites Internet : Info-travaux, Services des grands parcs, du verdissement et du Mont-Royal, arrondissement Rivière-des- Prairies-Pointe-aux-Trembles. 				

1.6.3 Paysage

QC-30 À la section 6.3.12.4, il est indiqué que « Dans un souci de préserver cet état de fait, une attention particulière devra être apportée au maintien du couvert végétal des unités F-1 et Pc-1 qui forment une barrière filtrant les vues sur ces infrastructures industrielles. Advenant la perte de couvert végétal, l'unité résidentielle (R-1) pourrait être affectée et voir sa valeur environnementale au plan du visuel fortement diminuée. » Quels travaux prévus dans le cadre de ce projet ou de la construction de l'usine de désinfection (par ex. : construction de la ligne 315 kV) pourraient affecter ce couvert végétal et causer un préjudice au plan visuel dans le secteur R-1 ? Aussi, l'unité B-1 ne procure-t-il pas un écran ?

Réponse :

Il n'y aucune activité prévue dans le contexte de l'aménagement du poste projeté ou de la construction de l'usine de désinfection qui pourrait modifier le couvert végétal des unités F-1 et Pc-1, et ainsi altérer le paysage des observateurs de l'unité résidentielle R-1. Quant à l'unité B-1, les phases de développement prévues pour le projet résidentiel Faubourg Pointe-aux-Prairies réduiront sa capacité à former un écran pour l'ensemble des résidents. C'est pourquoi, il s'avère important lors du développement de projets impliquant du déboisement de préserver le couvert végétal, particulièrement dans l'unité F-1, pour réduire les percées visuelles en direction du poste projeté. Notons que les travaux prévus dans l'unité F-1 seront réalisés par Hydro-Québec puisqu'ils visent la construction des lignes d'alimentation 315 kV du poste projeté. Or, Hydro-Québec a indiqué à la DEEU que les aménagements paysagers qui avaient été réalisés dans l'emprise des lignes 315 kV et 735 kV d'Hydro-Québec (unité F-1)

dans le cadre d'un autre projet vont nécessiter des ajustements et qu'elle informera directement le MDDELCC des mesures qui seront prises.

1.6.4 Climat sonore

QC-31 L'initiateur devrait préciser s'il s'engage à ce que les travaux soient effectués selon les recommandations fournies dans le document : *Limites et lignes directrices préconisées par le MDDELCC relativement aux niveaux sonores provenant d'un chantier de construction.*

Réponse :

La Ville de Montréal s'engage à ce que les travaux soient effectués selon les recommandations fournies dans le document : Limites et lignes directrices préconisées par le MDDELCC relativement aux niveaux sonores provenant d'un chantier de construction.

QC-32 Les résultats de la modélisation (carte 6-1 de l'étude d'impact) montrent que le niveau de bruit attribuable aux nouvelles installations sera inférieur à 35 dBA à la zone industrielle la plus près. Toutefois, il semble que le caractère tonal du bruit du transformateur ne semble pas avoir été considéré. Il serait préférable qu'une pénalité de 5 dBA soit ajoutée à toute mesure future.

Réponse:

La pénalité de 5 dBA sera appliquée à toute mesure future si le niveau sonore produit par les installations entraîne une émergence sonore suffisamment élevée pour qu'elle ressorte du bruit résiduel du secteur. Actuellement, les résultats des simulations indiquent que ce ne sera pas le cas. Il est à noter que malgré l'application d'une pénalité de 5 dBA, le niveau de bruit des installations respectera le critère fixé par la *Note d'instructions 98-01 sur le bruit* du MDDELCC.

QC-33 L'initiateur devrait préciser s'il s'engage à déposer un programme de surveillance contenant un volet bruit lors de la demande de CA.

Réponse:

Il est déjà prévu que l'ensemble des mesures d'atténuation proposées dans l'étude d'impact, incluant celles relatives au climat sonore, soit intégré dans les devis d'appel d'offres et dans les contrats octroyés aux entrepreneurs afin d'assurer la protection de l'environnement. Le surveillant de chantier désigné par la Ville de Montréal s'assurera que ces mesures soient respectées pendant la construction du poste. Par conséquent, aucun programme de surveillance spécifique au bruit ne sera déposé.

De plus, la Ville de Montréal procédera à un suivi de bruit émis par les installations du poste au cours des mois suivant sa mise en service. Le suivi portera sur le bruit perçu à la limite de

propriété des résidences les plus près (phase VI du projet de développement résidentiel; point 2 sur la carte 1-1 de l'annexe 1) et comprendra une vérification de la conformité des installations à la *Note d'instructions 98-01 sur le bruit* du MDDELCC.

QC-34 L'initiateur devra préciser ses engagements advenant que des plaintes de bruit soient déposées.

Réponse :

La Ville de Montréal dispose de mécanismes pour gérer les plaintes de bruit sur son territoire. En effet, elle met à la disposition des citoyens un site Internet ainsi qu'une ligne téléphonique qui permettent aux citoyens de déposer une plainte quant à un bruit jugé excessif. Le site Internet informe le citoyen quant à la façon de communiquer avec la Ville dans le but de porter plainte en fonction de la nature du bruit, en personne à des lieux identifiés, par courriel à l'aide d'un formulaire en ligne, et par téléphone en composant le 311 et numéro d'Info-travaux. Dans le cas de nuisances engendrées par des travaux de construction, les plaintes sont enregistrées et envoyées au chargé de projet qui est tenu de faire un suivi auprès de l'entrepreneur afin de connaître les causes de la problématique et d'essayer de minimiser les impacts. Par la suite, il est tenu de répondre au citoyen afin de communiquer les mesures d'atténuation possibles ou mises en place.

1.6.5 Champs magnétiques

QC-35 À la section 6.3.10 de l'étude d'impact, l'initiateur mentionne que « les champs magnétiques du poste à 315-25 kV seront négligeables à l'extérieur des limites du poste projeté ». Pouvez-vous justifier cette affirmation? Est-ce que des effets pourront être perçus pour les travailleurs qui fréquenteront le poste projeté?

Réponse :

Il n'existe pas de normes québécoises ou canadiennes en matière d'exposition du public ou des travailleurs aux champs électriques et magnétiques de basse fréquence (60 Hz), tels que ceux émis par les réseaux d'énergie électrique (Conseil médical, Direction – Santé et Sécurité d'Hydro-Québec, 2013 ; Ministère de la Santé et des Services sociaux, 2014). En se basant sur les recommandations et les normes internationales en matière d'exposition aux CEM (IEEE, 2002; ICNIRP, 1998), les limites d'exposition des travailleurs aux CEM de 50/60 HZ sont de 8,3 kV/m pour les champs électriques et de 1 000 μ T pour les champs magnétiques, alors qu'elles sont respectivement de 4,2 kV/m et de 200 μ T pour le public (CIPRNI, 2010).

En comparaison avec d'autres postes construits récemment (tableau 3), un poste de ce type entraîne des champs magnétiques de l'ordre de 0,5 à 1 µT à la limite de propriété (Hydro-Québec, 2014; 2013a ; 2013b). Le poste projeté n'augmentera donc pas le niveau

d'exposition au champ magnétique des résidents les plus proches puisque le champ magnétique ambiant inférieur à 1 μ T, qu'on trouve au Québec, ne sera pas dépassé à la limite de propriété de la DEEU. Cette valeur de 1 μ T est d'ailleurs de loin inférieure à la limite d'exposition publique à des fréquences basses établie par CIPRNI établie à 200 μ T.

Dans le contexte d'un poste, les travailleurs sont essentiellement soumis aux champs magnétiques. Selon le Conseil médical de la Direction – Santé et Sécurité d'Hydro-Québec (2013), les travailleurs de l'électricité sont parfois exposés à des niveaux de champs magnétiques beaucoup plus élevés (1 000 µT) que la population générale. Il appert, que sous les valeurs limites, aucun effet cumulatif sur la santé provenant d'expositions répétées aux CEM de fréquence inférieure à 100 kHz n'est connu (BAPE, 2015). Il importe également de mentionner que la clôture de sécurité autour du poste permet une distance des installations qui réduit les CEM. La formation des travailleurs ainsi que le respect des mesures de sécurité à l'intérieur des limites du poste permettront aussi de limiter les impacts sur leur santé des travailleurs.

1.7 PLAN DE MESURES D'URGENCE

QC-36 À la section 9.2 décrivant le contenu du Plan des mesures d'urgence de l'étude d'impact, le ministère de la Sécurité publique recommande d'ajouter les éléments suivants à la liste présentée :

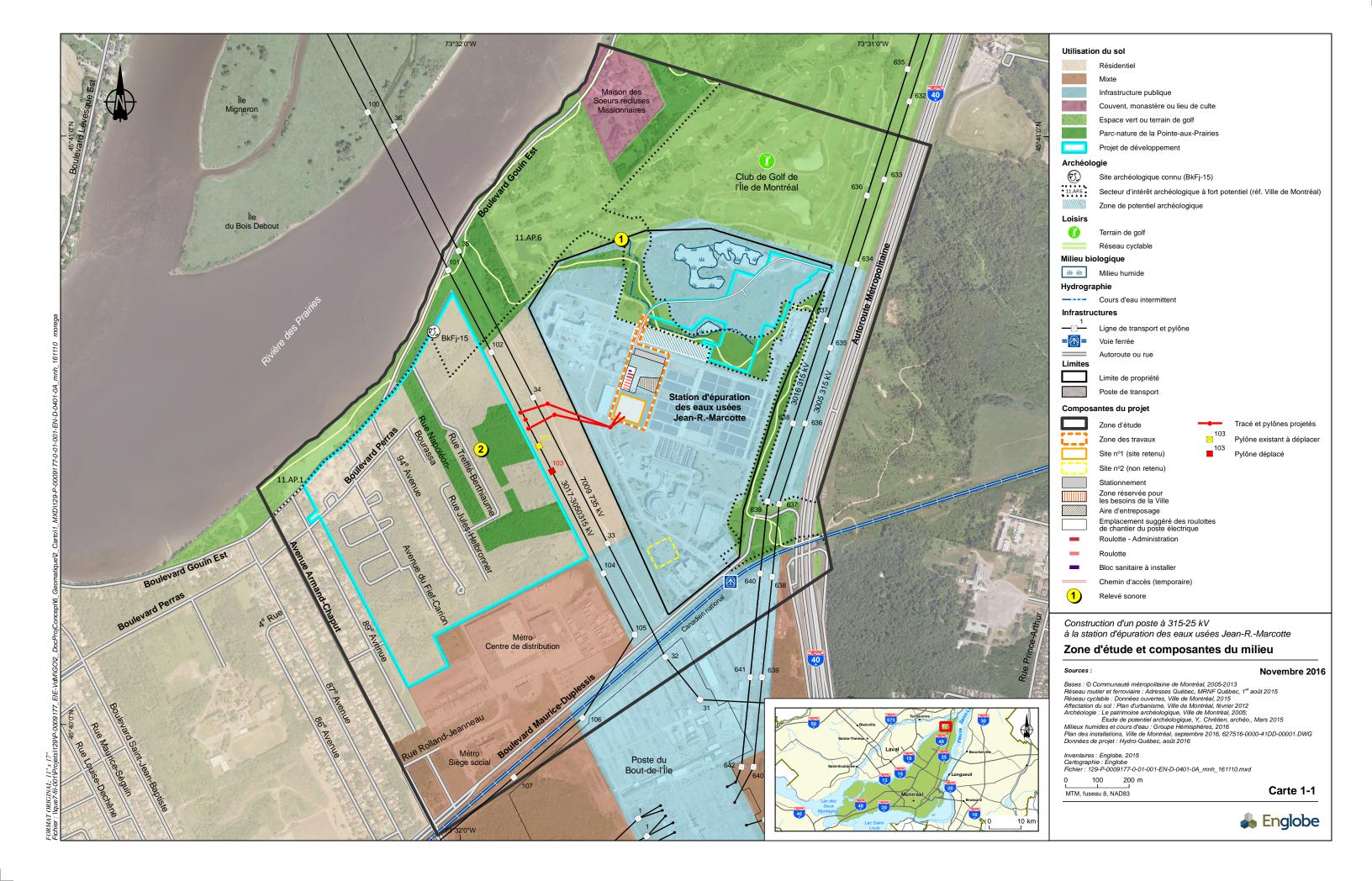
- un plan détaillé des installations incluant notamment la localisation des substances dangereuses, des systèmes d'extinction et des sorties d'évacuation;
- ▶ un échéancier de mise à jour et de révision du plan de mesures d'urgence;
- parmi les risques identifiés, le risque d'incendie/explosion ainsi qu'une panne électrique complète du réseau devraient être également étudiés.

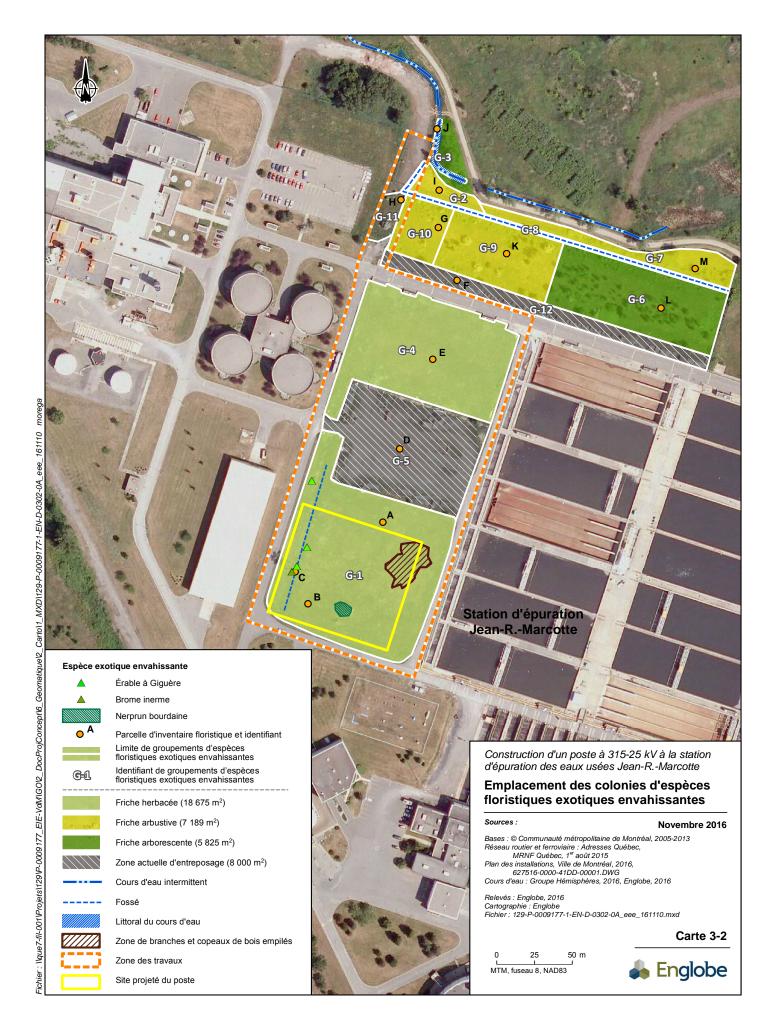
Réponse:

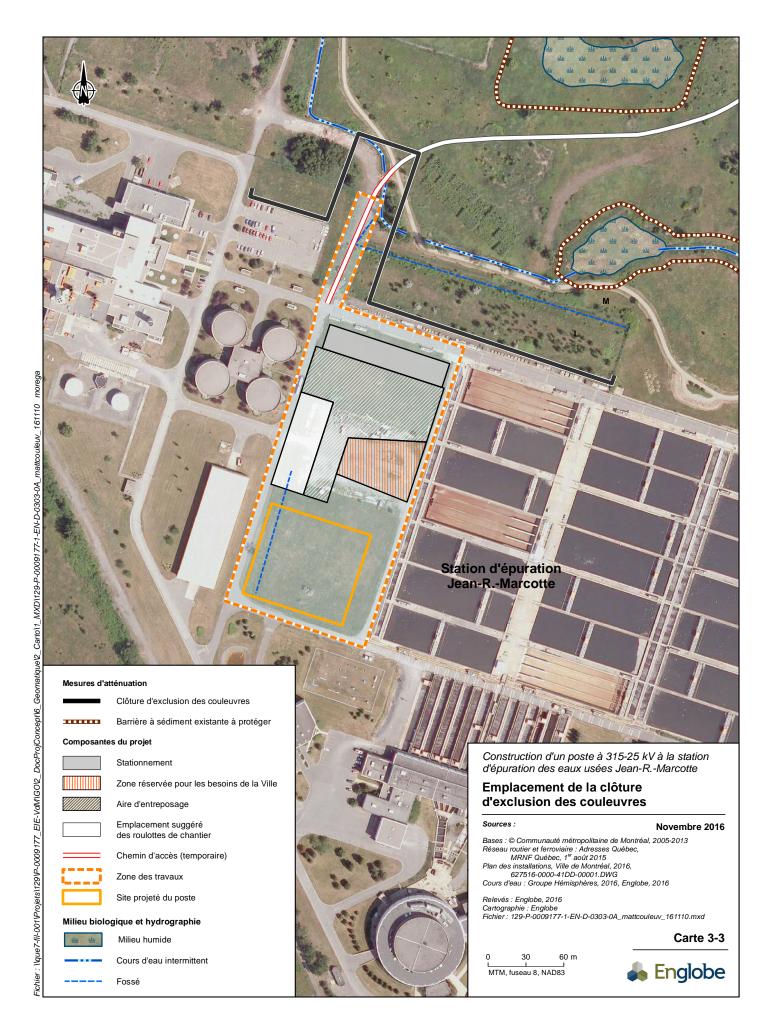
Les étapes nécessaires pour élaborer le plan des mesures d'urgence ont été révisées pour tenir compte des recommandations du ministère de la Sécurité publique :

- la nomination d'un chef de chantier;
- la rédaction du plan des mesures d'urgence incluant :
 - l'identification des risques (fuite d'huile hydraulique, déversement de carburant au sol ou dans l'eau, incendie/explosion, panne électrique complète du réseau, etc.);
 - · les actions à poser;
 - le plan détaillé des installations, incluant notamment la localisation des substances dangereuses, des systèmes d'extinction et des sorties d'évacuation;
 - la responsabilité et les coordonnées des intervenants;

- les coordonnées des organismes à contacter en cas d'urgence (p. ex. Urgence-Environnement du MDDELCC);
- · le réseau de communication;
- l'échéancier de mise à jour et de révision du plan de mesure d'urgence;
- le rapport d'incident;
- l'aide-mémoire du plan des mesures d'urgence pourrait être remis à tous les travailleurs ou personnes pouvant accéder au chantier.
- la localisation des équipements d'intervention;
- la formation des intervenants;
- l'exercice, si nécessaire.




2 RÉFÉRENCES


- BUREAU D'AUDIENCES PUBLIQUES SUR L'ENVIRONNEMENT (BAPE). 2015. Projet de construction du poste Saint-Patrick à 315-25 kV dans l'arrondissement Le Sud-Ouest à Montréal. Rapport d'enquête et d'audience publique. Rapport 319.
- COMMISSION INTERNATIONALE POUR LA PROTECTION CONTRE LES RAYONNEMENTS NON IONISANTS (CIPRNI). 2010. « Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz) ». Health Physics Society, p. 818-836.
- CONSEIL MÉDICAL, DIRECTION SANTÉ ET SÉCURITÉ D'HYDRO-QUÉBEC. 2013. Avis Les champs électriques et magnétiques de 60 Hz et la santé. 7 pages.
- HYDRO-QUÉBEC. 2014. *Poste de Baie-Saint-Paul à 315-25 kV.* Étude d'impact sur l'environnement.
- HYDRO-QUÉBEC. 2013a. Reconstruction du poste De Lorimier à 315-25 kV et lignes souterraines à 315 kV. Étude d'impact sur l'environnement.
- HYDRO-QUÉBEC. 2013b. *Poste Fleury à 315-25 kV et ligne d'alimentation à 315 kV.* Étude d'impact sur l'environnement.
- ICNIRP COMMISSION INTERNATIONAL DE PROTECTION CONTRE LES RAYONNEMENTS NON IONISANTS. 1998. Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic field (up to 300 GHz). *Health Physics* 74(4), 494-522.
- IEEE THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. 2002. *IEEE* standard for safety levels with respect to human exposure to electromagnetic fields, 0-3 kHz. New York, NY, IEEE.
- MINISTÈRE DE LA SANTÉ ET DES SERVICES SOCIAUX. 2014. Position des autorités de santé publique sur la gestion des champs magnétiques émis par les lignes électriques. 24 pages et annexes.
- MINISTÈRE DU DÉVELOPPEMENT DURABLE, DE L'ENVIRONNEMENT ET DE LA LUTTE CONTRE LES CHANGEMENTS CLIMATIQUES (MDDELCC). 2016a. Système d'information hydrogéologique (SIH). [En ligne] [http://www.mddelcc.gouv.qc.ca/eau/souterraines/sih/]
- MINISTÈRE DU DÉVELOPPEMENT DURABLE, DE L'ENVIRONNEMENT ET DE LA LUTTE CONTRE LES CHANGEMENTS CLIMATIQUES (MDDELCC). 2016b. Registre des aires protégées. [En ligne]
 - [http://www.mddelcc.gouv.qc.ca/biodiversite/aires protegees/registre/]

Annexe 1 Répertoire cartographique

Annexe 2 Étude géotechnique et caractérisation environnementale des sols préliminaires

ÉTUDE GÉOTECHNIQUE ET CARACTÉRISATION ENVIRONNEMENTALE DES SOLS PRÉLIMINAIRES

Projet:

Construction d'un poste de transformation 315 kV – 25 kV à la station d'épuration des eaux usées de la ville de Montréal

Arrondissement de Rivière-des-Prairies – Pointe-aux-Trembles

Rapport à l'attention de :

Monsieur Richard Éthier, ing. Chef de projet – Désinfection

Service de l'eau Direction de l'épuration des eaux usées Division de la désinfection

No rapport: 15G049G Date: 5 février 2016

N/Réf.: 15G049 **TC**: LAB15-0283

TABLE DES MATIÈRES

5 février 2016

i

1		INTROD	UCTION	.1
2		MÉTHO	DOLOGIE	.2
	2.1 2.2 2.3 2.4 2.5		Travaux de forage	.2 .2 .2
3		STRATIO	GRAPHIE DES SOLS	.3
	3.1 3.2 3.3 3.4 3.5		Remblai Sable Dépôt argileux Dépôt de till Roc	.4 .4 .6
4			UTERRAINE	
5		RECOM	MANDATIONS GÉOTECHNIQUES PRÉLIMINAIRES1	10
6	5. 5. 5.3 5.4 5.	2.1 2.2 2.3 4.1 4.2 CARACT	Remarques générales Aménagement de la plate-forme Préparation de l'assise et rehaussement Drainage Impact du rehaussement sur les sols en place Protection contre le gel Fondations Fondations conventionnelles Fondations profondes Catégorie d'emplacement ÉRISATION ENVIRONNEMENTALE PRÉLIMINAIRE Résultats analytiques sur les sols Assurance qualité et contrôle de la qualité Remarques 1	10 10 11 11 11 11 15 16 16
			LISTE DES TABLEAUX	
Ta	ablea	au 1 :	Résumé stratigraphique	.3
Ta	ablea	au 2 :	Détail des installations et observations de l'eau souterraine	.8
Ta	ablea	au 3 :	Paramètres géotechniques – Résistance géotechnique à l'état limite ultime pour le dimensionnement de fondations conventionnelles	12
Ta	ablea	au 4 :	Résistance géotechnique à l'ÉLTS du dépôt argileux – Valeurs recommandées en fonction de la géométrie de la semelle	13
Ta	ablea	au 5 :	Paramètres géotechniques - Résistance géotechnique axiale d'un pieu battu 1	14
Ta	ablea	au 6 :	Résultats des analyses chimiques sur les sols en fonction des critères génériques 1	16

LISTE DES FIGURES

Figure 1 :	Dépôt argileux – Profil des teneurs en eau et des limites de consistance en relation avec l'élévation	.5
Figure 2 :	Dépôt argileux – Profil de la résistance au cisaillement non drainé et de la contrainte de préconsolidation en relation avec l'élévation	.6
Figure 3 :	Profil des pressions interstitielles mesurées au niveau du centre de la crépine des piézomètres en relation avec l'élévation	.8
Figure 4 :	Résistance géotechnique à l'ÉLTS en fonction de la largeur de la semelle (m)	13

LISTE DES ANNEXES

ANNEXE 1: Plan de localisation des sondages – PIDT 10699 (1 plan)
ANNEXE 2: Rapports des forages 15G049-001 à -005 (10 pages)

ANNEXE 3 : Résultats des essais de laboratoire (30 pages)

ANNEXE 4: Rapports des forages historiques 74F082-088, -090 et -102 à -104 (10 pages)

ANNEXE 5: Profils géotechniques (2 pages)

ANNEXE 6: Certificats des analyses chimiques (34 pages)

ANNEXE 7: Tableau des résultats des analyses chimiques sur les sols (2 pages)

ANNEXE 8: Références (2 pages)

LISTE DES RÉFÉRENCES

- Division de l'expertise et du soutien technique « Étude géotechnique complémentaire;
 Construction d'une unité de désinfection; Station d'épuration des eaux usées Jean-R.-Marcotte;
 Arrondissement de Rivière-des-Prairies Pointe-aux-Trembles »; Rapport no 13G035D; 25 janvier 2016.
- Division de l'expertise et du soutien technique « Données géotechniques existantes; Construction d'une unité de désinfection; Station d'épuration des eaux usées Jean-R.-Marcotte; Arrondissement de Rivière-des-Prairies – Pointe-aux-Trembles »; Rapport no 13G035A; 17 mars 2015.
- Ville de Montréal, Service des travaux publics, Division technique, Laboratoire de contrôle et recherche (Avril 1975) « Étude géotechnique Usine d'épuration de l'Est » Étude préparée pour le compte de la Communauté urbaine de Montréal, Service d'assainissement des eaux, Division des usines N/D : 74-F-82 (N/Réf. : 74F082, Volumes 1 à 4 [N/Rapport : 74F082A, 74F082B, 74F082C et 74F082D]).

ii

5 février 2016

LISTE DE DISTRIBUTION

Rapport distribué à :

Monsieur Richard Éthier, ing. Chef de projet – Désinfection Service de l'eau Direction de l'épuration des eaux usées Division de la désinfection richard.ethier@ville.montreal.qc.ca	Un (1) original en format électronique et deux (2) copies papier.
Monsieur Kostadin Velchev Ingénieur Service de l'eau Direction de l'épuration des eaux usées Division de la désinfection kostadin.velchev@ville.montreal.qc.ca	Une (1) copie en format électronique.
Madame Carole Fleury Conseillère scientifique Service de l'eau Direction de l'épuration des eaux usées Division ingénierie et procédés carole.fleury@ville.montreal.qc.ca	Une (1) copie en format électronique.

5 février 2016

1 INTRODUCTION

Dans le cadre du projet plus vaste de construction d'une unité de désinfection à l'ozone à la station d'épuration des eaux usées de la Ville de Montréal, située à la pointe nord-est de l'île de Montréal, dans l'arrondissement de Rivière-des-Prairies – Pointe-aux-Trembles, la Direction de l'épuration des eaux usées (ci-après DEEU) souhaite procéder à la construction d'un poste de transformation 315 kV – 25 kV sur le site de la station.

Ce nouveau poste, qui alimentera la future unité de désinfection, est prévu être aménagé à l'intérieur de la limite foncière de la station, près des bassins de décantation. Il occupera une superficie de l'ordre de 9 700 m² d'un terrain en friche voisin d'une aire d'entreposage et sera raccordé au réseau d'Hydro-Québec par une bretelle biterne d'une longueur d'environ 250 m.

Selon les informations préliminaires disponibles, le poste de transformation sera équipé, sans s'y limiter, des composantes suivantes :

- Transformateurs;
- Disjoncteurs;
- Sectionneurs;
- Parafoudres;
- Inductances;
- Une (1) charpente métallique;
- Une (1) borne-fontaine;
- Un (1) bâtiment de commande.

À ce stade-ci du projet, les plans d'implantation de ces structures ne sont pas disponibles.

La Division de l'expertise et du soutien technique (ci-après DEST) a été mandatée pour procéder à une étude géotechnique et une caractérisation environnementale des sols préliminaires dans le but de compléter l'information obtenue des données historiques disponibles, de fournir des recommandations relatives à l'aménagement du site et aux fondations en plus de fournir un aperçu de la qualité environnementale des sols en place, et ce, afin d'orienter les concepteurs du projet.

Les données contenues à ce rapport sont préliminaires et basées sur des hypothèses qui pourraient changer selon les choix des concepteurs. Il est entendu qu'une fois l'ensemble des choix de conception effectués, une étude géotechnique détaillée sera réalisée.

1

5 février 2016

2 MÉTHODOLOGIE

2.1 Travaux de forage

Cinq (5) forages, numérotés 15G049-001 à -005 ont été réalisés entre le 27 octobre et le 3 novembre 2015. Le choix de l'emplacement des points de sondage a été établi de manière à couvrir l'ensemble du site visé par le présent projet.

Ils ont été réalisés sous la supervision constante d'un technicien de la firme *Les Services* **exp** inc. (ciaprès **exp**) à l'aide d'une foreuse montée sur chenillard (modèle « *CME-75* »). Ils ont atteint une profondeur variant entre 14,71 et 17,40 m (élévation comprise entre -1,08 et -4,14 m).

L'échantillonnage des sols et la conservation des échantillons prélevés ont été effectués conformément aux directives présentées dans le « Guide de caractérisation des terrains contaminés » du MDDELCC (2003) et aux prescriptions du « Guide d'échantillonnage à des fins d'analyses environnementales » (cahier 5, « Échantillonnage des sols ») du Centre d'expertise en analyse environnementale du Québec (ci-après CEAEQ) (2012 et 2010).

Le socle rocheux a été carotté au droit des forages 15G049-001, -003 et -005.

2.2 Essais in situ

La résistance au cisaillement non drainé des sols argileux à l'état non-remanié (C_u) a été mesurée dans trois (3) des cinq (5) forages (15G049-001, -003 et -005) à l'aide d'un scissomètre de chantier à déformation contrôlée « *Nilcon* ». Les mesures ont été faites à intervalles réguliers d'environ 1 m entre environ 4 à 5 m et 13 à 15 m de profondeur.

2.3 Installations pour le suivi de l'eau souterraine

Afin de déterminer le niveau de l'eau souterraine, des piézomètres ont été installés dans les forages 15G049-002 et -003 suite au retrait des tubages.

Les piézomètres sont des tubes de plastique de 25 mm de diamètre, munis à la base d'une crépine entourée de sable filtrant et scellés par un bouchon de bentonite. Le détail de ces installations apparait sur les rapports de forages joints à l'annexe 2.

2.4 Essais et analyses en laboratoire

Tous les échantillons de sols et de roc prélevés dans les forages ont été transportés au laboratoire de la firme **exp** pour fins d'identification, d'analyse et de classification par leur personnel.

Les essais suivants ont été réalisés sur des échantillons du dépôt argileux reconnu dans les forages :

- Vingt-sept (27) essais de détermination de la teneur en eau;
- Seize (16) essais de détermination des limites de consistance.

Deux (2) échantillons du remblai de surface ont pour leur part été soumis à des essais de détermination de la teneur eau. Les limites de consistance et la teneur en eau ont aussi été mesurées sur un (1) échantillon du dépôt de till.

Les résultats de ces essais en laboratoire sont joints à l'annexe 3.

2.5 Relevé topographique

La localisation des forages a été réalisée par une équipe d'arpenteurs de la firme *exp*; Le système de coordonnées utilisé est le SCOPQ-NAD 83 basé sur la projection MTM (fuseau 8). Leur emplacement est montré sur le plan portant le numéro PIDT 10699 joint à l'annexe 1 du présent rapport.

5 février 2016

5 février 2016 No rapport : 15G049G

3 STRATIGRAPHIE DES SOLS

De façon générale, la stratigraphie des sols reconnue au droit des cinq (5) forages réalisés consiste en une couche de remblai reposant sur un dépôt cohérent. Plus en profondeur, les forages ont permis de reconnaître la présence d'un mince dépôt de till sus-jacent au socle rocheux.

Le tableau 1 résume la stratigraphie des sols interceptés au droit des forages tandis que la description détaillée des matériaux (sols et roc) reconnus à l'endroit des forages est présentée dans les soussections suivantes. Les rapports individuels des forages sont pour leur part colligés à l'annexe 2. Les données des forages historiques disponibles dans le secteur ont été intégrées à ce tableau; les rapports de ces forages sont joints à l'annexe 4.

Tableau 1 :	Résumé strat	igraphique								
		ÉTUDE G	ÉOTE	CHNIQU	JE COM	PLÉM	ENTAIRE			
FORAGE	TO THE STREAM I						1)			
15G049	(m)	REMBI	LAI	ARC	SILE		T/SABLE TILL)		ROC	FIN DU FORAGE
001	13,13	3,05	;	3,05 /	10,08		1	13	,31 / -0,18	16,56 / -3,43
002	12,94	2,44	1	2,44 /	10,50	14,3	3 / -1,39	15	,19 / -2,25	15,24 / -2,30
003	13,26	3,05	;	3,05 /	10,21	13,7	2 / -0,46	15	,24 / -1,98	17,40 / -4,14
004	13,63	4,32		4,32	9,31	12,8	35 / 0,78	14	,17 / -0,54	14,71 / -1,08
005	13,77	5,94	1	5,94	7,83	13,7	72 / 0,04	15	,24 / -1,47	17,22 / -3,45
		FORA	GES H	ISTORI	QUES D	ISPON	IIBLES			
FORAGE	ÉLÉVATION DE	ÉPAISSEUR (m)					OFONDEU ELÉVATION			
74F082	SURFACE. (m)	COUVERT VÉGÉTAL	SA	BLE	ARG	ILE	TILL		ROC	FIN DU FORAGE
088	10,88	0,15	0,15	/ 10,73	1,52 /	9,36	9,14 / 1,7	4	11,91 / -1,03	14,94 / -4,06
090	11,37	0,61			0,61 / 1	10,76	11,89 / -0,	52	13,26 / -1,89	20,22 / -8,85
102	10,79	0,15	0,15	/ 10,64	1,52 /	9,27	10,97 / -0,	18	11,43 / -0,64	14,73 / -3,94
103	10,85	0,30			0,30 / 1	10,55	12,19 / -1,	34	13,03 / -2,18	20,57 / -9,72
104	10,97	0,23			0,23 /	10,74	12,95 / -1,	98	13,49 / -2,52	16,74 / -5,77
1 : Couche	non rencontrée									

3.1 Remblai

Une couche de remblai a été interceptée en surface au droit des quatre (4) forages réalisés dans le cadre de cette étude. Son épaisseur varie entre 2,44 et 5,94 m, avec une valeur moyenne de l'ordre de 3.8 m.

Le remblai est le plus souvent décrit comme un silt avec des proportions variables d'argile, de sable et de gravier (silt sableux et graveleux ou silt avec des traces à un peu d'argile, de sable et de gravier) ou encore comme une argile silteuse ou un silt argileux. Des horizons de pierre concassée de calibre apparent 0-20 mm sont interceptés au droit de tous les forages à l'exception du forage 15G049-002.

Des horizons de terre végétale de 15 et 20 cm d'épaisseur ont respectivement été interceptés à 2,44 m de profondeur en 15G049-001 et en surface en 15G049-003.

5 février 2016 No rapport : 15G049G

Des teneurs en eau de 4 et 13 % ont respectivement été mesurées en laboratoire sur des échantillons de pierre concassée et de silt argileux à un peu d'argile. Les résultats de ces essais sont joints à l'annexe 3.

La compacité du remblai est variable mais peu généralement être qualifiée de moyenne avec des indices « N » de pénétration mesurés variant le plus souvent entre 5 et 27 avec une valeur moyenne de 13. Des valeurs marginales de 36 et 37 ont respectivement été mesurées au droit des forages 15G049-002 et -005. Des valeurs inférieures à 10 ont pour leur part été obtenues à la base du remblai, près du contact avec le dépôt argileux.

3.2 Sable

Les données des forages historiques 74F082-088 et -102, tous deux situés dans la portion sud du terrain à l'étude, indiquent la présence d'un horizon sableux d'une épaisseur de l'ordre de 1,4 m.

Il apparaît probable que cet horizon ait été excavé au moment des travaux de construction de la station d'épuration, ce qui pourrait expliquer que les forages réalisés dans le cadre de cette étude n'aient pas intercepté cet horizon.

3.3 Dépôt argileux

Sous le remblai, à une profondeur variant entre 2,44 et 5,94 m sous le niveau de la surface (élévation comprise entre 10,52 et 7,83 m), un dépôt naturel argileux décrit comme une argile silteuse gris est intercepté; des bancs roses ont été notés près de la base du dépôt au droit du forage historique 74F082-090. L'épaisseur du dépôt varie généralement de 8 à 12 m.

De façon générale, les teneurs en eau (w) mesurées dans le corps du dépôt varient entre 55 et 65 % pour une valeur moyenne de l'ordre de 60 %. La limite liquide (w_L) du dépôt est le plus souvent comprise entre 55 et 70 % tandis que la limite plastique (w_P) varie quant à elle de 23 à 30 %. Ainsi, l'indice de plasticité (I_P) du dépôt varie généralement entre 29 et 44.

Des teneurs en eau (w) plus faibles, comprises entre environ 33 et 37 %, ont été mesurées dans la portion supérieure du dépôt intercepté au droit des forages 15G049-001 à -003. De même, près du contact avec le roc au droit des forages 15G049-001, -003 et -004, des teneurs en eau (w) variant entre 37 et 48 % ont été mesurées. Les résultats des essais de détermination des limites de consistance effectuées sur deux (2) de ces échantillons indiquent des limites liquides (w_L) de 41 et 48 % et des limites plastiques (w_P) de 20 et 25 %.

La répartition des valeurs de la teneur en eau et des limites de consistance mesurées sur les échantillons soumis à l'analyse (en relation avec l'élévation) est montrée à la figure 1.

Sur les premiers 0,6 m de l'argile, soit dans l'horizon altéré de surface, des valeurs de résistance au cisaillement non drainé à l'état non-remanié (C_u) de l'ordre de 100 kPa ont été mesurées. Par la suite, les valeurs de C_u mesurées varient généralement entre 50 et 100 kPa suivant une tendance linéaire sur les 5 premiers mètres du dépôt, permettant ainsi de le qualifier de consistance raide. Plus en profondeur, la résistance au cisaillement mesurée *in situ* est généralement supérieure à 100 kPa et peut même atteindre des valeurs de l'ordre de 145 kPa permettant de qualifier la consistance du dépôt de très raide. Dans la portion inférieure du dépôt, soit sur environ les derniers 2 m, la plasticité diminue et des valeurs de 76 à 100 kPa ont été mesurées.

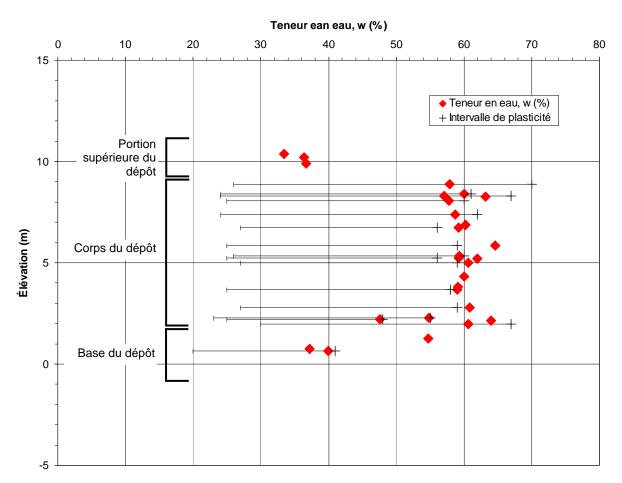
À partir des résultats obtenus des limites de consistance et des mesures de la résistance au cisaillement non drainé *in situ*, la relation suivante, tirée de Leroueil et al. $(1983a)^1$ permet d'estimer la contrainte de préconsolidation apparente du dépôt (σ'_p) :

$$\frac{\tau_{fuv}}{\sigma'_{p}} = 0.20 + 0.0024 \cdot I_{p}$$

Leroueil, S., Tavenas, F., and Le Bihan, J.P. 1983a. « *Propriétés caractéristiques des argiles de l'est du Canada* ». Canadian Geotechnical Journal, 20(4) : 681-705.

4

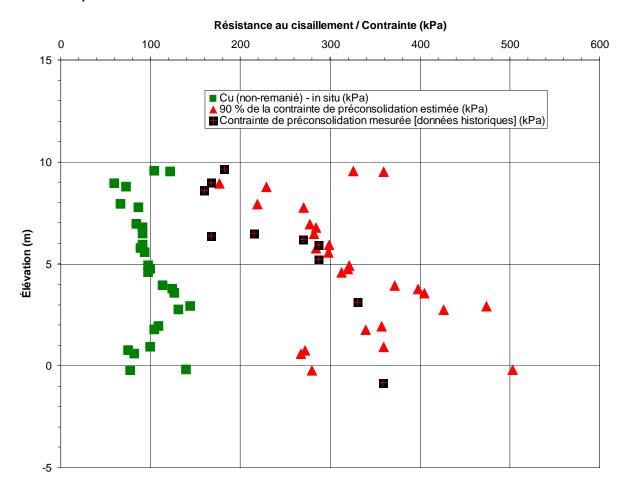
5 février 2016 No rapport: 15G049G


Où: résistance au cisaillement non drainé à l'état intact mesurée in situ à l'aide d'un scissomètre de chantier « Nilcon »;

contrainte de préconsolidation apparente du sol;

indice de plasticité du sol.

Pour illustrer l'état de surconsolidation du dépôt d'argile, les résultats obtenus de ce calcul ont été superposés aux profils de la contrainte verticale effective (σ'_{v0}) aux sites des forages 15G049-001, -003 et-005. Ces profils de contraintes sont présentés à l'annexe 5 du rapport. Ils montrent la distribution de la contrainte verticale effective de même que les résultats des essais de détermination de la résistance au cisaillement et la contrainte de préconsolidation du dépôt (obtenue d'essais en laboratoire provenant de données historiques ou estimée de la relation mentionnée précédemment).


Figure 1: Dépôt argileux - Profil des teneurs en eau et des limites de consistance en relation avec l'élévation

La figure 2 suivante montre la répartition des valeurs de C_u et de la contrainte de préconsolidation (estimée de la relation de Leroueil et valeurs historiques disponibles) en lien avec l'élévation pour l'ensemble des forages.

Figure 2 : Dépôt argileux – Profil de la résistance au cisaillement non drainé et de la contrainte de préconsolidation en relation avec l'élévation

Il ressort de cette figure que le dépôt argileux en place se trouve dans un état surconsolidé, c'est-à-dire que la contrainte de préconsolidation (σ'_p) est supérieure à la contrainte verticale effective (σ'_{v0}) . L'analyse des trois (3) profils semble indiquer que, dans la portion supérieur du dépôt argileux (cinq (5) premiers mètres), l'écart de surconsolidation est de l'ordre de 75 à 100 kPa; cet écart augmente jusqu'à environ 200 kPa dans sa portion inférieure.

3.4 Dépôt de till

Sous le dépôt argileux, à une profondeur comprise entre 12,85 et 14,33 m (élévation variant entre 0,78 et -1,39 m), tous les forages à l'exception de 15G049-001 ont intercepté un dépôt de till décrit soit comme un silt argileux avec un peu de sable et de traces à un peu de gravier ou encore comme un silt, sable et gravier est intercepté sur une épaisseur variant entre 0,86 et 1,52 m.

Une teneur en eau (w) de 40 % et des limites liquide et plastique respectives de 44 et 19 % ont été mesurées sur un échantillon prélevé au sein de ces sols.

Dans les forages historiques, ce même dépôt est intercepté à une profondeur comprise entre 9,14 et 12,95 m (élévation variant entre 1,74 et -1,98 m) et sur une épaisseur de 0,46 à 2,77 m. Il y est décrit comme un silt argileux, un peu de sable à sableux avec des traces de gravier ou comme un sable et silt à sable silteux gris avec fragments de roc altéré.

3.5 Roc

Tous les forages ont intercepté le roc à une profondeur variant entre 13,31 et 15,24 m (élévation comprise entre –0,18 et –2,25 m). Des résultats obtenus, il semble ressortir que la profondeur du roc augmente en se dirigeant vers le nord, ce qui corrobore les informations présentées sur la carte des courbes montrant l'épaisseur des dépôts meubles sur l'île de Montréal².

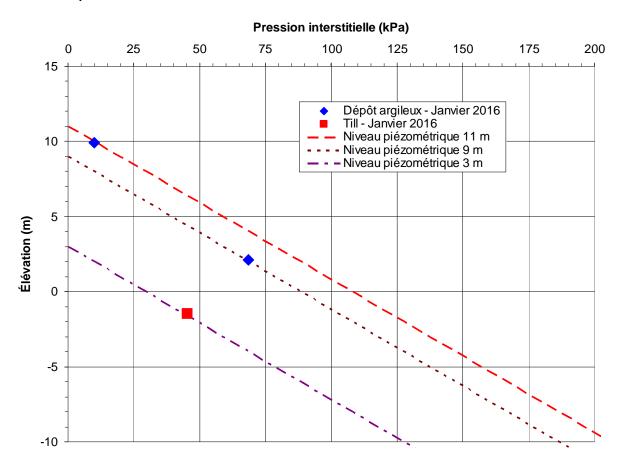
Le roc a été carotté au droit des forages 15G049-001, -003 et -005 sur des longueurs comprises entre environ 1.6 et 3.2 m. Au droit de tous les forages, le roc a pu être pénétré par la cuillère fendue sur des longueurs variant de 0,05 à 0,54 m.

Les échantillons de roc prélevés montrent que ce dernier est composé de shale gris-noir. Les valeurs de l'indice RQD (*Rock Quality Designation*) mesurées indiquent que sa qualité est très pauvre; les récupérations obtenues varient le plus souvent entre 77 et 100 % (valeur marginale de 13 % mesurée sur les premiers 1,7 m dans le forage 15G049-001).

Commission géologique du Canada, Ministère de l'énergie, des mines et des ressources (J. Hode Keyser et V. K. Prest) – « Courbes montrant l'épaisseur des dépôts meubles – Île de Montréal, Québec » - Carte 1427A, Étude 75-27.

-

5 février 2016


4 EAU SOUTERRAINE

Tel que mentionné précédemment, des piézomètres ont été installés au droit des forages 15G049-002 et -003. Les détails des installations sont montrés aux rapports des forages de l'annexe 2 et résumés au tableau 2 qui présente également les résultats des relevés effectués le 28 janvier 2016. La figure 3 présente pour sa part le profil des pressions d'eau en lien avec l'élévation.

Tableau 2: Détail des installations et observations de l'eau souterraine

FORAGE 15G049	ÉLÉVATION DE SURFACE (m)	ÉLÉMENT FILTRANT PROF. (m) / ÉL. (m)	TYPE DE SOL AU NIVEAU DE L'INSTALLATION	NIVEAU D'EAU MESURÉ ¹ PROF. (m) /ÉL. (m)			
002	12,94	10,82 / 2,12	Dépôt argileux	3,85 / 9,09			
002	12,94	14,43 / -1,49	Till	9,81 / 3,13			
003	13,26	3,35 / 9,91	Dépôt argileux	2,34 / 10,92			
Niveaux n	Niveaux mesurés le 26 janvier 2016.						

Figure 3 : Profil des pressions interstitielles mesurées au niveau du centre de la crépine des piézomètres en relation avec l'élévation

5 février 2016 No rapport : 15G049G

Les pressions d'eau mesurées au niveau des piézomètres installés dans la portion supérieure du dépôt argileux semblent indiquer des conditions hydrostatiques correspondant à une nappe située à une élévation de 9 m. Dans la portion inférieure du dépôt, les pressions mesurées correspondent à une nappe située à une élévation de 11 m.

Dans le till sous-jacent, la pression d'eau mesurée semble pour sa part correspondre à celle d'une nappe située à une élévation de 3 m, soit à un niveau inférieur d'environ 6 m à celle de la portion inférieure du dépôt d'argile; il apparaît donc que le drainage du dépôt argileux s'effectue vers le bas (gradient descendant). Cette dernière valeur apparaît cependant basse lorsque comparée au niveau moyen du fleuve.

Ces résultats confirment toutefois les valeurs mesurées dans les installations laissées en place dans les forages réalisés à une distance d'environ 550 m au nord-est pour le projet de la future unité de désinfection (N/Réf. : 13G035).

Il est à noter que ces niveaux d'eau sont représentatifs de la période à laquelle ils ont été relevés.

5 RECOMMANDATIONS GÉOTECHNIQUES PRÉLIMINAIRES

5.1 Remarques générales

Pour la construction du poste de transformation, il sera nécessaire d'aménager une plate-forme de matériaux granulaires. Plusieurs structures et équipements sont également prévus être construits dans le cadre de ce projet :

- Transformateurs;
- Disjoncteurs;
- Sectionneurs;
- Parafoudres;
- Inductances:
- Une (1) charpente métallique;
- Une (1) borne-fontaine;
- Un (1) bâtiment de commande.

Au moment de la rédaction de ce rapport, aucune information n'était disponible quant au niveau final de la future plate-forme ni quant à la localisation et au niveau d'implantation des structures et composantes prévues. Il apparaît toutefois raisonnable de penser que ces dernières n'auront pas de sous-sol et que leurs fondations seront mises en place à l'abri du gel, soit à une profondeur de l'ordre de 1,5 à 1,8 m sous le niveau de la surface.

À cet effet, les recommandations suivantes s'appliquent. Il est toutefois entendu que les recommandations énoncées dans les paragraphes suivants sont préliminaires. Lorsque la localisation exacte et les niveaux d'implantation définitifs des fondations auront été déterminés, il pourrait s'avérer nécessaire de procéder à la réalisation d'une étude géotechnique complémentaire détaillée afin de préciser les informations qui y sont contenues.

5.2 Aménagement de la plate-forme

5.2.1 Préparation de l'assise et rehaussement

Pour l'aménagement de la plate-forme, nous sommes d'avis qu'il sera possible de laisser une partie des matériaux de remblai en place, soit jusqu'à la ligne d'infrastructure. Les matériaux constituant le fond de coupe devront alors faire l'objet d'une épreuve de portance. Les zones molles ou instables décelées lors de cette épreuve devront être excavées et remplacées par un matériau granulaire bien densifié.

Une fois la surface ainsi préparée, le niveau obtenu pourra être rehaussé jusqu'au niveau prévu pour la plate-forme à l'aide d'un remblai constitué d'un matériau granulaire satisfaisant aux exigences granulométriques d'une pierre ou de gravier concassé de calibre MG 20 (norme BNQ 2560-114), mis en place en couches de 300 mm d'épaisseur compactés à 90 % de sa masse volumique sèche maximale (M.V.S.M.), telle que déterminée à l'essai avec énergie de compactage modifiée (2 700kN.m/m³) [anciennement désigné Proctor modifié] (norme CAN/BNQ 2501-255).

Dans les secteurs où des remblais argileux seraient présents au niveau du fond de coupe, il est recommandé de mettre en place une membrane de type géotextile au contact avec le remblai granulaire utilisé pour le rehaussement.

5.2.2 Drainage

Il est recommandé de profiler adéquatement la surface du sol support (infrastructure), afin d'éviter toute accumulation d'eau sur celle-ci. De même, il est recommandé de maintenir une couronne sur la surface finale de la plate-forme dans le but de permettre l'écoulement des eaux d'infiltration vers un réseau de drainage permanent et efficace (fossés ou drains de rive en périphérie du site).

5 février 2016

5 février 2016 No rapport: 15G049G

5.2.3 Impact du rehaussement sur les sols en place

Les forages réalisés ont permis de reconnaître la présence de sols argileux sur toute la superficie du site à l'étude, et ce, sur une épaisseur de 8 à 12 m. Bien que compressibles, les résultats des forages réalisés indiquent que ces sols présentent un certain degré de surconsolidation.

Tout rehaussement du niveau actuel du site retenu pour l'implantation du poste entraînera toutefois une réduction des valeurs de résistance géotechnique à l'état limite ultime de tenue en service (ÉLTS) recommandées à la section 5.4.1.2 suivante de 20 kPa pour chaque mètre de rehaussement par rapport au niveau actuel du terrain.

5.3 Protection contre le gel

Afin d'assurer une protection adéquate contre les effets néfastes de la pénétration du gel dans les sols, les fondations d'un bâtiment chauffé devraient être mises en place à une profondeur d'au moins 1,5 m sous le niveau de la surface finale du terrain; pour un bâtiment non chauffé, une profondeur de 1,8 m est recommandée.

5.4 **Fondations**

5.4.1 Fondations conventionnelles

De par leur nature hétérogène, les matériaux de remblai de surface ne sont pas aptes à supporter des charges importantes. Toutefois, pour des structures légères, une surcharge admissible de l'ordre de 50 kPa peut être appliquée sur le remblai en place dans la mesure où la surface d'assise est préparée suivant la procédure décrite à la section 5.2.1 précédente et où un coussin granulaire d'une épaisseur d'au moins 200 mm est mis en place sous la fondation.

Pour les fondations reprenant des charges plus importantes ou supportant des structures ou composantes sensibles au tassement, il est recommandé d'excaver tous les remblais en place dans l'empreinte des fondations prévues. Ainsi, une fois ces sols excavés, les fondations pourront soit être mise en place directement à partir du dépôt naturel argileux ou encore sur un remblai granulaire contrôlé mis en place à partir dudit dépôt, jusqu'au niveau d'implantation des fondations projetées.

Ce remblai devrait être constitué d'un matériau granulaire de type MG 112 (norme BNQ 2560-114). Il est recommandé que le matériau de ce remblai granulaire contrôlé soit mis en place en couches d'au maximum 300 mm d'épaisseur, compactées individuellement à au moins 90 % de sa M.V.S.M., telle que déterminée à l'essai avec énergie de compactage modifiée (2 700 kN.m/m³).

En procédant ainsi, des fondations conventionnelles pourront être envisagées pour reprendre les charges des structures et composantes proposées. Ainsi, les recommandations suivantes, données conformément aux exigences des spécifications techniques normalisées pour les études géotechniques pour les postes d'Hydro-Québec (SN-80.1a; décembre 2014), s'appliquent.

Ces spécifications techniques exigent que le calcul des fondations d'une structure ou d'un bâtiment soit réalisé selon la méthode aux états limites. Les états limites demandés ainsi que ceux calculés dans le cadre de ce projet sont les suivants :

- L'état limite ultime (ÉLU);
- L'état limite de tenue en service (ÉLTS).

L'état limite ultime porte principalement sur les mécanismes d'effondrement de la structure tandis que l'état limite de tenue en service correspond aux mécanismes qui limitent ou empêchent l'usage prévu de la structure, comme par exemple, les tassements.

No rapport: 15G049G

5.4.1.1 Résistance géotechnique à l'état limite ultime (ÉLU)

Pour le calcul de la résistance géotechnique à l'état limite ultime, le lecteur est invité à se référer au chapitre 10 du Manuel canadien d'ingénierie des fondations (MCIF, 4^e édition; 2013).

Les paramètres présentés au tableau 3 sont recommandés pour le calcul de la résistance à l'ÉLU pour une fondation reposant soit sur un remblai granulaire contrôlé ou encore sur le dépôt naturel argileux. Les facteurs de capacité portante N_c , N_a et N_v présentés audit tableau considèrent une semelle conventionnelle (carrée ou filante) posée horizontalement et reportant au sol une contrainte verticale centrée. Le lecteur est invité à se référer au MCIF (4e édition; 2013) pour les facteurs de modification pour tenir compte de la forme, de l'inclinaison, de la profondeur de la semelle et de la pente du sol.

Tableau 3 : Paramètres géotechniques - Résistance géotechnique à l'état limite ultime pour le dimensionnement de fondations conventionnelles

PARAMÈTRE	REMBLAI CONTRÔLÉ (MG 112)	DÉPÔT ARGILEUX
Poids volumique unitaire humide, γ (kN/m³)	22	16,5
Poids volumique unitaire déjaugé, γ' (kN/m³)	12	N/A
Cohésion effective, c'(kPa)	0	N/A
Résistance au cisaillement non drainé à l'état intact, C_u (kPa)	N/A	Voir figure 2
Angle effectif de frottement interne, ϕ' °()	36	0
Facteur de capacité portante pour la cohésion, N _c ¹	51	5,1
Facteur de capacité portante pour la portance des terres, N_q^{-1}	38	1
Facteur de capacité portante pour le poids du sol, N_{γ}^{-1}	44	0
Facteurs de capacité portante N_c et N_q d'après Meyerhof (1963) ³ et	N_{γ} d'après Davis et Booker (1	971) ⁴ .

Pour le calcul de la résistance géotechnique à l'état limite ultime pondéré, un facteur de résistance géotechnique (Φ) de 0,5 doit être appliquée à la valeur calculée.

5.4.1.2 Résistance géotechnique à l'état limite de tenue en service (ÉLTS)

La valeur de la résistance géotechnique à l'état limite de tenue en service sera fonction du tassement admissible pour les différentes fondations à prévoir. Les valeurs à l'ELTS correspondant à des tassements maximaux de 25 mm ont été évaluées pour différentes géométries de semelles conventionnelles en considérant les données obtenues au droit des forages réalisés.

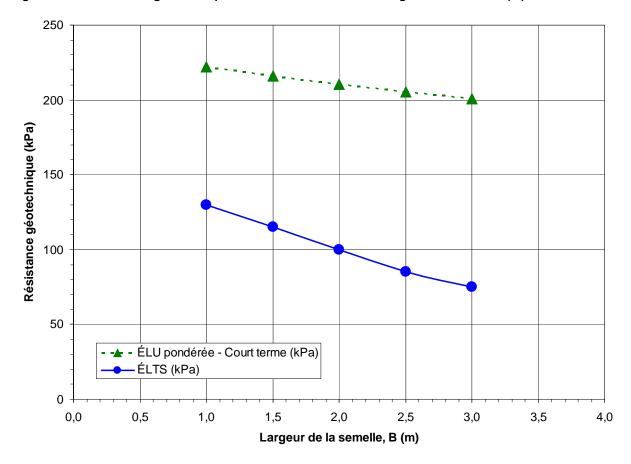
Le tableau 4 suivant présente un résumé des valeurs recommandées pour la conception de semelles carrées ou filantes implantées sur le dépôt naturel argileux. Ces valeurs de la résistance géotechnique à l'ÉLTS se définissent comme la contrainte qui peut être transmise au sol en sus du poids actuel des terres. Ces valeurs considèrent uniquement le tassement dans l'argile et excluent les charges transitoires (vent, neige, séismes, etc.) applicables, puisque les contraintes de courte durée n'augmenteront pas l'amplitude des tassements par consolidation du sol argileux.

La figure 4 présente la variation de la résistance géotechnique à l'ÉLTS recommandée en fonction de la largeur (B) de la semelle pour une semelle filante d'une longueur (L) de 10 m fondée sur le dépôt argileux. L'évolution de la résistance géotechnique à l'ÉLU pondérée est aussi montrée sur cette figure.

Davis, E.H. et Booker J.R. (1971). « The bearing capacity of strip footings for the point of view of plasticity theory ». In Proceedings. First Australia - New Zealand Conference on Geomechanics, Institution of Engineers, Melbourne, Autralie, vol. 1, p. 276-282.

12

5 février 2016


Meyerhof, G.G. (1963). « Some Recent Research on Bearing Capacity of Foundations ». Canadian Geotechnical Journal, vol. 1, nº 1, p. 16-26.

5 février 2016 No rapport: 15G049G

Résistance géotechnique à l'ÉLTS du dépôt argileux - Valeurs recommandées en fonction de Tableau 4: la géométrie de la semelle

la geometrie de la semene						
SEMELLES FILANTES						
LONGUEUR, L (m)	LARGEUR, B (m)	RÉSISTANCE GÉOTECHNIQUE À L'ÉLTS (kPa)				
	1	130				
	1,5	115				
10	2	100				
	2,5	85				
	3	75				
SEMELLES CARRÉES						
DIMENSI	ONS (m)	RÉSISTANCE GÉOTECHNIQUE À L'ÉLTS (kPa)				
2 X 2		150				
3 X 3		100				
4 X 4		75				

Résistance géotechnique à l'ÉLTS en fonction de la largeur de la semelle (m) Figure 4:

5 février 2016 No rapport : 15G049G

Alternativement, les fondations pourraient être implantées à une profondeur de l'ordre de 1,8 m sous le niveau de la surface sur un remblai contrôlé d'une épaisseur de l'ordre de 2 m mis en place à partir du dépôt naturel argileux. La présence d'un tel remblai sous les fondations permettant une meilleure répartition des charges, une valeur de résistance géotechnique à l'ÉLTS supérieure à celles indiquées au tableau 4, soit 125 kPa, est recommandée; cette valeur est valable pour des semelles d'une largeur inférieure à 3 m.

5.4.2 Fondations profondes

Alternativement, et dans la mesure où le volume des excavations pour la mise en place de fondations conventionnelles deviendrait trop important ou que les valeurs de résistances géotechniques à l'ÉLTS recommandées s'avéreraient insuffisantes pour les besoins de conception, des fondations profondes de type pieux battus portant en pointe sur le roc pourraient être envisagées. Il est à noter que la charge admissible d'un pieu est en général limitée par sa capacité structurale; celle-ci doit toutefois être suffisante pour résister aux contraintes subies lors du battage. Il est recommandé de munir les pieux d'un sabot de battage ou d'une plaque soudée pour les pieux tubés.

Dans le cas où les charges seraient relativement faibles, des pieux hélicoïdaux mis en place au sein du dépôt argileux pourraient aussi être envisagés. Toutefois, considérant l'information disponible, seules les recommandations relatives à la mise en place de pieux battus seront présentées dans ce rapport.

Lors de la conception, s'il est nécessaire d'évaluer par une analyse statique la capacité géotechnique axiale développée par différents types de pieux battus dans le sol, nous recommandons d'utiliser la méthode décrite au chapitre 18 du MCIF (4^e édition; 2013). Selon cette méthode, la capacité géotechnique axiale ultime (*R*) d'un pieu isolé peut être estimée en faisant la somme de la résistance au cisaillement le long du fût du pieu et de la capacité géotechnique ultime en pointe et en soustrayant le poids du pieu.

Le tableau 5 présente les paramètres recommandés pour les besoins de calculs.

Tableau 5 : Paramètres géotechniques – Résistance géotechnique axiale d'un pieu battu

TYPE DE SOL	POIDS VOLUMIQUE UNITAIRE	PARAMÈTRE PIEUX BATTUS				
	(kN/m³)	α	β	N _t	q a	
Dépôt argileux	16,5	0,5	N/A	N/A	N/A	
Dépôt de till	21	N/A	1,0	150	N/A	
Roc	N/A	N/A	N/A	N/A	$q_a = \sigma_c \cdot K_{sp} \cdot d^{1}$	
Une valeur de résistance en compression du roc (σ_c) de l'ordre de 50 MPa et un coefficient K_{sp} de 0,1 peuvent être utilisés.						

Pour l'analyse statique lors de la conception, la résistance géotechnique axiale pondérée à l'état limite ultime est considérée égale à la capacité géotechnique axiale ultime (R), multipliée par un facteur de résistance géotechnique (Φ) de 0,4 pour la compression et de 0,3 pour la traction.

5.4.2.1 Mise en place des pieux

Il est important de s'assurer que les pieux seront installés correctement par un entrepreneur spécialisé.

Afin de valider la capacité des pieux installés en relation avec le critère de refus utilisé, il est recommandé de procéder à des essais de chargement ou à des analyses dynamiques sur quelques uns d'entre eux. De tels essais devraient être réalisés sur un minimum de 10 % des pieux. Les essais réalisés au début des opérations de battage serviront à valider le critère de refus; les autres pourront être répartis sur la durée des travaux, jusqu'à l'acception finale.

5 février 2016 No rapport: 15G049G

Si des essais statiques sont effectués au chantier, les facteurs de résistance géotechnique (Φ) à utiliser sont de 0,6 pour la compression et de 0,4 pour la traction (ou l'arrachement). Pour des essais dynamiques, un facteur de résistance de 0,5 doit être considéré pour la compression.

5.5 Catégorie d'emplacement

Des informations obtenues des forages réalisés, il ressort que nous sommes en présence d'un profil de sol présentant les caractéristiques suivantes sur une épaisseur de plus de trois (3) mètres :

- Indice de plasticité (I_P) supérieur à 20;
- Teneur en eau supérieure ou égale à 40 %.

Ainsi, selon le tableau 4.1.8.4.A du CNBC 2005, la catégorie d'emplacement en fonction de la réponse sismique de ce site est « E ».

Considérant que les valeurs de la résistance au cisaillement non drainé de l'argile à l'état non-remanié mesurées in situ sont pour la plupart supérieures à 50 kPa, ce qui correspond à une argile de consistance raide, nous recommandons de déterminer la vitesse moyenne de propagation des ondes de cisaillement sur les trente (30) premiers mètres de sol et/ou de roc ($\overline{V_{\rm S30}}$) par des essais géophysiques [essais en forage de type « downhole » ou encore essais au MASW (Multichannel Analysis of Surface Waves)]. Si les résultats démontrent que la $\overline{V_{\rm S30}}$ est supérieure à 180-200 m/s, la catégorie « D » pourra être utilisée pour la conception des structures.

6 CARACTÉRISATION ENVIRONNEMENTALE PRÉLIMINAIRE

Pour les sols, la *Politique de protection des sols et de réhabilitation des terrains contaminés* (ci-après *Politique*) du MDDELCC prévoit trois (3) niveaux de critères génériques pour plusieurs paramètres chimiques. Ces niveaux (« A », « B » et « C »), sont résumés à l'annexe 8.

Ces critères génériques servent également à déterminer la façon dont les sols contaminés doivent être gérés et disposés lors de la réalisation des travaux d'excavation, et ce, en fonction des lignes directrices émises dans la « *Grille de gestion des sols contaminés excavés intérimaire* » tirée de la *Politique* et dont un extrait est colligé à l'annexe 8.

6.1 Résultats analytiques sur les sols

Au total, quatorze (14) échantillons de sols et deux (2) duplicatas de terrain ont été soumis à l'analyse pour les paramètres de dépistage de base (les hydrocarbures pétroliers C_{10} à C_{50} ($C_{10} - C_{50}$), les hydrocarbures aromatiques polycycliques (HAP) et les métaux).

Le tableau 6 résume les résultats obtenus en fonction des critères génériques précités. La profondeur, l'intervalle d'influence considéré pour chaque échantillon analysé de même que le type de matériau constituant l'échantillon (remblai ou sol naturel) y sont également indiqués. Les certificats d'analyses chimiques sont pour leur part présentés à l'annexe 6 tandis que le tableau des résultats de ces analyses est présenté à l'annexe 7.

Les résultats des analyses chimiques, interprétés en fonction des critères génériques, montrent que :

- Les hydrocarbures aromatiques polycycliques (HAP) sont mesurés dans la plage « A-B » pour trois (3) échantillons (15G049-001 CF-1 et son duplicata ainsi que 15G049-004 CF-2); les HAP ne sont pas détectés dans tous les autres échantillons soumis à l'analyse pour ce paramètre;
- Les hydrocarbures pétroliers C₁₀ à C₅₀ ont présenté une concentration pour ce paramètre inférieure aux critères « A » pour tous les échantillons soumis à l'analyse;
- Les concentrations mesurées pour les métaux se situent dans la plage « A-B » pour sept (7) des échantillons et duplicatas soumis à l'analyse; elles sont inférieures aux critères « A » pour les neuf (9) autres échantillons. De façon générale, les paramètres qui excèdent le critère « A » pour les métaux dans les sols naturels sont le chrome, le cobalt, le cuivre et le nickel.

Tableau 6 : Résultats des analyses chimiques sur les sols en fonction des critères génériques

FORAGE [ÉL. (m)]	ÉCH. ¹	PROF. (m) [ÉL. (m)]	INTERVALLE CONSIDÉRÉ (m) [ÉL. (m)]	TYPE DE SOL	RÉSULTATS SELON LES CRITÈRES ^{2, 3, 4}		
					НАР	C ₁₀ - C ₅₀	MÉTAUX ⁵
	CF-1	0,00 - 0,61	0,00 - 0,61 [13,13 - 12,52]	Remblai	A-B	< A	< A
	CF-1 (DUP)	[13,13 – 12,52]			A-B	< A	< A
15G049-001 [13,13]	CF-4B	1,93 – 2,44 [11,20 – 10,69]	1,93 – 2,44 [11,20 – 10,69]	Remblai	< A	< A	A-B
	CF-4B (DUP)				< A	< A	A-B
	CF-5B	2,59 - 3,05 [10,54 - 10,08]	2,59 – 5,00 [10,54 – 8,13]	Sol naturel	< A	< A	A-B
15G049-002 [12,94]	CF-2	0,61 - 1,22 [12,33 - 11,72]	0,00 - 1,22 [12,94 - 11,72]	Remblai	< A	< A	< A
	CF-4	1,83 – 2,44 [11,11 – 10,50]	1,22 - 2,44 [11,72 - 10,50]	Remblai	< A	< A	< A
	CF-5	2,44 - 3,05 [10,50 - 9,89]	2,44 – 5,00 [10,50 – 7,94]	Sol naturel	< A	< A	A-B

5 février 2016

Arrondissement de Rivière-des-Prairies - Pointe-aux-Trembles

5 février 2016 No rapport: 15G049G

FORAGE [ÉL. (m)]	ÉCH. ¹	PROF. (m) [ÉL. (m)]	INTERVALLE CONSIDÉRÉ (m) [ÉL. (m)]	TYPE DE SOL	RÉSULTATS SELON LES CRITÈRES ^{2, 3, 4}		
					HAP	C ₁₀ - C ₅₀	MÉTAUX ⁵
15G049-003 [13,26]	CF-3	0,91 - 1,52 [12,35 - 11,74]	0,91 - 2,13 [12,35 - 11,13]	Remblai	< A	< A	< A
	CF-5	2,44 - 3,05 [10,82 - 10,21]	2,13 – 3,05 [11,13 – 10,21]	Remblai	< A	< A	A-B
	CF-6	3,05 – 3,66 [10,21 – 9,60]	3,05 - 5,00 [10,81 - 8,26]	Sol naturel	< A (< A)	< A (< A)	A-B
15G049-004 [13,63]	CF-3	1,22 - 1,83 [12,41 - 11,80]	0,00 - 1,83 [13,63 - 11,80]	Remblai	< A	< A	< A (< A, < A)
	CF-8B	4,32 – 4,88 [9,31 – 8,75]	4,32 - 5,00 [9,31 - 8,63]	Sol naturel	< A	< A	A-B
15G049-005 [13,77]	CF-2	0,61 - 1,22 [13,16 - 12,55]	0,00 - 1,22 [13,77 - 12,55]	Remblai	A-B	< A	< A
	CF-4	1,83 - 2,44 [11,94 - 11,33]	1,22 - 3,05 [12,55 - 10,72]	Remblai	< A	< A	< A
	CF-10	5,49 - 6,10 [8,28 - 7,67]	5,49 - 6,10 [8,28 - 7,67]	Sol naturel	< A	< A	< A

⁽DUP): Duplicata de terrain.

6.2 Assurance qualité et contrôle de la qualité

Afin de vérifier la reproductibilité des résultats d'analyses en laboratoire, des duplicatas de terrain de deux (2) échantillons de sols, soit les échantillons 15G049-001 CF-1 et 15G049-001 CF-4B, ont été soumis à des analyses chimiques. D'après les résultats obtenus, l'échantillon dupliqué et son duplicata de chantier présentent des concentrations comparables.

Les mesures de contrôle de qualité du laboratoire d'analyses ont montré que les concentrations des duplicatas de laboratoire sont similaires à celles des échantillons.

6.3 Remarques

Il est à noter que les intervalles de profondeur considérés de même niveau de contamination indiqués au tableau 6 précédent sont présentés à titre indicatif seulement. Des sondages additionnels pourraient devoir être réalisés dans l'empreinte des structures et bâtiments proposés de manière à obtenir une densité de sondages suffisante pour assurer une gestion adéquate des sols qui seront excavés dans le cadre des travaux de construction.

Critères de la Politique de protection des sols et de réhabilitation des terrains contaminés (Politique) du MDDELCC.

Les certificats d'analyse ont préséance sur ce tableau.

Valeur entre parenthèses : Duplicata de laboratoire.

¹³ métaux : Argent (Ag), arsenic (As), baryum (Ba), cadmium (Cd), chrome (Cr), cobalt (Co), cuivre (Cu), étain (Sn), manganèse (Mn), molybdène (Mo), nickel (Ni), plomb (Pb) et zinc (Zn).

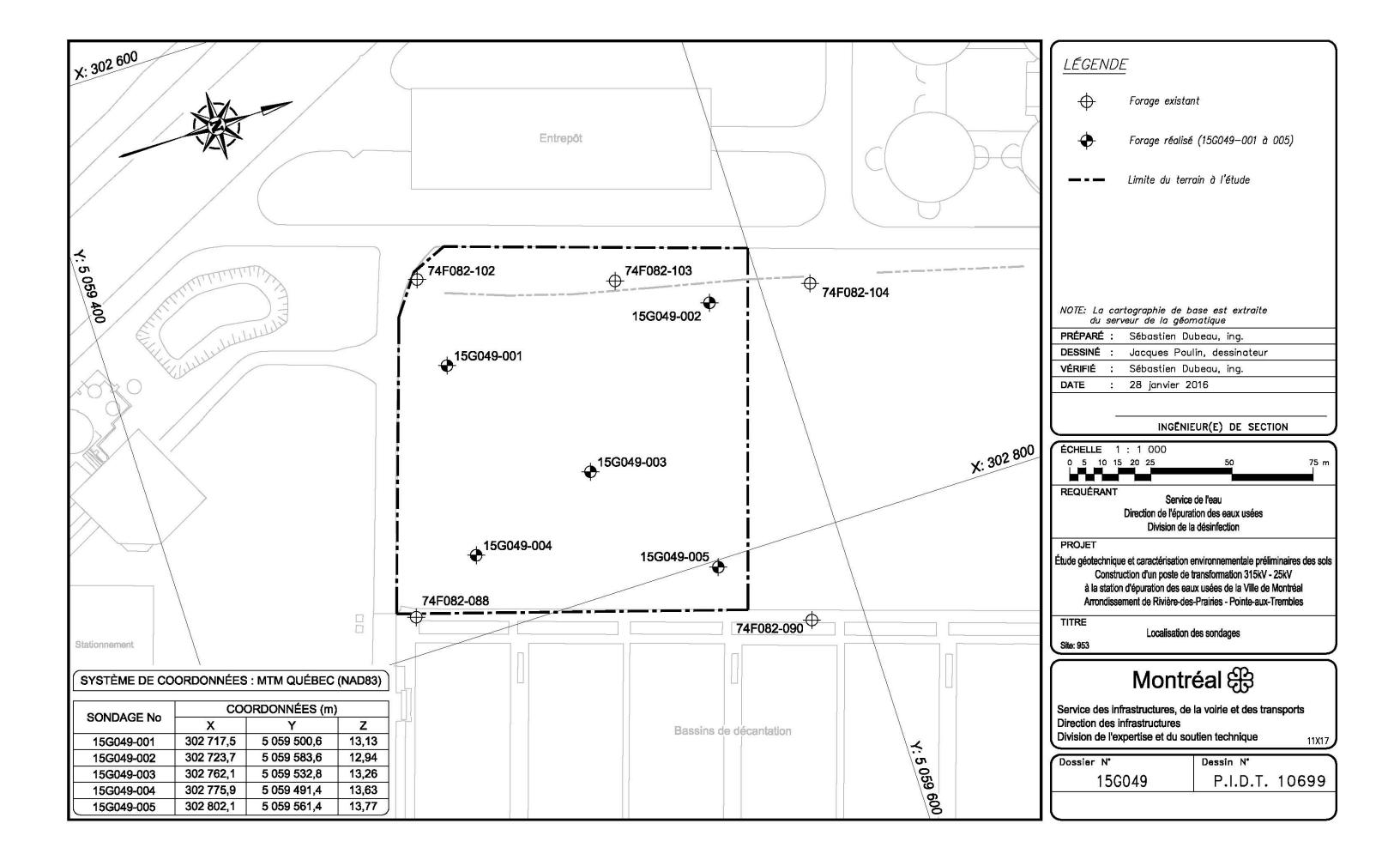
5 février 2016 No rapport : 15G049G

Sébastien Dubeau, ing. Membre de l'OIQ no 131538 Chargé de projet – Géotechnique Martin Tremblay, ing., M.Sc.A. Ingénieur de section – Géotechnique

Téléphone : 514.872.3732

sebastien.dubeau@ville.montreal.qc.ca

SD/MT



5 février 2016

No rapport: 15G049G

ANNEXE 1: Plan de localisation des sondages – PIDT 10699 (1 plan)

Étude géotechnique et caractérisation environnementale des sols préliminaires Construction d'un poste de transformation 315 kV – 25 kV à la station d'épuration des eaux usées de la Ville de Montréal Arrondissement de Rivière-des-Prairies – Pointe-aux-Trembles

5 février 2016 No rapport : 15G049G

ANNEXE 2: Rapports des forages 15G049-001 à -005 (10 pages)

Montréal ∰ Service des infrastructures, de la voirie et des transports

Direction des infrastructures

Nom du projet:

Nom du consultant:

Les Services exp.

RAPPORT DE FORAGE

15G049-001 Sondage N°

Date du début du sondage :

Division de l'expertise et du soutien technique

Dossier no: MTS-00027568-C1

Étude géotechnique et caractérisation environnementale des sols

préliminaires -Construction d'un poste de transformation 315 kV -25 kV à la station d'épuration des eaux usées de la Ville de Montréal

Nom du requérant : Service de l'eau

Direction de l'épuration des eaux usées Division de la désinfection

Localisation civile: Station d'épuration des eaux usées de la Ville de Montréal

Entrepreneur en forage : Forage Goulet inc.

Tarière Type de forage : Inclinaison: 90 Azimut: 0 Diamètre du forage: 200 mm Diamètre du carottier: NQ

Vérifié par : M. Gagné, ing., M.Sc.A. M. Grenier-Houde, géol. Préparé par :

Coordonnées géodésiques X: 302717.5 MTM Québec (NAD-1983) Y: 5059500.6

Z: 13.13

Page 1 de 2

Site numéro : 953

Plan de localisation No.: PIDT_10699

2015-11-03 Profondeur du sondage : 16.56

TYPE D'ÉCHANTILLON	TERMINOLOGIE		INDICE DE	QUALITÉ DU ROC	COMPACITÉ	INDICE "N"		NIVEAU D'EAU
CF Çuillère fendue			% RQD	QUALIFICATIF	Très lâche	0-4		
CD Echantillon par forage au diamant	"traces"	1-10%	<25	Très pauvre	Lâche	4-10		
EM Manuel		10-20%	25-50	Pauvre	Compact	10-30	Date:	Date:
TA Tarière		20-35%	50-75	Passable	Dense	30-50	Date.	Date.
TE Tube d'échantillonnage	"et" 3	35-50%	75-90	Bon	Très dense	>50	Prof.:	Prof.:
TM Tube à paroi mince			90-100	Excellent				
ÉTAT DE L'ÉCHANTILLON	ÉTAT DE L'ÉCHANTILLON SYMBOLES				CONSIS	TANCE	RÉSISTA	NCE AU CISAILLEMENT (Cu)
Remanié	N: Indice de pénétration s	standard	Argile	< 0,002 mm	Très m	nolle		<12 kPa
7///// Intent (table 2 mone) miles a)	R: Refus (N > 100)			0,002 à 0,075 mm	Molle			12-25 kPa
Intact (tube à paroi mince)	R.Q.D: Indice de qualité de			0,075 à 4,75 mm	Ferme			25-50 kPa
Perdu	(Rock Quality Designation	Gravier	4,75 à 75 mm	Raide			50-100 kPa	
Form on all amount			Cailloux Blocs	75 à 300 mm	Très ra	aide	10	00-200 kPa
Forage au diamant	t longueur forée			> 300mm	Dure			>200 kPa

			STRATIGRAPHIE		ÉCI	IAN	TILL	.ON	3	'	GRAPHIQUE		ESSAIS
PROFONDEUR (m)	PROF - pi	E NIVEAU (m)/ E PROFONDEUR	DESCRIPTION DU SOL ET DU ROC Niveau	SYMBOLES	TYPE	SOUS - ÉCH.	ÉTAT	RÉCUPÉRATION	N, Nc ou RQD	COUPS/15cm FRAGMENTATION (mm)	∴ N (pen. standard) ∆ : N (pen. dynamique) √ : Cu (laboratoire) ▽ : Cur (laboratoire) × : Cu (chantier) + : Cur (chantier) w w w w w w w	NIVEAUX D'EAU	AG : analyse granulométrique AC : analyse chimique WI : limite liquide Wp : limite plastique w : teneur en eau Cu : cisaillement non drainé Cur : cisaillement remanié Pc : préconsolidation Cc : coeff. de consolidation k : perméabilité Dup : éch. duplicata prélevé
-	 	0.00	Remblai: Silt, un peu de sable et de gravier, brun, humide.		CF-1		X	100	13	6-8-5-6	$ \uparrow $ $ $ $ $ $ $		AC, DUP
1	_	0.61	Remblai: Pierre concassée (0-20mm), brune, humide.		CF-2		X	38	11	4-5-6-7			-
-	5-	11.20			CF-3		X	67	21	7-9-12-14	lacksquare		w = 4.0%
- 2	_ 	1.93	Remblai: Argile silteuse, un peu de matière végétale, humide.		CF-4	_A_∕ B	X	75	6	4-3-3-4			AC, DUP
- - 3	10—	2.44 10.54 2.59 10.08 3.05	Remblai: Terre végétale, sableuse et argileuse, grise, humide. Remblai: Argile silteuse, traces		CF-5	В	X	100	7	3-3-4-6			w = 33.4%
- 4			de sable, traces de matière végétale, grise, humide. Terrain naturel: Argile silteuse, grise, humide.		TM-6			100					Cu = 122 kPa -
- - - 5	15— —				CF-7			100		0 /PDM	9 *		Ip = 44 WI = 70% Wp = 26% w = 57.9% w = 63.2%
- - 6	20-				TM-8			100					Cu = 67 kPa - - - - Cu = 84 kPa -
7 - 7	- - -				I IVI-O			100					Ip = 28 WI = 56% Wp = 27% w = 59.2%
8	25— — —				CF-9		X	100		0 /PDM	•		Cu = 91 kPa

Remarque(s): Aucun indice organoleptique de contamination n'a été noté. PDM = Poids du marteau.

Nom du consultant:

Les Services exp.

Page 2 de 2

Servi	e des		ures, de la voirie et des transports	de la voirie et des transports						RAPPORT DE FORAGE	
		s infrastruc l'expertise (ctures et du soutien technique					.	φ.		Sondage N° 15G049-00
			STRATIGRAPHIE		ÉCI	HAN	TILL	ONS	S		GRAPHIQUE ESSAIS
PROFONDEUR (m)	PROF - pi	NIVEAU (m)/ PROFONDEUR	DESCRIPTION DU SOL ET DU ROC	SYMBOLES	TYPE	SOUS - ÉCH.	ÉTAT	RÉCUPÉRATION	N, Nc ou RQD	COUPS/15cm FRAGMENTATIO (mm)	A: N (pen. standard) \(\triangle \
- 9	30— —		Devenant saturée.		TM-10			100			Cu = 113 kPa Ip = 33 WI = 58%
10					CF-11			100		0 /PDM	Wp = 25% w = 59.0% Cu = 144 kPa
11					GF-11			100		0/РЫМ	w = 64.0% Cu = 109 kPa
13	40-				TM-12			100			Cu = 100 kPa Ip = 22 WI = 41% Wp = 20%
14	45—	-0.18 13.31	Socle rocheux: Shale noir t fracturé.	très	CF-13			0	R	50 /5 cm	w = 39.9% Cu = 140 kPa
15	50-	<u>-1.91</u> 15.04	Shale noir.		CR-14			13	0		
16	- - -				CR-15			96	38		
17	55— —	-3.43 16.56	Fin du forage à 16,56 mètro profondeur.	es de							
18	60-										
19	-										
20	65— —										
21	70-										
22	- - - 75-										
23	′3										

Montréal ∰ Service des infrastructures, de la voirie et des transports

Nom du consultant:

Les Services exp.

RAPPORT DE FORAGE

15G049-002 Sondage N°

Direction des infrastructures Nom du projet:

Étude géotechnique et caractérisation environnementale des sols préliminaires -Construction d'un poste de transformation 315 kV -

25 kV à la station d'épuration des eaux usées de la Ville de Montréal

Nom du requérant : Service de l'eau

Division de l'expertise et du soutien technique

Direction de l'épuration des eaux usées

Division de la désinfection

Localisation civile: Station d'épuration des eaux usées de la Ville de Montréal

Entrepreneur en forage : Forage Goulet inc.

Tarière Type de forage : Inclinaison: 90 Diamètre du forage: 200 mm Diamètre du carottier: NQ Préparé par : M. Grenier-Houde, géol.

Azimut: 0

Vérifié par : M. Gagné, ing., M.Sc.A.

Dossier no: MTS-00027568-C1

Coordonnées géodésiques X: 302723.7 MTM Québec (NAD-1983) Y: 5059583.6

> Z: 12.94

Page 1 de 2

Site numéro : 953

Plan de localisation No.: PIDT_10699

Date du début du sondage : 2015-10-29

Profondeur du sondage : 15.24

- 1		· · · · · · · · · · · · · · · · · · ·				J ,				
	TYPE D'ÉCHANTILLON	TERMINOLOGIE		INDICE D	E QUALITÉ	DU ROC	COMPACITÉ	INDICE "N"	NI	VEAU D'EAU
CF CD	Cuillère fendue Échantillon par forage au diamant	"traces" 1-	10%	% RQD			Très lâche	0-4	PIÉZOMÈTRE	PIÉZOMÈTRE
EM	Manuel		20%	<25 25-50	Très pa Pauvre		Lâche Compact	4-10 10-30	D-4 0040 04	4 00 D-4 0040 04 00
TA	Tarière		35%	50-75	Passab		Dense	30-50	Date: 2016-01	1-28 Date: 2016-01-28
TE TM	Tube d'échantillonnage Tube à paroi mince	"et" 35-	50%	75-90 90-100	Bon Excelle	nt	Très dense	>50	Prof.: 9.81	Prof.: 3.85
	ÉTAT DE L'ÉCHANTILLON	SYMBOLES			TION (SYSTÈ		CONSIS	TANCE	RÉSISTANCE	AU CISAILLEMENT (Cu)
1 >	Remanié	N: Indice de pénétration sta	ndard	Argile	< 0,0	02 mm	Très m	olle	<	:12 kPa
	Intact (tube à paroi mince)	R: Refus (N > 100) R.Q.D: Indice de qualité du I	, o c	Silt	0,002 à 0,0 0.075 à 4.		Molle Ferme			25 kPa
222	Perdu	(Rock Quality Designation)		Sable Gravier		75 mm	Raide			-50 kPa 00 kPa
		o. (10 cm)	Cailloux Blocs		00 mm	Très ra	ide	100-2	00 kPa	
	Forage au diamant	Forage au diamant longueur forée			> 3	300mm	Dure		>2	00 kPa
1 1	0.70 4.710	ND A DI IIE	ÉOU		0110			DADINO		FCCAIC

			STRATIGRAPHIE		ÉCI	IAN	TII I	ONS	<u> </u>		G	R/	·Ρŀ	110	UE		T	ESSAIS
PROFONDEUR (m)	PROF - pi	niveau (m)/ Fe Profondeur	DESCRIPTION DU SOL ET DU ROC Niveau	SYMBOLES	TYPE	SOUS - ÉCH.	ÉTAT	RÉCUPÉRATION	N, Nc ou RQD	COUPS/15cm FRAGMENTATION (mm)	▲: Δ: ▼: ∇: +:	A : N (pen. standard) ∆ : Nc (pen. dynamique) ▼ : Cu (laboratoire) ▼ : Cur (laboratoire) X : Cu (chantier) + : Cur (chantier) W p W W 20 40 60 80		NIVEAUX D'EAU	V V V C C C C K	AG : analyse granulométrique AC : analyse chimique VI : limite liquide Vp : limite plastique v : teneur en eau Lu : cisaillement non drainé Cur : cisaillement remanié °C : préconsolidation c : coeff. de consolidation		
-	_	0.00	Remblai: Silt argileux, un peu de matière végétale, brun, saturé.		CF-1		X	46	10	1-4-6-3	1							-
1	_ 	0.61	Remblai: Silt argileux à silt avec un peu d'argile, un peu de sable et gravier, brun, saturé.		CF-2		X	46	9	1-3-6-8	Å	\downarrow	+				4,	4C
-	5- -		-		CF-3		X	75	37	4-17-20-11	0		*				١	N = 12.7%
- 2	 -	10.50			CF-4		X	54	8	5-4-4-4	1	1					,	AC
- - - 3 -	10- -	2.44	Terrain naturel: Argile silteuse, grise, humide.		CF-5		\times	100	10	2-4-6-6	<u> </u>	(<u> </u>			2016-01-28	\ } }	AC w = 36.4%
- - 4 - - - - - 5	_ _ 15_ _	8.37 4.57	Argile silteuse, grise, saturée.		TM-6			100						0		 =		p = 34 NI = 60%
- - - - - 6 -	20—				CF-7			100		0 /PDM							١	Wp = 25%
7 - 7 - - - 8	25—				TM-8			100				<u></u>		-\$			١	p = 32

Remarque(s): Aucun indice organoleptique de contamination n'a été noté. PDM = Poids du marteau.

Nom du consultant:

RAPPORT DE FORAGE

Page 2 de 2

Servic	e des		tures, de la voirie et des transports	Nom du cons		Spr	/ico	S 07	'n			RAPPOR	ΓDE	FORAGE
		s infrastru 'expertise	ctures et du soutien technique		LES ·	s Services exp.					5	Sondage N°		15G049-00
			STRATIGRAPHIE		ÉCI	HAN	TILL	ONS	S			GRAPHIQUE		ESSAIS
PROFONDEUR (m)	PROF - pi	NIVEAU (m)/ PROFONDEUR	DESCRIPTION DU SOL ET DU ROC	SYMBOLES	TYPE	SOUS - ÉCH.	ÉTAT	RÉCUPÉRATION	N, Nc ou RQD	COUPS/15cm FRAGMENTATIO (mm)		A: N (pen. standard) Δ: Nc (pen. dynamique) ∀: Cu (laboratoire) ∇: Cur (laboratoire) X: Cu (chantier) +: Cur (chantier) Wp WI	NIVEAUX	AG : analyse granulomé AC : analyse chimique Wp : limite liquide Wp : limite plastique w : teneur en eau Cu : cisaillement non di Cur : cisaillement reman Pc : préconsolidation Cc : coeff. de consolida k : perméabilité Dup : éch. duplicata préli
9	30— —				CF-9		X	83		0 /PDM			2016-01-28	w = 60.6%
10	 35— 				TM-10			100						lp = 37 WI = 67%
12	40—				CF-11		X	100	1	0-0-1-2	,	+		Wp = 30% w = 60.6%
13	_ _ 45—	-1.39			TM-12			100						
15	50	-2.25 15.19 -2.30 15.24	Silt, sable et gravier probal Socle rocheux probable: S de mauvaise qualité	hale	CF-13			100	R	50 /5 cm				
16		13.24	Fin du forage à 15,24 mètr profondeur.	es de										
18	60-													
19														
20	65— — — — —													
22	70 —													
23	75— —													

Montréal ∰ Service des infrastructures, de la voirie et des transports

Direction des infrastructures

Nom du consultant:

Les Services exp.

Dossier no: MTS-00027568-C1

RAPPORT DE FORAGE

Date du début du sondage :

Coordonnées géodésiques

MTM Québec (NAD-1983)

15G049-003 Sondage N°

Nom du projet:

Étude géotechnique et caractérisation environnementale des sols préliminaires -Construction d'un poste de transformation 315 kV -

25 kV à la station d'épuration des eaux usées de la Ville de Montréal

Nom du requérant : Service de l'eau

Division de l'expertise et du soutien technique

Direction de l'épuration des eaux usées

Division de la désinfection

Localisation civile: Station d'épuration des eaux usées de la Ville de Montréal

Entrepreneur en forage : Forage Goulet inc.

Tarière Type de forage : Inclinaison: 90 Azimut: 0 Diamètre du forage: 200 mm Diamètre du carottier: NQ Vérifié par : M. Gagné, ing., M.Sc.A. M. Grenier-Houde, géol. Préparé par :

Z: 13.26

> Site numéro : 953

X:

Y:

Page 1 de 2

302762.1

5059532.8

2015-10-27

Plan de localisation No.: PIDT_10699

Profondeur du sondage : 17.40

TYPE D'ÉCHANTILLON	TERMINOLOGIE	INDICE DE QUALITÉ DU ROC	COMPACITÉ INDICE "N"	NIVEAU D'EAU
CF Cuillère fendue CD Échantillon par forage au diamant		% RQD QUALIFICATIF	Très lâche 0-4	PIÉZOMÈTRE
EM Manuel	"traces" 1-10% "un peu" 10-20%	<25 Très pauvre 25-50 Pauvre	Lâche 4-10	
TA Tarière	adjectif (eux) 20-35%	50-75 Passable	Compact 10-30 Dense 30-50	Date: 2016-01-28 Date:
TE Tube d'échantillonnage	"et" 35-50%	75-90 Bon	Très dense >50	Prof.: 2.34 Prof.:
TM Tube à paroi mince		90-100 Excellent		
ÉTAT DE L'ÉCHANTILLON	SYMBOLES	CLASSIFICATION (SYSTÈME UNIFIÉ)	CONSISTANCE	RÉSISTANCE AU CISAILLEMENT (Cu)
Remanié	N: Indice de pénétration standard	Argile < 0,002 mm	Très molle	<12 kPa
Intest (tube à parei mines)				12-25 kPa
miaci (tube a paroi mince)				25-50 kPa
Perdu				50-100 kPa
	R.Q.D = Σ Carottes > 4 po. (10 cr		Très raide	100-200 kPa
Forage au diamant	longueur forée	Blocs > 300mm	Dure	>200 kPa
ÉTAT DE L'ÉCHANTILLON Remanié Intact (tube à paroi mince)		CLASSIFICATION (SYSTÈME UNIFIÉ) Argile	Très molle Molle Ferme Raide Très raide	<12 kPa 12-25 kPa 25-50 kPa 50-100 kPa 100-200 kPa

		1	STRATIGRAPHIE		ÉCI	IAN	TII !	ONIG	-		6	D.	\PH	יחוו				ESSAIS
ء ا		<u> </u>	STRATIGRAPHIE		ECI	AN	IILL	.UN:	>								_	
PROFONDEUR (m)	PROF - pi	13.26 PROFONDEUR	DESCRIPTION DU SOL ET DU ROC	SYMBOLES	TYPE	SOUS - ÉCH.	ÉTAT	RÉCUPÉRATION	N, Nc ou RQD	COUPS/15cm FRAGMENTATION (mm)	Δ: ▼: ∇: +:	Nc (Cu (Cur Cu (Cur	labora (labor chant (chan	lynamatoire) ratoire ier) tier) W _I	nique)) e)		☐ NIVEAUX D'EAU	AG : analyse granulométrique AC : analyse chimique WI : limite liquide Wp : limite plastique w : teneur en eau Cu : cisaillement non drainé Cur : cisaillement remanié Pc : préconsolidation Cc : coeff. de consolidation k : perméabilité Dup : éch. duplicata prélevé
_	_	0.00 13.06 / 0.20	Remblai: Terre végétale, brune. Remblai: Pierre concassée		CF-1	A B	X	59	10	1-2-8-54 /10 cm	•		F	Ľ				-
-	<u>-</u>	12.35	(0-20mm), brune, humide.		CF-2			71	R	33-50 /3 cm								<u>-</u>
- 1 -	_	0.91	Remblai: Silt, un peu d'argile, de sable et de gravier, hétérogène,		CF-3		X	96	24	1-7-17-37		•		H		.28		AC -
-	5- -		brun, humide.		CF-4		\bowtie	89	R	18-50 /8 cm						2016-01-28		- -
- 2 - -	<u>-</u>	11.13 2.13	Remblai: Silt argileux, un peu de sable, brun, humide.													1 20		
- - - 3	 - 10-	10.21			CF-5		X	75	13	2-6-7-11	1	-						AC _
- - -		3.05	Terrain naturel: Argile silteuse, grise, humide.		CF-6		\times	75	12	3-5-7-9	1	. (3					AC - w = 36.7% - Cu = 104 kPa -
- 4 - - -	15—	8.69 4.57	Argile silteuse, grise, saturée.		TM-7			100						X				Cu = 73 kPa
- 5 - -	- - -				11017			100							*			WI = 61% Wp = 24% w = 60.0% Cu = 87 kPa
- 6 - - - - 7	20 —				CF-8			100		0-1 /PDM				•	*			w = 60.2% Cu = 91 kPa
- 8	 25				TM-9			100						\$	*			Cu = 89 kPa lp = 34
<u> </u>	_						/////											WI = 60% - Wp = 26% -

Remarque(s): Aucun indice organoleptique de contamination n'a été noté. PDM = Poids du marteau.

Direction des infrastructures

Nom du consultant:

Les Services exp.

RAPPORT DE FORAGE

Sondage N°

15G049-003

Page 2 de 2

Division de l'expertise et du soutien technique **STRATIGRAPHIE ÉCHANTILLONS GRAPHIQUE ESSAIS** : analyse granulométrique : analyse chimique : limite liquide : limite plastique : teneur en eau Ξ ▲ : N (pen. standard) Δ : Nc (pen. dynamiqu ▼ : Cu (laboratoire) **NIVEAUX D'EAU** NIVEAU (m)/ PROFONDEUR RÉCUPÉRATION PROFONDEUR Rab PROF - pi SOUS - ÉCH. SYMBOLES COUPS/15cm ∇ : Cur (laboratoire) w : teneur en eau
Cu : cisaillement non drainé
Cu : cisaillement remanié
P'c : préconsolidation
Cc : coeff. de consolidation
k : perméabilité
Dup : éch. duplicata prélevé ÉTAT DESCRIPTION TYPE NO x : Cu (chantier) + : Cur (chantier) **FRAGMENTATION** Nc ou **DU SOL ET DU ROC** (mm) 20 40 60 80 w = 59.3%Cu = 100 kPa30-CF-10 100 0-0-1-1 w = 59.1%Cu = 124 kPa 10 Cu = 131 kPa 35-TM-11 100 lp = 32WI = 55% Wp = 23%w = 54.8%Cu = 104 kPa 12 40-CF-12 100 0-0-0-1 w = 37.2%Cu = 76 kPa -13 Cu = 78 kPa-0.46 45-13.72 Silt argileux, un peu de sable et TM-13 83 R de gravier, gris, saturé. 15 -1.98 15.24 50-Socle rocheux: Shale noir très CF-14 70 30-50 /10 cm fracturé. 16 CR-15 100 0 55-CR-16 88 0 -4.14 17.40 Fin du forage à 17,40 mètres de profondeur. 18 60-19 65--20 05_(PDF).sty -21 (77)_2012_09 70-22 75--23 Log

Montréal ∰ Service des infrastructures, de la voirie et des transports

Nom du projet:

Nom du requérant :

Localisation civile:

Nom du consultant:

RAPPORT DE FORAGE

Sondage N°

15G049-004

Page 1 de 2

953

Direction des infrastructures

Division de l'expertise et du soutien technique

Dossier no: MTS-00027568-C1 Étude géotechnique et caractérisation environnementale des sols

Les Services exp.

Coordonnées géodésiques X: 302775.9 MTM Québec (NAD-1983) Y: 5059491.4

Site numéro :

Z: 13.63

Direction de l'épuration des eaux usées

Division de la désinfection

Service de l'eau

Station d'épuration des eaux usées de la Ville de Montréal

préliminaires -Construction d'un poste de transformation 315 kV -

25 kV à la station d'épuration des eaux usées de la Ville de Montréal

Entrepreneur en forage : Forage Goulet inc.

Tarière Type de forage: Inclinaison: 90 Azimut: 0 Diamètre du forage: 200 mm NQ Diamètre du carottier: Préparé par : M. Grenier-Houde, géol. Vérifié par : M. Gagné, ing., M.Sc.A

Plan de localisation No.: PIDT_10699 Date du début du sondage : 2015-11-02

Profondeur du sondage : 14.71

TYPE D'ÉCHANTILLON TERMINOLOGIE INDICE DE QUALITÉ DU ROC COMPACITÉ INDICE "N' NIVEAU D'EAU Cuillère fendue Très lâche % RQD QUALIFICATIF 0-4 1-10% 10-20% 20-35% Échantillon par forage au diamant "traces" <25 25-50 Très pauvre Pauvre Lâche 4-10 "un peu Compact 10-30 Date: Date: Tarière adjectif (...eux) 50-75 Passable Dense 30-50 "et" Tube d'échantillonnage 35-50% Prof.: 75-90 Bon Très dense Prof.: Tube à paroi mince 90-100 Excellent **ÉTAT DE L'ÉCHANTILLON** SYMBOLES CLASSIFICATION (SYSTÈME UNIFIÉ) CONSISTANCE RÉSISTANCE AU CISAILLEMENT (Cu) N: Indice de pénétration standard R: Refus (N > 100) R.Q.D: Indice de qualité du roc (Rock Quality Designation) Argile < 0,002 mm Très molle <12 kPa Remanié 0,002 iniii 0,002 à 0,075 mm 0,075 à 4,75 mm 4,75 à 75 mm 12-25 kPa 25-50 kPa Silt Molle Intact (tube à paroi mince) Ferme Raide Sable Gravier Perdu 50-100 kPa % R.Q.D = Σ Carottes > 4 po. (10 cm) longueur forée Cailloux 75 à 300 mm Très raide 100-200 kPa Forage au diamant Dure Blocs > 300mm >200 kPa

		1	STRATIGRAPHIE		ÉCI	IAN	TILL	ONS			GRAPHIQUE		ESSAIS
PROFONDEUR (m)	PROF - pi	92 NIVEAU (m)/ 93 PROFONDEUR	DESCRIPTION DU SOL ET DU ROC	SYMBOLES	TYPE	SOUS - ÉCH.	ÉTAT	RÉCUPÉRATION	N, Nc ou RQD	COUPS/15cm FRAGMENTATION (mm)		NIVEAUX D'EAU	AG : analyse granulométrique AC : analyse chimique WI : limite liquide Wp : limite plastique w : teneur en eau Cu : cisaillement non drainé Cur : cisaillement remanié PC : préconsolidation Cc : coeff. de consolidation k : perméabilité Dup : éch. duplicata prélevé
- - - - -	- -	0.00	Remblai: Silt, un peu d'argile, de sable et de gravier à graveleux, traces de matière végétale, brun, humide.		CF-1			100	15	5-7-8-6 5-4-7-6	1		
- - -	5— 5—	11.80 1.83	Remblai: Pierre concassée		CF-3			50	27	5-9-18-15)		AC 1
- 2 - - - -	_ _ _		0-20mm, brune, humide.		CF-4 CF-5		\nearrow	50 75	16 20	4-5-11-11 9-11-9-8			
- 3 - - - -	10— -				CF-6			21	12	5-6-6-5			
- 4 - - - -	15—	9.31 4.32	Terrain naturel: Argile silteuse, grise, saturée.		CF-7	_A_/ B		42 54	5 6	4-3-2-3 3-5-1-0			AC -
- 5 - - - - 6	_ _ _				TM-9			100			├		Ip = 44
- - - - 7	20				CF-10			100	1	1-0-1-1			-
- 8	25— — —				TM-11			100					Ip = 31

Remarque(s): Aucun indice organoleptique de contamination n'a été noté. PDM = Poids du marteau.

Nom du consultant:

Les Services exp.

RAPPORT DE FORAGE

15@049-004

Page 2 de 2

Divisio	on de l	s intrastruc l'expertise	et du soutien technique	Sondage N°								15G049-004					
			STRATIGRAPHIE		ÉCI	HAN	TILL	.ONS	S			GRAPHIQUE					ESSAIS
PROFONDEUR (m)	PROF - pi	NIVEAU (m)/ PROFONDEUR	DESCRIPTION DU SOL ET DU ROC	SYMBOLES	TYPE	SOUS - ÉCH.	ÉTAT	RÉCUPÉRATION	N, Nc ou RQD	COUPS/15cm FRAGMENTATIO (mm)	N.	∇:C ×:C +:C	ur (la u (ch ur (cl W _p	borat antie hantie w	r) er) W l	NIVEAUX D'EAU	AG : analyse granulométriq AC : analyse chimique WI : limite liquide Wp : limite plastique w : teneur en eau Cu : cisaillement non drain Cur : cisaillement remanié P'c : préconsolidation k : perméabilité Dup : éch. duplicata prélevé WI = 56%
- 9	30-															-	W1 = 56% Wp = 25% w = 59.2%
-10					CF-12		X	100	0	0-0-0-1	4	<u> </u>					
11	35-															-	
12	40-				TM-13			100						⋄			Ip = 24 WI = 48% Wp = 25% w = 47.6%
13	- - -	0.78 12.85	Silt argileux, un peu de sable, traces de gravier, présence de		CF-14	A B	X	83	17	3-5-12-24		1			+	_	
14	45	-0.54	cailloux, gris, saturé.	8. 9										\		-	
15		14.17 -1.08 14.71	Socle rocheux: Shale noir très fracturé. Fin du forage à 14,71 mètres profondeur.	===	CF-15		X	86	62	14-29-33-50 /8 cr	m				\		
16	50-																
17	55—																
18	60-															-	
19	- - -																
20	65— —																
21															\perp	-	
22	70-														$\frac{1}{1}$	-	
23	75 <u> </u>																

Montréal ∰ Service des infrastructures, de la voirie et des transports

Direction des infrastructures

Nom du consultant:

Les Services exp.

Dossier no: MTS-00027568-C1

RAPPORT DE FORAGE

Sondage N°

Coordonnées géodésiques

MTM Québec (NAD-1983)

Date du début du sondage :

15G049-005

Page 1 de 2

302802.1

5059561.4

Nom du projet:

Étude géotechnique et caractérisation environnementale des sols

préliminaires -Construction d'un poste de transformation 315 kV -

25 kV à la station d'épuration des eaux usées de la Ville de Montréal

Nom du requérant : Service de l'eau

Division de l'expertise et du soutien technique

Direction de l'épuration des eaux usées

Division de la désinfection

Localisation civile: Station d'épuration des eaux usées de la Ville de Montréal

Entrepreneur en forage : Forage Goulet inc.

Tarière Type de forage : Inclinaison: 90 Azimut: 0 Diamètre du forage: 200 mm Diamètre du carottier: NQ Vérifié par : M. Gagné, ing., M.Sc.A. M. Grenier-Houde, géol. Préparé par :

Z: 13.77

> Site numéro : 953

X:

Y:

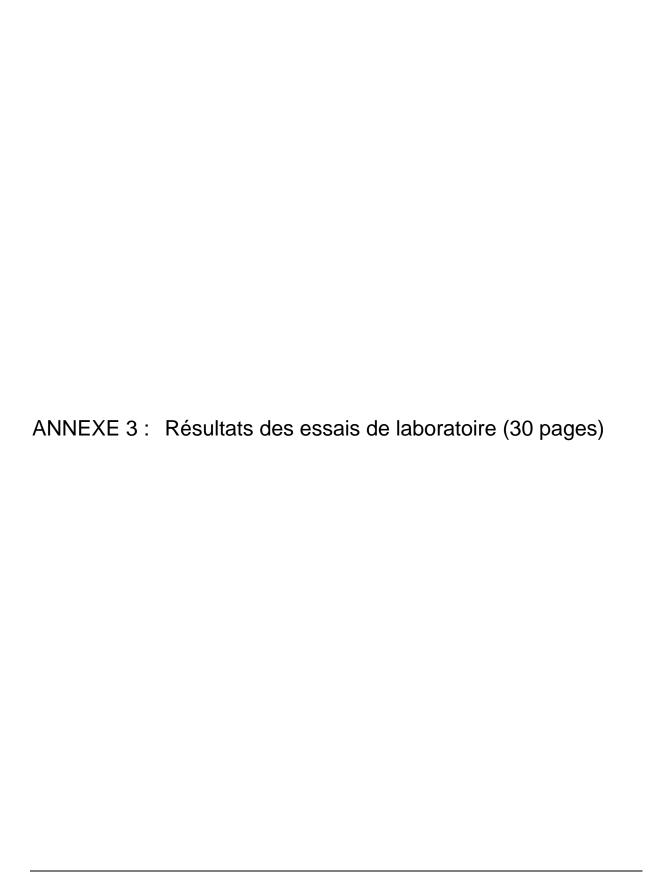
Plan de localisation No.: PIDT_10699

2015-10-30 Profondeur du sondage : 17.22

TYPE D'ÉCHANTILLON CF Cuillère fendue	TERMINOLOGIE	INDICE DE QUALITÉ DU ROC % RQD QUALIFICATIF	COMPACITÉ INDICE "N" Très lâche 0-4	NIVEAU D'EAU
CD Échantillon par forage au diamant		<25 Très pauvre	Lâche 4-10	
EM Manuel TA Tarière	"un peu" 10-20% adjectif (eux) 20-35%	25-50 Pauvre 50-75 Passable	Compact 10-30 Dense 30-50	Date: Date:
TE Tube d'échantillonnage TM Tube à paroi mince	"et" 35-50%	75-90 Bon 90-100 Excellent	Très dense >50	Prof.: Prof.:
ÉTAT DE L'ÉCHANTILLON	SYMBOLES	CLASSIFICATION (SYSTÈME UNIFIÉ	CONSISTANCE	RÉSISTANCE AU CISAILLEMENT (Cu)
Remanié	N: Indice de pénétration standard R: Refus (N > 100)	Argile < 0,002 mm	Très molle Molle	<12 kPa
Intact (tube à paroi mince)	R.Q.D: Indice de qualité du roc	Silt 0,002 à 0,075 mm Sable 0,075 à 4,75 mm	Ferme	12-25 kPa 25-50 kPa
Perdu	(Rock Quality Designation) % R.Q.D = Σ Carottes > 4 po. (10 cm)	Gravier 4,75 à 75 mm	Raide Très raide	50-100 kPa
Forage au diamant	longueur forée	Cailloux 75 à 300 mm Blocs > 300mm	Dure	100-200 kPa >200 kPa

						,				OD A DUIGUIS		
			STRATIGRAPHIE		ÉCH	HAN	TILL	ONS	3		GRAPHIQUE	ESSAIS
PROFONDEUR (m)	PROF - pi	13.1 LY PROFONDEUR	DESCRIPTION DU SOL ET DU ROC Niveau	SYMBOLES	TYPE NO	SOUS - ÉCH.	ÉTAT	RÉCUPÉRATION	N, Nc ou RQD	COUPS/15cm FRAGMENTATION (mm)	A : N (pen. standard) ∆ : Ns (pen. dynamique) ♥ : Cu (laboratoire) ♥ : Cu (raboratoire) ♥ : Cu (chantier) + : Cur (chantier) Wp w Wl 20 40 60 80	AG : analyse granulométrique AC : analyse chimique WI : limite liquide WI : limite plastique W : teneur en eau Cu : cisaillement non drainé Cur : cisaillement remanié P'c : préconsolidation Cc : coeff. de consolidation k : perméabilité Dup : éch. duplicata prélevé
-		0.00	Remblai: Silt, un peu de sable, traces de gravier, traces d'argile, traces de matière végétale, brun,		CF-1		X	88	10	3-4-6-5	↑	-
1		0.61 12.55	humide. Remblai: Silt, un peu d'argile, brun, humide.		CF-2		X	46	6	3-3-3-4	 	AC _
-	5-	1.22	Remblai: Silt sableux et graveleux, brun, humide.		CF-3		X	100	20	5-10-10-8	 	-
- 2		11.33			CF-4		X	17	20	7-12-8-8		AC _
- 3	_ 10–	2.44	Remblai: Silt et sable, graveleux, brun, saturé.		CF-5		\times	54	36	8-12-24-24		-
-		3.05	Remblai: Pierre concassée 0-20mm, brune, humide.		CF-6		X	75	17	7-8-9-12		-
4					CF-7		X	67	17	6-7-10-13	 	-
-	15-				CF-8		X	54	8	8-6-2-14	★	-
- 5 - -					CF-9		X	38	11	6-6-5-5	+	
- 6	20-	7.83 5.94	Terrain naturel: Argile silteuse,		CF-10		X	21	8	5-4-4-1		AC -
- - - - 7			grise, saturée.		TM-11			100				lp = 38 WI = 62% Wp = 24% w = 58.7%
- - - - 8	25— — —				TM-12			100			*	Cu = 91 kPa

Remarque(s): Aucun indice organoleptique de contamination n'a été noté. PDM = Poids du marteau.


Nom du consultant:

Page 2 de 2

	e des		ures, de la voirie et des transports	.	Loc	San	,ico	c 0.v	'n		RAPPORT DE			FORAGE		
		s infrastruc l'expertise e	tures et du soutien technique		Les	Serv	vice	5 EX	φ.		Sc	onda	ge N	1°		15G049-00
			STRATIGRAPHIE		ÉCI	HAN	TILL	ONS	S	,				QUE		ESSAIS
PROFONDEUR (m)	PROF - pi	NIVEAU (m)/ PROFONDEUR	DESCRIPTION DU SOL ET DU ROO	SYMBOLES	TYPE	SOUS - ÉCH.	ÉTAT	RÉCUPÉRATION	N, Nc ou RQD	COUPS/15cm FRAGMENTATIO (mm)	2 7 7 8	7 : Cu (I 7 : Cur (6 : Cu (6 - : Cur (W _p	en. dyr aborato laborat hantier	namique) pire) oire)) r) w _I	NIVEAUX D'EAU	AG : analyse granulométr AC : analyse chimique WI : limite liquide Wp : limite plastique w : teneur en eau Cu : cisaillement non drai Cur : cisaillement remanié P'c : préconsolidation Cc : coeff. de consolidati k : perméabilité Dup : éch. duplicata prélev W = 64.6%
- 9	30-				CF-13			100	2	1-1-1-1				>		Cu = 98 kPa W = 60.0%
10								,							-	W = 60.0% Cu = 127 kPa
11	35— —				TM-14			100				+	+		-	lp = 31 WI = 59%
12	40-														<u></u>	Wp = 27% w = 60.8%
13	-				CF-15		X	100		0 /PDM			0	 /	-	w = 54.7% Cu = 82 kPa
14	45—	0.04	Silt argileux, un peu de sal de gravier, gris, humide	ble et	TM-16			100					#		 - -	Ip = 24 WI = 44%
15		-1.47					2////								-	Wp = 44% Wp = 19% w = 40.1%
16	50	15.24	Socle rocheux: Shale noir fracturé.	très	CF-17			100	R	27-55-50 /10 cn	n				-	
17	55-				CR-18			77	0							
		-3.45 17.22	Fin du forage à 17,22 mètr profondeur.	res de												
18	60															
19	- 65-															
20	-															
21	70-														-	
22	-														-	
23	75 —															

5 février 2016

No rapport: 15G049G

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client: Ville de Montréal

Dossier n°: MONVO-27568-005500

15G049 - Construction d'un poste de transformation 315kV - 25

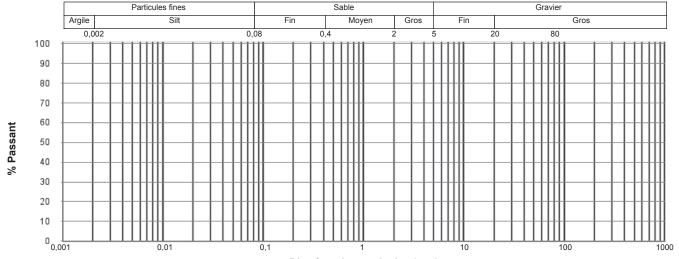
Échantillon n°: MO-8559

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-001

Prélevé le : 2015-11-18 par EXP


Échantillon: CF-3

Projet:

Reçu le : 2015-11-18

Profondeur: 1,22 à 1,83 mètre

Courbe granulométrique

Diamètre des particules (mm)

Analyse gra	nulométrique 21-040	Description	Aut	Autres essais			
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	4,0%		
112							
80							
56							
40							
31,5							
20							
14							
10							
5							
2,5							
1,25							
0,630							
0,315							
0,160							
0,080							
Pomarques :		<u> </u>	<u> </u>				

Remarques :

Vérifié par : Éric Cardinal, tech.

Chef de laboratoire

Approuvé par :

Mathieu Gagné, ing., M.Sc.A. Chargé de projet

Α.

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client : Ville de Montréal

Dossier n°: MONVO-27568-005500

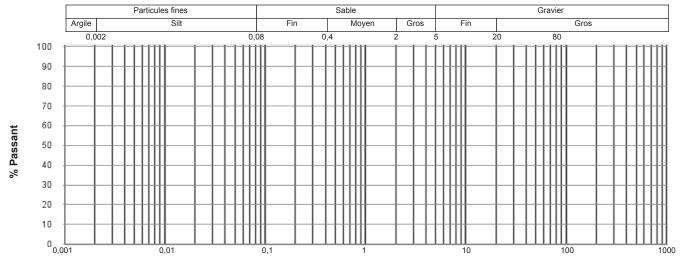
Projet: 15G049 - Construction d'un poste de transformation 315kV - 25

Échantillon n°: MO-8560

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-001


Prélevé le : 2015-11-18 par EXP

Échantillon: CF-5B

Reçu le : 2015-11-18

Profondeur: 2,59 à 3,05 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse gra	nulométrique 21-040	Description	Aut	Autres essais			
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	33,4%		
112							
80							
56							
40							
31,5							
20							
14							
10							
5							
2,5							
1,25							
0,630							
0,315							
0,160							
0,080							
Pomarques :		<u> </u>	L				

Remarques:

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client : Ville de Montréal

Dossier n°: MONVO-27568-005500

15G049 - Construction d'un poste de transformation 315kV - 25

Échantillon n°: MO-8561

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-001

Prélevé le : 2015-11-18 par EXP


Échantillon: TM-6

Projet:

Reçu le : 2015-11-18

Profondeur: 3,96 à 4,57 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse gra	nulométrique 21-040	Description	Autres essais			
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	57,9%	
112			Limite de liquidité	NQ 2501-092	70%	
80			Limite de plasticité	NQ 2501-092	26%	
56			Indice de plasticité	NQ 2501-092	44 %	
40						
31,5						
20						
14						
10						
5						
2,5						
1,25						
0,630						
0,315						
0,160						
0,080						
Pomarques :		<u> </u>	<u> </u>			

Remarques:

Vérifié par : Éric Cardinal, tech.

Chef de laboratoire

Approuvé par :

Date : 2016-02-05

Mathieu Gagné, ing., M.Sc.A. Chargé de projet

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client: Ville de Montréal Dossier n°: MONVO-27568-005500

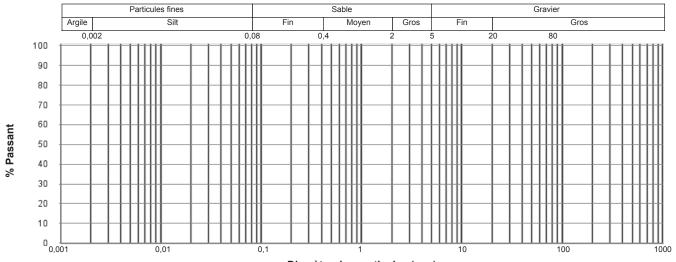
15G049 - Construction d'un poste de transformation 315kV - 25

Échantillon n°: MO-8562

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-001 Prélevé le : 2015-11-18 par EXP


Échantillon: CF-7

Projet:

Reçu le : 2015-11-18

Profondeur: 4,57 à 5,18 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse gra	nulométrique 21-040	Description	Aut	Autres essais			
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	63,2%		
112							
80							
56							
40							
31,5							
20							
14							
10							
5							
2,5							
1,25							
0,630							
0,315							
0,160							
0,080							
Domarques :		!					

Remarques:

Vérifié par : Éric Cardinal, tech.

Chef de laboratoire

Approuvé par :

Mathieu Gagné, ing., M.Sc.A.

Chargé de projet

Certifié: ISO 9001:2008

ESSAIS SUR SOLS FORAGE ET SONDAGE

Dossier n°: MONVO-27568-005500

Échantillon n°: MO-8563

2015-11-18 par EXP

Réf. client :

Projet : 15G049 - Construction d'un poste de transformation 315kV - 25

kV à la station d'épuration des eaux usées J-R.-Marcotte,

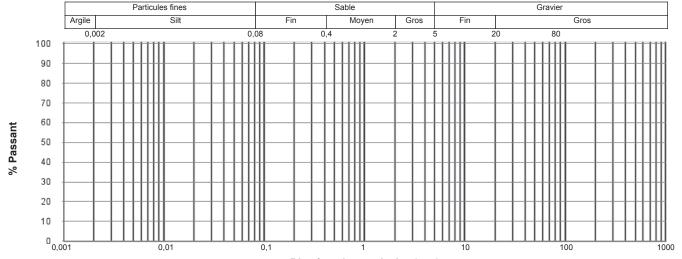
Sondage n°: 15G049-001

Échantillon: TM-8

Ville de Montréal

Profondeur: 6,10 à 6,71 mètres

Client:


5G049-001

Reçu le : 2015-11-18

3

Prélevé le :

Courbe granulométrique

Diamètre des particules (mm)

	nulométrique 21-040	Description	Autre	es essais	
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	59,2%
112			Limite de liquidité	NQ 2501-092	56%
80			Limite de plasticité	NQ 2501-092	27 %
56			Indice de plasticité	NQ 2501-092	28%
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Pomarques :		<u> </u>			

Remarques:

Vérifié par : Date : 2016-02-05

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client : Ville de Montréal

Dossier n°: MONVO-27568-005500

Échantillon n°: MO-8564

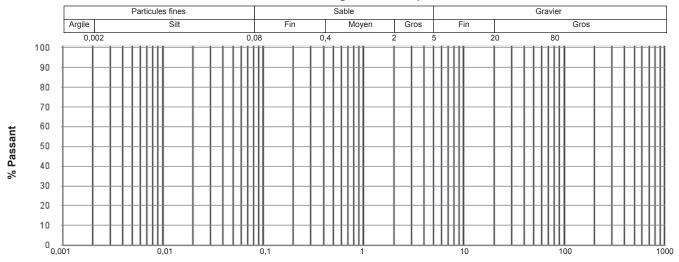
15G049 - Construction d'un poste de transformation $315\mbox{kV}$ - 25

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-001

Prélevé le : 2015-11-18 par EXP


Échantillon: CF-9

Projet:

Reçu le : 2015-11-18

Profondeur: 7,62 à 8,23 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse gra	nulométrique 21-040	Description	Aut	Autres essais			
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	62,0 %		
112							
80							
56							
40							
31,5							
20							
14							
10							
5							
2,5							
1,25							
0,630							
0,315							
0,160							
0,080							
Domarques :		!					

Remarques:

Vérifié par : Éric Cardinal, tech.

Chef de laboratoire

Approuvé par :

Mathieu Gagné, ing., M.Sc.A. Chargé de projet

Sondage n°:

8487, 19e Avenue Montréal (QC) H1Z 4J2 Téléphone: 514-521-4290 www.exp.com

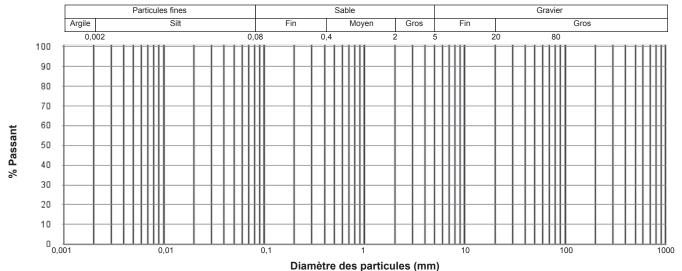
Certifié: ISO 9001:2008

ESSAIS SUR SOLS FORAGE ET SONDAGE

Client : Ville de Montréal Dossier n° : MONVO-27568-005500

Projet : 15G049 - Construction d'un poste de transformation 315kV - 25

kV à la station d'épuration des eaux usées J-R.-Marcotte,


Prélevé le : 2015-11-18 par EXP

Échantillon: TM-10 Reçu le: 2015-11-18

Profondeur: 9,14 à 9,75 mètres

15G049-001

Courbe granulométrique

	nulométrique 21-040	Description	Autre		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201 NQ 2501-092	59,0 % 58 %
112			Limite de liquidité		
80			Limite de plasticité	NQ 2501-092	25%
56			Indice de plasticité	NQ 2501-092	33%
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					

Remarques :

Vérifié par : Date : 2016-02-05

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

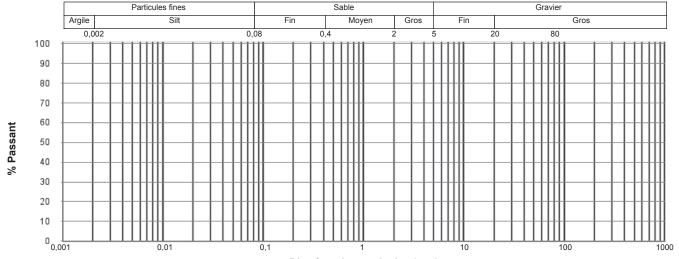
Client: Ville de Montréal Dossier n°: MONVO-27568-005500

Échantillon n°: MO-8566

15G049 - Construction d'un poste de transformation 315kV - 25 kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-001 Prélevé le : 2015-11-18 par EXP


Échantillon: CF-11

Projet:

Reçu le : 2015-11-18

Profondeur: 10,67 à 11,28 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse gra LC 2	nulométrique 21-040	Description	Au	tres essais	essais		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	64,0 %		
112							
80							
56							
40							
31,5							
20							
14							
10							
5							
2,5							
1,25							
0,630							
0,315							
0,160							
0,080							
Domorauco		•	•				

Remarques:

Vérifié par : Éric Cardinal, tech. Chef de laboratoire Approuvé par :

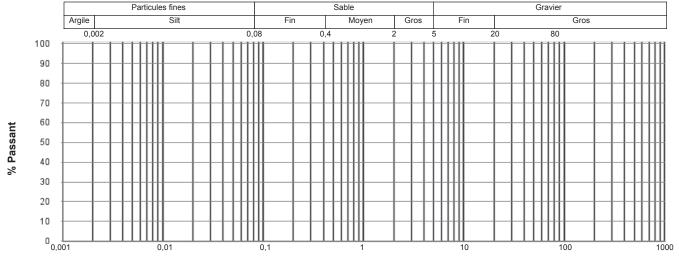
Mathieu Gagné, ing., M.Sc.A. Chargé de projet

Certifié: ISO 9001:2008

ESSAIS SUR SOLS FORAGE ET SONDAGE

Client : Ville de Montréal Dossier n° : MONVO-27568-005500

Projet : 15G049 - Construction d'un poste de transformation 315kV - 25


kV à la station d'épuration des eaux usées J-R.-Marcotte,

Sondage n° : 15G049-001 Prélevé le : 2015-11-18 par EXP

Échantillon: TM-12 Reçu le: 2015-11-18

Profondeur: 12,19 à 12,80 mètres

Courbe granulométrique

Diamètre des particules (mm)

	nulométrique 21-040	Description	Autres essais			
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	39,9%	
112			Limite de liquidité	NQ 2501-092	41%	
80			Limite de plasticité	NQ 2501-092	20%	
56			Indice de plasticité	NQ 2501-092	22%	
40						
31,5						
20						
14						
10						
5						
2,5						
1,25						
0,630						
0,315						
0,160						
0,080						
Pomarques :		<u> </u>	<u> </u>			

Remarques:

Vérifié par : Date : 2016-02-05

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client : Ville de Montréal

Dossier n°: MONVO-27568-005500

15G049 - Construction d'un poste de transformation 315kV - 25

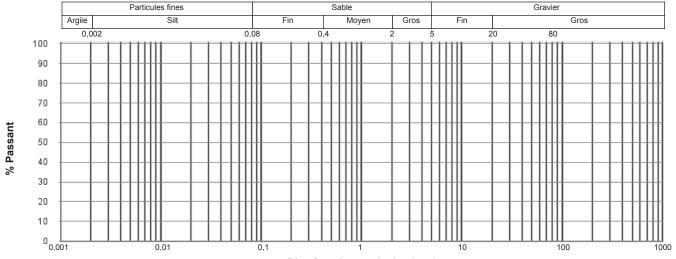
Échantillon n°: MO-8568

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-002

Prélevé le : 2015-11-18 par EXP


Échantillon: CF-3

Projet:

Reçu le : 2015-11-18

Profondeur: 1,22 à 1,83 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse gra	nulométrique 21-040	Description	Aut	Autres essais			
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	12,7%		
112							
80							
56							
40							
31,5							
20							
14							
10							
5							
2,5							
1,25							
0,630							
0,315							
0,160							
0,080							
Domarques :		<u> </u>	L				

Remarques :

Vérifié par : Éric Cardinal, tech.
Chef de laboratoire

Approuvé par :

Mathieu Gagné, ing., M.Sc.A. Chargé de projet

Client:

8487, 19e Avenue Montréal (QC) H1Z 4J2 Téléphone: 514-521-4290 www.exp.com

Certifié: ISO 9001:2008

ESSAIS SUR SOLS FORAGE ET SONDAGE

Dossier n°: MONVO-27568-005500

Projet : 15G049 - Construction d'un poste de transformation 315kV - 25

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Échantillon: CF-5 Reçu le: 2015-11-18

Profondeur: 2,44 à 3,05 mètres

Ville de Montréal

Courbe granulométrique Particules fines Sable Gravier Argile Silt Moyen 0,002 0,08 0,4 20 80 100 90 80 70 60 % Passant 50 40 30 20 10 0,001

Diamètre des particules (mm)

Analyse granulométrique LC 21-040		Description	Autres essais		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	36,4%
112					
80					
56					
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Domorauco		!	<u> </u>		

Remarques:

Vérifié par : Date : 2016-02-05

Certifié: ISO 9001:2008

ESSAIS SUR SOLS FORAGE ET SONDAGE

Dossier n°: MONVO-27568-005500

Échantillon n°: MO-8570

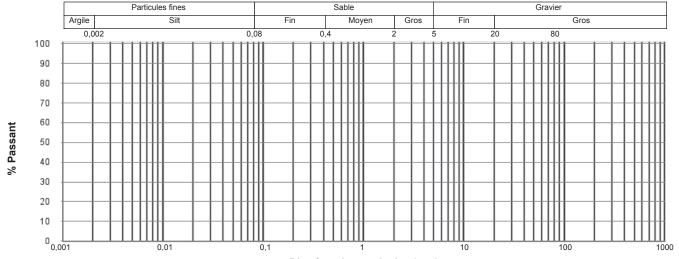
Réf. client :

Projet: 15G049 - Construction d'un poste de transformation 315kV - 25

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Sondage n°: 15G049-002

Client:


TM-6

Ville de Montréal

Échantillon: Profondeur: 4,57 à 5,18 mètres Prélevé le : 2015-11-18 par EXP

Reçu le : 2015-11-18

Courbe granulométrique

Diamètre des particules (mm)

Analyse granulométrique LC 21-040				Autres essais		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	57,8%	
112			Limite de liquidité	NQ 2501-092	60%	
80			Limite de plasticité	NQ 2501-092	25%	
56			Indice de plasticité	NQ 2501-092	34 %	
40						
31,5						
20						
14						
10						
5						
2,5						
1,25						
0,630						
0,315						
0,160						
0,080						

Remarques:

Date: 2016-02-05 Vérifié par : Approuvé par :

Éric Cardinal, tech. Mathieu Gagné, ing., M.Sc.A. Chef de laboratoire Chargé de projet

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client : Ville de Montréal

Dossier n°: MONVO-27568-005500

15G049 - Construction d'un poste de transformation 315kV - 25

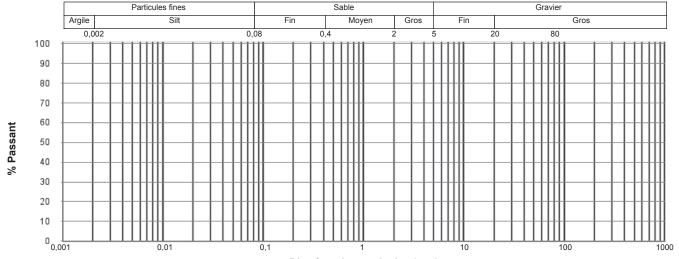
Échantillon n°: MO-8571

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-002

Prélevé le : 2015-11-18 par EXP


Échantillon: TM-8

Projet:

Reçu le : 2015-11-18

Profondeur: 4,57 à 5,18 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse granulométrique LC 21-040				Autres essais		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	60,6%	
112			Limite de liquidité	NQ 2501-092	59%	
80			Limite de plasticité	NQ 2501-092	27%	
56			Indice de plasticité	NQ 2501-092	32%	
40						
31,5						
20						
14						
10						
5						
2,5						
1,25						
0,630						
0,315						
0,160						
0,080						

Remarques:

Vérifié par : Éric Cardinal, tech.

Chef de laboratoire

Approuvé par :

Mathieu Gagné, ing., M.Sc.A.

Chargé de projet

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client: Ville de Montréal

Dossier n°: MONVO-27568-005500

15G049 - Construction d'un poste de transformation 315kV - 25

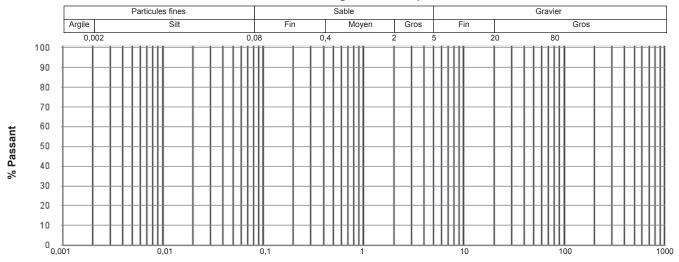
Échantillon n°: MO-8572

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-002

Prélevé le : 2015-11-18 par EXP


Échantillon: TM-10

Projet:

Reçu le : 2015-11-18

Profondeur: 10,67 à 11,28 mètres

Courbe granulométrique

Diamètre des particules (mm)

	nulométrique 21-040	Description	Autres essais		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	60,6%
112			Limite de liquidité	NQ 2501-092	67%
80			Limite de plasticité	NQ 2501-092	30 %
56			Indice de plasticité	NQ 2501-092	37 %
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Pomarques :		<u> </u>	<u> </u>		

Remarques:

Chef de laboratoire

Mathieu Gagné, ing., M.Sc.A. Chargé de projet

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client: Ville de Montréal

Dossier n°: MONVO-27568-005500

15G049 - Construction d'un poste de transformation 315kV - 25

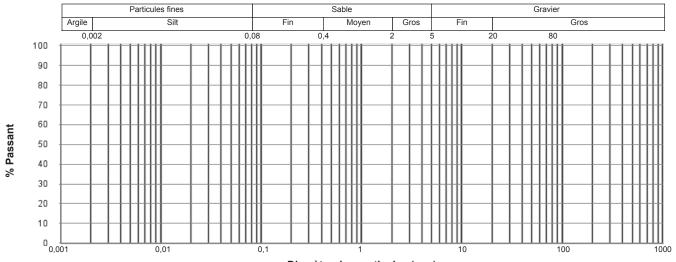
Échantillon n°: MO-8573

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-003

Prélevé le : 2015-11-18 par EXP


Échantillon: CF-6

Projet:

Reçu le : 2015-11-18

Profondeur: 3,05 à 3,66 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse gra	nulométrique 21-040	Description	Autres essais		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	36,7%
112					
80					
56					
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Domarques :					

Remarques :

Vérifié par : Éric Cardinal, tech.

Chef de laboratoire

Approuvé par :

Mathieu Gagné, ing., M.Sc.A. Chargé de projet

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client : Ville de Montréal

Dossier n°: MONVO-27568-005500

15G049 - Construction d'un poste de transformation 315kV - 25

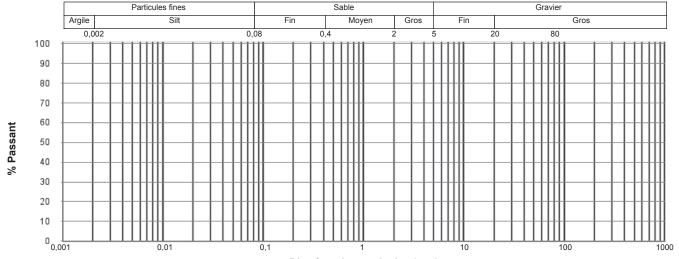
Échantillon n°: MO-8574

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-003

Prélevé le : 2015-11-18 par EXP


Échantillon: TM-7

Projet:

Reçu le : 2015-11-18

Profondeur: 4,57 à 5,18 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse gra	nulométrique 21-040	Description	Autres essais		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	60,0%
112			Limite de liquidité	NQ 2501-092	61%
80			Limite de plasticité	NQ 2501-092	24 %
56			Indice de plasticité	nq 2501-092	37%
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Pomarques :		<u> </u>	<u> </u>		

Remarques:

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client: Ville de Montréal Dossier n°: MONVO-27568-005500

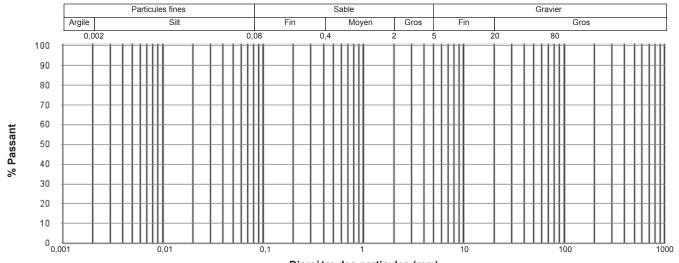
15G049 - Construction d'un poste de transformation 315kV - 25

Échantillon n°: MO-8575

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-003 Prélevé le :


Échantillon: CF-8

Projet:

2015-11-18 par EXP Reçu le : 2015-11-18

Profondeur: 6,10 à 6,71 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse granulométrique LC 21-040		Description	Autres essais		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	60,2%
112					
80					
56					
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Domorgues					

Remarques:

Chef de laboratoire

Vérifié par : Approuvé par : Éric Cardinal, tech.

Mathieu Gagné, ing., M.Sc.A. Chargé de projet

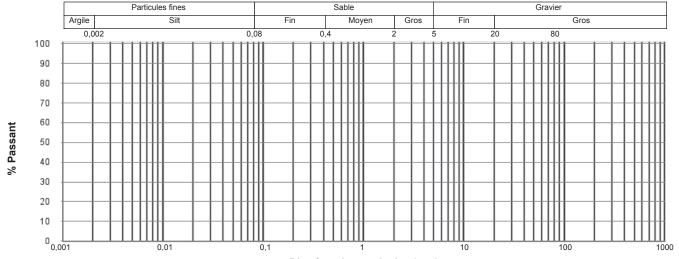
Certifié: ISO 9001:2008

ESSAIS SUR SOLS FORAGE ET SONDAGE

Réf. client :

Client : Ville de Montréal Dossier n° : MONVO-27568-005500

Projet : 15G049 - Construction d'un poste de transformation 315kV - 25


kV à la station d'épuration des eaux usées J-R.-Marcotte,

Sondage n° : 15G049-003 Prélevé le : 2015-11-18 par EXP

Échantillon: TM-9 Reçu le: 2015-11-18

Profondeur: 7,62 à 8,23 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse granulométrique LC 21-040		Description	Autres essais		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	59,3%
112			Limite de liquidité	NQ 2501-092	60%
80			Limite de plasticité	NQ 2501-092	26%
56			Indice de plasticité	NQ 2501-092	34 %
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Domorauoo :		 			

Remarques:

Vérifié par : Date : 2016-02-05

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client: Ville de Montréal

Dossier n°: MONVO-27568-005500

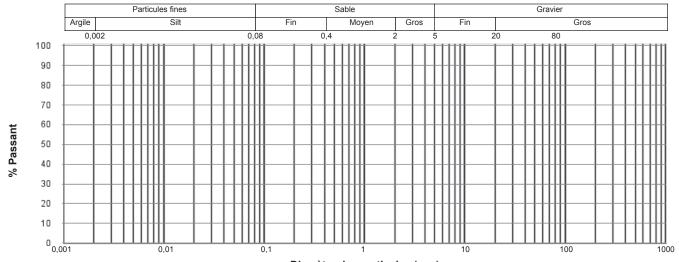
Projet: 15G049 - Construct

Échantillon n°: MO-8577

15G049 - Construction d'un poste de transformation 315kV - 25 kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-003


Prélevé le : 2015-11-18 par EXP

Échantillon: CF-10

Reçu le : 2015-11-18

Profondeur: 9,14 à 9,75 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse granulométrique LC 21-040		Description	Autres essais		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	59,1%
112					
80					
56					
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Domorauoo :					

Remarques:

Vérifié par : Approuvé pa Éric Cardinal, tech.

Chef de laboratoire

Approuvé par : Date : 2016-02-05

Mathieu Gagné, ing., M.Sc.A. Chargé de projet

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client : Ville de Montréal

Dossier n°: MONVO-27568-005500

15G049 - Construction d'un poste de transformation 315kV - 25

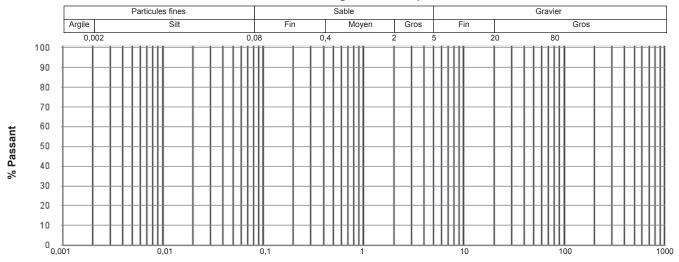
Échantillon n°: MO-8578

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-003

Prélevé le : 2015-11-18 par EXP


Échantillon: TM-11

Projet:

Reçu le : 2015-11-18

Profondeur: 10,67 à 11,28 mètres

Courbe granulométrique

Diamètre des particules (mm)

	nulométrique 21-040	Description	Autres essais		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	54,8%
112			Limite de liquidité	NQ 2501-092	55%
80			Limite de plasticité	NQ 2501-092	23%
56			Indice de plasticité	NQ 2501-092	32%
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Pomarques :		<u> </u>	<u> </u>		

Remarques:

Vérifié par : Éric Cardinal, tech.

Chef de laboratoire

Approuvé par :

Date : 2016-02-05 Mathieu Gagné, ing., M.Sc.A.

Chargé de projet

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client : Ville de Montréal

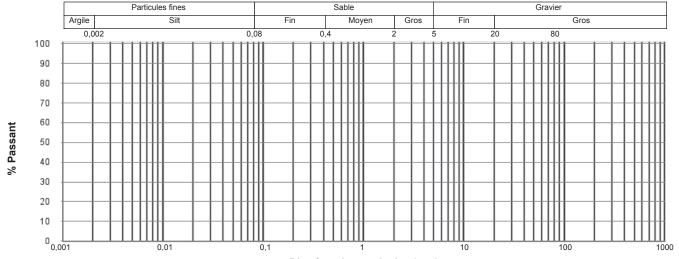
Dossier n°: MONVO-27568-005500

Échantillon n°: MO-8579

Projet : 15G049 - Construction d'un poste de transformation 315kV - 25 kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-003


Prélevé le : 2015-11-18 par EXP

Échantillon : CF-12

Reçu le : 2015-11-18

Profondeur: 12,19 à 12,80 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse gra	nulométrique 21-040	Description	Autres essais		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	37,2%
112					
80					
56					
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Pomarques :		<u> </u>	<u> </u>		

Remarques:

Vérifié par : Approuvé par :

Mathieu Gagné, ing., M.Sc.A. Chargé de projet Date: 2016-02-05

Éric Cardinal, tech. Chef de laboratoire

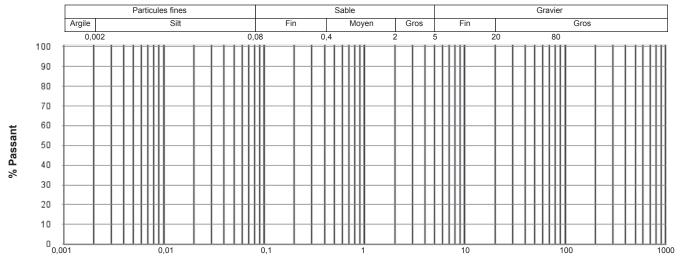
Certifié: ISO 9001:2008

ESSAIS SUR SOLS FORAGE ET SONDAGE

Client: Ville de Montréal Dossier n°: MONVO-27568-005500

Échantillon n°: MO-8580 Projet: 15G049 - Construction d'un poste de transformation 315kV - 25

kV à la station d'épuration des eaux usées J-R.-Marcotte,


Réf. client :

Sondage n°: 15G049-004 Prélevé le : 2015-11-18 par EXP

Échantillon: TM-9 Reçu le : 2015-11-18

Profondeur: 5,03 à 5,64 mètres

Courbe granulométrique

Diamètre des particules (mm)

	nulométrique 21-040	Description	Autres essais		
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	57,1%
112			Limite de liquidité	NQ 2501-092	67%
80			Limite de plasticité	NQ 2501-092	24%
56			Indice de plasticité	NQ 2501-092	44%
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Pomarques :		I .	<u> </u>		

Remarques:

Date: 2016-02-05 Vérifié par : Approuvé par :

Éric Cardinal, tech. Mathieu Gagné, ing., M.Sc.A. Chef de laboratoire Chargé de projet

Client:

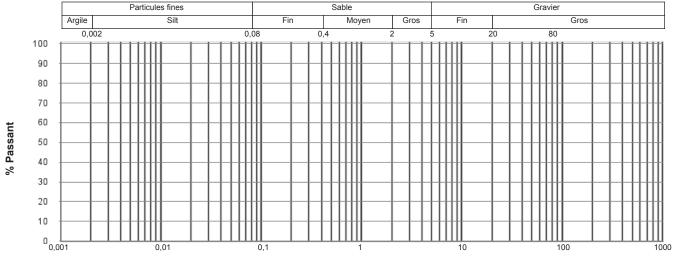
8487, 19e Avenue Montréal (QC) H1Z 4J2 Téléphone: 514-521-4290 www.exp.com

Certifié: ISO 9001:2008

ESSAIS SUR SOLS FORAGE ET SONDAGE

Ville de Montréal Dossier n° : MONVO-27568-005500

Projet : 15G049 - Construction d'un poste de transformation 315kV - 25


kV à la station d'épuration des eaux usées J-R.-Marcotte,

Sondage n° : 15G049-004 Prélevé le : 2015-11-18 par EXP

Échantillon: TM-11 Reçu le: 2015-11-18

Profondeur: 8,08 à 8,69 mètres

Courbe granulométrique

Diamètre des particules (mm)

	nulométrique 21-040	Description	Autre	es essais	
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	59,2%
112			Limite de liquidité	NQ 2501-092	56%
80			Limite de plasticité	NQ 2501-092	25%
56			Indice de plasticité	NQ 2501-092	31%
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					

Remarques:

Vérifié par : Date : 2016-02-05

Éric Cardinal, tech.

Chef de laboratoire

Mathieu Gagné, ing., M.Sc.A.

Chargé de projet

Certifié: ISO 9001:2008

ESSAIS SUR SOLS FORAGE ET SONDAGE

Client: Ville de Montréal Dossier n°: MONVO-27568-005500

Échantillon n°: MO-8582 Projet: 15G049 - Construction d'un poste de transformation 315kV - 25

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :


2015-11-18

Sondage n°: 15G049-004 Prélevé le : 2015-11-18 par EXP Échantillon:

TM-13 Profondeur: 11,12 à 11,74 mètres

Courbe granulométrique

Reçu le :

Diamètre des particules (mm)

	nulométrique 21-040	Description	Autre	es essais	
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	47,6%
112			Limite de liquidité	NQ 2501-092	48%
80			Limite de plasticité	NQ 2501-092	25%
56			Indice de plasticité	NQ 2501-092	24%
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Pomarques :		<u> </u>	<u> </u>		

Remarques:

Date: 2016-02-05 Vérifié par : Approuvé par :

Éric Cardinal, tech. Mathieu Gagné, ing., M.Sc.A. Chef de laboratoire Chargé de projet

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client: Ville de Montréal

Dossier n°: MONVO-27568-005500

15G049 - Construction d'un poste de transformation 315kV - 25

Échantillon n°: MO-8583

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-005

Prélevé le : 2015-11-18 par EXP


Échantillon: TM-11A

Projet:

Reçu le : 2015-11-18

Profondeur: 6,10 à 6,71 mètres

Courbe granulométrique

Diamètre des particules (mm)

	nulométrique 1-040	Description	Autre	es essais	
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	58,7%
112			Limite de liquidité	NQ 2501-092	62%
80			Limite de plasticité	NQ 2501-092	24 %
56			Indice de plasticité	NQ 2501-092	37%
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					

Remarques:

Vérifié par : Éric Cardinal, tech.

Chef de laboratoire

Approuvé par :

Date: 2016-02-05 Mathieu Gagné, ing., M.Sc.A.

Chargé de projet

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client : Ville de Montréal

Dossier n°: MONVO-27568-005500

Échantillon n°: MO-8584

15G049 - Construction d'un poste de transformation 315kV - 25

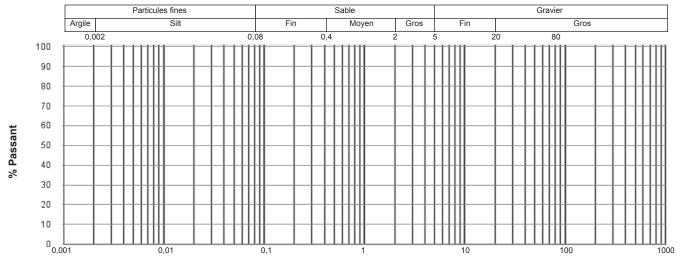
-Marcotte Réf. client :

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Prélevé le : 2015-11-18 par EXP

Échantillon: TM-12

Projet:


Sondage n°:

Reçu le : 2015-11-18

Profondeur: 7,62 à 8,23 mètres

15G049-005

Courbe granulométrique

Diamètre des particules (mm)

	nulométrique 21-040	Description	Autre	es essais	
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	64,6%
112			Limite de liquidité	NQ 2501-092	59%
80			Limite de plasticité	NQ 2501-092	25%
56			Indice de plasticité	NQ 2501-092	34 %
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Domorgues			-		

Remarques:

Vérifié par : Date : 2016-02-05

Éric Cardinal, tech. Mathieu Gagi Chef de laboratoire Chargé de pr

Mathieu Gagné, ing., M.Sc.A. Chargé de projet

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client: Ville de Montréal

Dossier n°: MONVO-27568-005500

Projet: 15G049 - Construction d'un poste de transformation 315kV - 25

Échantillon n°: MO-8585

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-005


Prélevé le : 2015-11-18 par EXP

Échantillon: CF-13

Reçu le : 2015-11-18

Profondeur: 9,14 à 9,75 mètres

Courbe granulométrique

Diamètre des particules (mm)

Analyse gra LC 2	nulométrique 21-040	Description	Aut	res essais	
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	60,0%
112					
80					
56					
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Domorgues		· · · · · · · · · · · · · · · · · · ·	-		

Remarques:

Vérifié par : Date : 2016-02-05

Éric Cardinal, tech. Chef de laboratoire Mathieu Gagné, ing., M.Sc.A. Chargé de projet

ESSAIS SUR SOLS FORAGE ET SONDAGE

Certifié: ISO 9001:2008

Client : Ville de Montréal

Dossier n°: MONVO-27568-005500

15G049 - Construction d'un poste de transformation 315kV - 25

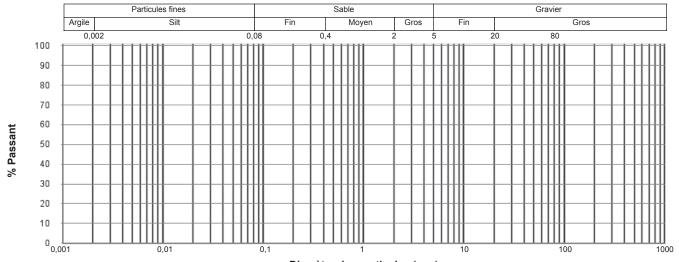
Échantillon n°: MO-8586

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-005

Prélevé le : 2015-11-18 par EXP


Échantillon: TM-14

Projet:

Reçu le : 2015-11-18

Profondeur: 10,67 à 11,28 mètres

Courbe granulométrique

Diamètre des particules (mm)

LC 2'	nulométrique 1-040	Description	Autre	es essais	
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	60,8%
112			Limite de liquidité	NQ 2501-092	59%
80			Limite de plasticité	NQ 2501-092	27 %
56			Indice de plasticité	NQ 2501-092	31%
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					

Remarques:

Vérifié par : Date : 2016-02-05

Éric Cardinal, tech.

Chef de laboratoire

Mathieu Gagné, ing., M.Sc.A.

Chargé de projet

Client:

Profondeur:

8487, 19e Avenue Montréal (QC) H1Z 4J2 Téléphone: 514-521-4290 www.exp.com

Certifié: ISO 9001:2008

ESSAIS SUR SOLS FORAGE ET SONDAGE

Dossier n°: MONVO-27568-005500

Échantillon n°: MO-8587

Réf. client :

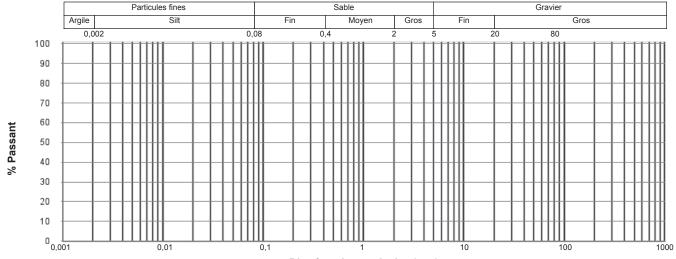
Projet: 15G049 - Construction d'un poste de transformation 315kV - 25

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Sondage n°: 15G049-005

12,19 à 12,80 mètres

Ville de Montréal


Échantillon: CF-15

Prélevé le :

2015-11-18 par EXP

Reçu le : 2015-11-18

Courbe granulométrique

Diamètre des particules (mm)

Analyse gra	nulométrique 21-040	Description	Aut	res essais	
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	54,7%
112					
80					
56					
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Domarques :		!			

Remarques:

Vérifié par : Approuvé par : Date: 2016-02-05

Éric Cardinal, tech. Mathieu Gagné, ing., M.Sc.A. Chef de laboratoire Chargé de projet

4-521-4290 FORAGE ET SONDAGE ww.exp.com

Certifié: ISO 9001:2008

Client : Ville de Montréal

Dossier n°: MONVO-27568-005500

ESSAIS SUR SOLS

15G049 - Construction d'un poste de transformation 315kV - 25

Échantillon n°: MO-8588

kV à la station d'épuration des eaux usées J-R.-Marcotte,

Réf. client :

Sondage n°: 15G049-005

Prélevé le : 2015-11-18 par EXP


Échantillon: TM-16

Projet:

Reçu le : 2015-11-18

Profondeur: 13,72 à 14,33 mètres

Courbe granulométrique

Diamètre des particules (mm)

	nulométrique 21-040	Description	Autre	es essais	
Tamis (mm)	Tamisat %passant mesuré		Teneur en eau	LC 21-201	40,1%
112			Limite de liquidité	NQ 2501-092	44%
80			Limite de plasticité	NQ 2501-092	19%
56			Indice de plasticité	NQ 2501-092	24 %
40					
31,5					
20					
14					
10					
5					
2,5					
1,25					
0,630					
0,315					
0,160					
0,080					
Pomarques :		I .	<u> </u>		

Remarques:

Éric Cardinal, tech.

Chef de laboratoire

> Mathieu Gagné, ing., M.Sc.A. Chargé de projet

Étude géotechnique et caractérisation environnementale des sols préliminaires Construction d'un poste de transformation 315 kV – 25 kV à la station d'épuration des eaux usées de la Ville de Montréal Arrondissement de Rivière-des-Prairies – Pointe-aux-Trembles

5 février 2016

No rapport: 15G049G

ANNEXE 4: Rapports des forages historiques 74F082-088, -090 et -102 à -104 (10 pages)

	<u>'</u>	COMPAGNIE	NATI	ONAL	E DE FOR	RAGE & SOHDAC	E INC.			-
ÉΤΙ	JDE: 74F082		RA	PPOR'	DE FOI	RAGE	Feuille	1	de	2
	IEIT VILLE	DE MO	WITE	ÉAL		FORAGE NO				
	OJET USINE D									
ŧ .	DROIT MONTE		11014			DATE 7 FÉ				
		TILLONNEU	RS				CHANTIER			
SS ST Car	(Split Spoon) (Shelby Tube) rottier: Marqu	:Cuil. fe	ndue	<u>″</u> 2″ d: d: a	ia N (d ia VT (ouns/ni.):]	ndice de 1	rés: cis:	ista somè	ince etre
ÉLÉV. (PI.)	DESCRIPTION D	ES SOLS L	CHANTIL ROF TYPE	J	ESSAIS	3				
	EL 35.7		o']			TUYAU F	ERFORÉ			
•	SOL VÉGÉTAL SABLE BRUN)'-G" 					-		<u> </u>
	ARGILEUX		-					+		+
			5					+		+
	ARGILE GRISE		4				V. 75 (1HEU			++-
						100000	V. 15 (1H60	KE		
]		•			\prod		
								+		+
			1				 	11		
			4					+		+
		И								+
			4					+		+
			1					+		++
		ΥŢ								
			4					+		
			-					+	-	1.
		И			•					
			-				<u> </u>	-		1-1-
	•		-					+		+-+-
			1.	24				1-		++
			30 55	1/1	N=6":1			\prod		
	SABLE ET SILT GRIS		-		6" · 2 6" · 3			- -		+-
	FRAGMENTS		-				 - - - - -	-		+- -
	DE ROC	1		18,	6"=11 6"=18 N=6"=34					1
1		1.03	35 55	/18	N=6 -34	.				

																								-	_
			COMPA	CHI	E N	ATIC	DHAL	E D	E FOR	<u>A.C</u>	E	Ec :	<u>50</u>	ND/	(C)	3 1	[][(<u>c</u> .							
ÉT	UDE :	74F082				RAI	PPOR	T D	E FOR	AG	E					F	r ^a eı	ui:	11	е '	7	d	e 4	Z	
ÇI	IEIT	VILLE	DE	M	ON.	TR	ĖA	L		F	OR	AG:	E I	llo.		8	8								_
		USINE																		~				,	
ł		MON7	_									E													
		ECH	ANTILLO	NNE	URS						E	SS	AI.	SI	en.	Cī	ĮĄ.	ŀΤ	IE.	R					
SS ST Ca	(Sp] (She rotti	Lit Spoor elby Tube Ler: Mare	n):Cuil e):Tube que <u>"</u>	. f	endı lon	ie_7 g x_ _Dia	z" d d a • <u>Z</u> 5/	ia. ia. 32"	M (c VT (WL _	ou lb	ps s/	/p: pi N	i. .c: iv): a.; ea:	I1:	ndi Ess d'e	ico sa ear	e i i u	de au	r	és: is	1s;	ta: mè	ice $\mathrm{tr}\epsilon$:
ÉLÉV. (PI.)	DESC	CRIPTION	DES SO	LS	PROF. (PI)	ТУРЕ	·	<u> </u>	SSAIS														-		
					35	55	18/18	N=	6"=11			,									·				
		E DU FOR LE ET	AGE -	95	_				6"=18 6"=34		_		_	_		_									
	SILT	GRIS GMENTS	DE ROC	3	27'0				•		\vdash			-		\dashv	_								
	FORE	DE 37'-9"	22 koo 2 39'-1"	7.7	29'1						\vdash		\neg	7	\dashv	\dashv								\dashv	-
		ALTÉR																							
		E ET SIL			_								_	_	_	_								\dashv	
	I'EA	G. PC R			_		18,		•	1	<u> </u>		_	-		+	-	<u>.</u>							
			- 101		43-10	_	57				-				\dashv	\dashv									
			34%	1	-						 			+	一	十									_
		ISTE ILEUX N																							_
	ARG	ILEUX N	OIR		_						<u></u>		_	_		\bot									
			- •		_		34				_		-	_	_	\dashv	_							 	
	EIN	DU FOR	55%		49'		62				-	$\left\ \cdot \right\ $				\dashv								_	_
	L 174	DO FOR	AGE "1								<u> </u>					\dashv								\Box	
					-								_			_								\sqcup	
					-						-	$\left\ \cdot \right\ $				\dashv								├-┼	_
												-				_								H	
					_																				_
			•		_				,		_				-									\vdash	
											_														
					-						-	$\left \cdot \cdot \right $	-	-		+								 -	
			÷		-						_					\dashv									
					-																				
											_	-		_	_	_									-
					_									-											
					-										-	-									
							, i				-	-				+								!. 	
	1			1	-			1										• • •							

-																							
	<u>COMPA</u>	GHIE	117	ATIC	DHAL	E D	E FOR	AC	E	<u>& S</u>	<u> 301</u>	ID/	AGI	3	IJ	<u>c</u> .							
ÉΤ	UDE: 74F082			RAI	PPOR	T D	E FOR	AC	E						Fe	ui	11	е	ì	d	e (Z	
CI	JENT VILLE DE N	VON.	TR	ÉA	L			F	'OR	AG]	E 1	Ιo	• '	90	0								
	OJET USINE D'ÉP															11							
I	DROIT MONTRÉAL																						
	ECHANTILLO		RS				······························			SS								— R	***************************************				
ST	(Split Spoon):Cuil (Shelby Tube):Tube rottier: Marque	24'1	on	g x	3" d	ia.	VT (11	.ps s/	/p:	i.)): a.	Ir (:)	nd Es	ic sa	e i a	d o	_ 	és: is	is so	ta: mè	nc tr	e e
ÉLÉV. (PI.)	DESCRIPTION DES SC	LS É			ONS RÉC. (PO.)	1 H:	SSAIS																
	EL. 37.3		o'					-	上	TU	ΥĄ	<u>u</u>		E	RE	0	ZÉ	<u>:</u>	-			,	
	SOL VÉGÉTAL	図						١	L		_	_	_					_		Ш			L
	ARGILE BRUNE	N'	z'						-		-	-	-			_	_	-	_			-	-
	ARGICE BRUNC		-					ı	\vdash		\dashv	1	\neg				 						-
			5	ST	15/24																		
		14	6'						L		\dashv	_	-			_	_						_
	ARGILE GRISE		-						-		_	_	_				_	-	-		H		<u> </u> _
			-					文	7	j" - 8" -				- 1			1		6)		\neg		-
			10,	VΤ		Ţυ.	2535	Ī						_	٠								
		r_{λ}	-			MS.	4.70	-	_		_	_											
	·	\mathbf{r}	-						\vdash		\dashv	\dashv	-			-	-		-		\vdash		\vdash
		Y_{A}	-		24			1	十		十	1	-			-		-		\vdash			F
			15	ST	24																		
		Y_{λ}	_						L		-	_	_			<u> </u>	_	<u> </u>	<u> </u>			_	_
		Y_{λ}	٠ -					١	-		\dashv		\dashv			_		-	-		\vdash		<u> </u>
		Y_{λ}	-						\vdash		\dashv	\dashv				-	-	 -	 			-	一
			zo	٧Ţ		Νu	-7661																
			-			Mδ	438		_		_	_	_			<u> </u>	_	<u> </u>	<u> </u>			_	<u> </u>
									-		\dashv	\dashv	-			_	-	-	\vdash	-		-	<u> </u>
					24				\vdash		\dashv						\vdash	\vdash	\vdash				
		12	25	ST	24 24											·							
	·		_					١	<u> </u>		-	\dashv				_	<u> </u>		_				<u> </u>
			-						-	$\left - \right $						ļ	╂	├-	├-	-		_	-
			z9'						-	H	\dashv	_			-		\vdash	\vdash	\vdash			-	-
	ARGILE ROSE		30'	VT		√u :	2410																
		rT	_			NE.	407				_				_	_	\prod	<u></u>	<u> </u>	<u> </u>		_	_
		K	-						-	$\left - \right $	+						 	<u> </u>	<u> </u>	-		_	1
		Y.	-		18,		~ " · ·		-	$\mid \cdot \mid$		-	\dashv		-	\vdash	\vdash	-	-	-	-	-	-
	·	//:	35	55	13	12	559		-			-			-		 		<u> </u>	-			

																			_		-
	•	COMPAGN:	IE II	ATIC	DHAL	E DE	FORA	.GI	E &	: S(DIID	AG:	E :	IH	<u>c</u> .				-		
ÉΤ	UDE: 74F082			RAI	PPOR	T DE	FORA	(G)	<u>2</u>]	Fei	ui.	110	Э	Z	đe	2	2
CI	IENT VILLE	DE MC	NT	ΖÉ	AL			F),RA	GE	ΙΙο	•	90	2							
1 .	OJET USINE 1														11						
E	DROIT MONT	RÉAL					er."	DA	ATE	; 0	70	É	ا .	197	4						
		NTILLONN								SA:											
SS SI Ca	S (Split Spoon S (Shelby Tube Prottier: Marq):Cuil.f):Tube ue*Nxu	endu lon	ue_2 g x_ _Dia	d - d	ia. N ia. V <u>32</u> W) (cc T (1 L <u>L</u>	bu] b:	ps/ s/p :	pi i.o Ni	.): ca. vea): u	nd: Es d'	ic sa ea	e (i a u	de iu:	sc	és: is:	Lst	an ièt	ce
ÉLÉV (Pl.)		DES SOLS	<u></u>	ANTILO		1 E22	AIS														
(121.)				TYPE										•			:			*	
	SUITE DU FORA	GE -	35	55	18/18	N= 6"	3	\coprod								 γ					 -
	SILT GRIS	91	35-6			6.	9		_	_	+	-				_			-	+	+
	ARGILEUX SABLONNEUX		<u> </u>	1					+	- -	╬	-							\dashv	\dashv	+
	TR. DE GRAVIE	ER I	39'			6.	5													\top	
	SABLE ET	1	40	55	1/18	000 Z	28 32	Щ								-					
	SILT GRIS		-					$\ \cdot\ $	\dashv	\dashv	┼	-				_			\dashv	_	- -
	DE ROC ALTÉ		<u> </u>					$\ \cdot\ $	-	- -	-}	-			<u> </u>	-	_		+	\dashv	\dashv
		1	43-6					$\ \cdot\ $	\dashv	\dashv	╁								-	\dashv	+
	ROC		-		20				\exists		士									\exists	\dashv
	SCHISTE	100%	45-8																		
	ARGILEUX NOIR	Z 3	47.6	i	122				\perp			_							_	_	_ -
		100%	-	1	1				-	- -	+	_							\dashv	-	_
			- 50-1	1	31				\dashv	+	+	-	-						\dashv	+	\dashv
		100%	20-1	1-	31		-	┧	\dashv	\dashv	1	\vdash							7	\dashv	$\frac{1}{1}$
1]	42					\perp	\perp	<u> </u>							\perp		
		100%	53.7 -	} -	142				\dashv	- -	-	-							-	-	-
				1	27			ŀ	\dashv	+	+-	 							\dashv	$\frac{1}{1}$	$\frac{1}{1}$
		100%	56-8	"	37, /37			l	\dashv	+	1	 							\top	\dashv	\dashv
		10078																			
]																	
				-	51 53				-	_	 	 							-	\dashv	4
		97%	<u> 61-1</u>		53			ł	\dashv	- -	+-	-							\dashv	+	- -
			-	1				-	\dashv	\dashv	-	-							\vdash	\dashv	\dashv
			-	1				ŀ	\dashv	+	\dagger	\dagger								\dashv	+
								I													
		97%	66'-A		61,				\bot		1										_
	FIN DU FORA		-	1					\dashv		-	<u> </u>								_ .	_ .
			-					-	-	- -	+	 	-							-	
			-					-		- -	-	-	-						\dashv		- -

	<u>CO</u>	MPACHIE I	TATI	LAHC	E DE FORA	AGE & SOUDAGE INC.
ÉΤ	UDE: 74F082		RA	PPOP.	T DE FORA	AGE Feuille / de 7
CL	JEHT VILLE DE	E MON	TRE	EAL		FORAGE No. 102
1 .						CONTRAT No. <u>4511</u>
Ł	DROIT MONTRÉ					DATE 5 FÉV. 1975
		LLONNEUR	 5			ESSAIS EN CHANTIER
					ļ	oups/pi.): Indice de résistance lbs/pi.ca.):Essai au scissomètre v : Niveau d'eau
ÉLÉV. (PI.)	DESCRIPTION DES	SOLS ÉCH PRO (P)	TYPE	RÉC. (PO.)	ESSAIS	
	EL 35.4	0'				TUYAU PERFORÉ
	SABLE BRUN)/,	当			
	ARGILEUX					
			-			
		1/5	1			
	ARGILE GRISE]			
	DE SILT		_			# G'-G'-5 FEV. 75 (1HEURE)
	000101		-		·	
			-			
			1			
1			_			
			-			
			1			
l						
]			
			4			
	·		-			
			1			
			1			
]			
			_			
			-			
	·		-			
			1	24.	- 44	
		30	55	74	0"=1 N=G"=1	
			_		6" = 7 6* : 3	
		И	-			
				10	6":11	
		35	55	18/	6"=11 6"=18 N=6"=67	

CONT	OACUTTO MANATARIANA	DE FORAGE & SONDAG	E TIC
COM			<u> </u>
ÉTUDE : 74F082	RAPPORT I	DE FCRAGE	Feuille 7 de 7
CLIET VILLE DE	MONTRÉAL	FORAGE No.	IOZ
PROJET USINE D'ÉP			
EMDROIT MONTRÉA		DATE 5 FÉV	· · · · · · · · · · · · · · · · · · ·
ECHANTILI		T	CHANTIER
SS (Split Spoon):Cut ST (Shelby Tube):Tub Carottier: Marque	pe - long x - dia	VT (lbs/pi.ca.):	Essai au scissomètre
Carottier: Marque	"NXL" Dia. <u>25/32</u> "	WL 👱 : Niveau	d'eau
ELEV DEGOSTORION DEG	FCHAUTU LOUS	L	
DESCRIPTION DES	PROF TYPE REC.	ESSAIS	•
	(Pi) 17 PE (Po.)		
SUITE DU FORAGE -	35 SS 18/18 N	= G" = 11 G" = 18	
SABLE GRIS	7.5	6.:02	
FRAG. DE ROC	37-6		
ROC ALTÉRÉ SABLE ET SILT GRI			
FRAG. DE ROC			
	42:8" - 62		
36°	%		
SCHISTE			
ARGILEUX NOIR			
	- 24		
36	% 48-4" - 68		
FIN DU FORAGE			
		- - - -	
·			
			1 1 1 1 1 1 1 1 1 1

f						
	<u>C01</u>	APAGNIE 1	IATI(DHAL	E DE FORA	AGE & SONDAGE INC.
ÉΤ	UDE: 74F082		RA	PPOR	T DE FORA	Feuille I de 2
CI	JENT VILLE DE	MON	rzé	EAL		FORAGE No. 103
1 .						CONTRAT No. 4511
1	DROIT MONTRÉA					DATE GDÉC. 1974
		LLONNEURS	 3			ESSAIS EN CHANTIER
SS ST Ca		uil. fend abe – lor	- ue_ <u>'</u> ig_x	z <u>"</u> d d	ia. N (co ia. VT (l	oups/pi.): Indice de résistance
ÉLÉV (PI.)	DESCRIPTION DES	SULS I	TYPE	·	ESSAIS	
	EL.35.6	0'			·	TUYAU PERFORE
	SOL VÉGÉTAL	XI				
	ARGILE BRUNE	19.	1		,	ROLL GREATH (INFIDE
	RACINES		-		9	表 ZLG"- G DÉC.74 (IHEURE) 〒 2'-8" - 9 DÉC.74 (3JOURS)
	·	1 5	1	18	6"= 1 6"= 1 N=6"= 2	
		1/3	133	1,0	N-0 12	
		1/7]			
	ARGILE GRISE				·	
			4	18	0 000 2	
		10	55	/18	N= 6' : 1	╂┪╋╃╂┩╏╏┪╏
			1			
			1			
]	18,	6":0 6":1	
		15	55	18/18	N=61	┨╸┩┊╏╶┩╶╏╶╏╶╏╶╏╶╏
			-1			
			1			
			1	10	0" 1	
	·	20	55	18 /18	9"=1 N=9"=2	
		$Y_{\mathcal{A}}$	-			
			1		I	
·		75	55	18/	0":1 6":2 N:6":2	
			4			
	·		-			
				18/18	04" 2 06" 3 N=6" 3	
		30	55	10	N-6-3	
		37				
	ARGILE GRISE	1				
Ì	LITS DE SILT			16	6" = 3 6" = 7	
1	1	MI 35	55	1'18	N=6"=8	

			·																			
	COMP	AGNI	E K	ATI	LATIC	E DE FOR	AG	Ε	<u>e:</u>	<u>S0:</u>	ID.	A.C	E.	H	<u>c</u> .							
ÉΤ	UDE: 74F082			RAI	PPOR	T DE FOR	AG	E						Fe	ui	11	е	7	đ	e 4	Z	
CL	JEIT VILLE DE	M	DΝ,	TRE	EAL		F	OR	AG:	E I	Īo	•	10	25	3							
1 -	OJET <u>USINE D'ÉP</u>																					
t	DROIT MONTRÉAL					,				G												
	<u>ECHANTILL</u>	OMNI	TURS	•			***	E	SS.	AIS	<u>S</u>	ΕN	C	HA:	ΗT	IE	R			-		~-
SS ST Ca	(Split Spoon):Cui (Shelby Tube):Tub rottier: Marque	l. f e "NX	endi _lon <u>L"</u>	ue <u>'</u> g x _Dia	z" d - d a•Z	ia. N (c ia. VT (½c WL _	ou lb	ps s/	/p pi N	i. .ca ive): a. ea	I:): u	nd Es d'	ic sa ea	e ia u	de au	r sc	és: is	is so	tai nè	nc tr	e e
ÉLÉV (PI.)	DESCRIPTION DES S	OLS	PROF.	TYPE	RÉC. (PO.)	ESSAIS																
		l Fall	35	55	18	N=6":3	\perp	igspace		гт		······································			r							Ţ~
	SUITE DU FORAGE -		1 -			Ĝ.: 8		-									_				<u> </u>	<u> </u>
	A RGILEUX SABLONNEUX		<u> </u>				l	\vdash							-		-					-
	TR. DE GRAVIER						l															
	FORE BLOC @38'	11/2	40					_														_
	FRAG. DE ROC UN PEU DE SABLE ET DE SILT		10-9																			-
	ROC		1461		<u>_</u> .	4	ı	\vdash			\dashv											<u> </u> -
	78%		45		27			匚														
	1.075		-					<u> </u>													<u> </u>	-
	57%		47.6°		17/30			\vdash							-	-		-			-	-
		13	49.2°	_	20			一							-							-
	100%				-				1													
	SCHISTE ARGILEUX NOIR		-					\vdash					_			-		_			_	-
					44 50			\vdash														
	889	, - 4	<u>53-4</u> -	 -	50		-															
	·						١	_							_	_		<u> </u>		<u> </u>	<u> </u>	-
			-		39		١	-							-							<u> </u>
	74%		57:9 ⁻		53		-															
	, , ,					**	١															
			<u> </u>				I	\vdash							<u> </u> -	<u> </u>						_
			-		52, 55		1	F							_	-		-			<u> </u>	-
	95% 78%		62-4 63-1	<u> </u>	7/9																	
	78%	1			1																	
	100%		65-6		29	٠.		-					_		_	_		_			_	<u> </u>
			-	1	19/			-								 					-	-
	80%		67:6		124																	
	FIN DU FORAGE		-	-				_								<u> </u>						
I		1	1	1	1			1								1		ļ	,	'		1

COMPA	GNIE HA	TIOUALE	DE FORA	AGE & SONDAGE INC.	
ÉTUDE : 74F082		RAPPORT	DE FORA	Feuille de 2	:
CLIENT VILLE DE M	MONTR	ÉAL		FORAGE No. 104	
PROJET USINE D'ÉPL					
ENDROIT MONTRÉAL				DATE 15 NOV. 1974	
ECHANTILLO				ESSAIS EL CHANTIER	
SS (Split Spoon):Cuil ST (Shelby Tube):Tube Carottier: Marque	fendu long 	e <u>v"</u> di x _ di Dia	a. N (co a. VT (1 WL _	oups/pi.): Indice de résistan lòs/pi.ca.):Essai au scissomèt • Niveau d'eau	ce re
ÉLÉV. DESCRIPTION DES SO) LS L	TYPE RÉC.	ESSAIS		
EL.36.0	0"			TUYAU PERFORÉ	
SOL VÉGÉTAL ARGILE BRUNE	9"				-
ARGICE BRONE			4		
	4				\dagger
ARGILE GRISE	0'				1
TR. DE SABLE					+
ORGANIQUES			•	17-6" 18 NOV. 74 (3 JOURS)	+
		18/	6" :0		+
	9 101	55 /18 I	7=6"=1		
	K. / -				
·					- -
	0				+
	-				$\dot{-}$
·			٠		-
		55 /18	12"= 0		1
:	20	55 /18 1	1=6"=1		-
	19/1				-
	Y_{1}				
	-	55 /18 I	y=9"=0 y=9"=1		_ -
	, 30	<u>55 /18 </u>	1=9"=1	╫╫╫╫	
					-
	10]				
	25				!

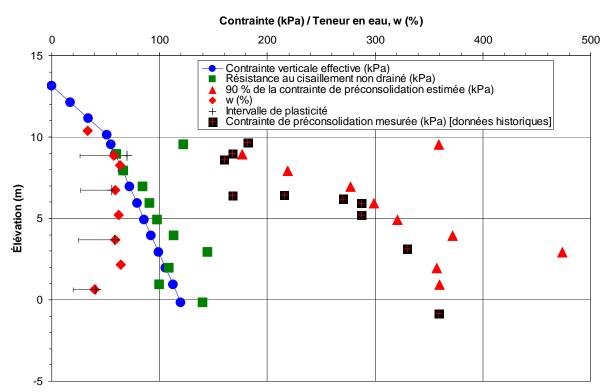
	COMP	AGNIE NATIONAL	LE DE FORAG	E & SOMDAG	E INC.
ÉΤΙ	UDE: 74F082	<u>RA PPOF</u>	RT DE FORAG	E	Feuille 2 de 2
CL	IENT VILLE DE	MONTRÉAL	L F	ORAGE No.	104
PR	OJET <u>USINE D'ÉP</u>	JRATION DE	L'EST C	ONTRAT No.	4511
ł	DROIT MONTRÉAL			ATE 15 NO	•
	ECHANTILL			ESSAIS EN	CHANTIER
SS ST Ca	(Cnlit Cnoon) (Cri	T forder on i	dia N (cou dia VT (1b		ndice de résistance Essai au scissomètre d'eau
ÉLÉV. (PI.)	DESCRIPTION DES S	OLS ECHANTILLONS PROF TYPE REC. (PI) TYPE (PO)	LI ESSAIS		
		35			·
	SUITE DU FORAGE -				
	·				
		38-6"	G" = 5		
	SILT GRIS ARGILEUX	40 55 /18	8" = 6 8 H=6" = 8		
	UN PEU				
	DE SABLE TR.DE GRAVIER	1042-6	.		
	SABLE GRIS SILTEUX				
	FRAG. DE ROC ALTERÉ	44-3			
	ROC	46'-3' - 19/			
	80%				
	SCHISTE ARGILEUX NOIR 77%	47-8 - 13/17	7		
		19/			
	87% DE 44'-3" <i>C</i> 49'-6"	49-6 - 122			
	LITS DE SABLE	- 33			
	100%	King and the second sec	3		
	, , ,	-			
	100%	54'11' - 32			
	FIN DU FORAGE	3 3 34 74 11 = 92	-		
	•				
	• 1				
	·				
			,		

Étude géotechnique et caractérisation environnementale des sols préliminaires Construction d'un poste de transformation 315 kV – 25 kV à la station d'épuration des eaux usées de la Ville de Montréal Arrondissement de Rivière-des-Prairies – Pointe-aux-Trembles

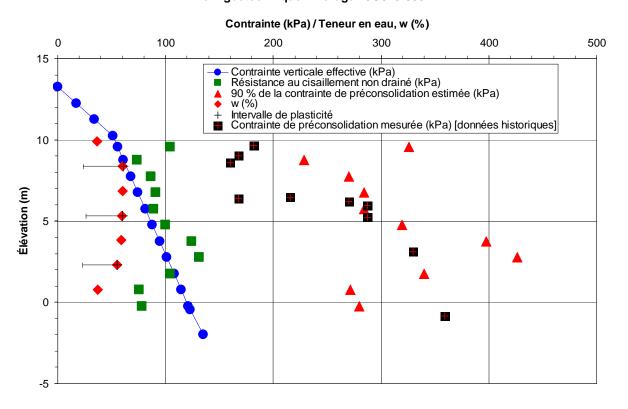
5 février 2016

No rapport: 15G049G

ANNEXE 5 : Profils géotechniques (2 pages)

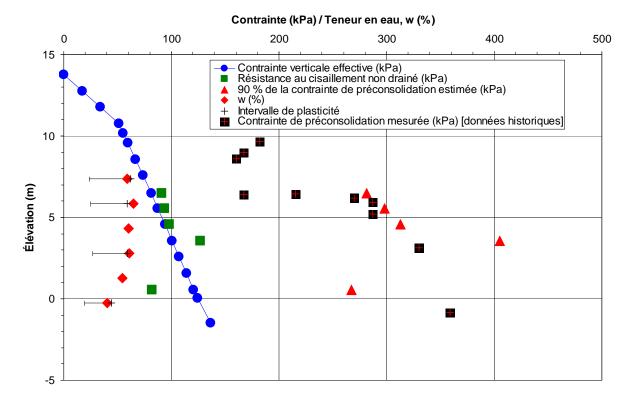


Arrondissement de Rivière-des-Prairies – Pointe-aux-Trembles


Profil géotechnique – Forage 15G049-001

5 février 2016

No rapport: 15G049G


Profil géotechnique - Forage 15G049-003

5 février 2016 No rapport: 15G049G

Profil géotechnique - Forage 15G049-005

5 février 2016

No rapport: 15G049G

ANNEXE 6: Certificats des analyses chimiques (34 pages)

No de dossier Maxxam : B572715 (24 pages) No de dossier Maxxam : B603396 (10 pages)

Votre # de commande: 12843 Votre # du projet: MTS-27568-C1 Votre # Bordereau: e-899147, e-899148

Attention: Mathieu Gagné

Les Services exp Inc.
MONTRÉAL rue 19e Avenue
8487, 19e Avenue
Montréal, QC
Canada H1Z 4J2

Date du rapport: 2015/11/27

Rapport: R2080209 Version: 1 - Finale

CERTIFICAT D'ANALYSES

DE DOSSIER MAXXAM: B572715

Reçu: 2015/11/19, 11:45

Matrice: SOL

Nombre d'échantillons reçus: 14

		Date de l'	Date		
Analyses	Quantité	extraction	Analysé	Méthode de laboratoire	Référence Primaire
Hydrocarbures pétroliers (C10-C50)*	14	2015/11/24	2015/11/25	STL SOP-00172	MA.400-HYD. 1.1 R1 m
Métaux extractibles totaux par ICP*	12	2015/11/24	2015/11/26	STL SOP-00006	MA200-Mét 1.2 R5 m
Métaux extractibles totaux par ICP*	2	2015/11/25	2015/11/26	STL SOP-00006	MA200-Mét 1.2 R5 m
Hydrocarbures aromatiques polycycliques*	8	2015/11/24	2015/11/25	STL SOP-00178	MA400-HAP 1.1 R4 m
Hydrocarbures aromatiques polycycliques*	6	2015/11/24	2015/11/26	STL SOP-00178	MA400-HAP 1.1 R4 m

Lorsque la méthode de référence comprend le suffixe « m », cela signifie que les méthodes d'analyse contiennent les modifications validées provenant des méthodes de référence précises appliquées pour améliorer la performance.

Notez: Les données brutes sont utilisées pour le calcul du RPD (% d'écart relatif). L'arrondissement des résultats finaux peut expliquer la variation apparente.

clé de cryptage

Veuillez adresser toute question concernant ce certificat d'analyse à votre chargé(e) de projets Zara Randrian,

Courriel: ZRandrian@maxxam.ca Téléphone (514)448-9001 Ext:6269

Ce rapport a été produit et distribué en utilisant une procédure automatisée sécuritaire.

Maxxam a mis en place des procédures qui protègent contre l'utilisation non autorisée de la signature électronique et emploie les «signataires» requis, conformément à la section 5.10.2 de la norme ISO/CEI 17025:2005(E). Veuillez vous référer à la page des signatures de validation pour obtenir les détails des validations pour chaque division.

^{*} Maxxam détient l'accréditation pour cette analyse selon le programme du MDDELCC.

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

HAP PAR GCMS (SOL)

ID Maxxam						BS2481	BS2482	BS2483		
Date d'échantillonnage						2015/11/03	2015/11/03	2015/11/03		
# Bordereau						e-899147	e-899147	e-899147		
	Unités	Α	В	С	D	15G049-001-CF-1	15G049-001-CF-4B	15G049-001-CF-5B	LDR	Lot CQ
% HUMIDITÉ	%	-	-	-	-	17	28	26		
НАР	•									
Acénaphtène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	<0.1	0.1	1541589
Acénaphtylène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	<0.1	0.1	1541589
Anthracène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	<0.1	0.1	1541589
Benzo(a)anthracène	mg/kg	0.1	1	10	<u>34</u>	0.2	<0.1	<0.1	0.1	1541589
Benzo(a)pyrène	mg/kg	0.1	1	10	<u>34</u>	0.2	<0.1	<0.1	0.1	1541589
Benzo(b)fluoranthène	mg/kg	0.1	1	10	=	0.1	<0.1	<0.1	0.1	1541589
Benzo(j)fluoranthène	mg/kg	0.1	1	10	=	<0.1	<0.1	<0.1	0.1	1541589
Benzo(k)fluoranthène	mg/kg	0.1	1	10	_	<0.1	<0.1	<0.1	0.1	1541589
Benzo(c)phénanthrène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	<0.1	0.1	1541589
Benzo(ghi)pérylène	mg/kg	0.1	1	10	<u>18</u>	0.1	<0.1	<0.1	0.1	1541589
Chrysène	mg/kg	0.1	1	10	<u>34</u>	0.2	<0.1	<0.1	0.1	1541589
Dibenz(a,h)anthracène	mg/kg	0.1	1	10	<u>82</u>	<0.1	<0.1	<0.1	0.1	1541589
Dibenzo(a,i)pyrène		0.1		10	<u>34</u>	<0.1	<0.1	<0.1	0.1	1541589
Dibenzo(a,h)pyrène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	<0.1	0.1	1541589
Dibenzo(a,l)pyrène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	<0.1	0.1	1541589
7,12-Diméthylbenzanthracène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	<0.1	0.1	1541589
Fluoranthène	mg/kg	0.1	10	100	<u>100</u>	0.4	<0.1	<0.1	0.1	1541589
Fluorène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	<0.1	0.1	1541589
Indéno(1,2,3-cd)pyrène	mg/kg	0.1	1	10	<u>34</u>	0.1	<0.1	<0.1	0.1	1541589
3-Méthylcholanthrène		0.1		10	<u>150</u>	<0.1	<0.1	<0.1	0.1	1541589
Naphtalène	mg/kg	0.1	5	50	<u>56</u>	<0.1	<0.1	<0.1	0.1	1541589
Phénanthrène	mg/kg	0.1	5	50	<u>56</u>	0.1	<0.1	<0.1	0.1	1541589
Pyrène	mg/kg	0.1	10	100	<u>100</u>	0.3	<0.1	<0.1	0.1	1541589
2-Méthylnaphtalène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	<0.1	0.1	1541589
1-Méthylnaphtalène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	<0.1	0.1	1541589
1,3-Diméthylnaphtalène	mg/kg			10	<u>56</u>	<0.1	<0.1	<0.1	0.1	1541589
2,3,5-Triméthylnaphtalène	mg/kg					<0.1	<0.1	<0.1	0.1	1541589
Récupération des Surrogates (%)										
D10-Anthracène	%	-	-	-	-	92	90	84		1541589
D12-Benzo(a)pyrène	%	-	-	-	-	96	92	86		1541589
D14-Terphenyl	%	-	-	-	-	104	102	98		1541589
D8-Acenaphthylene	%	-	-	-	-	102	102	98		1541589
D8-Naphtalène	%	-	-	-	-	84	86	82		1541589
I DR = Limite de détection rapport			I	I	L	I			L	

LDR = Limite de détection rapportée

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

HAP PAR GCMS (SOL)

Date d'échantillonnage Image: Bordereau 2015/10/29	2487 6/10/27 99147 12 10.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	1541589 1541589 1541589 1541589
#Bordereau Dunités A B C D 156049-002-CF-2 156049-002-CF-4 156049-002-CF-5 156049 % HUMIDITÉ % - - - - 17 27 26 % HUMIDITÉ % - - - 17 27 26 MACénaphtène mg/kg 0.1 10 100 100 0.01 0.01 0.01 0.01 0.01 Acénaphtylène mg/kg 0.1 10 100 100 0.00 0.01 0.01 0.01 0.01 0.01 Anthracène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 Benzo(a)anthracène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 Benzo(a)pyrène mg/kg 0.1 1 10 2 0.01 0.01 0.01 0.01 0.01 Benzo(b)fluoranthène mg/kg 0.1 1 10 2 0.01 0.01 0.01 0.01 0.01 Benzo(b)fluoranthène mg/kg 0.1 1 10 2 0.01 0.01 0.01 0.01 0.01 Benzo(b)fluoranthène mg/kg 0.1 1 10 2 0.01 0.01 0.01 0.01 0.01 Benzo(b)fluoranthène mg/kg 0.1 1 10 2 0.01 0.01 0.01 0.01 0.01 Benzo(b)fluoranthène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 Benzo(b)fluoranthène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 Chrysène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 Chrysène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 Dibenz(a,h)pyrène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 Dibenz(a,h)pyrène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 Fluoranthène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 Fluoranthène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 0.01 Benzo(b)prène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 0.01 Benzo(b)prène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 0.01 Benzo(b)fluoranthène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Benzo(a)pyrène mg/kg 0.1 1 10 32 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Benzo(a)pyrène mg/kg 0.1 1 10 32 0.01 0.01 0.01	99147 12 12 10.1 0.1 10.1 0.1 10.1 0.1 10.1 0.1 10.1 0.1 10.1 0.1	1541589 1541589 1541589 1541589
Unités A B C D 156049-002-CF-2 156049-002-CF-4 156049-002-CF-5 156049	12	1541589 1541589 1541589 1541589
HAP Acénaphtène mg/kg 0.1 10 100 <0.1	30.1 0.1 30.1 0.1 30.1 0.1 30.1 0.1 30.1 0.1 30.1 0.1 30.1 0.1 30.1 0.1	1541589 1541589 1541589
Acénaphtène mg/kg 0.1 10 100 200 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	:0.1 0.1 :0.1 0.1 :0.1 0.1 :0.1 0.1 :0.1 0.1 :0.1 0.1	1541589 1541589 1541589
Acénaphtylène mg/kg 0.1 10 100 40.1	:0.1 0.1 :0.1 0.1 :0.1 0.1 :0.1 0.1 :0.1 0.1 :0.1 0.1	1541589 1541589 1541589
Anthracène mg/kg 0.1 10 100 100 <0.1 <0.1 <0.1 <0.1 <0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1541589 1541589
Benzo(a)anthracène mg/kg 0.1 1 10 34 34 34 34 34 34 34 3	0.1 0.1 0.1 0.1 0.1 0.1	1541589
Benzo(a)pyrène mg/kg 0.1 1 10 34 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <	30.1 0.1 30.1 0.1	
Benzo(b)fluoranthène mg/kg 0.1 1 10 z <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1	4544500
Benzo(j)fluoranthène mg/kg 0.1 1 10 2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		1541589
Benzo(k)fluoranthène mg/kg 0.1 1 10 2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1	1541589
Benzo(k)fluoranthène mg/kg 0.1 1 10 z <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		1541589
Benzo(ghi)pérylène mg/kg 0.1 1 10 18 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1	1541589
Chrysène mg/kg 0.1 1 10 34 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0	0.1	1541589
Dibenz(a,h)anthracène mg/kg 0.1 1 10 82 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1	1541589
Dibenz(a,h)anthracène mg/kg 0.1 1 10 82 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1	1541589
Dibenzo(a,h)pyrène mg/kg 0.1 1 10 34 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1	1541589
Dibenzo(a,h)pyrène mg/kg 0.1 1 10 34 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1	1541589
Dibenzo(a,l)pyrène mg/kg 0.1 1 10 34 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1	1541589
Fluoranthène mg/kg 0.1 10 100 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1	1541589
Fluorène mg/kg 0.1 10 100 100 <0.1 <0.1 <0.1 <0.1 <0.1	0.1	1541589
Indéno(1,2,3-cd)pyrène mg/kg 0.1 1 10 34 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1	1541589
Indéno(1,2,3-cd)pyrène mg/kg 0.1 1 10 34 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1	1541589
Naphtalène mg/kg 0.1 5 50 56 <0.1 <0.1 <0.1 <0.1 Phénanthrène mg/kg 0.1 5 50 56 <0.1	0.1	1541589
Phénanthrène mg/kg 0.1 5 50 <u>56</u> <0.1 <0.1 <0.1	0.1	1541589
3, 3	0.1	1541589
	0.1	1541589
Pyrène mg/kg 0.1 10 100 100 0.1 <0.1 <0.1 <	0.1	1541589
2-Méthylnaphtalène mg/kg 0.1 1 10 <u>56</u> <0.1 <0.1 <0.1	0.1	1541589
1-Méthylnaphtalène mg/kg 0.1 1 10 <u>56</u> <0.1 <0.1 <0.1	0.1	1541589
	0.1	1541589
		1541589
Récupération des Surrogates (%)		
D10-Anthracène % 92 92 90	88	1541589
D12-Benzo(a)pyrène % 92 94 92	88	1541589
	98	1541589
	98	1541589
D8-Naphtalène % 84 86 86		1541589

LDR = Limite de détection rapportée

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

HAP PAR GCMS (SOL)

ID Maxxam						BS2488	BS2489	BS2489	BS2501		
Date d'échantillonnage						2015/10/27	2015/10/27	2015/10/27	2015/11/02		
# Bordereau						e-899147	e-899147	e-899147	e-899148		
	Unités	Α	В	С	D	15G049-003-CF-5	15G049-003-CF-6	15G049-003-CF-6 Dup. de Lab.	15G049-004-CF3	LDR	Lot CQ
% HUMIDITÉ	%	-	-	-	-	18	27	27	11		
НАР	•										
Acénaphtène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Acénaphtylène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Anthracène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Benzo(a)anthracène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Benzo(a)pyrène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Benzo(b)fluoranthène	mg/kg	0.1	1	10		<0.1	<0.1	<0.1	<0.1	0.1	1541589
Benzo(j)fluoranthène	mg/kg	0.1	1	10	_	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Benzo(k)fluoranthène	mg/kg	0.1	1	10		<0.1	<0.1	<0.1	<0.1	0.1	1541589
Benzo(c)phénanthrène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Benzo(ghi)pérylène	mg/kg	0.1	1	10	<u>18</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Chrysène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Dibenz(a,h)anthracène	mg/kg	0.1	1	10	<u>82</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Dibenzo(a,i)pyrène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Dibenzo(a,h)pyrène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Dibenzo(a,l)pyrène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
7,12-Diméthylbenzanthracène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Fluoranthène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Fluorène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Indéno(1,2,3-cd)pyrène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
3-Méthylcholanthrène	mg/kg	0.1	1	10	<u>150</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Naphtalène	mg/kg	0.1	5	50	<u>56</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Phénanthrène	mg/kg	0.1	5	50	<u>56</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Pyrène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
2-Méthylnaphtalène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
1-Méthylnaphtalène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
1,3-Diméthylnaphtalène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
2,3,5-Triméthylnaphtalène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Récupération des Surrogates (%)											
D10-Anthracène	%	-	-	-	-	88	92	86	90		1541589
D12-Benzo(a)pyrène	%	-	-	-	-	88	92	86	90		1541589
D12-Delizo(a)pyrelie											
D14-Terphenyl	%	-	-	-	-	100	102	96	100		1541589

LDR = Limite de détection rapportée

Lot CQ = Lot contrôle qualité

Duplicata de laboratoire

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

HAP PAR GCMS (SOL)

ID Maxxam						BS2488	BS2489	BS2489	BS2501		
Date d'échantillonnage						2015/10/27	2015/10/27	2015/10/27	2015/11/02		
# Bordereau						e-899147	e-899147	e-899147	e-899148		
	Unités	A	В	U	D	15G049-003-CF-5	15G049-003-CF-6	15G049-003-CF-6 Dup. de Lab.	15G049-004-CF3	LDR	Lot CQ
D8-Naphtalène	%	_	_	_	_	84	84	82	84		1541589

LDR = Limite de détection rapportée

Lot CQ = Lot contrôle qualité

Duplicata de laboratoire

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

HAP PAR GCMS (SOL)

ID Maxxam						BS2502	BS2503	BS2504	BS2505		
Date d'échantillonnage						2015/11/02	2015/10/30	2015/10/30	2015/11/02		
# Bordereau						e-899148	e-899148	e-899148	e-899148		
	Unités	Α	В	С	D	15G049-004-CF8B	15G049-005-CF2	15G049-005-CF4	15G049-005-CF10	LDR	Lot CQ
% HUMIDITÉ	%	-	-	-	-	34	22	8.4	19		
НАР											
Acénaphtène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Acénaphtylène	mg/kg	0.1	10	100	<u>100</u>	<0.1	0.2	<0.1	<0.1	0.1	1541589
Anthracène	mg/kg	0.1	10	100	<u>100</u>	<0.1	0.2	<0.1	<0.1	0.1	1541589
Benzo(a)anthracène	mg/kg	0.1	1	10	<u>34</u>	<0.1	0.5	<0.1	<0.1	0.1	1541589
Benzo(a)pyrène	mg/kg	0.1	1	10	<u>34</u>	<0.1	0.6	<0.1	<0.1	0.1	1541589
Benzo(b)fluoranthène	mg/kg	0.1	1	10	Ξ	<0.1	0.5	<0.1	<0.1	0.1	1541589
Benzo(j)fluoranthène	mg/kg	0.1	1	10	=	<0.1	0.3	<0.1	<0.1	0.1	1541589
Benzo(k)fluoranthène	mg/kg		1	10	-	<0.1	0.2	<0.1	<0.1	0.1	1541589
Benzo(c)phénanthrène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Benzo(ghi)pérylène	mg/kg	0.1	1	10	<u>18</u>	<0.1	0.4	<0.1	<0.1	0.1	1541589
Chrysène	mg/kg	0.1	1	10	<u>34</u>	<0.1	0.5	<0.1	<0.1	0.1	1541589
Dibenz(a,h)anthracène	mg/kg		1	10	<u>82</u>	<0.1	0.1	<0.1	<0.1	0.1	1541589
Dibenzo(a,i)pyrène	mg/kg		1	10	34	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Dibenzo(a,h)pyrène	mg/kg	_	1	10	<u>34</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Dibenzo(a,l)pyrène	mg/kg	1	1	10	<u>34</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
7,12-Diméthylbenzanthracène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Fluoranthène	mg/kg	0.1	10	100	<u>100</u>	<0.1	0.8	<0.1	<0.1	0.1	1541589
Fluorène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Indéno(1,2,3-cd)pyrène	mg/kg	0.1	1	10	<u>34</u>	<0.1	0.5	<0.1	<0.1	0.1	1541589
3-Méthylcholanthrène	mg/kg	0.1	1	10	<u>150</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Naphtalène	mg/kg	0.1	5	50	<u>56</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
Phénanthrène	mg/kg	0.1	5	50	<u>56</u>	<0.1	0.3	<0.1	<0.1	0.1	1541589
Pyrène	mg/kg	0.1	10	100	100	<0.1	0.8	<0.1	<0.1	0.1	1541589
2-Méthylnaphtalène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
1-Méthylnaphtalène	mg/kg	_		10	<u>56</u>	<0.1	<0.1	<0.1	<0.1	0.1	1541589
1,3-Diméthylnaphtalène	mg/kg					<0.1	<0.1	<0.1	<0.1	_	1541589
2,3,5-Triméthylnaphtalène	mg/kg					<0.1	<0.1	<0.1	<0.1	0.1	1541589
Récupération des Surrogates (%)					L	I	I			ı
D10-Anthracène	%	-	-	-	-	90	88	90	84		1541589
D12-Benzo(a)pyrène	%	-	-	-	-	88	92	92	84		1541589
D14-Terphenyl	%	-	-	-	-	104	100	100	100		1541589
D8-Acenaphthylene	%	-	-	-	-	102	98	102	100		1541589
D8-Naphtalène	%	-	-	-	-	86	82	84	84		1541589

LDR = Limite de détection rapportée

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

HYDROCARBURES PAR GCFID (SOL)

ID Maxxam						BS2481	BS2482	BS2483		
Date d'échantillonnage						2015/11/03	2015/11/03	2015/11/03		
# Bordereau						e-899147	e-899147	e-899147		
	Unités	Α	В	С	D	15G049-001-CF-1	15G049-001-CF-4B	15G049-001-CF-5B	LDR	Lot CQ
% HUMIDITÉ	%	-	-	-	-	17	28	26		
HYDROCARBURES PÉTROLIERS				•						
Hydrocarbures pétroliers (C10-C50)	mg/kg	300	700	3500	<u>10000</u>	<100	<100	<100	100	1541588
Récupération des Surrogates (%)										
1-Chlorooctadécane	%	-	-	-	-	65	66	63		1541588
LDR = Limite de détection rapportée Lot CQ = Lot contrôle qualité	•	•								

ID Maxxam						BS2484	BS2485	BS2486				
Date d'échantillonnage						2015/10/29	2015/10/29	2015/10/29				
# Bordereau						e-899147	e-899147	e-899147				
	Unités	Α	В	С	D	15G049-002-CF-2	15G049-002-CF-4	15G049-002-CF-5	LDR	Lot CQ		
% HUMIDITÉ	%	-	-	-	-	17	27	26				
HYDROCARBURES PÉTROLIERS	HYDROCARBURES PÉTROLIERS											
Hydrocarbures pétroliers (C10-C50)	mg/kg	300	700	3500	<u>10000</u>	<100	<100	<100	100	1541588		
Récupération des Surrogates (%)												
1-Chlorooctadécane	%	-	-	-	-	67	69	65		1541588		
LDR = Limite de détection rapportée Lot CQ = Lot contrôle qualité												

ID Maxxam						BS2487	BS2488	BS2489				
Date d'échantillonnage						2015/10/27	2015/10/27	2015/10/27				
# Bordereau						e-899147	e-899147	e-899147				
	Unités	Α	В	С	D	15G049-003-CF-3	15G049-003-CF-5	15G049-003-CF-6	LDR	Lot CQ		
% HUMIDITÉ	%	-	-	-	-	12	18	27				
HYDROCARBURES PÉTROLIERS	HYDROCARBURES PÉTROLIERS											
Hydrocarbures pétroliers (C10-C50)	mg/kg	300	700	3500	<u>10000</u>	<100	<100	<100	100	1541588		
Récupération des Surrogates (%)				•								
1-Chlorooctadécane	%	-	-	-	-	73	67	69		1541588		
LDP - Limita da dátaction rapportág	•				<u> </u>							

LDR = Limite de détection rapportée

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

HYDROCARBURES PAR GCFID (SOL)

ID Maxxam						BS2489	BS2501	BS2502				
Date d'échantillonnage						2015/10/27	2015/11/02	2015/11/02				
# Bordereau						e-899147	e-899148	e-899148				
	Unités	Α	В	С	D	15G049-003-CF-6 Dup. de Lab.	15G049-004-CF3	15G049-004-CF8B	LDR	Lot CQ		
% HUMIDITÉ	%	-	-	-	-	27	11	34				
HYDROCARBURES PÉTROLIERS	HYDROCARBURES PÉTROLIERS											
Hydrocarbures pétroliers (C10-C50)	mg/kg	300	700	3500	<u>10000</u>	<100	<100	<100	100	1541588		
Récupération des Surrogates (%)												
1-Chlorooctadécane	%	-	-	-	-	64	73	67		1541588		
LDR = Limite de détection rapportée Lot CQ = Lot contrôle qualité												

Duplicata de laboratoire

					BS2503	BS2504	BS2505		
					2015/10/30	2015/10/30	2015/11/02		
					e-899148	e-899148	e-899148		
Unités	Α	В	С	D	15G049-005-CF2	15G049-005-CF4	15G049-005-CF10	LDR	Lot CQ
%	-	-	-	-	22	8.4	19		
			•						
mg/kg	300	700	3500	<u>10000</u>	130	<100	<100	100	1541588
%		_			64	66	67		1541588
	% mg/kg	% - mg/kg 300	% mg/kg 300 700	% mg/kg 300 700 3 500	% mg/kg 300 700 3500 <u>10000</u>	2015/10/30 e-899148 Unités A B C D 15G049-005-CF2	2015/10/30 2015/10/30 2015/10/30 e-899148 e-899148 e-899148 Unités A B C D 15G049-005-CF2 15G049-005-CF4	2015/10/30 2015/10/30 2015/11/02 e-899148 e-899148 e-899148 Unités A B C D 15G049-005-CF2 15G049-005-CF4 15G049-005-CF10 % - - - 22 8.4 19 mg/kg 300 700 3500 10000 130 <100 <100 <100	2015/10/30 2015/10/30 2015/11/02

LDR = Limite de détection rapportée

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

MÉTAUX EXTRACTIBLES TOTAUX (SOL)

ID Maxxam						BS2481	BS2482	BS2483		
Date d'échantillonnage						2015/11/03	2015/11/03	2015/11/03		
# Bordereau						e-899147	e-899147	e-899147		
	Unités	А	В	С	D	15G049-001-CF-1	15G049-001-CF-4B	15G049-001-CF-5B	LDR	Lot CQ
% HUMIDITÉ	%	-	-	-	-	17	28	26		
MÉTAUX					•				•	
Argent (Ag)	mg/kg	2	20	40	<u>200</u>	<0.5	<0.5	<0.5	0.5	1541509
Arsenic (As)	mg/kg	6	30	50	<u>250</u>	<5	<5	<5	5	1541509
Baryum (Ba)	mg/kg	200	500	2000	<u>10000</u>	120	180	200	5	1541509
Cadmium (Cd)	mg/kg	1.5	5	20	<u>100</u>	<0.5	<0.5	<0.5	0.5	1541509
Chrome (Cr)	mg/kg	85	250	800	<u>4000</u>	28	110	110	2	1541509
Cobalt (Co)	mg/kg	15	50	300	<u>1500</u>	11	23	22	2	1541509
Cuivre (Cu)	mg/kg	40	100	500	<u>2500</u>	22	52	52	2	1541509
Etain (Sn)	mg/kg	5	50	300	<u>1500</u>	<4	<4	<4	4	1541509
Manganèse (Mn)	mg/kg	770	1000	2200	<u>11000</u>	420	580	540	2	1541509
Molybdène (Mo)	mg/kg	2	10	40	<u>200</u>	<1	<1	<1	1	1541509
Nickel (Ni)	mg/kg	50	100	500	<u>2500</u>	26	65	65	1	1541509
Plomb (Pb)	mg/kg	50	500	1000	<u>5000</u>	13	10	9	5	1541509
Zinc (Zn)	mg/kg	110	500	1500	<u>7500</u>	63	100	100	10	1541509

LDR = Limite de détection rapportée

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

MÉTAUX EXTRACTIBLES TOTAUX (SOL)

ID Maxxam						BS2484	BS2485		BS2486		
Date d'échantillonnage						2015/10/29	2015/10/29		2015/10/29		
# Bordereau						e-899147	e-899147		e-899147		
	Unités	А	В	С	D	15G049-002-CF-2	15G049-002-CF-4	Lot CQ	15G049-002-CF-5	LDR	Lot CQ
% HUMIDITÉ	%	-	-	-	-	17	27		26		
MÉTAUX											
Argent (Ag)	mg/kg	2	20	40	<u>200</u>	<0.5	<0.5	1541509	<0.5	0.5	1541627
Arsenic (As)	mg/kg	6	30	50	<u>250</u>	<5	<5	1541509	<5	5	1541627
Baryum (Ba)	mg/kg	200	500	2000	<u>10000</u>	85	94	1541509	180	5	1541627
Cadmium (Cd)	mg/kg	1.5	5	20	<u>100</u>	<0.5	<0.5	1541509	<0.5	0.5	1541627
Chrome (Cr)	mg/kg	85	250	800	<u>4000</u>	18	43	1541509	110	2	1541627
Cobalt (Co)	mg/kg	15	50	300	<u>1500</u>	10	11	1541509	20	2	1541627
Cuivre (Cu)	mg/kg	40	100	500	<u>2500</u>	34	27	1541509	56	2	1541627
Etain (Sn)	mg/kg	5	50	300	<u>1500</u>	<4	<4	1541509	<4	4	1541627
Manganèse (Mn)	mg/kg	770	1000	2200	<u>11000</u>	680	360	1541509	610	2	1541627
Molybdène (Mo)	mg/kg	2	10	40	<u>200</u>	<1	<1	1541509	<1	1	1541627
Nickel (Ni)	mg/kg	50	100	500	<u>2500</u>	27	26	1541509	65	1	1541627
Plomb (Pb)	mg/kg	50	500	1000	<u>5000</u>	13	24	1541509	9	5	1541627
Zinc (Zn)	mg/kg	110	500	1500	<u>7500</u>	77	72	1541509	110	10	1541627

LDR = Limite de détection rapportée

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

MÉTAUX EXTRACTIBLES TOTAUX (SOL)

ID Maxxam						BS2487	BS2488	BS2489		
Date d'échantillonnage						2015/10/27	2015/10/27	2015/10/27		
# Bordereau						e-899147	e-899147	e-899147		
	Unités	A	В	С	D	15G049-003-CF-3	15G049-003-CF-5	15G049-003-CF-6	LDR	Lot CQ
% HUMIDITÉ	%	-	-	-	-	12	18	27		
MÉTAUX									•	
Argent (Ag)	mg/kg	2	20	40	<u>200</u>	<0.5	<0.5	<0.5	0.5	1541526
Arsenic (As)	mg/kg	6	30	50	<u>250</u>	<5	<5	<5	5	1541526
Baryum (Ba)	mg/kg	200	500	2000	<u>10000</u>	120	150	160	5	1541526
Cadmium (Cd)	mg/kg	1.5	5	20	<u>100</u>	<0.5	<0.5	<0.5	0.5	1541526
Chrome (Cr)	mg/kg	85	250	800	<u>4000</u>	34	74	110	2	1541526
Cobalt (Co)	mg/kg	15	50	300	<u>1500</u>	9	20	21	2	1541526
Cuivre (Cu)	mg/kg	40	100	500	<u>2500</u>	16	26	56	2	1541526
Etain (Sn)	mg/kg	5	50	300	<u>1500</u>	<4	<4	<4	4	1541526
Manganèse (Mn)	mg/kg	770	1000	2200	<u>11000</u>	420	490	660	2	1541526
Molybdène (Mo)	mg/kg	2	10	40	<u>200</u>	<1	<1	<1	1	1541526
Nickel (Ni)	mg/kg	50	100	500	<u>2500</u>	22	36	64	1	1541526
Plomb (Pb)	mg/kg	50	500	1000	<u>5000</u>	7	7	9	5	1541526
Zinc (Zn)	mg/kg	110	500	1500	<u>7500</u>	65	75	110	10	1541526

LDR = Limite de détection rapportée

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

MÉTAUX EXTRACTIBLES TOTAUX (SOL)

ID Maxxam						BS2501	BS2501	BS2501		
Date d'échantillonnage						2015/11/02	2015/11/02	2015/11/02		
# Bordereau						e-899148	e-899148	e-899148		
	Unités	А	В	С	D	15G049-004-CF3	15G049-004-CF3 Dup. de Lab.	15G049-004-CF3 Dup. de Lab. 2	LDR	Lot CQ
% HUMIDITÉ	%	-	-	-	-	11	11	11		
MÉTAUX										
Argent (Ag)	mg/kg	2	20	40	<u>200</u>	<0.5	<0.5	<0.5	0.5	1541627
Arsenic (As)	mg/kg	6	30	50	<u>250</u>	<5	<5	<5	5	1541627
Baryum (Ba)	mg/kg	200	500	2000	<u>10000</u>	110	120	110	5	1541627
Cadmium (Cd)	mg/kg	1.5	5	20	<u>100</u>	<0.5	<0.5	<0.5	0.5	1541627
Chrome (Cr)	mg/kg	85	250	800	<u>4000</u>	53	45	47	2	1541627
Cobalt (Co)	mg/kg	15	50	300	<u>1500</u>	13	12	12	2	1541627
Cuivre (Cu)	mg/kg	40	100	500	<u>2500</u>	27	25	25	2	1541627
Etain (Sn)	mg/kg	5	50	300	<u>1500</u>	<4	<4	<4	4	1541627
Manganèse (Mn)	mg/kg	770	1000	2200	<u>11000</u>	470	450	440	2	1541627
Molybdène (Mo)	mg/kg	2	10	40	<u>200</u>	<1	<1	<1	1	1541627
Nickel (Ni)	mg/kg	50	100	500	<u>2500</u>	35	32	33	1	1541627
Plomb (Pb)	mg/kg	50	500	1000	<u>5000</u>	9	9	10	5	1541627
Zinc (Zn)	mg/kg	110	500	1500	<u>7500</u>	65	59	62	10	1541627

LDR = Limite de détection rapportée

Lot CQ = Lot contrôle qualité

Duplicata de laboratoire

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

MÉTAUX EXTRACTIBLES TOTAUX (SOL)

					BS2502	BS2503	BS2504		
					2015/11/02	2015/10/30	2015/10/30		
					e-899148	e-899148	e-899148		
Unités	Α	В	С	D	15G049-004-CF8B	15G049-005-CF2	15G049-005-CF4	LDR	Lot CQ
%	-	-	-	-	34	22	8.4		
•									
mg/kg	2	20	40	<u>200</u>	<0.5	<0.5	<0.5	0.5	1541526
mg/kg	6	30	50	<u>250</u>	<5	<5	<5	5	1541526
mg/kg	200	500	2000	<u>10000</u>	160	120	72	5	1541526
mg/kg	1.5	5	20	<u>100</u>	<0.5	<0.5	<0.5	0.5	1541526
mg/kg	85	250	800	<u>4000</u>	97	40	9	2	1541526
mg/kg	15	50	300	<u>1500</u>	20	11	5	2	1541526
mg/kg	40	100	500	<u>2500</u>	50	16	10	2	1541526
mg/kg	5	50	300	<u>1500</u>	<4	<4	<4	4	1541526
mg/kg	770	1000	2200	<u>11000</u>	580	360	280	2	1541526
mg/kg	2	10	40	<u>200</u>	<1	<1	<1	1	1541526
mg/kg	50	100	500	<u>2500</u>	62	23	13	1	1541526
mg/kg	50	500	1000	<u>5000</u>	8	6	9	5	1541526
mg/kg	110	500	1500	<u>7500</u>	98	81	37	10	1541526
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg 2 mg/kg 6 mg/kg 200 mg/kg 1.5 mg/kg 85 mg/kg 40 mg/kg 5 mg/kg 770 mg/kg 2 mg/kg 50 mg/kg 50	% - - mg/kg 2 20 mg/kg 6 30 mg/kg 200 500 mg/kg 1.5 5 mg/kg 85 250 mg/kg 40 100 mg/kg 5 50 mg/kg 770 1000 mg/kg 50 100 mg/kg 50 500	mg/kg 2 20 40 mg/kg 6 30 50 mg/kg 200 500 2000 mg/kg 1.5 5 20 mg/kg 15 50 300 mg/kg 40 100 500 mg/kg 5 50 300 mg/kg 770 1000 2200 mg/kg 10 40 mg/kg 50 100 500 mg/kg 50 500 1000	% - - - - - mg/kg 2 20 40 200 mg/kg 6 30 50 250 mg/kg 200 500 2000 10000 mg/kg 1.5 5 20 100 mg/kg 85 250 800 4000 mg/kg 40 100 500 2500 mg/kg 5 50 300 1500 mg/kg 770 1000 2200 11000 mg/kg 770 1000 2200 11000 mg/kg 50 100 500 2500 mg/kg 50 100 500 2500 mg/kg 50 500 1000 5000	Winités A B C D 15G049-004-CF8B % - - - - 34 mg/kg 2 20 40 200 <0.5	Unités A B C D 15G049-004-CF8B 15G049-005-CF2 % - - - - 34 22 mg/kg 2 20 40 200 <0.5	Unités A B C D 15G049-004-CF8B 15G049-005-CF2 15G049-005-CF4 % - - - 34 22 8.4 mg/kg 2 20 40 200 <0.5	Unités A B C D 15G049-004-CF8B 15G049-005-CF2 15G049-005-CF4 LDR % - - - - 34 22 8.4 mg/kg 2 20 40 200 <0.5

LDR = Limite de détection rapportée

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

MÉTAUX EXTRACTIBLES TOTAUX (SOL)

ID Maxxam						BS2505		
Date d'échantillonnage						2015/11/02		
# Bordereau						e-899148		
	Unités	A	В	С	D	15G049-005-CF10	LDR	Lot CQ
% HUMIDITÉ	%	-	-	-	-	19		
MÉTAUX	*			•				
Argent (Ag)	mg/kg	2	20	40	<u>200</u>	<0.5	0.5	1541526
Arsenic (As)	mg/kg	6	30	50	<u>250</u>	<5	5	1541526
Baryum (Ba)	mg/kg	200	500	2000	<u>10000</u>	110	5	1541526
Cadmium (Cd)	mg/kg	1.5	5	20	<u>100</u>	<0.5	0.5	1541526
Chrome (Cr)	mg/kg	85	250	800	<u>4000</u>	62	2	1541526
Cobalt (Co)	mg/kg	15	50	300	<u>1500</u>	14	2	1541526
Cuivre (Cu)	mg/kg	40	100	500	<u>2500</u>	33	2	1541526
Etain (Sn)	mg/kg	5	50	300	<u>1500</u>	<4	4	1541526
Manganèse (Mn)	mg/kg	770	1000	2200	<u>11000</u>	470	2	1541526
Molybdène (Mo)	mg/kg	2	10	40	<u>200</u>	<1	1	1541526
Nickel (Ni)	mg/kg	50	100	500	<u>2500</u>	40	1	1541526
Plomb (Pb)	mg/kg	50	500	1000	<u>5000</u>	7	5	1541526
Zinc (Zn)	mg/kg	110	500	1500	<u>7500</u>	68	10	1541526
I DR - Limite de détection ran	nortée							

LDR = Limite de détection rapportée

Lot CQ = Lot contrôle qualité

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

REMARQUES GÉNÉRALES

Tous les résultats sont calculés sur une base sèche excepté lorsque non-applicable.

État des échantillons à l'arrivée: BON excepté pour

Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2481 Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2481 Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2482 Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2482 Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2483 Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2483 Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2484 Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2484 Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2485 Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2485 Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2486 Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2486 Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2487 Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2487 Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2488 Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2488 Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2489 Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2489 Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2501 Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2501 Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2502 Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2502 Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2503 Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2503 Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2504 Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2504 Hydrocarbures pétroliers (C10-C50): Délai maximum de conservation dépassé sur réception.: BS2505

A,B,C,D: Ces critères proviennent de l'Annexe 2 de la « Politique de protection des sols et de réhabilitation des terrains contaminés ». Pour les analyses de métaux(et métalloides) dans les sols, le critère A désigne la « Teneur de fond Secteur Basses-Terres du Saint-Laurent ». Le critère D, provient de l'Annexe 1 du « Règlement sur l'enfouissement des sols contaminés ».

A,B-eau souterraine: A=Critère pour fin de consommation; B=Critère pour la résurgence dans les eaux de surface ou infiltration dans les égouts.

Ces références ne sont rapportées qu'à titre indicatif et ne doivent être interprétées dans aucun autre contexte.

Hydrocarbures aromatiques polycycliques: Délai maximum de conservation dépassé sur réception.: BS2505

- = Ce composé ne fait pas partie de la réglementation.

HAP PAR GCMS (SOL)

Veuillez noter que les résultats n'ont été corrigés ni pour la récupération des échantillons de contrôle qualité (blanc fortifié et blanc de méthode), ni pour les surrogates.

HYDROCARBURES PAR GCFID (SOL)

Veuillez noter que les résultats n'ont pas été corrigés pour la récupération des échantillons de contrôle de qualité (blanc fortifié et surrogates). Veuillez noter que les résultats n'ont pas été corrigés pour le blanc de méthode.

MÉTAUX EXTRACTIBLES TOTAUX (SOL)

Veuillez noter que les résultats n'ont pas été corrigés ni pour la récupération des échantillons de contrôle qualité, ni pour le blanc de méthode.

Les résultats ne se rapportent qu'aux échantillons soumis pour analyse

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

RAPPORT ASSURANCE QUALITÉ

Lot							
AQ/CQ	Init	Type CQ	Groupe	Date Analysé	Valeur	Réc	Unités
1541509	KV1	Blanc fortifié	Argent (Ag)	2015/11/25		96	%
			Arsenic (As)	2015/11/25		97	%
			Baryum (Ba)	2015/11/25		97	%
			Cadmium (Cd)	2015/11/25		96	%
			Chrome (Cr)	2015/11/25		95	%
			Cobalt (Co)	2015/11/25		94	%
			Cuivre (Cu)	2015/11/25		97	%
			Etain (Sn)	2015/11/25		95	%
			Manganèse (Mn)	2015/11/25		96	%
			Molybdène (Mo)	2015/11/25		93	%
			Nickel (Ni)	2015/11/25		97	%
			Plomb (Pb)	2015/11/25		94	%
			Zinc (Zn)	2015/11/25		96	%
1541509	KV1	Blanc de méthode	Argent (Ag)	2015/11/25	<0.5	30	mg/kg
1311303		Diane de memode	Arsenic (As)	2015/11/25	<5		mg/kg
			Baryum (Ba)	2015/11/25	<5		mg/kg
			Cadmium (Cd)	2015/11/25	<0.5		mg/kg
			Chrome (Cr)	2015/11/25	<2		mg/kg
			Cobalt (Co)	2015/11/25	<2		mg/kg
			Cuivre (Cu)	2015/11/25	<2		mg/kg
			Etain (Sn)	2015/11/25	<4		mg/kg
			Manganèse (Mn)	2015/11/25	<2		mg/kg
			Molybdène (Mo)	2015/11/25	<1		mg/kg
			Nickel (Ni)	2015/11/25	<1		mg/kg
			Plomb (Pb)	2015/11/25	<5		mg/kg
			Zinc (Zn)	2015/11/25	<10		mg/kg
1541526	KV1	Blanc fortifié	Argent (Ag)	2015/11/25	\10	95	/// // // // // // // // // // // // //
1341320	KVI	bidlic for tille	Arsenic (As)	2015/11/25		96	% %
			Baryum (Ba)	2015/11/25		95	%
			Cadmium (Cd)	2015/11/25		96	%
			Chrome (Cr)	2015/11/25		93	% %
			Cobalt (Co)	2015/11/25		93	% %
			Cuivre (Cu)	2015/11/25		96	%
			Etain (Sn)	2015/11/25		95	%
			Manganèse (Mn)	2015/11/25		95 95	%
			Molybdène (Mo)	2015/11/25		93	% %
			Nickel (Ni)	2015/11/25		93 94	%
			Plomb (Pb)	2015/11/25		96	%
			Zinc (Zn)	2015/11/25		96	% %
1541526	KV1	Blanc de méthode	Argent (Ag)	2015/11/25	<0.5	90	mg/kg
1341320	KVI	bianc de methode		2015/11/25	<0.5 <5		mg/kg
			Arsenic (As) Baryum (Ba)	2015/11/25	<5		mg/kg
			Cadmium (Cd)	2015/11/25	<0.5		mg/kg
			Chrome (Cr)	2015/11/25	<0.5 <2		mg/kg
			Cobalt (Co)	2015/11/25	<2		mg/kg
			Cuivre (Cu)	2015/11/25	<2		
			Etain (Sn)	2015/11/25			mg/kg
					<4		mg/kg
			Manganèse (Mn)	2015/11/25	<2		mg/kg
			Molybdène (Mo)	2015/11/25	<1		mg/kg
			Nickel (Ni)	2015/11/25	<1		mg/kg
			Plomb (Pb)	2015/11/25	<5		mg/kg

Page 16 de 24

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

RAPPORT ASSURANCE QUALITÉ (SUITE)

Lot							
AQ/CQ	Init	Type CQ	Groupe	Date Analysé	Valeur	Réc	Unités
7.2,52		.,,,,,,	Zinc (Zn)	2015/11/25	<10		mg/kg
1541588	AS2	Blanc fortifié	1-Chlorooctadécane	2015/11/25	110	64	%
13.1300	7132	Diane for time	Hydrocarbures pétroliers (C10-C50)	2015/11/25		84	%
1541588	AS2	Blanc de méthode	1-Chlorooctadécane	2015/11/25		74	%
1541500	7132	biane de metriode	Hydrocarbures pétroliers (C10-C50)	2015/11/25	<100	7-7	mg/kg
1541589	CB5	Blanc fortifié	D10-Anthracène	2015/11/25	100	98	///s/Kg %
1341369	CDS	Diane for time	D12-Benzo(a)pyrène	2015/11/25		106	%
			D14-Terphenyl	2015/11/25		110	%
			D8-Acenaphthylene	2015/11/25		102	%
			D8-Naphtalène	2015/11/25		88	%
			Acénaphtène	2015/11/25		108	%
			Acénaphtylène	2015/11/25		98	%
			Anthracène	2015/11/25		94	% %
			Benzo(a)anthracène	2015/11/25		94 106	% %
				2015/11/25		92	% %
			Benzo(a)pyrène			92 92	
			Benzo(b)fluoranthène	2015/11/25			%
			Benzo(j)fluoranthène	2015/11/25		91	%
			Benzo(k)fluoranthène	2015/11/25		92	%
			Benzo(c)phénanthrène	2015/11/25		101	%
			Benzo(ghi)pérylène	2015/11/25		96	%
			Chrysène	2015/11/25		104	%
			Dibenz(a,h)anthracène	2015/11/25		102	%
			Dibenzo(a,i)pyrène	2015/11/25		93	%
			Dibenzo(a,h)pyrène	2015/11/25		91	%
			Dibenzo(a,l)pyrène	2015/11/25		98	%
			7,12-Diméthylbenzanthracène	2015/11/25		94	%
			Fluoranthène	2015/11/25		97	%
			Fluorène	2015/11/25		101	%
			Indéno(1,2,3-cd)pyrène	2015/11/25		91	%
			3-Méthylcholanthrène	2015/11/25		98	%
			Naphtalène	2015/11/25		96	%
			Phénanthrène	2015/11/25		96	%
			Pyrène	2015/11/25		100	%
			2-Méthylnaphtalène	2015/11/25		95	%
			1-Méthylnaphtalène	2015/11/25		90	%
			1,3-Diméthylnaphtalène	2015/11/25		93	%
			2,3,5-Triméthylnaphtalène	2015/11/25		94	%
1541589	CB5	Blanc de méthode	D10-Anthracène	2015/11/25		96	%
			D12-Benzo(a)pyrène	2015/11/25		104	%
			D14-Terphenyl	2015/11/25		108	%
			D8-Acenaphthylene	2015/11/25		104	%
			D8-Naphtalène	2015/11/25		90	%
			Acénaphtène	2015/11/25	<0.1		mg/kg
			Acénaphtylène	2015/11/25	<0.1		mg/kg
			Anthracène	2015/11/25	<0.1		mg/kg
			Benzo(a)anthracène	2015/11/25	<0.1		mg/kg
			Benzo(a)pyrène	2015/11/25	<0.1		mg/kg
			Benzo(b)fluoranthène	2015/11/25	<0.1		mg/kg
			Benzo(j)fluoranthène	2015/11/25	<0.1		mg/kg
			Benzo(k)fluoranthène	2015/11/25	<0.1		mg/kg
			Benzo(c)phénanthrène	2015/11/25	<0.1		mg/kg
			ьепzо(с)рпепапитепе	2015/11/25	<0.1		mg/kg

Page 17 de 24

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

RAPPORT ASSURANCE QUALITÉ (SUITE)

Lot							
AQ/CQ	Init	Type CQ	Groupe	Date Analysé	Valeur	Réc	Unités
		.,	Benzo(ghi)pérylène	2015/11/25	<0.1		mg/kg
			Chrysène	2015/11/25	< 0.1		mg/kg
			Dibenz(a,h)anthracène	2015/11/25	< 0.1		mg/kg
			Dibenzo(a,i)pyrène	2015/11/25	< 0.1		mg/kg
			Dibenzo(a,h)pyrène	2015/11/25	< 0.1		mg/kg
			Dibenzo(a,l)pyrène	2015/11/25	< 0.1		mg/kg
			7,12-Diméthylbenzanthracène	2015/11/25	< 0.1		mg/kg
			Fluoranthène	2015/11/25	< 0.1		mg/kg
			Fluorène	2015/11/25	< 0.1		mg/kg
			Indéno(1,2,3-cd)pyrène	2015/11/25	< 0.1		mg/kg
			3-Méthylcholanthrène	2015/11/25	< 0.1		mg/kg
			Naphtalène	2015/11/25	< 0.1		mg/kg
			Phénanthrène	2015/11/25	< 0.1		mg/kg
			Pyrène	2015/11/25	< 0.1		mg/kg
			2-Méthylnaphtalène	2015/11/25	< 0.1		mg/kg
			1-Méthylnaphtalène	2015/11/25	< 0.1		mg/kg
			1,3-Diméthylnaphtalène	2015/11/25	< 0.1		mg/kg
			2,3,5-Triméthylnaphtalène	2015/11/25	< 0.1		mg/kg
1541627	KV1	Blanc fortifié	Argent (Ag)	2015/11/25		95	%
			Arsenic (As)	2015/11/25		98	%
			Baryum (Ba)	2015/11/25		97	%
			Cadmium (Cd)	2015/11/25		96	%
			Chrome (Cr)	2015/11/25		95	%
			Cobalt (Co)	2015/11/25		95	%
			Cuivre (Cu)	2015/11/25		98	%
			Etain (Sn)	2015/11/25		95	%
			Manganèse (Mn)	2015/11/25		98	%
			Molybdène (Mo)	2015/11/25		95	%
			Nickel (Ni)	2015/11/25		97	%
			Plomb (Pb)	2015/11/25		96	%
			Zinc (Zn)	2015/11/25		97	%
1541627	KV1	Blanc de méthode	Argent (Ag)	2015/11/25	<0.5		mg/kg
			Arsenic (As)	2015/11/25	<5		mg/kg
			Baryum (Ba)	2015/11/25	<5		mg/kg
			Cadmium (Cd)	2015/11/25	<0.5		mg/kg
			Chrome (Cr)	2015/11/25	<2		mg/kg
			Cobalt (Co)	2015/11/25	<2		mg/kg
			Cuivre (Cu)	2015/11/25	<2		mg/kg
			Etain (Sn)	2015/11/25	<4		mg/kg
			Manganèse (Mn)	2015/11/25	<2		mg/kg
			Molybdène (Mo)	2015/11/25	<1		mg/kg
			Nickel (Ni)	2015/11/25	<1		mg/kg
			Plomb (Pb)	2015/11/25	<5		mg/kg

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

RAPPORT ASSURANCE QUALITÉ (SUITE)

Lot							
AQ/CQ	Init	Type CQ	Groupe	Date Analysé	Valeur	Réc U	nités
			Zinc (Zn)	2015/11/25	<10	n	ng/kg

Blanc fortifié: Un blanc, d'une matrice exempte de contaminants, auquel a été ajouté une quantité connue d'analyte provenant généralement d'une deuxième source. Utilisé pour évaluer la précision de la méthode.

Blanc de méthode: Une partie aliquote de matrice pure soumise au même processus analytique que les échantillons, du prétraitement au dosage. Sert à évaluer toutes contaminations du laboratoire.

Surrogate: Composé se comportant de façon similaire aux composés analysés et ajouté à l'échantillon avant l'analyse. Sert à évaluer la qualité de l'extraction.

Réc = Récupération

Les Services exp Inc.

Votre # du projet: MTS-27568-C1 Votre # de commande: 12843 Initiales du préleveur: MGH

PAGE DES SIGNATURES DE VALIDATION

Les résultats analytiques ainsi que les données de contrôle-qualité contenus dans ce rapport furent vérifiés et validés par les personnes suivantes:

one	Corina Maria Florea Tue 2007-006 Quène ^C		
Corina Tue, B.Sc.	Chimiste		
	WINE STATE		
<i>₩</i> 100 m	erie-Dragna Bista Apopel 2008-094		
Maria Dragna Ap	opei, B.Sc., Chimi	iste	

steliona Calettu (Soliana Calettu (2008-40)

Steliana Calestru, B.Sc. Chimiste

Maxxam a mis en place des procédures qui protègent contre l'utilisation non autorisée de la signature électronique et emploie les «signataires» requis, conformément à la section 5.10.2 de la norme ISO/CEI 17025:2005(E). Veuillez vous référer à la page des signatures de validation pour obtenir les détails des validations pour chaque division.

_ ≤	Une société du Groupe Bureau \	eritas	737 box	venue Dalton, Sa ul. Barette, Chicc	G2	35727 M7	15				Télécopieur : (41 Télécopieur : (41 s.com	8) 543-8994						41			91
	Compagnie:			nie: eXP		40017	No.	de con	mano	ie :	1284				Pr	rojet /	Site:	MTS	- 2	1562	8-C1
	Adresse :			19°AV 1			No.	de cota	ation :		305	34			N	o. de p	orojet				
	Adresse.		Adresse	. 11	//										ī						
	Attention de :	3	Attention	de: Mathieu	Con	20.0					. eau.	ON+30				10		THE YES			
	Téléphone :		Tálánhan	ne: 438-86Z-	429	5		HAM	Colo		26, Z	N N N N N N N N N N N N N N N N N N N			- ibre			THM	8330		-
	Telecopieur :		Telecopie						enols	(S)	Z X	2 2	97	S-10	8	dite		OB.	PA 8	-	
94	Échantillonneur :		133000000000000000000000000000000000000	onneur : Molfie	1. 6	-H		H>ot.	Æ	SC-M	C, C, C, Se. 50,	100	P-To	oufre		Tub	#	2 5			
	Je déclare par la présente compr	endre				77	100	H P	(S)	(58	(Cd,			S	0 [9 8	980	40	8
	de Maxxam telles que décrites au	vers	o du préser	nt formulaire.	- 1		100	1,624)	3C/M	génè	ourds	38	NHS Prod	F (2)		PME PDC	T. 10	9 6	EPA 8	scifier	
	Identification de l'échantillon	E	chantillon Type	Prélèvement	à:	nombre de	000	& G Mir) Sloc	Co	aux L] G		S) ear	Tot	10	A AR	Potab	osif B	e (spe	
	(point de prélèvement)	Sol	d'eau Autr	e (date / heure)	filtrer	contenants	오	8 1 8	Phe	BPC HAP	Meta Meta	J. Wee	N S	SE SE	Š	DBO RDS	3	Ean	Exp	Autr	
	156049-001-CF-1	X		15-11-03			X		>	4	X		111								
	CF-4B	X		15-11-03			×		>	4	X										
	CF.5B	×		15-11-03			X		>	4	X										
	156049-002-CF-Z	X		15-10-29			X		. X		X										
	CF-4	×		15-10-29			X		1	X.	8	100				W 15					
	CF-5	X		15-10-29			X		>	(X				-	. 7					
	156049-003-CF-3	×		15-10-27			×		>		8	1 200									
	CF-5	X		15-10-27			×		,	4	×										400
	CF-6	×		15-10-27			X		2	5	X										
		-			1		10														
	LÉGENDE : ** Métaux 13 éléments (*** Métaux 16 éléments (Ag, As	Ba, Cd, Co,	Cr. Cu, Sn, Mn, Mo	o, Ni, P	b, Zn), Ph Se	Na	Zn).											-		
	Types d'eau : S = Souterraine P =	Potal		Déchet liquide	Déla A mo	is : ins d'êt considé	24h re cla ré co	48h	identif	ié, tou	Régulie t échantillor ne sera pas le.			nez Ma xigend	axxam ces du			rgén L s		à la ré	ception
1.415	Déssaisi par :	PA	-	Date 19nce 2	ors	Heure :	106	20	Reçu p	ar:	mille	Lo	-			R	emarq	ues:			
- 15	Déssaisi par :	1		Perel: SIII	19	Heure :	11				00 Ma										
	Nombre de glacières :			Température de	récept	ion :	9	6	Ci	-	00111										
	Transport des échantillons :	T De	r client	Personnel MA	VV A B A		0	rier (spé	-161-1												

• <u></u>	Une société du Groupe Bureau V	eritas	737 bo	venue Dalton, Sainte-Foy (Cul. Barette, Chicoutimi (Qué	oec) G7J	1 4C4		éléphone :	(418) 658 (418) 543 ww.maxxa	-3788	Télécopieur : Télécopieur : ytics.com	ACCURATION OF									914
*1	Info. Facturation		SANSAN MARKET INTO BOX OR	port (si différent de	Factu	uration)	No.	de co	mman	de :	128	43			1	Projet .	/ Site	: 1	1+5-	2750	18-C
	Compagnie :	_		nie: EXP			No	de co	tation		B 305	34				No. de					
	Adresse:		Adresse	: 19 e NV MI	-		140.	00 00				TIE		-		10. 00	proje				
* **			10		_						L.	8									
	Attention de :		Attention	de: Hallion	60	oné .		2		-	(P)	NO2+N				700		NE NE	*		
	Téléphone :		Téléphor	ne: 438 - 862	- 4	395		Ŧ	Cok	1.0	18 PB,	Autres		82	Libre				B B		-
	Telecopieur :	-	Telecopie				I	# ×	enok	- 1	S) N			W.	CN CN	idite	무	OR.	PA 8		
	Échantillonneur :		Échantill	MW.	112	6-H		GTG	£ .		SC-N	105 1	P-7	-0	ontre	Tut	ART.	Z	4		
	Je déclare par la présente compre	endre		ornitodi .		dalités		ı [(Cd, (Cd, 13 - 13	in i		ctivit	S N			55	8 98	2.5	1
	de Maxxam telles que décrites au	verse	o du prése	nt formulaire.			8	624)	CM		génè purds purds	8	꽃	Cond		000	RMI 1	90 :	PA 8	cifier	
	Identification de l'échantillon	É	chantillon	Prélèvement	à i	nombre de	0-01	Mir (FPA	o) sio		Con ux Lo	- E			of S		Ag [otable	Fec Sif E	eds)	
	(point de prélèvement)	Sol	Type d'eau Aut	e (date / heure)	filtrer	contenants	유	H & CO	Phér	HAP	BPC Métau Métau	Merci	N. Y.	공	Suffu CN-1	DBO	RDS CUIN	Eau	Explosion 1	Autre	
	156049-004-CF-3	×		15-11-02		1	X		1	X	X				-	100					
	CF 8B	X		15-11-02		f .	×	7		2	2										
	156049-105-CF-2	X		15-10-50		1	X			X	X										
	CF-4	×		15-10-30		1	X	-		X	X								*		
	CF-10	V		15-11-02		1	X	-	1	X	X			- 15							
	CF -10	92		13 11 00		1	-	_		+											
										-	-		-	-		7.5					
		-						-		-			-	-			-				
								_		_							-		_		
			16																		
		77.0																			
	LÉGENDE : ** Métaux 13 éléments (/	Ag, As	Ag, As, Ba,	Cr, Cu, Sn, Mn, M Cd, Cr, Co, Cu, Mn	o, Ni, F , Ma, N	Pb. Zn), Ni, Pb. Si	e, Na,	Zn).			,										
	Types d'eau : S = Souterraine P = Sur = Surface E =		ole DL =	Déchet liquide	Déla	ais : 🔲	24h	48	3h	72h	Régu	ılier _	Date	1			Condi	tion g	énérale	à la ré	ception
	Normes/Réglement Applicables :		1500 0 - 0	(À remplir)	A m	oins d'ê	tre cla	iremer	nt ident	ifié, t	out échanti	llon d'ea	u reçu	chez	Maxxa		rce.	1	1		
	Chaîne de responsabilité				règi	ement s	ur la c	qualité	de l'ea	u pot	et ne sera p table.	Jus sour	no da	CAIG			A. Carrier		NC		
	Déssaisi par :			Date 19 new	205	Heure:	101	20	Reçu	par ;	m Ro	er				3	Rema	rques	1		
	Déssaisi par :	-		7845/11/	5	Heure :	11:1	15	Reçu	parf:	00 Ma	acu	och	Ti-							
	Nombre de glacières :		P-TE	Température de	récep	otion :	6	3 6	0 9		Y			-							
*	Transport des échantillons :	7		Personnel MA					pécifier				-								

Zara Randrian

From: Mathieu Gagne <Mathieu.Gagne2@exp.com>

Sent: Friday, November 20, 2015 3:06 PM

To: Zara Randrian

Subject: RE: Echantillons projet MTS-27568-C1 (B572715)

Oui

Mathieu Gagné, ing. M.Sc.A.

Hydrogéologue
Les Services exp inc.
t : +514.521 4290 x240| m : +438.862.4395 | e : mathieu.gagne2@exp.com
8487, 19^e Avenue
Montréal, QC, H1Z 4J2
CANADA
squ.com | avis juridique

pensez à l'environnement : lisez à l'écran

De: Zara Randrian [mailto:ZRandrian@maxxam.ca]

Envoyé: 20 novembre 2015 15:07

À: Mathieu Gagne < Mathieu. Gagne 2@exp.com>

Objet: RE: Echantillons projet MTS-27568-C1 (B572715)

Ok alors on procède quand même a délai dépassé pour les HP et HAP?

Message IMPORTANT concernant l'analyse de DBO5 : Veuillez noter qu'à partir du 1 octobre 2015, les échantillons pour l'analyse de DBO5 seront conservés congelés pour une période de 21 jours. Suite à la période de 21 jours, nous disposerons des échantillons.

Saviez-vous que Maxxam offre maintenant des services analytiques sur la rive sud de Montréal? Venez visiter notre laboratoire mobile situé au #102 - 1221, rue Labadie à Longueuil.

Veuillez noter que je suis au bureau du lundi au vendredi de 10h00 à 18h00 sauf les mardi de 08h30 à 16h30 En cas d'urgence en dehors de ces heures, vous pouvez contacter <u>ServiceTechniqueMontreal@maxxam.ca</u>

ZARA RANDRIAN, M.Sc.

Chargée de projets

Bureau 514 448 9001, poste 6269 Cellulaire 514 208 0388

Zara Randrian

From:

Mathieu Gagne < Mathieu. Gagne 2@exp.com> Friday, November 20, 2015 5:01 PM

Sent: To:

Zara Randrian

Subject:

RE: Echantillons projet MTS-27568-C1 (B572715)

Categories:

[CRM] Regarding: B572715- Echantillons past HT- Mathieu Gagné - EXP MTL

Bonjour

Il faut utiliser 15G049 partout

Merci de l'observation.

Mathieu Gagné, ing. M.Sc.A.
Hydrogéologue
Les Services exp inc.
t:+514.521.4290 x240| m:+438.862.4395 | e: mathieu.gagne2@exp.com
8487, 19° Avenue
Montréal, QC, H1Z 4J2

CANADA

exp.com | avis juridique

pensez à l'environnement : lisez à l'écran

De : Zara Randrian [mailto:ZRandrian@maxxam.ca]

Envoyé: 20 novembre 2015 17:01

À: Mathieu Gagne < Mathieu. Gagne 2@exp.com> Objet: RE: Echantillons projet MTS-27568-C1 (B572715)

Bonjour Mathieu,

Aussi svp nous confirmer les identifications a utiliser car il y a un peu de divergence sur l'identification du bordereau et celle des échantillons :

Bordererau: 15g049-004-cf3- Sur le pot : 15g039-004-cf3. Bordereau: 15g049-005-cf10. Sur le pot:15g039-005-cf10. Bordereau: 15g049-002-cf4. Sur le pot: 15g039-002-cf4. Bordereau: 15g049-005-cf2. Sur le pot: 15g039-005-cf2. Bordereau: 15g049-002-cf5 Sur le pot: 15g039-005-cf2.

Merci,

Votre # de commande: 12843

Votre # du projet: RDP

Adresse du site: MTS-00027568-C1

Votre # Bordereau: e-899157

Attention: Mathieu Gagné

Les Services exp Inc. MONTRÉAL rue 19e Avenue 8487, 19e Avenue Montréal, QC Canada H1Z 4J2

Date du rapport: 2016/01/26

Rapport: R2100119 Version: 1 - Finale

CERTIFICAT D'ANALYSES

DE DOSSIER MAXXAM: B603396

Reçu: 2016/01/19, 16:20

Matrice: SOL

Nombre d'échantillons reçus: 2

		Date de l'	Date		
Analyses	Quantité	extraction	Analysé	Méthode de laboratoire	Référence Primaire
Hydrocarbures pétroliers (C10-C50)*	2	2016/01/25	2016/01/25	STL SOP-00172	MA.400-HYD. 1.1 R1 m
Métaux extractibles totaux par ICP*	2	2016/01/25	2016/01/25	STL SOP-00006	MA200-Mét 1.2 R5 m
Hydrocarbures aromatiques polycycliques*	2	2016/01/25	2016/01/25	STL SOP-00178	MA400-HAP 1.1 R4 m

Lorsque la méthode de référence comprend un suffixe « m », cela signifie que la méthode d'analyse du laboratoire contient des modifications validées et appliquées afin d'améliorer la performance de la méthode de référence.

Notez: Les données brutes sont utilisées pour le calcul du RPD (% d'écart relatif). L'arrondissement des résultats finaux peut expliquer la variation apparente.

clé de cryptage

Veuillez adresser toute question concernant ce certificat d'analyse à votre chargé(e) de projets Zara Randrian,

Courriel: ZRandrian@maxxam.ca Téléphone (514)448-9001 Ext:6269

Ce rapport a été produit et distribué en utilisant une procédure automatisée sécuritaire.

Maxxam a mis en place des procédures qui protègent contre l'utilisation non autorisée de la signature électronique et emploie les «signataires» requis, conformément à la section 5.10.2 de la norme ISO/CEI 17025:2005(E). Veuillez vous référer à la page des signatures de validation pour obtenir les détails des validations pour chaque division.

 $^{^{}st}$ Maxxam détient l'accréditation pour cette analyse selon le programme du MDDELCC.

Les Services exp Inc. Votre # du projet: RDP

Adresse du site: MTS-00027568-C1

Votre # de commande: 12843

HAP PAR GCMS (SOL)

ID Maxxam						BY1267	BY1268		
Date d'échantillonnage						2015/11/03			
# Bordereau						e-899157	e-899157		
	Unités	Α	В	С	D	DUP-1	DUP-5	LDR	Lot CQ
% HUMIDITÉ	%	-	-	-	-	15	25		
НАР	•					-	-		·
Acénaphtène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	0.1	1563670
Acénaphtylène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	0.1	156367
Anthracène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	0.1	156367
Benzo(a)anthracène	mg/kg	0.1	1	10	<u>34</u>	0.1	<0.1	0.1	156367
Benzo(a)pyrène	mg/kg	0.1	1	10	<u>34</u>	0.2	<0.1	0.1	1563670
Benzo(b)fluoranthène	mg/kg	0.1	1	10	_	0.1	<0.1	0.1	156367
Benzo(j)fluoranthène	mg/kg	0.1	1	10	-11	<0.1	<0.1	0.1	1563670
Benzo(k)fluoranthène	mg/kg	0.1	1	10	-1	<0.1	<0.1	0.1	1563670
Benzo(c)phénanthrène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	0.1	156367
Benzo(ghi)pérylène	mg/kg	0.1	1	10	<u>18</u>	0.1	<0.1	0.1	156367
Chrysène	mg/kg	0.1	1	10	<u>34</u>	0.2	<0.1	0.1	156367
Dibenz(a,h)anthracène	mg/kg	0.1	1	10	<u>82</u>	<0.1	<0.1	0.1	156367
Dibenzo(a,i)pyrène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	0.1	156367
Dibenzo(a,h)pyrène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	0.1	156367
Dibenzo(a,l)pyrène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	0.1	156367
7,12-Diméthylbenzanthracène	mg/kg	0.1	1	10	<u>34</u>	<0.1	<0.1	0.1	156367
Fluoranthène	mg/kg	0.1	10	100	<u>100</u>	0.3	<0.1	0.1	156367
Fluorène	mg/kg	0.1	10	100	<u>100</u>	<0.1	<0.1	0.1	156367
Indéno(1,2,3-cd)pyrène	mg/kg	0.1	1	10	<u>34</u>	0.1	<0.1	0.1	156367
3-Méthylcholanthrène	mg/kg	0.1	1	10	<u>150</u>	<0.1	<0.1	0.1	156367
Naphtalène	mg/kg	0.1	5	50	<u>56</u>	<0.1	<0.1	0.1	156367
Phénanthrène	mg/kg	0.1	5	50	<u>56</u>	0.1	<0.1	0.1	156367
Pyrène	mg/kg	0.1	10	100	<u>100</u>	0.3	<0.1	0.1	156367
2-Méthylnaphtalène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	0.1	156367
1-Méthylnaphtalène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	0.1	156367
1,3-Diméthylnaphtalène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	0.1	156367
2,3,5-Triméthylnaphtalène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	0.1	156367
Récupération des Surrogates (%)								
D10-Anthracène	%	-	-	-	-	92	96		156367
D12-Benzo(a)pyrène	%	-	-	-	1	84	86		156367
D14-Terphenyl	%	-	-	-	-	88	92		156367
D8-Acenaphthylene	%	-	-	-	-	88	92		156367
D8-Naphtalène	%	-	-	-	-	82	86		156367

Les Services exp Inc. Votre # du projet: RDP

Adresse du site: MTS-00027568-C1

Votre # de commande: 12843

HYDROCARBURES PAR GCFID (SOL)

ID Maxxam						BY1267	BY1268		
Date d'échantillonnage						2015/11/03	2015/11/03		
# Bordereau						e-899157	e-899157		
	Unités	Α	В	С	D	DUP-1	DUP-5	LDR	Lot CQ
% HUMIDITÉ	%	-	-	-	-	15	25		
HYDROCARBURES PÉTROLIERS	•						•		
Hydrocarbures pétroliers (C10-C50)	mg/kg	300	700	3500	<u>10000</u>	<100	<100	100	1563667
Récupération des Surrogates (%)							•		
1-Chlorooctadécane	%	-	-	-	-	91	94		1563667
LDR = Limite de détection rapportée									
Lot CQ = Lot contrôle qualité									

Les Services exp Inc. Votre # du projet: RDP

Adresse du site: MTS-00027568-C1

Votre # de commande: 12843

MÉTAUX EXTRACTIBLES TOTAUX (SOL)

ID Maxxam						BY1267	BY1268		
Date d'échantillonnage						2015/11/03	2015/11/03		
# Bordereau						e-899157	e-899157		
	Unités	Α	В	С	D	DUP-1	DUP-5	LDR	Lot CQ
% HUMIDITÉ	%	-	-	-	-	15	25		
MÉTAUX									
Argent (Ag)	mg/kg	2	20	40	<u>200</u>	<0.5	<0.5	0.5	1563659
Arsenic (As)	mg/kg	6	30	50	<u>250</u>	<5	<5	5	1563659
Baryum (Ba)	mg/kg	200	500	2000	<u>10000</u>	160	170	5	1563659
Cadmium (Cd)	mg/kg	1.5	5	20	<u>100</u>	<0.5	<0.5	0.5	1563659
Chrome (Cr)	mg/kg	85	250	800	<u>4000</u>	41	89	2	1563659
Cobalt (Co)	mg/kg	15	50	300	<u>1500</u>	12	19	2	1563659
Cuivre (Cu)	mg/kg	40	100	500	<u>2500</u>	27	38	2	1563659
Etain (Sn)	mg/kg	5	50	300	<u>1500</u>	<4	<4	4	1563659
Manganèse (Mn)	mg/kg	770	1000	2200	<u>11000</u>	470	440	2	1563659
Molybdène (Mo)	mg/kg	2	10	40	<u>200</u>	<1	<1	1	1563659
Nickel (Ni)	mg/kg	50	100	500	<u>2500</u>	32	49	1	1563659
Plomb (Pb)	mg/kg	50	500	1000	<u>5000</u>	10	13	5	1563659
Zinc (Zn)	mg/kg	110	500	1500	<u>7500</u>	67	95	10	1563659
						-			

LDR = Limite de détection rapportée

Lot CQ = Lot contrôle qualité

Les Services exp Inc. Votre # du projet: RDP

Adresse du site: MTS-00027568-C1

Votre # de commande: 12843

REMARQUES GÉNÉRALES

Tous les résultats sont calculés sur une base sèche excepté lorsque non-applicable.

État des échantillons à l'arrivée:

Hydrocarbures pétroliers (C10-C50): Échantillon reçu congelé.: BY1267

Métaux extractibles totaux par ICP: Échantillon reçu congelé.: BY1267

Hydrocarbures aromatiques polycycliques: Échantillon reçu congelé.: BY1267

Hydrocarbures pétroliers (C10-C50): Échantillon reçu congelé.: BY1268

Métaux extractibles totaux par ICP: Échantillon reçu congelé.: BY1268

Hydrocarbures aromatiques polycycliques: Échantillon reçu congelé.: BY1268

A,B,C,D: Ces critères proviennent de l'Annexe 2 de la « Politique de protection des sols et de réhabilitation des terrains contaminés ». Pour les analyses de métaux(et métalloides) dans les sols, le critère A désigne la « Teneur de fond Secteur Basses-Terres du Saint-Laurent ».

Le critère D, provient de l'Annexe 1 du « Règlement sur l'enfouissement des sols contaminés ».

A,B-eau souterraine: A=Critère pour fin de consommation; B=Critère pour la résurgence dans les eaux de surface ou infiltration dans les égouts.

Ces références ne sont rapportées qu'à titre indicatif et ne doivent être interprétées dans aucun autre contexte.

- = Ce composé ne fait pas partie de la réglementation.

HAP PAR GCMS (SOL)

Veuillez noter que les résultats n'ont été corrigés ni pour la récupération des échantillons de contrôle qualité (blanc fortifié et blanc de méthode), ni pour les surrogates.

HYDROCARBURES PAR GCFID (SOL)

Veuillez noter que les résultats n'ont pas été corrigés pour la récupération des échantillons de contrôle de qualité (blanc fortifié et surrogates). Veuillez noter que les résultats n'ont pas été corrigés pour le blanc de méthode.

MÉTAUX EXTRACTIBLES TOTAUX (SOL)

Veuillez noter que les résultats n'ont pas été corrigés ni pour la récupération des échantillons de contrôle qualité, ni pour le blanc de méthode.

Les résultats ne se rapportent qu'aux échantillons soumis pour analyse

Les Services exp Inc. Votre # du projet: RDP

Adresse du site: MTS-00027568-C1

Votre # de commande: 12843

RAPPORT ASSURANCE QUALITÉ

Lot							
AQ/CQ	Init	Type CQ	Groupe	Date Analysé	Valeur	Réc	Unités
1563659	KV1	Blanc fortifié	Argent (Ag)	2016/01/25		98	%
			Arsenic (As)	2016/01/25		103	%
			Baryum (Ba)	2016/01/25		101	%
			Cadmium (Cd)	2016/01/25		100	%
			Chrome (Cr)	2016/01/25		104	%
			Cobalt (Co)	2016/01/25		105	%
			Cuivre (Cu)	2016/01/25		99	%
			Etain (Sn)	2016/01/25		103	%
			Manganèse (Mn)	2016/01/25		94	%
			Molybdène (Mo)	2016/01/25		98	%
			Nickel (Ni)	2016/01/25		100	%
			Plomb (Pb)	2016/01/25		98	%
			Zinc (Zn)	2016/01/25		100	%
1563659	KV1	Blanc de méthode	Argent (Ag)	2016/01/25	<0.5	100	mg/kg
1303033	KVI	Diane de methode	Arsenic (As)	2016/01/25	<5		mg/kg
			Baryum (Ba)	2016/01/25	<5		mg/kg
			Cadmium (Cd)	2016/01/25	<0.5		mg/kg
			Chrome (Cr)				
				2016/01/25	<2		mg/kg
			Cobalt (Co)	2016/01/25	<2		mg/kg
			Cuivre (Cu)	2016/01/25	<2		mg/kg
			Etain (Sn)	2016/01/25	<4		mg/kg
			Manganèse (Mn)	2016/01/25	<2		mg/kg
			Molybdène (Mo)	2016/01/25	<1		mg/kg
			Nickel (Ni)	2016/01/25	<1		mg/kg
			Plomb (Pb)	2016/01/25	<5		mg/kg
			Zinc (Zn)	2016/01/25	<10		mg/kg
1563667	CT2	Blanc fortifié	1-Chlorooctadécane	2016/01/25		104	%
			Hydrocarbures pétroliers (C10-C50)	2016/01/25		90	%
1563667	CT2	Blanc de méthode	1-Chlorooctadécane	2016/01/25		95	%
			Hydrocarbures pétroliers (C10-C50)	2016/01/25	<100		mg/kg
1563670	TN	Blanc fortifié	D10-Anthracène	2016/01/25		102	%
			D12-Benzo(a)pyrène	2016/01/25		96	%
			D14-Terphenyl	2016/01/25		98	%
			D8-Acenaphthylene	2016/01/25		98	%
			D8-Naphtalène	2016/01/25		94	%
			Acénaphtène	2016/01/25		96	%
			Acénaphtylène	2016/01/25		100	%
			Anthracène	2016/01/25		99	%
			Benzo(a)anthracène	2016/01/25		100	%
			Benzo(a)pyrène	2016/01/25		97	% %
			Benzo(b)fluoranthène	2016/01/25		96	%
			Benzo(j)fluoranthène	2016/01/25		92	%
			Benzo(k)fluoranthène	2016/01/25		100	%
			Benzo(c)phénanthrène	2016/01/25		95	%
			Benzo(ghi)pérylène	2016/01/25		98	%
			Chrysène	2016/01/25		101	%
			Dibenz(a,h)anthracène	2016/01/25		98	%
			Dibenzo(a,i)pyrène	2016/01/25		97	%
			Dibenzo(a,h)pyrène	2016/01/25		100	%
			Dibenzo(a,l)pyrène	2016/01/25		91	%
			7,12-Diméthylbenzanthracène	2016/01/25		81	%

Page 6 de 10

Les Services exp Inc. Votre # du projet: RDP

Adresse du site: MTS-00027568-C1

Votre # de commande: 12843

RAPPORT ASSURANCE QUALITÉ (SUITE)

Lot							
AQ/CQ	Init	Type CQ	Groupe	Date Analysé	Valeur	Réc	Unités
			Fluoranthène	2016/01/25		98	%
			Fluorène	2016/01/25		96	%
			Indéno(1,2,3-cd)pyrène	2016/01/25		91	%
			3-Méthylcholanthrène	2016/01/25		84	%
			Naphtalène	2016/01/25		99	%
			Phénanthrène	2016/01/25		100	%
			Pyrène	2016/01/25		98	%
			2-Méthylnaphtalène	2016/01/25		94	%
			1-Méthylnaphtalène	2016/01/25		85	%
			1,3-Diméthylnaphtalène	2016/01/25		91	%
			2,3,5-Triméthylnaphtalène	2016/01/25		86	%
1563670	TN	Blanc de méthode	D10-Anthracène	2016/01/25		96	%
			D12-Benzo(a)pyrène	2016/01/25		88	%
			D14-Terphenyl	2016/01/25		92	%
			D8-Acenaphthylene	2016/01/25		92	%
			D8-Naphtalène	2016/01/25		88	%
			Acénaphtène	2016/01/25	<0.1		mg/kg
			Acénaphtylène	2016/01/25	<0.1		mg/kg
			Anthracène	2016/01/25	< 0.1		mg/kg
			Benzo(a)anthracène	2016/01/25	<0.1		mg/kg
			Benzo(a)pyrène	2016/01/25	<0.1		mg/kg
			Benzo(b)fluoranthène	2016/01/25	<0.1		mg/kg
			Benzo(j)fluoranthène	2016/01/25	<0.1		mg/kg
			Benzo(k)fluoranthène	2016/01/25	< 0.1		mg/kg
			Benzo(c)phénanthrène	2016/01/25	<0.1		mg/kg
			Benzo(ghi)pérylène	2016/01/25	<0.1		mg/kg
			Chrysène	2016/01/25	< 0.1		mg/kg
			Dibenz(a,h)anthracène	2016/01/25	<0.1		mg/kg
			Dibenzo(a,i)pyrène	2016/01/25	<0.1		mg/kg
			Dibenzo(a,h)pyrène	2016/01/25	<0.1		mg/kg
			Dibenzo(a,l)pyrène	2016/01/25	< 0.1		mg/kg
			7,12-Diméthylbenzanthracène	2016/01/25	<0.1		mg/kg
			Fluoranthène	2016/01/25	< 0.1		mg/kg
			Fluorène	2016/01/25	<0.1		mg/kg
			Indéno(1,2,3-cd)pyrène	2016/01/25	< 0.1		mg/kg
			3-Méthylcholanthrène	2016/01/25	<0.1		mg/kg
			Naphtalène	2016/01/25	<0.1		mg/kg
			Phénanthrène	2016/01/25	<0.1		mg/kg
			Pyrène	2016/01/25	<0.1		mg/kg
			2-Méthylnaphtalène	2016/01/25	<0.1		mg/kg
			1-Méthylnaphtalène	2016/01/25	<0.1		mg/kg
			1,3-Diméthylnaphtalène	2016/01/25	<0.1		mg/kg

Les Services exp Inc. Votre # du projet: RDP

Adresse du site: MTS-00027568-C1

Votre # de commande: 12843

RAPPORT ASSURANCE QUALITÉ (SUITE)

Lot							
AQ/CQ	Init	Type CQ	Groupe	Date Analysé	Valeur	Réc	Unités
			2,3,5-Triméthylnaphtalène	2016/01/25	<0.1		mg/kg

Blanc fortifié: Un blanc, d'une matrice exempte de contaminants, auquel a été ajouté une quantité connue d'analyte provenant généralement d'une deuxième source. Utilisé pour évaluer la précision de la méthode.

Blanc de méthode: Une partie aliquote de matrice pure soumise au même processus analytique que les échantillons, du prétraitement au dosage. Sert à évaluer toutes contaminations du laboratoire.

Surrogate: Composé se comportant de façon similaire aux composés analysés et ajouté à l'échantillon avant l'analyse. Sert à évaluer la qualité de l'extraction.

Réc = Récupération

Les Services exp Inc. Votre # du projet: RDP

Adresse du site: MTS-00027568-C1

Votre # de commande: 12843

PAGE DES SIGNATURES DE VALIDATION

Les résultats analytiques ainsi que les données de contrôle-qualité contenus dans ce rapport furent vérifiés et validés par les personnes suivantes:

Caroline Bougie Queges Queges	
Caroline Bougie, B.Sc. Chimiste	
Jonathan Fauvel, B.Sc, Chimiste	
.4///dea.	

Sally Lee, B.Sc., Chimiste

Maxxam a mis en place des procédures qui protègent contre l'utilisation non autorisée de la signature électronique et emploie les «signataires» requis, conformément à la section 5.10.2 de la norme ISO/CEI 17025:2005(E). Veuillez vous référer à la page des signatures de validation pour obtenir les détails des validations pour chaque division.

	Info. Facturation Compagnie: EXP Adresse: \$487 19 av		Info. R Compagn		MI.	L-0069	,																	
	Adresse: 8487 19 av		Compagn						Jmm.	ande :		13.	84:	3			Pre	ojet /	Site	MI	5-00	0027	7568	- CI
	N CALL		Adresse :				·Mc	de c	otatio	n :	-	B Z	385	34			No	o. de j	proje	:	RO	P		
	Attention de : M. GAGNE Téléphone :		Attention						(Color.)	Egg.		16 886. BBU***	utres	NOE+NOS			Libre	COT	-	I I I	HAM [300		
	Telecopieur :		Telecopie						× enois		_	0 N		§ [WE L	(S-To	8	idité	=	OB.	(F)	PA 8	1	
	Échantillonneur :		Échantillo					& GT	BIEX Phie	74		第 第 8	los-m	9	de la	Soufre	×	Tur	AHT.	N N	# [
	Je déclare par la présente compr de Maxxam telles que décrites au	endre u verso	et accepter o du présen	r les conditions ont formulaire.	et mo	dalités	(05	Ē,	624)		génères)	olitique - 13	Seleniu		NH3 C	9	ON L	DCO RWD	9	: ORG.		PA 8095	+ / spinos	
1	Identification de l'échantillon (point de prélèvement)		Туре	Prélèvement (date / heure)	à filtrer	nombre de contenants	HP (C10+C	H&G Min	COV (EPA Phénols (G	НАР	BPC (Con	Metaux ICP p	Mercure	F C	E E	Sulfure (Sh	CN-Tot.	DB0s PDS	CUM ART	Eau Potable	COLIF (Fec	Explosif E Autra (små	ode) anno	
	DUP-1	8		2015-11-03		1	×			×		×							-					
	DUP-5	X		2015-11-03		1	X			X		X												
									E		Fill.	OwE	cas	meli	65	le	13	no	ver	nb	re			
	THE PARTY OF THE PARTY OF						-	111		vian		200	Con	1										
								4						UV.								1-		
						129																		1 1
	*** Métaux 16 éléments (A	Al, Sb,	Ag, As, Ba, C	Cd, Cr, Co, Cu, Mn,	o, Ni, I	Pb, Zn), Ni, Pb, Se	, Na,	Zn).																
	Sur = Surface E = Normes/Réglement Applicables :				A m	oins d'êt	re cla	aireme	nt ide	ntifié, t	out éc					ez Max	es du	-	u	e 1	res			
	Chaîne de responsabilité Déssaisi par :			Date 9//	/ / L	ement s	/ 2	qualité	de l'e	au pot	able	2			21			-					-	GILE
	Déssaisi par: Date 2015-01-19 Heure: / 16. 20 Reçu par : jungppine Martieu																							
		LÉGENDE: " Métaux 13 éléments (A " Métaux 13 éléments (A " Métaux 16 éléments (A " Métaux 18 éléments	LÉGENDE: "Métaux 13 éléments (Ag. As. "Métaux 16 éléments (Al. Sb. Types d'eau : S = Souteraine P = Potab Sur = Surface E = Eau u Normes/Réglement Applicables: Chaîne de préspons Millité	LÉGENDE: "Métaux 13 éléments (Ag, As, Ba, Cd, Co, "Métaux 13 éléments (A, Sb, Ag, As, Ba, Cd, Co, "Métaux 16 éléments (A, Sb, Ag, As, Ba, Cd, Co, "Métaux 16 éléments (A, Sb, Ag, As, Ba, Cd, Co, "Métaux 16 éléments (A, Sb, Ag, As, Ba, Cd, Co, "Métaux 16 éléments (A, Sb, Ag, As, Ba, Cd, Co, "Métaux 16 éléments (A, Sb, Ag, As, Ba, Cd, Co, "Métaux 16 éléments (A, Sb, Ag, As, Ba, Cd, Co, "Métaux 18 éléments (A, Sb, Ag, As, Ba, Cd, Co, "Métaux 18 éléments (A, Sb, Ag, As, Ba, Cd, Co, "Métaux 18 éléments (A, Sb, Ag, As, Ba, Cd, Co, "Métaux 18 éléments (Ag, As, Ba, Cd, Co,	LÉGENDE: "Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, M "Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Co, Cu, Mn, M "Sour Surface E = Eau usée C = Captage Normes/Réglement Applicables C + Captage Chaîne de pospons faillté	LÉGENDE: "Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Co, Cu, Mn, Mo, Ni, Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Co, Cu, Mn, Mo, Ni, Types d'eau : S = Souterraine P = Potable DL = Déchet liquel Sur = Surface E = Eau usée C = Captage Normes/Réglement Applicables DL = Châîne de pespara faillité Déssaisi par : Date	LÉGENDE : " Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Zn), "Métaux 13 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, Sb, Ag, As, Ba, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, Sb, Ag, As, Ba, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, Sb, Ag, As, Ba, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, Sb, Ag, As, Ba, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, Sb, Ag, As, Ba, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, Sb, Ag, As, Ba, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, Sb, Ag, As, Ba, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, Sb, Ag, As, Ba, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Zn), "Métaux 16 éléments (Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mn, Ni, Pb, Zn), "Métaux 16 éléments (Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mn, Ni, Pb, Zn), "Métaux 16 éléments (Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mn, Ni, Pb, Zn),	Type Chairman Type Chairman Type Chairman Type Chairman Cha	LEGENDE : " Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Se, Na, Zn). Types d'eau : S = Souterraine P = Potable DL = Déchet liquide Sur = Surface E = Eau usée C = Captage Normes/Réglement Applicables : (A remplir) Chaîne de pespara faillité Déssaisi par : Date Dete Dete	LÉGENDE : " Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Zn). " Métaux 13 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Se, Na, Zn). Types d'eau : S = Souterraine P = Potable DL = Déchet lique Sur = Surface E = Eau usée C = Captage Normes/Réglement Applicables*	Type Content Type Content Content	LÉGENDE : " Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Zn), " Métaux 15 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Co, Cu, Mn, Mo, Ni, Pb, Se, Na, Zn). Types d'eau : S = Souterraine P = Potable DL = Déchet lique Déchet Capable DL = Souterraine Capable DL = Eau usée C = Capable Capab	Type Content Content	LEGENDE : " Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Zn), " Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cr, Co, Cu, Mn, Mo, Ni, Pb, Se, Na, Zn). Types d'eau : S = Souterraine P = Potable Dle = Déchet liquide Sur = Surface E = Eau usée C = Captage Normes/Réglement Applicables:	LÉGENDE : " Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Zn). Wetaux 13 éléments (Aj, Sb, Ag, As, Ba, Cd, Cr, Cu, Cu, Mn, Mo, Ni, Pb, Se, Na, Zn). Types d'eau : S = Souterraine P = Potable DL = Déchet liquide Sur = Surface E = Eau usée C = Captage Captage	LÉGENDE : " Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Zn). "Métaux 16 éléments (Al, Sb, Ag, As, Ba, Cd, Cc, Cu, Mn, Mo, Ni, Pb, Se, Na, Zn). Types d'eau : S = Souterraine P = Potable DL = Déchet liquel Sur = Surface E = Eau usée C = Captage Normes/Réglement Applicables* C = Captage Normes/Réglement Applicables* C + Captage C +	LÉGENDE : " Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Zn). White (Bernetts (A), Sb, Ag, As, Ba, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Se, Na, Zn). Types d'eau : S = Souterraine P = Potable DL = Déchet liquide Sur = Surface E = Eau usée C = Captage Normes/Réglement Applicables : (A remplir) Chaîne de pespons faillité Chaîne de pespons faillité Dessaisi par : Determinent sur la qualité de l'eau potable et ne sera pas sournis aux exigence réglement sur la qualité de l'eau potable et ne sera pas sournis aux exigence réglement sur la qualité de l'eau potable et ne sera pas sournis aux exigence réglement sur la qualité de l'eau potable. Cheine de pespons faillité Dessaisi par : Determinent sur la qualité de l'eau potable. Cheine de pespons faillité Dessaisi par : Determinent sur la qualité de l'eau potable. Cheine de pespons faillité Dessaisi par : Determinent sur la qualité de l'eau potable. Cheine de pespons faillité Cheine de pespons faill	Légende: "Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Zn).	LEGENDE : " Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Zn). " Métaux 16 éléments (Aj, Sb, Ag, As, Ba, Cd, Cr, Co, Cu, Mn, Mo, Ni, Pb, Se, Na, Zn). Types d'eau : Se Souterraine P = Potable DL = Déchet liquide Sur = Surface E = Eau usée C = Captage Normes/Réglement Applicables:	Légende: "Métaux 13 éléments (Ag. As. Ba. Cd. Cr. Cu. Sn. Mn. Mo. Ni, Pb. Zn).	LEGENDE: "Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Ni, Pb, Zn). "Métaux 16 éléments (Aj, Sb, Ag, As, Ba, Cd, Cr, Co, Cu, Mn, Mo, Ni, Pb, Se, Na, Zn). Types d'eau : Se Souterraine P = Potable DL = Déchet liquide Sur = Surface E = Eau usée C = Captage Normes/Réglement Applicables: (A remplir) Chaîne de présponsabilité Détes Chaîne de présponsabilité Chaîne de p	LEGENDE : " Métaux 13 éléments (Ag, As, Ba, Cd, Co, Cr, Cu, Sn, Mn, Mo, Nl, Pb, Zn). Souterraine P = Potable DL = Déchet liquide Sources/Réglement Applicables Le E E Eu usée E E Eu usée E E Eu usée C = Captage C = Captag	District of the prélèvement Sol d'eau Autre Gate / heure Fiftrer Contenants Q S S S S S S S S S	DUP - I Sol d'eau Autre (date / heure) filtre contienants Q

5 février 2016 No rapport : 15G049G

ANNEXE 7 : Tableau des résultats des analyses chimiques sur les sols (2 pages)

Service des infrastructures, de la voirie et des transports Direction des infrastructures Division de l'expertise et du soutien technique

15G049 - Tableau des résultats ^{1, 2} des analyses chimiques sur les sols (paramètres de dépistage de base)

No fore		1			1	450040.004	450040.004	450040.004	450040 004	450040 004	450040.000	450040.000	450040.000	450040.002	450040.003	450040.003	450040.003	450040.004	450040.004	450040.004	450040 004	450040.005
No fora		CRITÈ	RES GÉNÉ	DIQUES 4	RESC 5	15G049-001 CF-1	15G049-001 CF-1 (DUP-1)	15G049-001 CF-4B	15G049-001 CF-4B (DUP-5)	15G049-001 CF-5B	15G049-002 CF-1	15G049-002 CF-4	15G049-002 CF-5	15G049-003 CF-3	15G049-003 CF-5	15G049-003 CF-6	15G049-003 CF-6 (DUPL)	15G049-004 CF-3	15G049-004 CF-3 (DUPL1)	15G049-004 CF-3 (DUPL2)	15G049-004 CF-8B	15G049-005 CF-2
PARAMÈTRES No echantilio	UNITES	CKITER	KES GENE	KIQUES	KESC	0,00 - 0,61	0,00 - 0,61	1,93 - 2,44	1,93 - 2,44	2,59 - 3,05	0,61 - 1,22	1,83 - 2,44	2,44 - 3,05	0,91 - 1,52	GF-3	Cr-0	CF-6 (DOFL)	1,22 - 1,83	1,22 - 1,83	1,22 - 1,83	4,32 - 4,88	0,61 - 1,22
No laborate		Α	В	С	D	BS2481	BY1267	BS2482	BY1268	BS2483	BS2484	BS2485	BS2486	BS2487	BS2488	BS2489	BS2489	BS2501	BS2501	BS2501	BS2502	BS2503
MÉTAUX	ii e				<u> </u>	D32401	B11207	D32402	B11200	B32403	B32404	D32403	D32400	D32407	D32400	D32403	B32403	D32301	D32301	B32301	D32302	B32303
Argent (Ag)	mg/kg	2	20	40	200	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5		<0,5	<0,5	<0,5	<0,5	<0,5
Arsenic (As)	ma/ka	6	30	50	250	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5
Baryum (Ba)	mg/kg	200	500	2000	10000	120	160	180	170	200	85	94	180	120	150	160		110	120	110	160	120
Cadmium (Cd)	mg/kg	1,5	5	20	100	<0,5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
Chrome (Cr)	mg/kg	85	250	800	4000	28	41	110	89	110	18	43	110	34	74	110		53	45	47	97	40
Cobalt (Co)	mg/kg	15	50	300	1500	11	12	23	19	22	10	11	20	9	20	21		13	12	12	20	11
Cuivre (Cu)	mg/kg	40	100	500	2500	22	27	52	38	52	34	27	56	16	26	56		27	25	25	50	16
Etain (Sn)	mg/kg	5	50	300	1500	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	<4
Manganèse (Mn)	mg/kg	770	1000	2200	11000	420	470	580	440	540	680	360	610	420	490	660		470	450	440	580	360
Molybdène (Mo)	mg/kg	2	10	40	200	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
Nickel (Ni)	mg/kg	<u>50</u>	100	500	2500	26	32	65	49	65	27	26	65	22	36	64		35	32	33	62	23
Plomb (Pb)	mg/kg	<u>50</u>	500	1000	5000	13	10	10	13	9	13	24	9	7	7	9		9	9	10	8	6
Zinc (Zn)	mg/kg	<u>110</u>	500	1500	<u>7500</u>	63	67	100	95	100	77	72	110	65	75	110		65	59	62	98	81
PARAMÈTRES INTÉGRATEURS																						
Hydrocarbures pétroliers (C ₁₀ à C ₅₀)	mg/kg	300	700	3500	10000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100			<100	130
HYDROCARBURES AROMATIQUES P	OLYCYCLIQU	ES	•	•	•	•	•	•	•	•	•			•	•		•	•	•	•		•
Acénaphtène	mg/kg	<u>0,1</u>	10	100	<u>100</u>	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	<0,1
Acénaphtylène	mg/kg	<u>0,1</u>	10	100	<u>100</u>	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	<u>0,2</u>
Anthracène	mg/kg	<u>0,1</u>	10	100	<u>100</u>	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	<u>0,2</u>
Benzo(a)anthracène	mg/kg	<u>0,1</u>	1	10	34	<u>0,2</u>	0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	<u>0,5</u>
Benzo(a)pyrène	mg/kg	<u>0,1</u>	1	10	34	0,2	0,2	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	0,6
Benzo(b)fluoranthène	mg/kg	<u>0,1</u>	1	10	=	0,1	0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	<u>0,5</u>
Benzo(j)fluoranthène	mg/kg	<u>0,1</u>	1	10	Ξ	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	<u>0,3</u>
Benzo(k)fluoranthène	mg/kg	<u>0,1</u>	1	10	<u>.</u>	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	0,2
Benzo(c)phénanthrène	mg/kg	<u>0,1</u>	1	10	<u>56</u>	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	<0,1
Benzo(ghi)pérylène	mg/kg	<u>0,1</u>	1	10	<u>18</u>	0,1	0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	0,4
Chrysène	mg/kg	<u>0,1</u>	1	10	<u>34</u>	0,2	0,2	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	0,5
Dibenz(a,h)anthracène	mg/kg	<u>0,1</u>	1	10	<u>82</u>	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	0,1
Dibenzo(a,i)pyrène	mg/kg	<u>0,1</u>	1	10	<u>34</u>	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	<0,1
Dibenzo(a,h)pyrène	mg/kg	<u>0,1</u>	1	10	34	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	<0,1
Dibenzo(a,l)pyrène	mg/kg	<u>0,1</u>	1	10 10	34	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1	<0,1	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1			<0,1 <0.1	<0,1 <0.1
7,12-Diméthylbenzanthracène Fluoranthène	mg/kg	0,1 0,1	10	100	<u>34</u>	<0,1 0.4	<0,1 0.3	<0,1 <0.1	<0,1 <0,1	<0,1 <0.1	<0,1 <0.1	<0,1 <0,1	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1			<0,1 <0.1	<0,1 0.8
Fluoranthene	mg/kg mg/kg	0,1	10	100	100 100	<u>0,4</u> <0.1	<u>0,3</u> <0.1	<0,1	<0,1	<0,1	<0,1	<0,1 <0,1	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1	<0,1 <0.1	<0,1	<0,1			<0,1	<u>0,8</u> <0.1
Indéno(1,2,3-cd)pyrène	mg/kg	0,1	10	100	<u>100</u> <u>34</u>	0.1	0.1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	0,5
3-Méthylcholanthrène	mg/kg	0,1	1	10	<u>34</u> 150	<0,1	<0.1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1			<0,1	<u>0,5</u> <0,1
Naphtalène	mg/kg	0,1	5	50	<u>56</u>	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1 <0.1	<0,1	<0,1			<0,1	<0,1
Phénanthrène	ma/ka	0,1	5	50		0.1	0.1	<0.1	<0,1	<0.1	<0.1	<0.1	<0,1	<0,1	<0,1	<0,1	<0.1	<0.1			<0,1	0.3
Pyrène	ma/ka	0.1	10	100	<u>56</u> 100	0,1	0.3	<0.1	<0.1	<0.1	<0,1	<0.1	<0,1	<0,1	<0.1	<0,1	<0.1	<0.1			<0,1	0,3
2-Méthylnaphtalène	ma/ka	0,1	10	100	<u>56</u>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	<0,1	<0.1	<0.1	<0,1	<0.1	<0.1			<0.1	<0,1
1-Méthylnaphtalène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0,1	<0.1	<0.1	<0,1	<0,1	<0.1	<0,1	<0,1	<0.1	<0,1	<0,1	<0.1			<0,1	<0.1
1,3-Diméthylnaphtalène	mg/kg	0.1	1	10	<u>56</u>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	<0.1	<0.1			<0.1	<0.1
2,3,5-Triméthylnaphtalène	ma/ka	0.1	1	10	56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	<0,1
2,0,0 Thinethymaphiaione	mg/kg	<u> </u>		10	<u> 50</u>	\0,1	\0,1	\0,1	\0, 1	\0,1	νο, ι	\0,1	\0,1	\0,1	\0,1	\0,1	~ 0,1	\0,1		1	\0,1	\0,1

Note 1: Le certificat d'analyse a préséance sur ce tableau.

Note 2: --- = Paramètre non analysé ou aucun critère pour ce paramètre.

Note 3: DUP = Duplicata de terrain; DUPL = Duplicata de laboratoire.

Critères génériques de la Politique de protection des sols et de réhabilitation des terrains contaminés (Politique) du MDDELCC. Note 4: Note 5: Valeurs limites de l'annexe I du Règlement sur l'enfouissement des sols contaminés (RESC) - Communément appelés critères "D".

LÉGENDE :

0,3 Concentration située dans la plage "A-B" des critères du MDDELCC.
 14 Concentration située dans la plage "B-C" des critères du MDDELCC.

Concentration supérieure aux critères "C" du MDDELCC.

Concentration supérieure aux valeurs limites de l'annexe I duRèglement sur l'enfouissement des sols contaminés (RESC).

Service des infrastructures, de la voirie et des transports Direction des infrastructures Division de l'expertise et du soutien technique

15G049 - Tableau des résultats ^{1, 2} des analyses chimiques sur les sols (paramètres de dépistage de base)

	No forage		,	, ,		_	15G049-005	15G049-010
PARAMÈTRES	No échantillon ³	UNITÉS	CRITER	ES GÉNÉR	IQUES *	RESC ⁵	CF-4	CF-10
	Profondeur (m)						1,83 - 2,44	5,49 - 6,10
,	No laboratoire		Α	В	С	D	BS2504	BS2505
MÉTAUX								
Argent (Ag)		mg/kg	<u>2</u>	20	40	<u>200</u>	<0,5	<0,5
Arsenic (As)		mg/kg	<u>6</u>	30	50	250	<5	<5
Baryum (Ba)		mg/kg	<u>200</u>	500	2000	10000	72	110
Cadmium (Cd)		mg/kg	<u>1,5</u>	5	20	100	<0,5	<0,5
Chrome (Cr)		mg/kg	<u>85</u>	250	800	4000	9	62
Cobalt (Co)		mg/kg	<u>15</u>	50	300	<u>1500</u>	5	14
Cuivre (Cu)		mg/kg	<u>40</u>	100	500	2500	10	33
Etain (Sn)		mg/kg	<u>5</u>	50	300	<u>1500</u>	<4	<4
Manganèse (Mn)		mg/kg	<u>770</u>	1000	2200	<u>11000</u>	280	470
Molybdène (Mo)		mg/kg	2	10	40	200	<1	<1
Nickel (Ni)		mg/kg	<u>50</u>	100	500	2500	13	40
Plomb (Pb)		mg/kg	<u>50</u>	500	1000	5000	9	7
Zinc (Zn)		mg/kg	110	500	1500	7500	37	68
PARAMÈTRES INTÉ	GRATEURS							
Hydrocarbures pétrolie	ers (C ₁₀ à C ₅₀)	mg/kg	300	700	3500	10000	<100	<100
	AROMATIQUES POLY							
Acénaphtène		mg/kg	0,1	10	100	100	<0.1	<0.1
Acénaphtylène		mg/kg	0,1	10	100	100	<0.1	<0.1
Anthracène		mg/kg	0,1	10	100	100	<0.1	<0.1
Benzo(a)anthracène		mg/kg	0,1	1	10	34	<0.1	<0.1
Benzo(a)pyrène		mg/kg	0,1	1	10	34	<0,1	<0,1
Benzo(b)fluoranthène		mg/kg	0,1	1	10	<u>-</u>	<0,1	<0,1
Benzo(j)fluoranthène		mg/kg	0,1	1	10	=	<0,1	<0,1
Benzo(k)fluoranthène		mg/kg	0,1	1	10		<0,1	<0,1
Benzo(c)phénanthrèn	Δ	mg/kg	0,1	1	10	<u>-</u> 56	<0,1	<0,1
Benzo(ghi)pérylène	<u> </u>	mg/kg	0,1	1	10	<u>18</u>	<0,1	<0,1
Chrysène		mg/kg	0,1	1	10	34	<0,1	<0,1
Dibenz(a,h)anthracèn	Δ	mg/kg	0,1	1	10	<u>82</u>	<0,1	<0,1
Dibenzo(a,i)pyrène	· ·	mg/kg	0,1	1	10	34	<0,1	<0,1
Dibenzo(a,h)pyrène		mg/kg	0,1	1	10	<u>34</u>	<0,1	<0,1
Dibenzo(a,l)pyrène		mg/kg	0,1	1	10	34	<0,1	<0,1
7,12-Diméthylbenzant	hranàna	mg/kg	0,1	1	10	34 34	<0,1	<0,1
Fluoranthène	illacerie		0,1	10	100	100	<0,1	<0,1
Fluoranthene		mg/kg mg/kg	0,1	10	100	100	<0,1	<0,1
				10	100		<0,1	
Indéno(1,2,3-cd)pyrèn	I U	mg/kg	<u>0,1</u>	1	10	<u>34</u>	<0,1 <0,1	<0,1
3-Méthylcholanthrène Naphtalène		mg/kg	<u>0,1</u>	5	10 50	<u>150</u> 56	<0,1 <0,1	<0,1 <0,1
Phénanthrène		mg/kg	<u>0,1</u>	5			,	
		mg/kg	<u>0,1</u>		50	<u>56</u>	<0,1	<0,1
Pyrène		mg/kg	<u>0,1</u>	10	100	<u>100</u>	<0,1	<0,1
2-Méthylnaphtalène		mg/kg	<u>0,1</u>	1	10	<u>56</u>	<0,1	<0,1
1-Méthylnaphtalène		mg/kg	<u>0,1</u>	1	10	<u>56</u>	<0,1	<0,1
1,3-Diméthylnaphtalèr		mg/kg	<u>0,1</u>	1	10	<u>56</u>	<0,1	<0,1
2,3,5-Triméthylnaphta	lène	mg/kg	<u>0,1</u>	1	10	<u>56</u>	<0,1	<0,1

Note 1: Le certificat d'analyse a préséance sur ce tableau.

Note 2: --- = Paramètre non analysé ou aucun critère pour ce paramètre.

Note 3: DUP = Duplicata de terrain; DUPL = Duplicata de laboratoire.

Critères génériques de la Politique de protection des sols et de réhabilitation des terrains contaminés (Politique) du MDDELCC. Note 4: Note 5: Valeurs limites de l'annexe I du Règlement sur l'enfouissement des sols contaminés (RESC) - Communément appelés critères "D".

LÉGENDE :

0,3 Concentration située dans la plage "A-B" des critères du MDDELCC.
 14 Concentration située dans la plage "B-C" des critères du MDDELCC.

Concentration supérieure aux critères "C" du MDDELCC.

Concentration supérieure aux valeurs limites de l'annexe I duRèglement sur l'enfouissement des sols contaminés (RESC).

5 février 2016

No rapport: 15G049G

ANNEXE 8: Références (2 pages)

Résumé des critères génériques de la *Politique* (1 page)
Grille de gestion des sols contaminés excavés intérimaire (1 page)

RÉSUMÉ DES CRITÈRES GÉNÉRIQUES

Politique de protection des sols et de réhabilitation des terrains contaminés

Niveau A : Teneur de fond pour les paramètres inorganiques et limite de quantification pour les paramètres organiques.

Niveau B: Limite maximale acceptable pour un terrain à vocation résidentielle, récréative (assiette d'une aire de jeux sur une épaisseur d'au moins un mètre) et institutionnelle sensible (établissements d'enseignement primaire ou secondaire, centres de la petite enfance, garderies, centres hospitaliers, centres d'hébergement et de soins de longue durée, centres de réadaptation, centres de protection de l'enfance et de la jeunesse ou établissements de détention). Sont également inclus les terrains à vocation commerciale dans un zonage mixte (résidentiel et commercial).

Niveau C: Limite maximale acceptable pour des terrains à vocation commerciale non situés dans un zonage résidentiel ou un zonage mixte (résidentiel et commercial), pour des terrains à usage industriel, pour des terrains à vocation institutionnelle (établissements autres que ceux définis pour le niveau B), pour des terrains constituant un parc municipal ou une aire de jeux (sols situés à une profondeur de plus d'un mètre) et pour des terrains destinés à constituer l'assiette d'une chaussée ou d'un trottoir en bordure de celle-ci ou d'une piste cyclable.

Politique de protection des sols et de réhabilitation des terrains contaminés

Tableau 2 : Grille de gestion des sols contaminés excavés intérimaire

La Grille de gestion des sols contaminés excavés a été conçue pour favoriser les options de gestion visant la décontamination et la valorisation des sols et s'inscrit dans les orientations du Projet de règlement sur l'élimination des matières résiduelles et du Projet de règlement sur l'enfouissement de sols contaminés. Ces derniers étant en élaboration, il s'ensuit des difficultés d'application.

Pour palier à ces difficultés, une **grille intérimaire** a été élaborée. Elle sera en vigueur jusqu'à l'entrée en vigueur des projets de règlement identifiés précédemment.

Niveau de contamination	Options de gestion
< A	Utilisation sans restriction.
Plage A - B	 Utilisation comme matériaux de remblayage sur les terrains contaminés à vocation résidentielle en voie de réhabilitation* ou sur tout terrain à vocation commerciale ou industrielle, à la condition que leur utilisation n'ait pas pour effet d'augmenter la contamination* * du terrain récepteur et, de plus, pour un terrain à vocation résidentielle, que les sols n'émettent pas d'odeurs d'hydrocarbures perceptibles. Utilisation comme matériaux de recouvrement journalier dans un lieu d'enfouissement sanitaire (LES). Utilisation comme matériaux de recouvrement final dans un LES à la condition qu'ils soient recouverts de 15 cm de sol propre.
Plage B - C	 Décontamination de façon optimale* * * dans un lieu de traitement autorisé et gestion selon le résultat obtenu. Utilisation comme matériaux de remblayage sur le terrain d'origine à la condition que leur utilisation n'ait pas pour effet d'augmenter la contamination* * du terrain et que l'usage de ce terrain soit à vocation commerciale ou industrielle. Utilisation comme matériaux de recouvrement journalier dans un LES.
> C	 Décontamination de façon optimale* * * dans un lieu de traitement autorisé et gestion selon le résultat obtenu. Si l'option précédente est impraticable, dépôt définitif dans un lieu d'enfouissement sécuritaire autorisé pour recevoir des sols.

- Les terrains contaminés à vocation résidentielle en voie de réhabilitation sont ceux voués à un usage résidentiel dont une caractérisation a démontré une contamination supérieure au critère B et où l'apport de sols en provenance de l'extérieur sera requis lors des travaux de restauration.
- * * La contamination renvoie à la nature des contaminants et à leur concentration.
- * * * Le traitement optimal est défini pour l'ensemble des contaminants par l'atteinte du critère B ou la réduction de 80 % de la concentration initiale et pour les **composés organiques volatils** par l'atteinte du critère B. À cet égard, les volatils sont définis comme étant les contaminants dont le point d'ébullition est < 180 °C ou dont la constante de la Loi de Henry est supérieure à 6,58 x 10⁻⁷ atm-m³/g incluant les contaminants répertoriés dans la section III de la grille des critères de sols incluse à l'annexe 2 de la *Politique de protection des sols et de réhabilitation des terrains contaminés*.

Principes de base

- 1. La qualité des sols propres doit être maintenue et protégée.
- 2. La décontamination des sols contaminés excavés est privilégiée.
- 3. La dilution est inacceptable.
- 4. L'objectif de décontamination est la réutilisation des sols.

Annexe 3 Note technique relative aux inventaires complémentaires sur le niveau sonore

Le 10 novembre 2016

Mme Carole Fleury, biologiste, microbiologiste, M. Sc., Mcb. A. Conseillère scientifique

Service de l'eau - Ville de Montréal Direction de l'épuration des eaux usées 12001 Maurice-Duplessis Montréal, QC H1C 1V3

Objet : Visite nocturne complémentaire afin d'analyser l'émergence des postes de

transformation au point 2

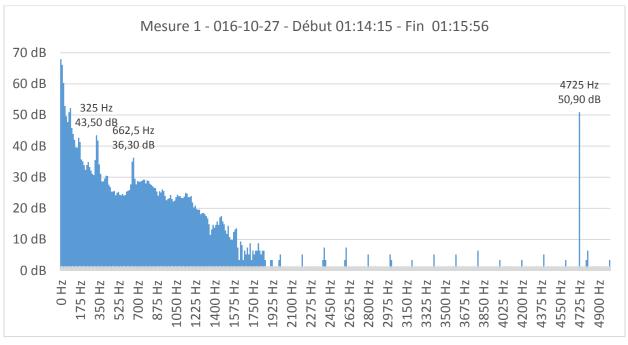
V/Réf.: 129-P-0009177-0-01-003-EI-R-0001-00

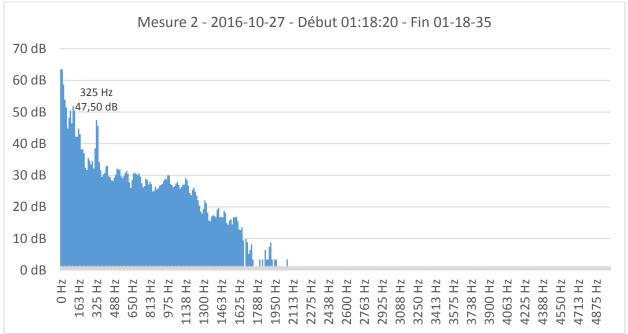
N/Réf.: RPP_1514350EIEPosteMesureBruit_R01

Mme Fleury,

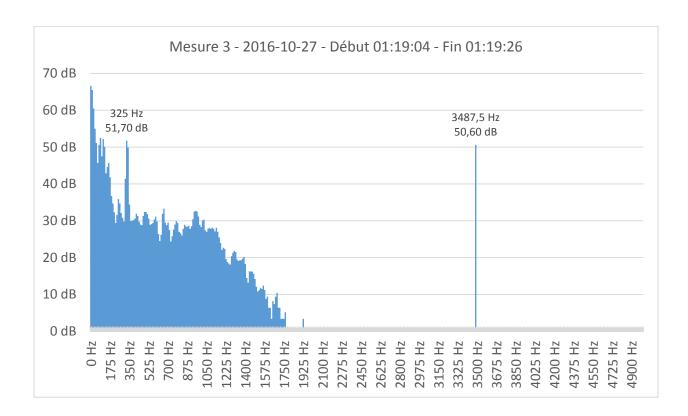
À votre demande nous avons effectué une analyse spectrale en bandes fines (Mesures FFT Fast Fourier Transform) au point 2 des relevés acoustiques du rapport 045-P-0009177-0-01-001-EN-R-0300-0A dans la nuit du 26 au 27 octobre 2016. Vous trouverez ci-après les résultats de ces mesures (3 mesures).

Par ailleurs, nous avons effectué plusieurs prises de mesures par bandes de fréquence (1/3 d'octaves) au point 2 afin de déterminer dans quelle plage de fréquences il était intéressant d'effectuer les mesures FFT ainsi qu'une écoute directe en différents points afin d'identifier les différentes sources de bruits.

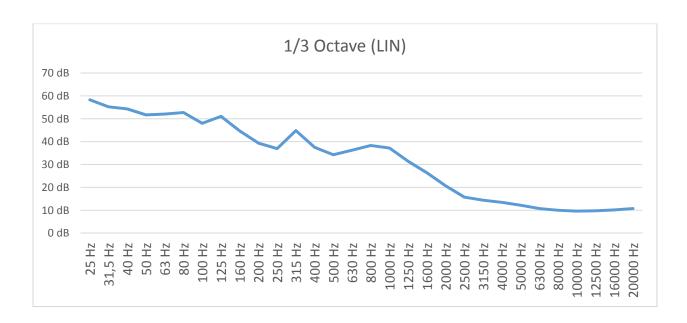

Après analyse des résultats et observations sur le terrain, il apparait que le bruit produit par le poste du Bout-de-l'Île n'a pas d'influence au point 2.


L'ensemble de ces données corrobore les conclusions du rapport précédemment émis et permettra une comparaison à posteriori en cas de litige.

Veuillez accepter, Mme Fleury, l'expression de nos sentiments distingués.

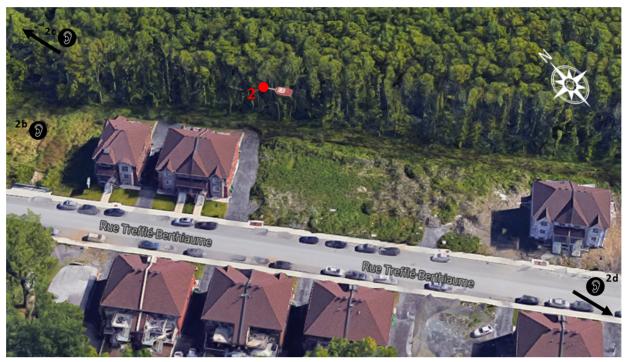

Arnaud Ducastel Professionnel en acoustique

1 RÉSULTAT DE L'ANALYSE SPECTRALE EN BANDES FINES



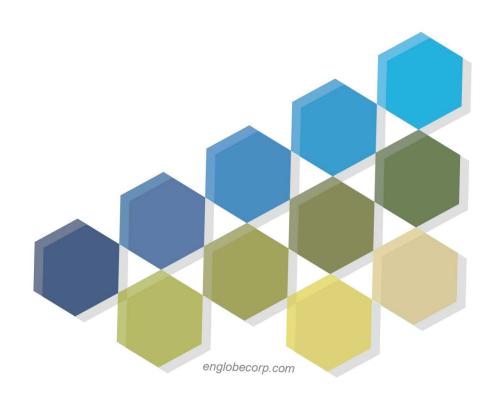
Englobe Corp. 2 de 5

2 MESURES EN 1/3 D'OCTAVE


Englobe Corp. 3 de 5

3 IDENTIFICATION DES POINTS DE RELEVÉS SONORES

			Instrun	ner	ntation			Calibration:	Niveau
Sonomètre:					_	Enregistreuse:		Début relevé:	94,0 / 94,0
	LD-824 (B\	IV-013) LD-CAL20		0 (BV-060) Olympus (BV-056)	Fin relevé:	94,1 / 94,3	
Relevé sonore									
Point n°: 2	<u>Durée:</u> environ 1h30 avec périodes d'écoute		C	Date début: 2016-10-27		Неι	Heure: 11:55		
		qualitative			Date fin: 2016-10-27		Неι	Heure: 1:20	
Conditions météo Généralement nuageux V			Ver	nts (km/h-direction)	5 km/h - NNE	T° (°	°C): 0,6	H (%): 72	


Englobe Corp. 4 de 5

	Principales sources de bruit identifiées	Commentaires
Α	Station d'épuration Jean-R. Marcotte - Bâtiment de l'incinération	Bruit émergent nettement
В	Poste Bout-de-L'île Hydro-Quebec - zone transformateurs	Aucun bruit même au point 2d (sans sonomètre)
С	Zone Frêt Métro inc.	Bruit ponctuel de chargement de camions -> non émergent ici
D	Autoroute 40 et plus généralement bruit routier	Ponctuel à cette horaire -> négligeable

Englobe Corp. 5 de 5

