ANNEXE N

Étude de risques

ÉTUDE DE RISQUES PIPELINE SAINT-LAURENT

Préparé pour:

Ultramar Ltée 2200, av. McGill Collège Montréal, Québec H3B 3L3

Préparé par: JP LACOURSIÈRE INC. 35 ave Lemoyne Repentigny, Québec J6A 3L4

> Projet No: P00227 RAPPORT FINAL Mai 2006

JP LACOURSIERE INC.

ÉTUDE DE RISQUES PIPELINE SAINT-LAURENT

Rapport final

Préparé par :		Date :
	Stéphanie Lacoursière, ing., M.Sc.A.	
Vérifié par :		Date :
	Jean-Paul Lacoursière, ing.	

TABLE DES MATIÈRES

1.	GÉNÉRALITÉS	1-1
	1.1. Objet de l'étude	1-1
	1.2. Structure du rapport	1-1
2.	DESCRIPTION DE L'OUVRAGE ET DE SON ENVIRONNEMENT	2-1
	2.1. Ultramar	2-1
	2.2. Description du projet	
	2.3. Méthode de construction	
	2.3.1. Codes, standards et réglementation	2-1
	2.3.2. Spécifications du pipeline	
	2.3.3. Pratiques d'exploitation	
	2.3.4. Résumé des paramètres du pipeline et des conditions d'exploitation	
3.	MÉTHODOLOGIE DE L'ÉTUDE DE RISQUES	3-1
	3.1. Processus d'évaluation	
	3.2. Méthodologie d'identification des dangers (HAZID) et des scénarios d'accidents	
	3.3. Méthodologie d'estimation des conséquences	
	3.4. Méthodologie d'estimation des fréquences	
	3.5. Méthodologie d'estimation/d'évaluation des risques	
	3.5.1. Critères d'acceptation en matière de risque	
4.	RÉSULTATS DE L'ÉTUDE	
	4.1. Identification des dangers et définition des scénarios	
	4.2. Historique d'accidents	4-2
	4.3. Brèches de référence	
	4.4. Identification des éléments sensibles	4-3
	4.5. Estimations des conséquences	4-3
	4.5.1. Cas particulier du risque de pollution	
	4.5.2. Pipeline terrestre – conséquences au niveau du sol	
	4.5.3. Pipeline 406,4 mm – conséquences sur les lignes Hydro-Québec	
	4.5.4. Pipeline sous fluvial	
	4.5.5. Pipeline entre Boucherville et le terminal d'Ultramar	4-9
	4.5.6. Station de pompage	
	4.5.7. Limites de la modélisation des conséquences	4-10
	4.6. Estimation des fréquences	4-11
	4.6.1. Statistiques de bris pour les pipelines de produits pétroliers	4-11
	4.6.2. Causes des fuites	
	4.6.3. Probabilité de fuite retenue	4-13
	4.6.4. Probabilité d'ignition	4-13
	4.7. Estimation /évaluation du risque	4-14
5.	PRÉVENTION	5-1
	CONCLUSION	
7.	RÉFÉRENCES	7-1
	TABLE DES FIGURES	
	ure 1 - Processus d'évaluation du risque	
Fig	ure 2 - Arbre d'événements pour scénarios de fuites sur pipeline transportant des liqu	
	inflammables tels l'essence, le carburéacteur, le diesel et le mazout	
	ure 3 - Matrice de risques	
	ure 4 - Principe ALARP	
Fig	ure 5 - Barrières de sécurité pour pipeline	5-2

TABLE DES TABLEAUX

Tableau 1 – Sommaire des structures hors sol prévues	2-4
Tableau 2 - Résultats des essais d'un système de détection de fuites*	2-7
Tableau 3 - Résumé des paramètres du pipeline	
Tableau 4 - Définition de la gravité des dangers	
Tableau 5 - Définition des classes de probabilités	
Tableau 6 - Hypothèses de brèches de référence	
Tableau 7 - Hypothèses de travail pour les simulations	4-4
Tableau 8 - Seuils d'effets	4-4
Tableau 9 - Scénario d'accidents impliquant les pipelines de 406,4 mm, 323,1 mm et	273,
mm et leurs conséquences	4-7
Tableau 10 - Impact sur les lignes d'Hydro-Québec	4-8
Tableau 11 - Scénarios d'accident impliquant le pipeline sous fluvial	4-9
Tableau 12 - Scénario d'explosion dans les stations de pompage	
Tableau 13 - Statistiques sur les causes de fuites	4-12
Tableau 14 - Fréquences de fuites	4-14
Tableau 15 - Évaluation du risque pour le nouveau pipeline entre Lévis et Boucherville	4-16
Tableau 16 - Évaluation du risque pour le pipeline existant sous fluvial	4-17
Tableau 17 - Évaluation du risque pour le pipeline existant entre le quai et la rue Shert	orooke
	4-17
Tableau 18 - Évaluation du risque pour le pipeline existant entre la rue Sherbrooke	et le
Terminal Ultramar	4-18

ANNEXES

Annexe	1 -	Tracé	privilégié	dп	nineline	Saint-I	aurent
VIIII EYE	ı -	Hace	privilegie	uu	hiheiiiie	Saii it-L	-aui Ciii

- Annexe 2 Données sur les produits transportés dans le pipeline
- Annexe 3 Détails des HAZID
- Annexe 4 Historique d'accidents
- Annexe 5 Conséquences des scénarios
- Annexe 6 Description des types de feux et planches de radiations
- Annexe 7 Localisation du pipeline Ultramar existant à Montréal-Est
- Annexe 8 Programme modèle de gestion de l'intégrité du pipeline

PRÉAMBULE

Le présent rapport a été produit sur la base des informations fournies à JP LACOURSIÈRE inc., des données (scientifiques ou techniques) disponibles et objectives et de la réglementation en vigueur.

La responsabilité de JP LACOURSIÈRE inc. ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes ou erronées.

Les avis, recommandations, préconisations ou leurs équivalents qui sont soumis par JP LACOURSIÈRE inc. dans le cadre des mandats qui lui sont confiés, peuvent aider à la prise de décision. Le rôle de JP LACOURSIÈRE inc. est d'aider à la prise de décision. Cependant, JP LACOURSIÈRE inc. n'intervient pas dans la prise de décision proprement dite. La responsabilité de JP LACOURSIÈRE inc. ne peut donc se substituer à celle du décideur.

Le destinataire utilisera intégralement les résultats inclus dans le présent rapport ou sinon de manière objective. L'utilisation de ce rapport sous forme d'extraits ou de notes de synthèse sera faite sous la seule et entière responsabilité du destinataire. Il en est de même pour toute modification qui y serait apportée.

JP LACOURSIÈRE inc. se dégage de toute responsabilité pour chaque utilisation du rapport en dehors de la destination de la prestation.

« Le présent rapport a pour objectif d'identifier des risques potentiels relativement au projet du client et d'estimer selon les données soumises, la sévérité des effets qu'ils pourraient causer dans l'éventualité d'une fuite ou d'une rupture du pipeline qui fait l'objet de l'étude. Le présent rapport a été préparé dans un contexte de simulation pour les fins de l'évaluation et de l'examen des impacts sur l'environnement du projet du client et il ne doit pas être utilisé, en tout ou en partie, hors de ce contexte pour d'autres fins que celles préalablement autorisées par le client.»

LISTE DES ACRONYMES

ACNOR/CSA	Association canadienne de normalisation / Canadian Standards Association			
CCPS	Center for Chemical Process Safety			
CONCAWE	Conservation of Clean Air and Water in Europe			
DNV	Det Norske Veritas			
GÉSIP	Groupe d'Étude de Sécurité des Industries Pétrolières, France			
HAZID	Identification des dangers (Hazard Identification)			
NFPA	National Fire Protection Association			
PHAST	Process Analysis Software Tools			
MDDEP	Ministère du développement durable, de l'environnement et des parcs du Québec			
SCADA	Système d'acquisition et de contrôle des données			

LISTE DES ABRÉVIATIONS

°C	degré Celsius
h	heure
km	kilomètre
kPa	kilopascal
kW/m ²	kilowatt par mètre carré
m	mètre
m/s	mètre par seconde
m^3	mètre cube
min	minute
ро	pouce
psig	livres par pouce carré
S	seconde

GLOSSAIRE

Arbre de conséquences possibles	Enchaînement d'événements successifs ou simultanés résultant d'une brèche, conduisant aux effets appréhendés.
Brèche de référence	Brèche type représentative, compte tenu du retour d'expérience, d'un des modes principaux de perte de confinement.
Danger	Représente la matérialisation de ce qui menace ou compromet l'existence ou l'intégrité d'une personne, d'un bien ou de l'environnement. C'est donc un état.
Élément sensible	Composante du milieu susceptible d'être affectée lors d'un accident.
Point particulier	Point identifié dans la bande d'étude et présentant un risque particulier.
Risque	Grandeur à deux dimensions associée à chaque phase précise de l'activité de l'ouvrage de transport étudié et caractérisant un événement non souhaité par sa probabilité d'occurrence (plus ou moins mesurable) et ses conséquences. C'est donc l'évaluation d'un état de danger.
Risque particulier	Risque caractérisant un événement non souhaité susceptible d'engendrer des conséquences graves, parce qu'il s'applique à une zone où des enjeux significatifs humains, socio-économiques ou environnementaux sont en présence.
Scénario d'accident	Enchaînement d'événements choisis parmi différents phénomènes physiques susceptibles de se produire compte tenu de la nature de la brèche dans la canalisation, du fluide et de ses conditions de transport, et de l'environnement avoisinant.
Scénario de référence	Scénario d'accident établi à partir d'une brèche de référence et d'un enchaînement de conséquences possibles.
Scénario plausible	Scénario de référence dont l'occurrence est suffisamment significative en un point donné de la canalisation pour justifier une étude spécifique.

SOMMAIRE

DDH Environnement et JP Lacoursière inc. ont été retenus par Ultramar Ltée « Ultramar » pour réaliser une étude de risques et préparer un plan d'urgence préliminaire pour un pipeline de 406,4 mm de diamètre qu'elle envisage construire entre Lévis et Montréal ainsi que pour la réutilisation d'un pipeline existant de 273,1 mm allant de la voie ferrée du CN à Boucherville jusqu'à la rue Sherbrooke à Montréal-Est et d'un autre de 323,1 mm allant de la rue Sherbrooke à Montréal-Est jusqu'au terminal Ultramar. Les produits transportés sont des liquides à basse tension de vapeur, donc peu volatils, incluant l'essence, le carburéacteur, le diesel et le mazout.

L'étude de risques a été effectuée par JP Lacoursière inc. et fait l'objet du présent rapport. L'objectif de l'étude est d'identifier les risques potentiels reliés à la présence du pipeline dans les divers milieux qu'il traverse et d'estimer la sévérité des effets néfastes qu'il pourrait causer sur la population, les biens matériels et l'environnement en cas de fuite ou de rupture.

Un processus d'évaluation du risque conforme à la directive du MDDEP et à la norme ACNOR/CSA Z662-03 (*Réseau de canalisations de pétrole et de gaz*) a été utilisé. Les résultats de l'évaluation du risque sont exprimés sous forme d'une matrice d'évaluation des scénarios d'accidents en fonction de leur gravité et de leur fréquence.

Les indices de gravité ont été conçus de manière à distinguer diverses conséquences pouvant affecter la population, les propriétés ou l'environnement. Quatre niveaux de gravité allant de négligeable à catastrophique ont été définis.

La fréquence des dangers est la possibilité qu'un danger identifié résulte en un accident. Les indices pour exprimer la probabilité des dangers ou leur fréquence ont été conçus de façon pratique pour être facilement compris par les personnes ayant à évaluer les risques. Quatre niveaux de fréquence allant de plusieurs occurrences sur une période de 10 ans à moins d'une occurrence sur 10 000 ans ont été définis.

Le niveau de risque d'un événement est déterminé par la combinaison de sa classe de probabilité et son niveau de gravité. Les niveaux de risques utilisés sont :

- Risques de niveau 1 : risques limités;
- Risques de niveau 2 : risques à surveiller ou à réduire, d'autant plus qu'ils sont limitrophes de risques de niveau 3;
- Risques de niveau 3 : risques élevés. Ce niveau de risques est inacceptable et ne doit pas être observé au sein de l'installation.

Les risques ont été évalués pour 4 segments, soit :

- Pipeline projeté de 406,4 mm de diamètre entre Lévis et Boucherville;
- Section de conduite sous fluviale existante de 273,1 mm de diamètre entre Boucherville et les installations portuaires d'Ultramar situées près des rues Hinton/Denis à Montréal-Est;
- Section de conduite existante terrestre de 273,1 mm de diamètre entre Boucherville et un terrain de Bitumar situé au nord de la rue Sherbrooke à Montréal-Est;
- Section de conduite existante de 323,1 mm de diamètre entre le terrain de Bitumar au nord de la rue Sherbrooke et le terminal Ultramar à Montréal-Est.

Aucun scénario d'accident de niveau 3 (risque élevé) n'a été identifié. Cependant, plusieurs scénarios de niveau 2 ont été identifiés. L'objectif global est de réduire ces risques aux niveaux les plus bas réalisables tout au long de la durée de vie du projet. Les niveaux les plus bas réalisables sont définis par le principe ALARP (As Low as Reasonably Practicable ou « aussi bas que raisonnablement possible de faire »).

Selon les données disponibles et l'analyse qui en a été faite, le risque est acceptable pour le pipeline et les équipements associés.

1. GÉNÉRALITÉS

1.1. OBJET DE L'ÉTUDE

DDH Environnement et JP Lacoursière inc. ont été retenus par Ultramar pour préparer une étude de risques et un plan d'urgence préliminaire pour un pipeline de 406,4 mm de diamètre qu'elle envisage construire entre Lévis et Montréal-Est ainsi que pour l'utilisation d'un pipeline existant de 273,1 mm de diamètre allant de la voie ferrée du CN à Boucherville jusqu'à la rue Sherbrooke à Montréal-Est et d'un autre de 323,1 mm de diamètre allant de la rue Sherbrooke à Montréal-Est jusqu'au terminal Ultramar. L'étude de risques a été effectuée par JP Lacoursière inc. et fait l'objet du présent rapport. L'objectif de cette étude est d'identifier les risques potentiels reliés à la présence du pipeline dans les divers milieux qu'il traverse et d'estimer la sévérité des effets néfastes qu'il pourrait causer sur la population, l'environnement et les biens matériels en cas de fuite ou de rupture. Cette étude permet aussi de fournir de l'information sur la probabilité d'occurrence des événements dangereux identifiés.

1.2. STRUCTURE DU RAPPORT

Comme suite à cette brève introduction, la section 2 de ce rapport fournit une description de l'ouvrage et de son environnement. La section 3 décrit la méthodologie utilisée pour cette étude, incluant la sélection des scénarios de fuites et des modèles mathématiques utilisés pour l'analyse des conséquences. La section 4 présente les résultats de l'étude de risques. La section 5 présente des pistes pour la prévention des fuites, la section 6 présente les conclusions et la section 7 regroupe les références utilisées.

2. DESCRIPTION DE L'OUVRAGE ET DE SON ENVIRONNEMENT

2.1. ULTRAMAR

Ultramar est une filiale en propriété exclusive de Valero Energy qui compte 18 raffineries aux États-Unis, au Canada et dans les Caraïbes, d'une capacité de production totale supérieure de 3 300 000 barils par jour. La raffinerie Jean-Gaulin à Lévis, près de Québec, a une capacité de production actuelle de 215 000 barils par jour où elle produit, entre autres, de l'essence, du carburant diesel, du carburéacteur et du mazout domestique.

2.2. DESCRIPTION DU PROJET

En raison d'une demande accrue de produits pétroliers raffinés dans la région de Montréal, Ultramar envisage la construction d'un pipeline qui relierait, via la rive sud du Saint-Laurent, sa raffinerie de Lévis, à son centre de distribution de Montréal-Est. L'Annexe 1 présente le tracé privilégié. Les produits transportés seraient des liquides à basse tension de vapeur, donc peu volatils. Ce sont :

- l'essence (hiver super et régulier, été super et régulier);
- le carburéacteur;
- le diesel; et,
- le mazout.

L'Annexe 2 présente les données techniques des produits transportés dans le pipeline.

2.3. MÉTHODE DE CONSTRUCTION

2.3.1. Codes, standards et réglementation

Le pipeline sera conçu, construit, mis à l'essai et exploité selon la norme canadienne, ACNOR/CSA Z662-03 'Réseau de canalisations de pétrole et de gaz'. (CSA (2003)).

2.3.2. Spécifications du pipeline

2.3.2.1. Canalisation

Les spécifications techniques de la conduite de 406,4 mm (16 po) de diamètre seront les suivantes :

- Longueur totale du pipeline souterrain : environ 245 kilomètres de nouvelles conduites, selon le tracé retenu;
- Diamètre extérieur de la conduite : 406,4 mm (16 po);
- Épaisseur minimale de la paroi de la conduite : 6,26 mm;
- Acier au carbone Nuance 359 ou 414 MPa;
- Largeur de la servitude permanente : 18 mètres;
- Nombre de stations de pompage : initialement 2 (dont la première est située sur les terrains de la raffinerie de Lévis et la seconde à Saint-Majorique-de-Grantham);

Conduites existantes utilisées :

- Pipeline de 273,1 mm de diamètre, d'une longueur de 5,8 km traversant le fleuve Saint-Laurent entre Boucherville et le quai d'Ultramar à Montréal-Est;
- Pipeline de 273,1 mm, d'une longueur de 1,8 km entre le quai d'Ultramar et la rue Sherbrooke à Montréal-Est;
- o Pipeline de 323,1 mm, d'une longueur de 1,9 km entre la rue Sherbrooke et le terminal d'Ultramar à Montréal-Est.

Tous les joints du pipeline seront soudés et examinés sur toute leur circonférence par radiographie, selon le standard ACNOR/CSA Z-662-03.

2.3.2.2. Pression de conception

Les pressions maximales de conception et d'exploitation seront de 10 200 kPa (1 480 psig).

Pour s'assurer que la pression d'exploitation ne dépassera pas le point de consigne, des transmetteurs de pression seront installés sur toutes les vannes de sectionnement et leurs données seront transmises et analysées en continu par un système d'acquisition et de contrôle des données « système SCADA ». Une alarme sera déclenchée lorsque la pression sera supérieure à 10 000 kPa.

Toutes les sections du pipeline seront soumises à des essais sous pression avant la mise en service. La pression minimum lors de ces essais sera égale à 125% de la pression maximale d'exploitation, conformément à la norme ACNOR/CSA Z662-03.

2.3.2.3. Recouvrement du pipeline

La profondeur minimale d'enfouissement est de 1,2 mètre en milieu cultivé et 0,9 mètre en milieu boisé.

Dans les terrains rocheux, la conduite sera déposée sur un lit de sable ou sur des coussinets de sable ou de polystyrène, puis recouverte d'une couche de sable ou d'un dispositif de protection mécanique contre les roches afin de lui assurer un coussin de protection. De plus, au croisement des cours d'eau réglementés et des fossés, des dalles de protection en béton seront placées au-dessus du pipeline afin de protéger le pipeline lors des travaux de nettoyage et d'entretien. Dans les terrains humides, des cavaliers de lestage en béton servant à assurer une flottabilité négative seront déposés sur la conduite.

En autant qu'il soit possible lors de croisement d'infrastructures existantes tels que aqueduc, câbles souterrains, drains agricoles, la conduite sera toujours installée sous les infrastructures pour éviter toute interférence avec le pipeline lors de l'entretien ou la réparation de ces installations.

Mentionnons enfin que pour toutes les traverses d'obstacles tels que cours d'eau, routes et voies ferrées réalisées en forage, l'épaisseur de la paroi de la conduite sera supérieure pour tenir compte des contraintes imposées à la conduite lors de son installation.

La conduite d'acier sera recouverte à l'usine d'une couche de protection contre la corrosion

sur toute sa longueur. À certains endroits, telles les traverses de rivières et de routes par forage horizontal ou directionnel, un recouvrement anti-abrasif additionnel sera appliqué sur la conduite pour éviter qu'elle ne soit endommagée lors des travaux visant à l'introduire sous l'obstacle à franchir.

Afin de protéger le pipeline, un système de protection cathodique, soit par redresseur avec lits d'anodes, soit par anodes sacrificielles, sera installé.

2.3.2.4. Postes de pompage

Deux stations de pompage sont prévues pour acheminer les produits pétroliers par le pipeline, la première étant située sur les terrains de la raffinerie à Lévis et l'autre à Saint-Majorique-de-Grantham.

La capacité du pipeline serait de 100 000 barils par jour. Ce débit pourrait être augmenté ou diminué légèrement en fonction de la demande saisonnière.

Dans le futur, la capacité maximale du pipeline devrait atteindre 170 000 barils par jour. Deux nouvelles stations localisées à Notre-Dame-de-Lourdes et Varennes s'ajouteraient alors à celles de Lévis et de Saint-Majorique-de-Grantham.

2.3.2.5. Vannes de sectionnement

Vingt-sept vannes de sectionnement devraient être incorporées au pipeline. Une vanne de sectionnement sera localisée de part et d'autre de chaque cours d'eau majeur. Le Tableau 1 indique la localisation proposée de ces vannes de sectionnement. Il faut noter que le tracé n'est pas définitif et qu'il pourrait donc y avoir des modifications de ces localisations.

2.3.2.6. Gares de raclage

Le projet Pipeline Saint-Laurent prévoit également la construction de gares de raclage afin de vérifier l'intégrité de la conduite en période d'exploitation. Les gares de raclage sont des installations qui permettent d'insérer et de récupérer des outils d'inspection électroniques internes permettant de vérifier l'intégrité de la conduite.

Il est prévu que six gares de raclage seront installées sur le réseau. Quatre d'entre elles seront situées à l'intérieur de sites industriels existants. Ces gares sont celles qui seront implantées au poste de pompage de Lévis, au quai d'Ultramar à Montréal-Est (si requis), au point de réception du terminal de Montréal-Est ainsi que celle qui sera requise au point de raccordement entre les conduites de 273,1 mm de diamètre et de 323,1 mm de diamètre située sur les terrains de Bitumar à Montréal-Est. Une cinquième gare de raclage sera localisée sur le terrain du poste de pompage prévu dans le secteur de Saint-Majorique-de-Grantham alors qu'une dernière gare de raclage sera requise au point de raccordement avec la conduite sous-fluviale à Boucherville.

Tableau 1 – Sommaire des structures hors sol prévues

Structures hors sol		Municipalité	Feuillet du Volume 4	Localisation
Poste	es de pompage			
P1		Lévis	2	Propriété d'Ultramar
P2 (fu	ıtur)	Notre-Dame-de-Lourdes	44-45	À l'ouest de la route 265
	Scénario 1	Saint-Majorique-de- Grantham	86	À l'est ou à l'ouest du boulevard Saint-Joseph (route 143)
P3 *	Scénario 2	Saint-Majorique-de- Grantham	87	À l'est ou à l'ouest du boulevard Lemire Ouest
	Scénario 3	Saint-Majorique-de- Grantham	89	À l'est ou à l'ouest du Cinquième Rang
P4 (fu	ıtur)	Varennes	131	À l'ouest du boulevard Lio- nel-Boulet

Note: * Trois scénarios distincts sont présentement à l'étude mais un seul sera retenu.

Structures hors sol	Municipalité	Feuillet du Volume 4	Localisation		
Vannes de sectionne	Vannes de sectionnement				
V1	Lévis	2	Propriété d'Ultramar (P1)		
V2 (rivière Etche- min)	Lévis	2	Près de la rivière Etchemin Localisation à déterminer suite au choix du tracé		
V3 (rivière Chau- dière)	Lévis	10	À l'est de l'avenue du Sault		
V4 (rivière Chau- dière)	Lévis	10	À l'est de la route Saint-André (route 171)		
V5 (rivière Beaurivage)	Saint-Gilles	17	À déterminer (côté est de la rivière Beauri- vage)		
V6 (rivière Beauri- vage)	Saint-Gilles	17	À l'ouest du chemin Graig (route 269)		
V7	Dosquet	28	À l'ouest de la route Saint- Joseph (route 271)		
V8 (rivière Bécan- cour)	Laurierville	40	À l'est du chemin de la Grosse Île (route 218)		
V9 (rivière Bécan- cour)	Laurierville	40	À déterminer (côté ouest de la rivière Bécan- cour)		
V10	Notre-Dame-de-Lourdes	44-45	À l'intérieur des limites du poste de pompage (P2)		
V11	Saint-Rosaire	57	À l'est de la route de la Carpe		
V12 (rivière Nicolet)	Saint-Léonard-d'Aston	72	À l'est du rang de la Chaussée		
V13 (rivière Nicolet)	Saint-Léonard-d'Aston	72	À l'ouest du rang du Moulin Rouge		
V14 (rivière Nicolet Sud-Ouest)	Notre-Dame-du-Bon- Conseil	76	À l'est du chemin du Pont Mit- chell		
V15 (rivière Nicolet Sud-Ouest)	Notre-Dame-du-Bon- Conseil	77	À l'ouest du 10 ^e Rang de Wendover		

Structures hors sol	Municipalité	Feuillet du Volume 4	Localisation
Vannes de sectionne	ement (suite)		
V16 (rivière Saint- François)	Drummondville	83	À l'est du chemin Sainte-Anne
V17 (rivière Saint- François)	Drummondville	84	À l'ouest du chemin du Golf
V18	Saint-Marjorique-de- Grantham	86-87-89	À l'intérieur des limites du poste de pompage Selon le scénario du poste de pompage qui sera retenu (P3)
V19	Sainte-Hélène-de-Bagot	99	À l'ouest du rang Saint-Augustin
V20 (rivière Yamas- ka)	Saint-Hyacinthe	109	À l'est du chemin du Rapide- Plat-Sud
V21 (rivière Yamas- ka)	Saint-Hyacinthe	110	À l'ouest du chemin du Rapide- Plat-Nord
V22 (rivière Riche- lieu)	Saint-Charles-sur- Richelieu	121	À l'est du chemin des Patriotes (route 133)
V23 (rivière Riche- lieu)	Saint-Marc-sur-Richelieu	122	À l'ouest de la route 223
V24	Varennes	131	À l'intérieur des limites du poste de pompage (P4)
V25	Boucherville	135	Dans le secteur du point de rac- cordement avec la conduite sous-fluviale
V26	Boucherville	136	À l'est du boulevard Marie- Victorin (Vanne existante)
V27	Montréal-Est	138	Au quai d'Ultramar (Vanne existante)
V28	Montréal-Est		Sur le terrain de Bitumar
V29	Montréal-Est		Au point de réception du termi- nal d'Ultramar
Gares de raclage			
G1	Lévis	2	Propriété d'Ultramar (P1)
G2	Saint-Majorique-de- Grantham	86-87-89	Selon le scénario du poste de pompage retenu (P3)
G3	Boucherville	135	Dans le secteur du point de rac- cordement avec la conduite sous-fluviale
G4	Montréal-Est	Annexe H, Volume 3	Au quai d'Ultramar. Une unité de dépressurisation sera installée à cet endroit (si requis).
G5	Montréal-Est	Annexe H, Volume 3	Sur le terrain de Bitumar
G6	Montréal-Est	Annexe H, Volume 3	Au point de réception du terminal d'Ultramar

2.3.3. Pratiques d'exploitation

2.3.3.1. Système de surveillance

Le centre de contrôle sera situé à Montréal-Est avec un centre de relève à la raffinerie Jean-Gaulin à Lévis. Il recevra toutes les données de l'instrumentation installée dans les stations de pompage et sur les vannes localisées le long du pipeline. Ces données permettront aux contrôleurs du pipeline d'en surveiller l'exploitation et de contrôler à distance des équipements spécifiques tels que les pompes et les vannes de sectionnement. Des transmetteurs de pression seront installés sur toutes les vannes de sectionnement.

Les contrôleurs du pipeline, formés spécifiquement pour identifier toute anomalie pouvant survenir dans le cadre de l'exploitation, seront en constante communication avec les employés responsables de l'entretien des installations du pipeline. Si un problème était détecté, les employés du centre de contrôle pourront immédiatement prendre action pour corriger la situation. Dans l'éventualité d'une fuite, ils pourront arrêter les pompes et envoyer un signal aux vannes de sectionnement appropriées pour en commander la fermeture.

Les vannes de sectionnement seront conçues pour se fermer complètement en 1 minute après la réception du signal.

2.3.3.2. Détection de fuite

Le pipeline Saint-Laurent sera équipé d'un système SCADA à la fine pointe de la technologie. Ce système sera muni d'un logiciel de détection des fuites capable de détecter des fuites de l'ordre de quelques mètres cubes par heure. En effet, tel qu'illustré au Tableau 2, des essais récents¹ démontrent que des fuites de l'ordre de 2 à 3 m³/h peuvent être détectées dans des temps relativement courts. Pour effectuer cette tâche, le système analyser en temps réel toutes les données de pression, températures et débits provenant des équipements installés sur le parcours du pipeline. Comme mentionné précédemment, le contrôleur qui recevra l'information sur l'apparition d'une fuite, devra évaluer le problème et prendre des mesures correctives telles que:

- Arrêter les pompes aux stations de pompage;
- Fermer les vannes de sectionnement;
- Identifier la cause de l'anomalie;
- S'assurer que tout est sous contrôle avant de réactiver les pompes.

_

¹ 'Liquid Pipeline Leak Detection: The Esso Experience', Pipeline & Gas Journal, février 2004.

Tableau 2 - Résultats des essais d'un système de détection de fuites*

Importance de la fuite (m³/h)	Temps de détection (min)	Mode d'écoulement du pipeline
2	12	écoulement interrompu
3	61	écoulement variable
9,6	6	écoulement régulier
9,9	5	écoulement régulier
10,2	5	écoulement régulier
11,4	23	démarrage
13,6	3	écoulement régulier
18,5	3	écoulement régulier
18,6	2	écoulement interrompu
24	1	écoulement interrompu
29	5	écoulement variable

^{*}Ces données sont tirées d'un article paru dans « Pipeline and Gas Journal » 1

2.3.3.3. Patrouille aérienne et terrestre

Les responsables du Pipeline Saint-Laurent patrouilleront le pipeline périodiquement dans le but d'observer des conditions ou des activités sur le pipeline et à proximité de son emprise qui pourraient en affecter la sécurité et l'exploitation.

Une attention particulière sera portée aux éléments suivants:

- Activités de construction;
- Érosion du sol;
- Glissement de terrain;
- Affaissement;
- Perte de recouvrement;
- Indices de fuites.

Comme le pipeline traversera plusieurs éléments sensibles, Ultramar mettra en place un programme de prévention rigoureux comprenant des inspections aux fréquences suivantes :

- Patrouille aérienne : hebdomadaire en été et bimensuelle en hiver;
- Patrouille à pied: annuelle;
- Inspection des sites de vannes hors terre : mensuelle;
- Inspection des postes de pompage : hebdomadaire.

2.3.3.4. Système de contrôle de la corrosion

Le pipeline sera recouvert d'une couche de protection contre la corrosion sur toute sa longueur. Le pipeline sera également protégé par un système de protection cathodique.

Toute conduite d'acier enfouie dans le sol (gazoduc, oléoduc, aqueduc, etc.) est susceptible de capter l'électricité naturellement induite dans le sol et de subir des dommages sous forme de corrosion si cette électricité n'est pas canalisée adéquatement. Afin de protéger le pipeline, un système de protection cathodique, soit par redresseur avec lits d'anodes, soit par anodes sacrificielles, sera installé systématiquement le long du pipeline. Ce système sera conçu en prenant en considération les effets d'induction générés par les lignes électriques ainsi que les risques de mise à la terre par défauts pouvant survenir sur les lignes électriques à proximité.

En phase d'exploitation, des lectures de potentiel seront prises régulièrement afin de vérifier l'efficacité du système de protection. Des lectures relatives au fonctionnement des redresseurs seront prises mensuellement tandis que des relevés de potentiel aux prises d'essais seront effectués sur une base annuelle. Toute anomalie sera analysée et des correctifs seront apportés sans délai en accord avec le programme en vigueur de gestion de l'intégrité du pipeline.

2.3.3.5. Signalisation

Des panneaux indiquant la présence du pipeline et de l'emprise, communiquant le nom de l'exploitant du pipeline ainsi que le numéro de téléphone pour le joindre, seront disposés tout le long de l'emprise du pipeline. Ces panneaux sont installés dans le but de réduire la possibilité de dommages et d'interférence.

La disposition de ces panneaux le long de l'emprise du pipeline prendra en compte la densité de la population, l'utilisation et la nature du terrain, les clôtures, la facilité d'accès à l'emprise par le public et le besoin d'informer la population. Des panneaux seront également placés de part et d'autre des autoroutes, routes, chemins de fer et cours d'eau majeurs franchis par le pipeline.

2.3.3.6. Prévention des dommages

Afin de prévenir les dommages possibles à la conduite lors de travaux par des tiers, Ultramar assurera une gestion rigoureuse des activités réalisées sur l'emprise. Une permission écrite devra préalablement être obtenue auprès d'Ultramar par toute personne désirant réaliser des travaux sur l'emprise du pipeline. À cet effet, Ultramar a conçu un guide de gestion de l'emprise identifiant les activités permises sans autorisation et celles exigeant des permissions. Ce guide sera remis à tous les propriétaires dont la propriété sera traversée par le pipeline.

De plus, Ultramar est membre d'Info-Excavation, un organisme sans but lucratif dont la mission est de prévenir les dommages aux infrastructures souterraines en fournissant une source de référence pour localiser les infrastructures des services d'utilité publique.

2.3.3.7. Plan d'urgence

Bien que le transport par pipeline de produits pétroliers à basse tension de vapeur soit reconnu comme efficace et sécuritaire et que la possibilité de déversement soit très faible, Ultramar estime que ce type de transport peut représenter un certain niveau de risque d'accident et qu'il est toujours possible qu'une situation d'urgence puisse survenir. Dans ce contexte, Ultramar mettra en place diverses mesures visant à atténuer les effets d'une fuite sur l'environnement et la population environnante.

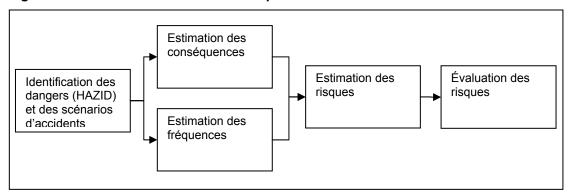
Ultramar dispose déjà de plans de mesures d'urgence pour faire face aux divers événements pouvant survenir dans le cadre de l'exploitation de ses installations de Lévis et de Montréal-Est. En se basant sur la structure d'intervention générale prévue dans ces plans, un plan spécifique sera élaboré de façon à couvrir l'exploitation du pipeline. À ce titre, Ultramar a développé un plan de mesures d'urgence préliminaire qui servira de base pour l'élaboration du plan final.

2.3.4. Résumé des paramètres du pipeline et des conditions d'exploitation

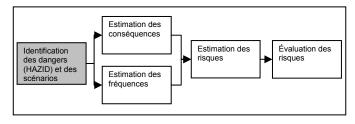
Le Tableau 3 est un résumé des paramètres du pipeline ainsi que de ses conditions d'exploitation.

Tableau 3 - Résumé des paramètres du pipeline

Diamètre externe du pipeline	406,4 mm (16 po)	
	273,1 mm (10 po) pour la traversée du Saint-Laurent	
	273,1 et 323,1 entre le quai et le terminal d'Ultramar	
Longueur totale de Lévis à Montréal	Environ 245 kilomètres, selon le tracé retenu	
Pression maximale d'exploitation	10 200 kPa	
Température de conception	Souterraine : -5°C à 40°C	
	Hors terre : -40°C à +40°C	
Température normale d'exploitation	Entre 3°C et 15°C	
Matériel et épaisseur	Acier au carbone Nuance 359 ou 414 MPa	
Capacité	100 000 barils/jour (Future 170 000 barils/jour)	
Substances transportées	 Essence (hiver super et régulier, été super et régulier) 	
	 Carburéacteur 	
	Diesel	
	Mazout	
Largeur de l'emprise	■ 18 m	


L'Annexe 2 présente les données physiques des substances transportées par le pipeline.

3. MÉTHODOLOGIE DE L'ÉTUDE DE RISQUES


3.1. PROCESSUS D'ÉVALUATION

Le processus d'évaluation du risque est illustré à la Figure 1. Ce processus est conforme à la directive du MDDEP du gouvernement du Québec et à la norme ACNOR/CSA Z662-03. En premier lieu, les dangers reliés au pipeline sont identifiés, ce qui permet de définir les scénarios d'accidents. Par la suite, on estime les conséquences potentielles avec les outils de modélisation appropriés puis on évalue les fréquences de ces scénarios basés sur un historique d'accident. Finalement, on estime et évalue les risques.

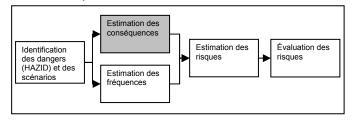
Figure 1 - Processus d'évaluation du risque

3.2. MÉTHODOLOGIE D'IDENTIFICATION DES DANGERS (HAZID) ET DES SCÉNARIOS D'ACCIDENTS

Cette étape vise à identifier les sources de dangers reliés au pipeline. Une session HAZID (hazard identification) a été tenue avec l'objectif d'identifier des sources de danger externes et internes au pipeline, leurs causes, ainsi

que l'identification des mesures d'atténuation qui seront mises en place.. Cette identification tient compte autant des sources chroniques de danger engendrées par le fonctionnement normal ou quasi normal de l'ouvrage que des sources de danger de caractère accidentel. Il faut souligner que les mesures de prévention associées aux sources chroniques de danger sont généralement bien encadrées par les règles de l'art, les normes et la réglementation.

L'identification des dangers a été établie selon les critères suivants :


- 1. Substances transportées: propriétés chimiques et physiques;
- 2. Canalisation et équipements annexes: construction et exploitation;
- 3. Interaction fluide canalisation
- 4. Interaction environnement canalisation

Le niveau théorique de recensement des sources de danger est quasi illimité. En pratique, on doit le limiter aux « apports » qui pourront être réellement exploités lorsqu'une analyse plus fine n'apporterait effectivement aucun progrès significatif. Le niveau de résolution est atteint lorsque l'on peut évaluer l'occurrence des événements considérés à partir des enseignements tirés d'accidents ou d'incidents survenus à des ouvrages comparables.

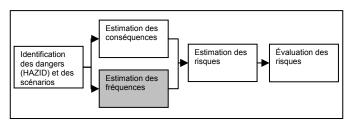
À l'aide des données obtenues dans le cadre de la session HAZID et de l'analyse des enseignements tirés d'accidents ou d'incidents survenus sur des ouvrages comparables, des scénarios d'accidents sont établis avec des brèches de référence. Les résultats de l'analyse HAZID sont présentés en Annexe 3.

3.3. MÉTHODOLOGIE D'ESTIMATION DES CONSÉQUENCES

Les conséquences des scénarios d'accidents identifiés à la première étape ont été

évaluées à l'aide du logiciel *PHAST* v.6.5 de DNV, un outil reconnu pour ce genre d'évaluation. Les liquides inflammables tels ceux transportés par le Pipeline Saint-Laurent, lorsque projetés dans l'atmosphère à partir

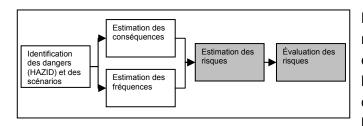
d'une canalisation sous pression, tel un pipeline, sont différemment affectés par la topographie du terrain, le type de sol et la présence de structures souterraines, tels les égouts.


Lorsqu'un liquide inflammable sous pression est libéré à l'atmosphère à travers une brèche, il peut se comporter de plusieurs façons en fonction de divers facteurs tels que la direction de la fuite, les obstacles rencontrés, l'allumage, etc. La Figure 2 présente un arbre d'événements pour un scénario de fuite mettant en cause des liquides inflammables tels ceux transportés par le Pipeline Saint-Laurent. Toutes les connections sur cette figure sont du type 'ou'.

Lorsque la fuite ne rencontre pas d'obstacle, elle produit un jet susceptible de s'enflammer, créant ainsi ce qu'on appelle un feu en chalumeau. Si le jet ne s'enflamme pas, il peut soit se transformer en aérosol, créant ainsi un nuage de vapeurs qui ou bien se dispersera, s'enflammera ou se déposera (rainout) au sol, soit produire une flaque qui ou bien s'enflammera (feu de flaque) ou s'évaporera pour former un nuage de vapeurs, lui-même susceptible de s'enflammer.

En revanche, si la vitesse de sortie n'est pas élevée (faible pression et brèche relativement large), il n'y aura pas de formation d'aérosol mais plutôt apparition d'une flaque au sol, laquelle pourra (feu de flaque) s'enflammer ou s'évaporer en créant un nuage de vapeurs susceptible de s'enflammer. La flaque pourrait aussi se déverser dans les égouts avec possibilité de pollution et d'explosion.

Par contre, si la fuite rencontre un obstacle, il y a également formation d'une flaque pouvant soit s'enflammer, soit s'évaporer avec formation d'un nuage de vapeurs lui-même susceptible de s'enflammer. La flaque pourrait aussi pénétrer dans les égouts avec risque de pollution et d'explosion.


3.4. MÉTHODOLOGIE D'ESTIMATION DES FRÉQUENCES

Les scénarios d'accidents retenus pour une évaluation quantitative de leurs conséquences ont également été soumis à une évaluation de leurs fréquences d'occurrence. Ces fréquences ont été estimées en se basant sur

les fréquences de bris observés dans l'industrie pour des pipelines de service similaire.

3.5. MÉTHODOLOGIE D'ESTIMATION/D'ÉVALUATION DES RISQUES

La matrice pour l'évaluation des risques est utilisée pour déterminer et exprimer l'évaluation des risques et l'efficacité des contrôles pour les dangers identifiés. La matrice est basée sur les cycles de vie

actuellement utilisés par l'industrie et sert à hiérarchiser les dangers potentiels. La matrice de risques utilisée est illustrée à la Figure 3. Elle est une adaptation du NFPA 1600 (95). Les classes de probabilité sont inspirées de la réglementation française et sont utilisées, entre autres, par certains transporteurs pour leurs installations. Le niveau de risque d'un événement est déterminé par la combinaison de sa classe de probabilité et de son niveau de gravité. Les niveaux de risques sont :

- Risques de niveau 1 : risques limités (jaune) ;
- Risques de niveau 2 : risques à surveiller ou à réduire, d'autant plus qu'ils sont limitrophes de risques de niveau 3 (orange) ;
- Risques de niveau 3 : risques élevés. Ce niveau de risques est inacceptable et ne doit pas être observé au sein de l'installation (rouge).

Figure 2 - Arbre d'événements pour scénarios de fuites sur pipeline transportant des liquides inflammables tels l'essence, le carburéacteur, le diesel et le mazout

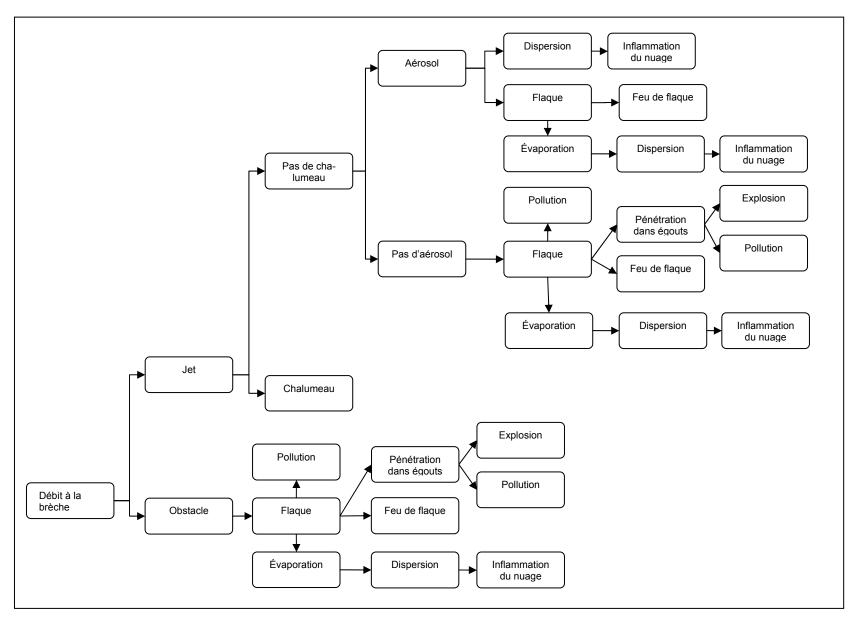


Figure 3 - Matrice de risques

	FRÉQUENCE				
тi		1	2	3	4
GRAVITÉ	4	2	2	3	3
RA	3	1	2	2	3
Ö	2	1	1	2	2
	1	1	1	1	2

La gravité des dangers est une évaluation d'un événement résultant de sa matérialisation. Les indices de gravité ont été conçus pour distinguer diverses conséquences telles que:

- 1) Population : intégrité physique (santé et sécurité) des personnes dans le secteur atteint au moment de l'incident;
- 2) Environnement: impacts environnementaux;
- 3) Propriétés : dommages à la propriété et aux infrastructures.
- Le Tableau 4 définit le niveau de gravité des dangers.

Tableau 4 - Définition de la gravité des dangers

Niveau de gravité	Public	Environnement	Propriétés
4 - Catastrophique	Décès ou blessure causées par l'exposition directe.	 Déversement majeur, non contenu, de matières dangereuses. Les espèces régionales / sousespèces sont éliminées. Contamination d'aquifère et de l'eau potable. 	 Dommages majeurs aux propriétés nécessitant l'abandon des bâtiments. Panne d'électricité majeure nécessitant plusieurs jours de réparation.
3 - Critique	 Incapacités permanentes; Blessures sévères; Maladies graves. 	Déversement mineur, non contenu de matières dangereuses. Dommages locaux ou dommages aux espèces ou sous-espèces locales. Contamination de puits d'eau potable individuels.	 Dommages importants. Panne d'électricité inférieure à 1 journée.
2 – Marginal	Blessures ou maladies ne résultant pas en incapacité; Perte majeure de la qualité de vie. Maladies légères	Déversement majeur contenu de matières dangereuses. Une partie des organismes locaux est soumis à un impact négatif.	 Délestage de la ligne électrique. Dommages mineurs.
1 – Négligeable	Atteinte mineure à la qualité de vie.	 Déversement mineur contenu de matières dangereuses. Pas d'impact mesurable dans les environs. 	Aucun dommage ni interruption de courant.

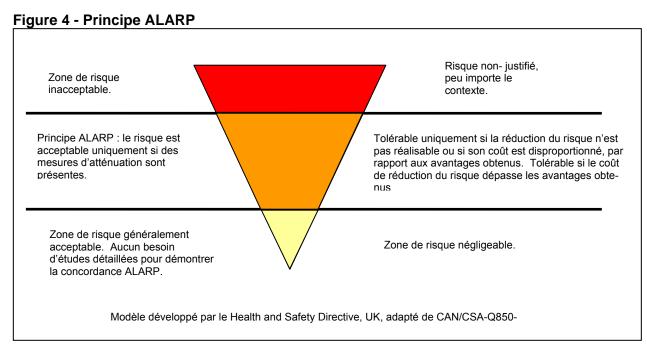

La fréquence des dangers est la possibilité qu'un danger identifié résulte en un accident. Les indices pour exprimer la probabilité des dangers ou leur fréquence ont été conçus de façon pratique pour être facilement compris par les personnes ayant à évaluer les risques. Les scénarios d'accidents sont catalogués selon des classes de probabilité. Le Tableau 5 définit ces classes.

Tableau 5 - Définition des classes de probabilités

Classe de probabilité	Événement	Définition	Probabilité
4	Fréquent	Plusieurs fois dans la durée d'exploitation de l'installation	≥ 10 ⁻¹ /an (plus d'une fois tous les 10 ans)
3	Possible	Une fois dans la durée d'exploitation de l'installation	de 10 ⁻² inclus à 10 ⁻¹ (une fois tous les 10 à 100 ans)
2	Rare	Est arrivé dans l'industrie	de 10 ⁻⁴ inclus à 10 ⁻² (une fois tous les 100 à 10 000 ans)
1	Extrêmement Rare	Concevable, est arrivé dans l'industrie, tous domaines confondus	< 10 ⁻⁴ (moins d'une fois tous les 10 000 ans)

3.5.1. Critères d'acceptation en matière de risque

Il faut noter que ces critères d'acceptation du risque incluent des exigences relatives aux mesures de réduction du risque. L'objectif primordial de Pipeline Saint-Laurent en matière de gestion du risque consiste à réduire les risques à leurs niveaux les plus bas réalisables tout au long de la durée de vie des installations. Les niveaux les plus bas réalisables sont définis par le principe ALARP (As Low as Reasonably Practicable ou « aussi bas que raisonnablement possible de faire »). Le principe ALARP est illustré à la Figure 4; il est largement utilisé et reconnu par les autorités compétentes dans le domaine de la manutention des matières dangereuses. Ultramar appliquera ce principe et atteindra ses objectifs à l'aide d'un processus de gestion du risque.

4. RÉSULTATS DE L'ÉTUDE

4.1. IDENTIFICATION DES DANGERS ET DÉFINITION DES SCÉNARIOS

Les détails de la session de travail HAZID sont regroupés à l'Annexe 3. Cette session a permis d'identifier 53 scénarios d'accidents, leurs causes typiques, leurs conséquences possibles ainsi que les mesures de sécurité mises en place pour prévenir ou atténuer ces scénarios :

Substances transportées: propriétés chimiques et physiques

Les dangers liés aux substances transportées sont dus à leurs propriétés chimiques et physiques. Les quatre types de substances font partie de la famille des liquides inflammables à basse tension de vapeur. Ce sont :

- l'essence (hiver super et régulier, été super et régulier);
- le carburéacteur;
- le diesel;
- le mazout.

Canalisation et équipements annexes: construction et exploitation

- Dangers liés à la conception, 5 scénarios identifiés
- Dangers liés au fonctionnement, 9 scénarios identifiés
- Dangers liés aux surpressions, 3 scénarios identifiés
- Dangers liés à la mise sous vide lors de l'arrêt, 1 scénario identifié
- Dangers liés aux manœuvres exceptionnelles sur les circuits, 3 scénarios identifiés
- Dangers liés à la contamination des produits, 3 scénarios identifiés
- Dangers liés au système de contrôle et surveillance, 4 scénarios identifiés
- Dangers liés aux travaux sur pipeline, 3 scénarios identifiés

Interaction fluide - canalisation

Dangers liés à l'interface entre les produits et la conduite, 6 scénarios identifiés

Interaction environnement – canalisation

- Dangers liés aux causes naturelles, 4 scénarios identifiés
- Dangers liés aux agressions par travaux, 2 scénarios identifiés
- Dangers liés aux agressions par accidents, 4 scénarios identifiés
- Dangers liés aux facteurs de corrosion, 4 scénarios identifiés

Dangers liés aux courants électriques, 2 scénarios identifiés

4.2. HISTORIQUE D'ACCIDENTS

Les informations sur les accidents survenus sur des pipelines au cours des dernières années ont été consultées à partir de quatre bases de données :

- 1. Bureau de la sécurité des transports (BST), http://www.bst.gc.ca consulté mars 2006;
- 2. National Transport Safety Board (NTSB), http://www.ntsb.gov consulté mars 2006;
- Conservation of Clean Air and Water in Europe (CONCAWE), http://www.concawe.be consulté mars 2006;
- 4. Office of pipeline safety (0PS), http://ops.dot.gov/ consulté en mars 2006.

L'Annexe 4 présente un certain nombre de ces accidents ainsi que le détail de leurs causes et conséquences. Il en ressort que les principales causes de fuites sont dues à des pipelines vieillissants et corrodés ou à l'intervention de tiers ayant endommagé une conduite à l'aide de machines excavatrices ou attribuable à une erreur d'opérateur

Bien que le Bureau de la Sécurité du Transport (BST) publie des statistiques d'accidents de pipeline, celles-ci n'ont pas été utilisées dans la présente étude car les données disponibles ne permettent pas de discerner les accidents liés au transport du gaz naturel, des produits à tension de vapeur élevée tels le propane, le butane, et des produits à basse tension de vapeur tels l'essence et le mazout. De plus, l'information relative à chacun des événements est limitée et ne permet pas de déterminer si les causes de fuites sont applicables au transport de produits raffinés de pétrole.

4.3. Brèches de référence

L'analyse des enseignements tirés d'incidents ou d'accidents survenus sur des ouvrages comparables a montré que l'on peut regrouper les types de pertes de confinement en trois catégories correspondant à trois tailles de brèches. Ces brèches de référence ont été établies par le GÉSIP (1998), un groupe d'étude de sécurité des industries pétrolières de la France qui a réalisé une analyse poussée des historiques d'accidents des 30 dernières années rapportés dans l'étude CONCAWE 2002.

Tableau 6 - Hypothèses de brèches de référence

Brèches	Cause	Produits
Petite brèche Diamètre : 10 mm	Correspondant à une fissure ou à une corrosion	 Essence hiver super et régulier Essence été super et régulier Carburéacteur Diesel / huile à chauffage
Moyenne brèche Diamètre : 40 mm	Correspondant à l'agression du pipeline par une dent d'équipement de travaux publics	 Essence hiver super et régulier Essence été super et régulier Carburéacteur Diesel / huile à chauffage
Rupture complète	Due à l'instabilité du terrain ou à l'érosion par torrent	 Essence hiver super et régulier Essence été super et régulier Carburéacteur Diesel / huile à chauffage

4.4. IDENTIFICATION DES ÉLÉMENTS SENSIBLES

Les éléments sensibles d'un milieu sont les composantes susceptibles d'être affectées lors d'un accident.

Ces éléments sont :

- La population : maisons individuelles et agglomérations;
- Les infrastructures : routes, lignes électriques Hydro-Québec;
- Éléments environnementaux : cours d'eau, forêts, champs, aquifères, etc.

4.5. ESTIMATIONS DES CONSÉQUENCES

Trois types de conséquences ont été estimés :

- Fuite sur pipeline avec calculs des conséquences au niveau du sol;
- Fuite sur pipeline avec calculs des conséquences sur les lignes électriques d'Hydro-Québec adjacentes au pipeline pour une partie du tracé;
- Fuite sur pipeline avec des calculs de conséquences sous l'eau;
- Fuite à l'intérieur d'une station de pompage.

Le Tableau 7 regroupe les hypothèses de travail utilisées pour les simulations.

Tableau 7 - Hypothèses de travail pour les simulations

Tableau 1 - Hypotheses de travail pour les sinte	
Vitesse du vent / stabilité atmosphérique	1,5 m/s / F
	3,5 m/s / D
Température atmosphérique, °C	25
Humidité relative, %	50
Rugosité du terrain	rural
Direction de la fuite	verticale, sans obstruction
	horizontale, impactant
Épaisseur de la flaque au sol	1 cm
Feu de flaque	'Late pool fire'
	(la flaque s'allume lorsque sa dimension est maximale)
Temps de détection de la fuite et de fermeture des vannes	5 minutes
Écoulement du produit à travers la brèche après la fermeture des vannes	Écoulement par gravité avec dénivellation de 3 m pour 60 minutes

Les critères de niveaux de dangers tels que spécifiés par le MDDEP sont résumés au Tableau 8. La partie grisée du tableau représente les seuils d'effets utilisés pour la planification d'urgence.

Tableau 8 - Seuils d'effets

Événement / conséquences	INTENSITÉ ET	EFFETS APPRÉHENDÉS			
	13 kW/m ²	5 kW/m ²			
	Seuil d'effets menaçant pour la vie.	Seuil pour la planification d'urgence.			
Radiations provenant de: • Feu de flaque • Feu en chalumeau	Peut causer des mortalités en 30 s.	 Seuil des effets irréversibles délimitant la zone de dangers graves pour la vie humaine. 			
	Seuil des effets très graves sur les structures.	Peut causer des brûlures au second degré en 40 s			
		Seuil significatif de destruction des vitres.			
Surpressions provenant de:	13,8 kPa (2 psi)	6,9 kPa (1 psi)			
Explosion du nuage de vapeurs	Seuil d'effets menaçant pour la vie.	Seuil pour la planification d'urgence.			
de vapeurs	Seuil des dégâts très graves sur les structures.	 Seuil des dégâts légers sur les structures. 			
Retour de flamme :	ce qui est une condition majo	demie de la limite inférieure d'inflammabilité, orant. e il peut y avoir retour de flamme jusqu'à la			

4.5.1. Cas particulier du risque de pollution

La présente étude n'a pas pour objectif d'identifier les risques de pollution et des effets que pourrait causer un déversement sur le milieu récepteur. Ces effets reposent sur d'autres critères tels que :

- « effets polluants »
 - toxicité du produit transporté, quantité déversée, sensibilité du milieu récepteur;
- « effets sur le milieu aquatique »
 - o nature du sol et du sous-sol, eaux souterraines ou de surface;
 - o usage de l'eau : qualité (eau potable, irrigation,...), quantité prélevée.

Les risques de pollution et l'adoption des mesures nécessaires pour minimiser l'impact sur l'environnement sont prises en compte lors de l'élaboration du plan d'urgence.

4.5.2. Pipeline terrestre – conséquences au niveau du sol

Les scénarios concernant le pipeline de 406,4 mm qui s'étend de Lévis à Boucherville ainsi que les sections de pipelines existantes entre Boucherville et le terminal de Montréal-Est ont été modélisés en fonction des brèches de référence établies à la section 4.3

Pour ces scénarios, 4 conséquences sont possibles s'il y a ignition:

- Feu de flaque (radiations);
- Formation d'un nuage de vapeurs et confinement (surpressions);
- Retour de flamme à la source (distance);
- Feu en chalumeau (radiations).

Pour chaque scénario d'accident, les conséquences spécifiques aux quatre substances transportées dans le pipeline (essence, carburéacteur, diesel, mazout), au niveau du sol, ont été évaluées. Deux directions de fuites ont aussi été modélisées :

- Horizontale:
- Verticale.

Compte tenu des données du Tableau 2, ainsi que du débit déversé advenant une brèche sur le pipeline, le temps de réaction utilisé pour la détection d'une fuite et la fermeture des vannes est de 5 minutes. La pression dans le pipeline variera entre 10 200 kPa (1 480 psig) et 345 kPa (50 psig) selon la proximité de la station de pompage. La pression maximale se retrouvera directement à la sortie des stations de pompage pour ensuite diminuer pour atteindre la pression minimale.

Les conséquences ont été estimées pour trois pressions : maximale, 10 200 kPa (1 480 psig), médiane 5 100 kPa (740 psig) et minimale 345 kPa (50 psig). Le Tableau 9 regroupe les résultats des scénarios du pipeline de 406,4 mm (nouveau pipeline) entre Lévis et Boucherville ainsi que ceux du pipeline existant de 273,1 mm entre Boucherville et le point de raccordement à la canalisation hors terre de 323,1 mm situé immédiatement au nord de

la rue Sherbrooke à Montréal-Est et ceux de cette dernière canalisation située sur les terrains de Bitumar / Coastal. Une analyse spécifique est présentée au Tableau 10 pour la partie du pipeline existant sous le fleuve Saint-Laurent. La pression dans le pipeline diminue au fur et à mesure que l'on s'éloigne des stations de pompage. La pression au point de livraison à Montréal-Est sera d'environ 690 kPa (100 psig). Il faut noter qu'à dimension de brèche égale et à pression égale, le volume de fuite sera le même pour les diamètres de pipeline étudiés. La pression a une influence sur le taux de fuite pour une brèche donnée. Une pression plus faible conduit à un taux moindre de fuite.

La volatilité (tension de vapeur) du produit a également une influence sur le type et le niveau de conséquences qui pourraient survenir en cas de fuite. Par exemple, si une explosion se produit en raison d'une fuite d'essence, les distances d'impact seront plus grandes que pour une fuite de diesel parce que l'essence est plus volatile. Le tableau 9 se veut donc une synthèse des résultats majorants. La totalité des résultats se retrouve à l'Annexe 5. L'Annexe 6 donne des détails sur les deux types de feu et présente les courbes de radiations pour les fuites sur le pipeline de 406,4 mm.

Tableau 9 - Scéna	rio d'acc	cidents im	pliquant le	s pipelines	de 406,4 ı	mm, 323,1	mm et 273	,1 mm et le	eurs consé	quences
			SCENARIO 1 peline due à de re de la brèche		SCENARIO 2 Fuite sur pipeline due à un accrochage par une machine excavatrice Diamètre de la brèche: 40 mm			SCENARIO 3 Rupture du pipeline due à un mouvement de terrain Diamètre de la brèche: 406,4 mm		
Événement		Pression :	Pression :	Pression:	Pression:	Pression :	Pression :	Pression : Pression :		Pression :
		1 480 psiq	740 psig	50 psiq	1 480 psig	740 psig	50 psig	1 480 psiq	740 psiq	50 psig
		Débit :	Débit :	Débit :	Débit :	Débit :	Débit :	Débit :	Débit :	Débit :
		29 m³/h	19 m³/h	5 m³/h	467 m ³ /h	334 m³/h	86 m³/h	634 m³/h	453 m³/h	124 m³/h
		23 111 /11	13 111 711	3111711		JENCES POTE		054 111 /11	433 111 711	124 111 /11
A noter que pour qu'il doivent être confinées					peurs de gaz	. Un nuage		explose pas	à l'air libre.	Ses vapeurs
Feu de flaque	Jai une su	detare queico	Radiations	ooc, vernouice	Stationics, c	Radiations			Radiations	
<u>Hypothèses</u>										
La flaque est en surface;Le terrain est plat;	13 kW/m²	50 m	45 m	35 m	195 m	150 m	120 m	200 m	180 m	140 m
 L'ignition survient lorsque la flaque atteint son diamètre maximal. 	5 kW/m²	70 m	65 m	50 m	275 m	215 m	175 m	285 m	250 m	200 m
Formation d'un nuage de	e vapeurs		Surpressions			Surpressions			Surpressions	
et explosion			I			,			1	ı
 L'explosion survient lorsque la concentration du nuage de vapeurs 	2 psi	80 m	70 m	35 m	340 m	285 m	250 m	400 m	350 m	180 m
atteint la demie de la limite inférieure d'explosivité (0,6% pour essence).	1 psi	100 m	90 m	45 m	415 m	355 m	310 m	485 m	430 m	220 m
Hypothèses • La distance associée au flamme est basée sur la	bur de flamme à la source lèses istance associée au retour de me est basée sur la demie de nite inférieure d'explosivité Distance maximale maximale de nite inférieure d'explosivité Distance maximale maximale de nite inférieure d'explosivité Distance maximale maximale 25 m 230 m 185 m		Distance maximale 185 m	Distance maximale 150 m	Distance maximale 270 m	Distance maximale 245 m	Distance maximale 110 m			
Feu en chalumeau	eu en chalumeau Radiations			Radiations			Radiations	-		
Hypothèses • Le pipeline est excavé; La fuite est dirigée verticalement	13 kW/m²	20 m	20 m	20 m	55 m	55 m	45 m	Ne produit pas de feu en chalumeau		chalumosu
Basé sur le taux de fuite correspondant à la pression maximale dans le pipeline.	5 kW/m²	30 m	30 m	20 m	90 m	90 m	70 m			undiumeau

[«]Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

4.5.3. Pipeline 406,4 mm – conséquences sur les lignes Hydro-Québec

Le pipeline longe l'emprise d'Hydro-Québec sur une grande partie du tracé privilégié (de Saint-Agapit à Saint-Samuel et de Drummondville à Sainte-Julie). Les lignes électriques situées dans ce secteur sont principalement exploitées à 735 kV. La distance séparant le centre des supports de lignes du pipeline sera d'environ 50 mètres et la hauteur des câbles varie entre 15 m et 40 m.

Les mêmes scénarios de fuites que pour la section précédente ont été évalués pour les feux de flaque et feux en chalumeau, dans le but d'évaluer l'impact des radiations thermiques sur les lignes électriques. Le Tableau 10 est une synthèse des résultats ayant le plus d'impact. L'ensemble des scénarios est disponible à l'Annexe 5. La colonne 'direction fuite' indique un 'H' lorsque la fuite est dirigée horizontalement et un 'V' lorsqu'elle est dirigée verticalement.

La pression dans le pipeline variera entre 1 480 psig et 50 psig. La pression maximale se retrouvera directement à la sortie des stations de pompage pour ensuite diminuer pour atteindre une pression minimale de 50 psig. Les conséquences ont été estimées pour trois pressions : maximale, minimale et médiane.

Les hypothèses suivantes ont été utilisées :

- Les fuites dirigées verticalement sont sans obstruction et produisent un feu en chalumeau;
- Les fuites dirigées horizontalement produisent une flaque de 1 cm d'épaisseur qui s'enflamme lorsque la flaque atteint son diamètre maximal ('late pool fire');
- Le terrain est plat, sans dépressions.

Ces trois hypothèses ont pour objectif d'illustrer les conséquences maximales si le produit qui fuit s'enflammait.

Tableau 10 - Impact sur les lignes d'Hydro-Québec

Brèche	Direction fuite	Radiation maximale sur lignes (kW/m²)							
		Pression pipeline 1 480 psig	1 480 psig 740 psig 50 psig						
10 mm	Н	Engouffré*	14	8					
10 mm	V	3	3	1					
40 mm	Н	engouffré	engouffré	90					
40 mm	V	35	30	23					
Rupture totale	Н	engouffré							

^{*}Le terme engouffré signifie que la flamme a une hauteur suffisante pour atteindre la ligne électrique qui devient engouffré dans la flamme.

L'impact sur les lignes d'Hydro-Québec sera plus important si la fuite dure plus longtemps. On constate que tous les scénarios ont la capacité d'endommager les lignes électriques, sauf lorsque la fuite est due à une brèche de 10 mm dirigé verticalement.

4.5.4. Pipeline sous fluvial

La traversée du fleuve s'effectuera dans un pipeline existant de 273,1 mm faisant partie d'un groupe de conduites parallèles. Pour la traversée, la pression maximale dans le pipeline sera de 1480 psig. Sous les chenaux nord et sud du fleuve, la conduite a été enrobée de béton avant d'être mise en tranchée.

Un scénario de rupture de conduite a été modélisé avec comme conséquence un feu de flaque à la surface de l'eau. Ce scénario d'accident serait envisageable à la suite d'un mouvement de terrain ou à l'accrochage de la conduite par une ancre de bateau.

Les résultats sont regroupés au Tableau 11.

Tableau 11 - Scénarios d'accident impliquant le pipeline sous fluvial

		Rupture du pipeline due à un mouvement de terrain ou à un accrochage par une ancre de bateau			
		1 480 psig fuite: 634 m³/h CONSEQUENCES POTENTIELLES			
FEU DE FLAQUE		Radiations			
Hypothèses La flaque est en surface; L'ignition survient lorsque la flaque	13 kW/m²	425 m			
atteint son diamètre maximal; • La flaque est de forme circulaire.	5 kW/m²	615 m			

4.5.5. Pipeline entre Boucherville et le terminal d'Ultramar

L'annexe 7 montre la localisation des conduites existantes à partir du point de raccordement au nouveau pipeline à Boucherville jusqu'au point d'arrivée au terminal d'Ultramar à Montréal-Est. Il faut noter que des vannes de sectionnement seront placées sur ce tronçon aux endroits suivants :

- Au point de raccordement entre le pipeline de 406,4 mm et le pipeline existant de 273,1 mm;
- Sur la rive sud du Saint-Laurent à Boucherville, avant le début de la traversée (site de vannes existant);
- Sur la rive nord du Saint-Laurent sur l'île de Montréal, près du quai d'Ultramar (site de vannes existant).

4.5.5.1. Effets dominos sur les conduites adjacentes

Le pipeline sous fluvial, incluant les sections terrestres situées entre la voie ferrée du Canadien National à Boucherville et la rue Sherbrooke à Montréal fait partie d'un groupe de conduites souterraines. Les conduites adjacentes au pipeline d'Ultramar transportent des produits inflammables tels que l'hydrogène, l'éthylène et le propane ainsi que du pétrole brut et d'autres produits pétroliers raffinés.

De même, au nord de la rue Sherbrooke, le pipeline existant de 323,1 mm de diamètre est adjacent à d'autres pipelines et hors terre. Ce groupe de conduites passe sur les terrains de Coastal et de Bitumar avant d'atteindre le terminal d'Ultramar à Montréal-Est.

Une fuite qui s'allumerait dans la portion terrestre du tronçon pourrait provoquer des dommages aux autres conduites. La possibilité de ruptures, de feux ou d'explosion subséquents au premier événement est présente.

Par contre, lorsque la conduite est sous le lit du fleuve, il n'y a pas d'effets dominos causés par les autres conduites.

4.5.6. Station de pompage

Un scénario de fuite à l'intérieur d'une station de pompage, suivi de l'ignition du nuage de vapeurs aux concentrations stœchiométriques d'air et de combustible a été évalué. Les résultats sont présentés au Tableau 12. A noter que ce scénario n'est possible que pour l'essence. Le carburéacteur, le diesel et le mazout ont une tension de vapeur trop faible pour créer un mélange stœchiométrique dans les conditions atmosphériques normales.

Tableau 12 - Scénario d'explosion dans les stations de pompage

	SCÉNARIO D'ACCIDENT À L'INTÉRIEUR D'UNE STATION DE POMPAGE
	CONSEQUENCES POTENTIELLES
Formation d'un nuage de vapeurs et explosion Hypothèse L'explosion survient lorsque la concentration du nuage de vapeurs atteint la concentration stœchiométrique essence/air.	2 psi à 80 m 1 psi à 130 m

4.5.7. Limites de la modélisation des conséquences

4.5.7.1. Terrains plats

Il faut noter que l'hypothèse d'un terrain plat a été utilisée pour tous les calculs. De plus, les flaques générées par les fuites sont circulaires. Aucun effet de topographie du terrain n'a été considéré. Cela dit, un terrain accidenté pourrait accumuler les liquides inflammables dans des fossés, réduisant ainsi la surface de la flaque et par conséquent ses distances associées à ses radiations, surpressions et retour de flamme (moins de surface d'évaporation dans les cas de surpression et de retour de flamme).

4.5.7.2. Rivières

Les liquides pourraient aussi être transportés sur de longues distances par les rivières/ruisseaux. Dans ce cas, les conséquences seraient fonction de la largeur de la flaque formée sur l'eau.

4.5.7.3. Explosions

Pour qu'il y ait explosion, il doit y avoir confinement des vapeurs de liquide inflammable. Un nuage de vapeurs d'essence ou de carburéacteur n'explose pas à l'air libre. Ses vapeurs doivent être confinées par une structure quelconque, ex.: bâtisse, véhicules stationnés, etc. Les explosions calculées par PHAST ne tiennent pas compte du degré de confinement/encombrement lors du calcul.

4.6. ESTIMATION DES FRÉQUENCES

4.6.1. Statistiques de bris pour les pipelines de produits pétroliers

Les pipelines font l'objet d'une surveillance serrée par les organismes réglementaires qui maintiennent des statistiques détaillées des incidents qui surviennent durant leur exploitation. Cette fonction est exercée au Canada par le Bureau de la Sécurité du Transport, aux États-Unis par l'« Office of Pipeline Safety» et en Europe par divers organismes nationaux. De plus, l'organisme sans but lucratif CONCAWE, tient à jour des statistiques détaillées sur les incidents survenus en Europe et leurs causes (CONCAWE 2002). Ce document constitue la source la plus importante d'information sur le sujet et a servi à établir les statistiques d'incidents associés à l'exploitation du pipeline. documents du Bureau de la Sécurité du Transport et de l'Office of Pipeline Safety ne permettent pas une analyse aussi fine. L'utilisation de cette source d'information ne devrait pas introduire d'aberrations dans la présente étude car les techniques de construction et de gestion sont similaires. Les pipelines ont depuis toujours été considérés comme un moyen sécuritaire et fiable pour le transport des hydrocarbures liquides en vrac. CONCAWE rapporte que la plupart des déversements de produits pétroliers en Europe sont de faible volume et que leurs effets sont généralement localisés et temporaires. De plus, la fiabilité des pipelines s'est améliorée au cours de la période étudiée de 30 ans, le nombre de fuites passant de 1,2 par mille kilomètres par an à 0,25 par mille kilomètres par an pour tous les types de produits liquides transportés, y incluant les produits transportés à température élevée qui causent plus de corrosion. En ce qui a trait aux produits transportés à température ambiante, le nombre de fuites est passé de 0,76 par milles kilomètres par an à 0,35 pour la période de 1971 à 2000. Cette performance devrait être maintenue considérant la surveillance auquel les pipelines sont soumis, les programmes de gestion de la sécurité (voir chapitre 5) faisant appel aux techniques modernes d'inspection, dont les sondes électroniques.

4.6.2. Causes des fuites

Le Tableau 13 présente les statistiques de fuite pour la période de 30 ans ayant fait l'objet de l'étude de CONCAWE pour le transport de produits pétroliers à température ambiante. Il faut signaler que le volume de déversement minimum rapportable est en Europe de 1 mètre cube alors qu'au Canada et aux États-Unis, il est de 15 mètres cubes. Conséquemment les critères européens étant plus sévères, un plus grand nombre de déversements est pris en compte.

Tableau 13 - Statistiques sur les causes de fuites

•	1971-	-1980	1981-	-1990	1991-2000		
Cause des déversements	Fuite par 1000 km par an	% du total	Fuite par 1000 km par an	% du total	Fuite par 1000 km par an	% du total	
Tierces parties	0,31	41%	0,19	38%	0,14	40%	
Causes mécaniques	0,23	30%	0,11	22%	0,10	29%	
Corrosion	0,12	16%	0,12	24%	0,07	20%	
Exploitation	0,06	8%	0,06	12%	0,03	8%	
Causes naturelles	0,04	5%	0,02	4%	0,01	3%	
Total	0,76	100%	0,5	100%	0,35	100%	

Les deux causes les plus importantes de déversement sont les incidents dus à l'intervention de tiers et les bris pour causes mécaniques. La corrosion constitue la troisième cause en importance tandis que les causes résultant de l'exploitation et les causes naturelles ne représentent qu'un faible pourcentage.

4.6.2.1. Intervention de tiers

L'intervention de tiers est la première cause de fuites sur les pipelines tant en fréquence qu'en volume. Les principales causes d'accidents sont : la construction de route, les autres constructions diverses, le nivellement du sol, les travaux d'excavation, les travaux de maintenance du pipeline, la construction de pipeline et autres. Le maniement de machineries résulte en des dommages aux pipelines pour deux raisons : le manque d'information et la négligence ou la déficience en formation. Le défaut d'informer l'entreprise exploitante de travaux effectués à proximité du pipeline résulte souvent en une mauvaise préparation de ces travaux, des procédures de travail inadéquates et l'absence de supervision des opérateurs de machineries lourdes.

4.6.2.2. Causes mécaniques

Les principales causes mécaniques sont reliées à la canalisation, aux vannes sur la canalisation, aux brides et autres pièces de plomberie et aux stations de pompages. Des dommages peuvent être causés à la canalisation lors de la construction ; la canalisation elle-même peut présenter des défauts de fabrication et les raccordements par soudure peuvent présenter des déficiences. Les éléments les plus vulnérables du point de vue mécanique sont les vannes, les brides de raccordement et leurs garnitures ainsi que les équipements installés dans les stations de pompage. Les brides et leur garniture

représentent une cause importante de fuite. Donc, plus le nombre de vannes et de brides est grand plus la probabilité de fuites sera grande. Malgré cet inconvénient, l'installation de vannes de sectionnement est souhaitable pour permettre d'arrêter l'écoulement du produit lors d'un déversement accidentel.

4.6.2.3. Corrosion

La corrosion était à l'origine de 16% des fuites survenues entre 1971 à 1980, 24% entre 1981 à 1990 et 20% entre 1991 à 2000. Ces fuites sont généralement plus faibles que pour toutes les autres causes à l'exception de celles associées à l'exploitation. Un facteur important à prendre en compte est l'incidence plus élevée de corrosion lors de traversée de route, aux points d'ancrage de la canalisation, en présence d'une gaine autour de la canalisation, etc. L'utilisation de sondes électroniques est une technologie généralement utilisée pour inspecter la canalisation et localiser les problèmes potentiels.

4.6.2.4. Exploitation

Cette catégorie comprend les problèmes reliés au fonctionnement et aux erreurs humaines. Les volumes de fuites reliés à cette cause sont généralement assez faibles.

4.6.2.5. Cause naturelle

Les bris reliés aux terrains présentant des instabilités (glissement de terrain) et les conditions hydrologiques particulières représentent 3% à 5% des causes de fuites.

4.6.3. Probabilité de fuite retenue

Les données de l'étude CONCAWE ont permis de faire une analyse fouillée des types de fuites et de leur fréquence. La période de 1991 à 2000 prend en compte les développements technologiques, les pratiques d'inspection et de gestion modernes et le fait que plusieurs anciens pipelines ont été retirés du service. Cette période représente mieux le comportement d'un nouveau pipeline. Le Tableau 14 Illustre les fréquences de fuites qui ont été retenues.

4.6.4. Probabilité d'ignition

Les fuites de produits pétroliers peuvent former un nuage de vapeurs inflammables qui peuvent s'enflammer à une certaine distance de la source de la fuite. La probabilité que le produit ou ses vapeurs s'enflamment, à la suite d'un incident ou d'un déversement de produits pétroliers est fonction de l'énergie requise pour provoquer un embrasement et du niveau de confinement du nuage de vapeurs. L'ignition peut survenir immédiatement (en raison de la présence de moteurs d'équipements de construction, de véhicules ou autres) ou se produira plus tard si le nuage dérive et rencontre une source d'ignition. Il faut une analyse fine, des points particuliers pour identifier les sources d'ignition présentes pour déterminer avec précision les probabilités que des produits pétroliers s'enflamment en cas de fuite.

Pour les fins de la présente étude, les statistiques de l'étude CONCAWE ont été utilisées. Durant la période de 1971 à 2000, il y a eu 379 déversements rapportés dont 9 se sont enflammés, pour une probabilité d'ignition de 0,025. C'est la probabilité retenue pour l'étude de base.

Tableau 14 - Fréquences de fuites

Cause	Fuite par 1000 km par an	de	ce potentielle fuites 55 km)	Fréquence potentielle de fuite avec ignition (255 km)		
		Par an	Par période de temps	Par an	Par période de temps	
Intervention de tiers	0,14	0,036	27,8 ans	9,0 E-4	1 110 ans	
Bris mécanique	0,10	0,026	38,5 ans	6,5E-4	1 538 ans	
Corrosion	0,07	0,018	55,6 ans	4,5E-4	2 220 ans	
Exploitation	0,03	0,008	125 ans	2,0E-4	5 000 ans	
Naturelles	0,01	0,003	333 ans	7,5E-5	13 330 ans	
Total	0,35	0,089	11,2 ans	2,2E-3	454 ans	

Ces statistiques représentent les fréquences potentielles de fuites et leur probabilité d'allumage. Elles prennent en compte les fuites de toutes dimensions.

4.7. ESTIMATION /ÉVALUATION DU RISQUE

Les Tableau 15 à 18 résument l'évaluation des risques pour chaque scénario avec les brèches de référence étudiées.

Les risques ont été évalués pour 4 segments :

- Nouveau pipeline entre Lévis et Boucherville;
- Conduite existante sous fluviale entre Boucherville et les rues Hinton/Denis;
- Conduite existante entre Hinton/Denis et Sherbrooke:
- Conduite existante entre Sherbrooke et le terminal Ultramar.

Comme les fréquences de bris ne font pas distinction du type de feu lors de l'ignition (feu en chalumeau, feu de flaque, retour de flamme, nuage de vapeurs), le type de feu qui a été utilisé pour l'évaluation du risque est celui dont le rayon d'impact est le plus grand.

Les risques ont été évalués à l'aide de la matrice du chapitre 3.5. Les scénarios d'accidents ont été classés selon leurs conséquences sur les personnes, l'environnement et les propriétés. La fréquence de chaque scénario d'accident et sa gravité ont été évaluées à l'aide de la matrice de la Figure 3, ce qui a conduit à un classement du risque.

Les fuites pour le segment entre Lévis et Boucherville ont été évaluées en milieu urbain et en milieu rural, puisque leur niveau de gravité peut s'avérer différent. Un milieu urbain se définit comme étant une agglomération de résidences.

Les fuites ont aussi été évaluées selon un scénario où il y a ignition et où il n'y a pas d'ignition.

Aucun scénario ne produit de risque élevé (risque de niveau 3). Par contre, tous les scénarios avec ignition (sauf le scénario à l'intérieur de la station de pompage) ont un risque de niveau 2, c'est-à-dire un risque à surveiller ou à réduire même si leur fréquence est beaucoup plus basse qu'un scénario où il n'y a pas d'ignition.

Tableau 15 - Évaluation du risque pour le nouveau pipeline entre Lévis et Boucherville

Numéro	Scénario	Ignition	Fréquence		Gravité			Risque	
scénario				Personne s	Environne ment	Propriété s	Personne s	Environm ent	Propriétés
1	Fuite sur pipeline due à la corrosion milieu urbain	oui	2	2	2	4	1	1	2
2	Fuite sur pipeline due à la corrosion milieu rural	oui	2	1	2	4	1	1	2
3	Fuite sur pipeline due à la corrosion milieu urbain	non	3	1	2	1	1	2	1
4	Fuite sur pipeline due à la corrosion milieu rural	non	3	1	2	1	1	2	1
5	Fuite sur pipeline suite à un accrochage par machine excavatrice milieu urbain	oui	2	3	3	4	2	2	2
6	Fuite sur pipeline suite à un accrochage par machine excavatrice milieu rural	oui	2	1	3	4	1	2	2
7	Fuite sur pipeline suite à un accrochage par machine excavatrice milieu urbain	non	3	2	3	1	2	2	1
8	Fuite sur pipeline suite à un accrochage par machine excavatrice milieu rural	non	3	1	3	1	1	2	1
9	Fuite à l'intérieur de la station de pompage due à un bris mécanique	oui	3	1	1	1	1	1	1
10	Fuite à l'intérieur de la station de pompage due à un bris mécanique	non	2	1	1	1	1	1	1
11	Rupture du pipeline due à un mouvement de terrain milieu urbain	oui	1	4	3	4	2	1	2
12	Rupture du pipeline due à un mouvement de terrain milieu rural	oui	1	1	3	4	1	1	2
13	Rupture du pipeline due à un mouvement de terrain milieu urbain	non	2	3	4	1	2	2	1
14	Rupture du pipeline due à un mouvement de terrain milieu rural	non	2	1	4	1	1	2	1

Tableau 16 - Évaluation du risque pour le pipeline existant sous fluvial

Numéro	Scénario Ignition Fréquenc			Gravité			Risque		
scénario				Public	Environ.	Propriété s	Public	Environ.	Propriétés
1	Rupture du pipeline dans le fleuve due à un mouvement de terrain ou à l'accrochage par une ancre de bateau.	oui	2	2	4		1	2	
2	Rupture du pipeline dans le fleuve due à un mouvement de terrain ou à l'accrochage par une ancre de bateau.	non	2	1	4		1	2	

Le risque d'accrochage par une ancre de bateau est jugé minime, car les pipelines sont référencés sur les cartes marines et des affiches à l'intention des navires identifient leur localisation. De plus, les navires pouvant causer des dommages aux pipelines sont sous la supervision d'un pilote expérimenté du Saint-Laurent.

Tableau 17 - Évaluation du risque pour le pipeline existant entre le quai et la rue Sherbrooke

Tableau	17 - Evaluation d	u risque	pour le pip	enne exis	iani enti	e ie quai	et la rue	SHEIDIO	UKE
Numéro	Scénario	Ignition	Fréquence		Gravité			Risque	
scénario				Public	Environ.	Propriété s	Public	Environ.	Propriétés
1	Fuite sur pipeline due à la corrosion milieu urbain	oui	2	3	2	4	2	1	2
2	Fuite sur pipeline due à la corrosion milieu urbain	non	3	2	2	1	2	2	1
3	Fuite sur pipeline suite à un accrochage par machine excavatrice milieu urbain	oui	2	4	3	4	2	2	2
4	Fuite sur pipeline suite à un accrochage par machine excavatrice milieu urbain	non	3	3	3	1	2	2	1
5	Rupture du pipeline due à un mouvement de terrain milieu urbain	oui	1	4	3	4	2	1	2
6	Rupture du pipeline due à un mouvement de terrain milieu urbain	non	2	4	4	1	2	2	1

Ce segment de conduite passe près des populations. La gravité des conséquences pour le public est donc plus élevée que lorsque le pipeline passe en milieu rural ou là où il y a peu d'habitations. Pour tous les scénarios étudiés pour ce segment, la gravité pour le public est de niveau 4 (catastrophique) ou de niveau 3 (critique). Le risque obtenu pour le public est de niveau 2 : risque à surveiller ou à réduire.

Puisqu'il s'agit de conduites existantes, il est donc important de s'assurer de leur intégrité et de les restaurer, si besoin est, avant la mise en activité.

Tableau 18 - Évaluation du risque pour le pipeline existant entre la rue Sherbrooke et le Terminal Ultramar

Numéro	Scénario	Ignition	Fréquence		Gravité			Risque			
scénario				Personne s	Environne ment	Propriété s	Personne s	Environne ment	Propriétés		
1	Fuite sur pipeline due à la corrosion milieu industriel	oui	2	2	2	2	1	1	1		
2	Fuite sur pipeline due à la corrosion milieu industriel	non	2	2	2	1	1	1	1		
3	Fuite sur pipeline suite à un accrochage par machine excavatrice milieu industriel	oui	2	2	2	3	1	1	2		
4	Fuite sur pipeline suite à un accrochage par machine excavatrice milieu industriel	non	2	2	2	1	1	1	1		
5	Rupture du pipeline due à un mouvement de terrain milieu industriel	oui	2	2	3	3	1	1	2		
6	Rupture du pipeline due à un mouvement de terrain milieu industriel	non	2	2	3	1	1	2	1		

Ce segment du pipeline qui est hors terre, passe sur les terrains de Costal et Bitumar. La gravité des scénarios pour le public est moins sévère puisque plus éloigné que le segment précédent.

5. PRÉVENTION

Les conséquences de fuites des produits transportés par le pipeline Saint-Laurent peuvent avoir des répercussions sérieuses. Ultramar déploiera des ressources importantes pour prévenir les accidents et atténuer les conséquences. La Figure 5 illustre ce processus.

Les éléments de sécurité suivants seront utilisés pour prévenir les accidents:

- Conception et construction selon la norme CSA Z662-03, 'Réseau de canalisations de pétrole et de gaz";
- Surveillance rigoureuse de l'état du pipeline, maintenance et réparations;
- Surveillance permanente des conditions d'exploitation;
- Conduite recouverte d'un revêtement et protégée par un système de protection cathodique;
- Vannes de sectionnement;
- Participation au système d'appel unique Info-Excavation;
- Campagne d'information et de sensibilisation;
- Inspection interne du pipeline avec sondes intelligentes;
- Inspection aérienne et terrestre de l'emprise à des intervalles prédéfinis.

Une présentation détaillée du programme modèle de gestion de l'intégrité est présentée en Annexe 8.

Les éléments suivants sont utilisés pour atténuer les conséquences des accidents:

- Logiciel pour système de détection SCADA;
- Vannes de sectionnement;
- Détecteurs de gaz inflammables dans les stations de pompages;
- Vannes de sectionnement activées à distance;
- Détection par odeur et services 911;
- Plan d'urgence (Pipeline Saint-Laurent et municipaux).

BARRIÈRES DE SÉCURITÉ

PRÉVENTION

Conception Protection contre la corrosion

Appel avant excavation

Inspection de l'emprise

Controle à distance des vannes

FUITE

BARRIÈRES DE SÉCURITÉ

PRÉVENTION

ATTÉNUATION

Conception

Plan d'urgence

Détection de fuitles

Controle à distance des vannes

FUITE

Figure 5 - Barrières de sécurité pour pipeline

6. CONCLUSION

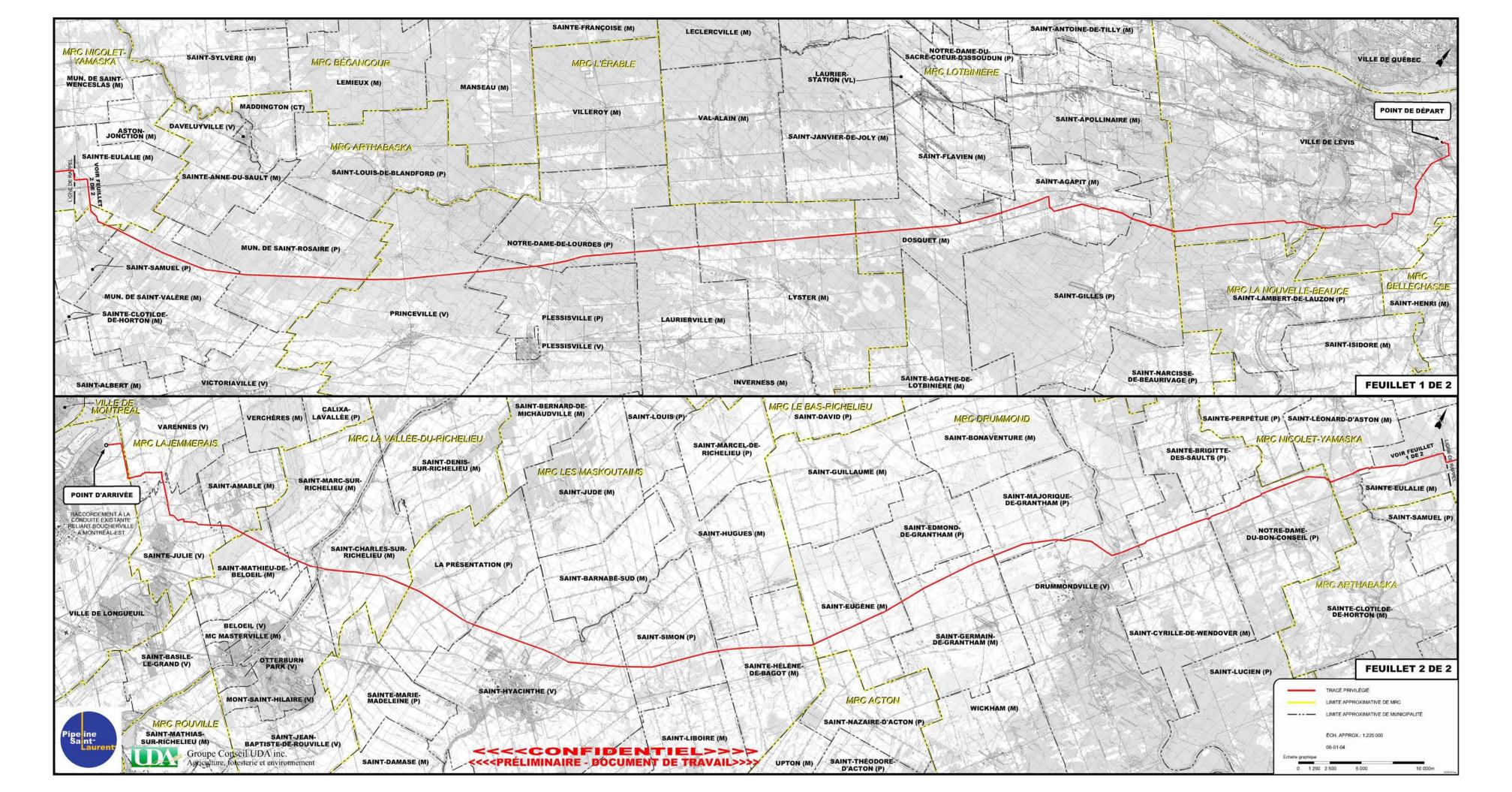
Les résultats de l'évaluation du risque sont exprimés sous forme d'une matrice d'évaluation des scénarios d'accidents. Les indices de gravité ont été conçus pour distinguer diverses conséquences telles que :

- 1) Population : intégrité physique (santé et sécurité) des personnes dans le secteur affecté au moment de l'incident;
- 2) Environnement: impacts environnementaux;
- 3) Propriétés: dommages à la propriété et aux infrastructures.

Quatre niveaux de gravité ont été définis : (1) Négligeable, (2) Marginal, (3) Critique et (4) Catastrophique. La fréquence des dangers est la possibilité qu'un danger qui a été identifié résulte en un accident. Les indices pour exprimer la probabilité des dangers ou leur fréquence ont été conçus de façon pratique pour être facilement compris par les personnes qui ont à évaluer les risques. Quatre niveaux de fréquence ont été définis : (1) Extrêmement rare; (2) Rare; (3) Possible et (4) Fréquent.

Le niveau de risque d'un événement est déterminé par la combinaison de sa classe de probabilité et de son niveau de gravité. Les niveaux de risques utilisés sont :

- Risques de niveau 1 : risques limités;
- Risques de niveau 2 : risques à surveiller ou à réduire, d'autant plus qu'ils sont limitrophes de risques de niveau 3;
- **Risques de niveau 3 :** risques élevés. Ce niveau de risques est inacceptable et ne doit pas être observé au sein de l'installation.


Aucun scénario d'accident de niveau 3 (risque élevé) n'a été identifié. Plusieurs scénarios de niveau 2 ont été identifiés. L'objectif global est de réduire les risques aux niveaux les plus bas réalisables tout au long de la durée de vie du projet. Les niveaux les plus bas réalisables sont définis par le principe ALARP (As Low as Reasonably Practicable ou « aussi bas que raisonnablement possible de faire »), un processus d'amélioration continue. Ce processus d'amélioration continue sera soutenu par la mise en place d'un programme de gestion des risques.

Selon les données disponibles et l'analyse qui en a été faite, le risque est acceptable pour le pipeline et les équipements associés.

7. RÉFÉRENCES

- California (1993), California State Fire Marshall, *Hazardous Liquid Pipeline Risk Assessment*, Sacramento, California , March 1993
- CCPS (1994). Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs. Center for Chemical Process Safety, New York. ISBN 0-8169-0474-X.
- CONCAWE (2002). Lyons, D. Western European Cross-Country Oil Pipelines, 30-year performance statistic, Concawe, Bruxelles, Belgique, 2002
- CSA (2003). Z662-03 Oil and Gas Pipeline Systems, Canadian Standards Association, Toronto, Ontario, 2003.
- Esso (2004). Tindell, Bruce, Zhang, Jun, Liquid Pipeline Leak Detection: The Esso Experience, Pipeline & Gas Journal, février 2004.
- GÉSIP (1998), Groupe d'Étude de Sécurité des Industries Pétrolières, 'Guide Méthodologique pour la réalisation d'une étude de sécurité concernant une canalisation de transport', Ministère de l'économie, des finances et de l'industrie, France 1998.
- HSE (2000) Kinsman, P. Lewis, J., Report on a second study of pipeline accidents using the Health and Safety Executive's risk assessment programs MISHAP AND PIPERS, Casella Scientific Consultants, Yorkshire House, Chapel Street, Liverpool L3 9AG, 2000.
- MIACC (1998), Land Use Planning with respect to pipelines: A guideline for Local authorities, developers and pipeline operators. Major Industrial Accident Council of Canada, Ottawa (1998)
- US EPA (1999) Risk Management Program Guidance for Offsite Consequence Analysis. United States Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA 550-B99-009, April 1999.

Annexe 1 Tracé privilégié

Annexe 2 Données sur les produits transportés

Annexe 2 Données sur les produits transportés

D-1A

DATE: 29 novembre 2005 Révision: 22

NORMES DES PRODUITS

ESSENCES SANS PLOMB, PAGE 1 DE 2

NORME	<u>SUPREME</u>	<u>PLUS</u>	<u>ORDINAI</u> RE	<u>ASTM</u>
Indice d'octane recherche, IOR Indice d'octane moteur, IOM (IOR + IOM) / 2	95.0 85.0 91.0	92.5 83.0 89.0	91.0 82.0 87.0	D2699 D2700 -
	MIN	MAX	<u>ASTM</u>	
Soufre, ppm masse À la raffinerie Soufre, moyenne annuelle, ppm Corrosion, 3 h @ 50°C Gommes actuelles, mg/100 mL		80 70 30 No. 1 5	D5453 D130 D381	
Gommes actuelles, mg/100 ml Gommes avant lavage, mg/100 ml Stabilité à l'oxydation @ 100°C, mins Teneur en plomb, mg/L	600	12 3	D381 D325 D3237	
Teneur en manganèse, mg/L Teneur en phosphore, mg/L Corrosion, lame d'argent		18 1.0 No. 2 No. 1	D3831 D3231 Can/CGSB (D130 modifi	
Corrosion, acier dans l'eau Teneur en 2-méthoxy-tert-butane, ou MTBE, % Teneur en benzène, % Vol. Teneur en benzène, moyenne annuelle, % Vol.		B+ 0.6 1.5 0.95	Nace TM017 CGSB-3.0-1 CGSB-3.0-1	72 4.3

Vapeur/Liquide, 20/1, °C

$$52.47 - .33 \text{ (VP)} + .2 \text{ (T}_{10}) + .17 \text{ (T}_{50})$$

Du 16 octobre à avril	34
Du 16 septembre au 15 octobre	38
Mai, et du 1er au 15 septembre	43
Juin, juillet et août	51

D-1B

DATE: 29 novembre 2005

Révision: 22

NORMES DES PRODUITS

ESSENCES SANS PLOMB, PAGE 2 DE 2

<u>NORME</u>	MIN	MAX	<u>ASTM</u>
Distillation, % en volume évaporé, °C			D86
10% Du 16 octobre au 15 avril Du 16 avril au 15 mai et 16 septembre au 15 octobre Du 16 mai au 15 septembre	35	50 55 65	
50% Du 16 octobre au 15 avril Du 16 avril au 30 avril et 16 septembre au 15 octobre Du 1er mai au 15 septembre	70 70 70	110 113 116	
90%, toute l'année		182	
Point final, à l'année longue		221	
Résidu, % Vol.		2	
Tension de vapeur, kPa, max. et Indice d'essai de conduite, max., °C (1.5T ₁₀ + 3T ₅₀ + T ₉₀)		D5191	

	<u>Maitland</u>	<u>Montréal</u>	Québec & Terre-Neuve	Gaspé et Maritimes
Novembre au 15 avril	107(550)	107(550)	107(550)	107(550)
Avril (16-30)	97(560)	97(560)	97(560)	107(550)
Mai (1-15)	86(575)	86(575)	86(575)	97(560)
Mai (16-31)	62(597)	72(590)	72(590)	72(590)
Juin, juillet et août	62(597)	62(597)	72(590)	72(590)
Septembre (1-15)	62(597)	72(590)	72(590)	72(590)
Septembre (16-30)	86(575)	86(575)	97(560)	86(575)
Octobre (1-15)	97(560)	97(560)	97(560)	97(560)
Octobre (16-31)	97(560)	97(560)	107(550)	97(560)

La norme d'essai de conduite est selon la tension de vapeur demandée.

Ces produits satisfont à toutes les normes décrites dans CAN/CGSB - 3.5 – 2004 et les règlements sur les produits pétroliers du Québec, le benzène et la teneur en soufre dans l'essence

D-6A

DATE: 29 novembre 2005

REVISION: 20

NORMES DES PRODUITS

MAZOUT NO. 2 (HUILE A CHAUFFAGE) (F16) - Page 1 de 2

CODE DE COULEUR: ROUGE

NORME	MIN	MAX	METHODE ASTM
Masse volumique à 15 ⁰ C, kg/L		0.881	D1298
Couleur		2.5	D1500
Point d'éclair, ^O C	45		D93
Soufre, % en masse D5453/D4294		0.40	
Corrosion, 3 h @ 50 ^O C Cendres, % en masse Résidu de carbone, % en masse (sur 10% résiduel)		No. 1 0.010 0.35	D130 D482 D4530
Conductivité, pS/m A la raffinerie, octobre - mars @ 20/25°C avril - septembre @ 20/25°C	50 ⁽¹⁾ 500 300		D2624
Viscosité à 40 ⁰ C, cSt	1.60	3.40	D445
Distillation, ^O C 90% Point final	282.0	345.0 380.0	D86/D2887
Acide fort & base forte Acidité totale, mg KOH/g		NIL 0.2	D974 D974
Stabilité accélérée, résidus insolubles, mg/100 mL		1.5	D2274
Sodium + calcium, mg/kg Eau et sédiments, % vol.		3.0 0.05	D3605 D1796
Indice de cétane	32.0		D613

⁽¹⁾ Une conductivité minimale de 50 pS/m est requise au lieu, au moment et à la température de livraison.

D-6B

DATE: 29 novembre 2005

REVISION: 20

NORMES DES PRODUITS

MAZOUT NO. 2 (HUILE A CHAUFFAGE) (F16) - Page 2 de 2

CODE DE COULEUR: ROUGE

NORME NORME	MIN	MAX	<u>ASTM</u>
Particules, mg/L		5.5	D2276
Point de trouble, ^O C		Χ	D2500
Point d'écoulement, ^O C		Χ	D97
Apparence du produit		1	CAN/ONGC
à la raffinerie octobre-mars @ 4°C avril-sept. @ 15°C		1	3.0-28.8
NORME	PT TROUBLE	PT ECOUL	<u>EMENT</u>
	^o C (MAX)	^o C (MAX)	
Janvier/février/mars/octobre/novembre/décembre	-12	-39	
Avril/mai/juin/juillet/août	-1	-6	
Septembre	-4	-12	

Ce produit satisfait toutes les normes ONGC et québécoises:

CAN/CGSB-3.2-M99 (TYPE 2), CAN/CGSB-3.18-2000

et RÈGLEMENT DES PRODUITS PETROLIERS DU QUEBEC

D-2A

DATE: 29 novembre 2005

REVISION: 12

NORMES DES PRODUITS

CARBURANT DIESEL NO. 2 À BAS SOUFRE (SAISONNIER) (D25) - Page 1 de 2

NORME	MIN	MAX	<u>ASTM</u>
Masse volumique à 15 ⁰ C, kg/L Couleur,		8750 2.0	D1298 D1500
Point d'éclair, ^O C Soufre, mg/kg (ppm) A la raffinerie	45	500 475	D93 D5453
Corrosion, 3 h @ 50 ⁰ C Résidu de carbone, % masse sur 10% résiduel		No. 1 0.16	D130 D4530
Conductivité, pS/m, A la raffinerie, octobre à mars @ 20/25°C avril à septembre @ 20/25°C	50 ⁽¹⁾ 500 300		D2624
Viscosité à 40 ⁰ C, cSt	1.90 ⁽²⁾	3.60	D445
Distillation, ^O C	(0)		D86/D2887
90% Point Final	282.0 ⁽²⁾	345.0 375.0	
Acide fort & base forte Acidité totale, mg KOH/g Stabilité accélérée, rés. insolubles, mg/100 mL Cendres, % en masse Sodium + calcium, mg/kg Eau et sédiments, % vol.		NIL 0.10 1.5 0.01 3.0 0.05	D974 D974 D2274 D482 D3605 D1796
Indice de cétane	40.0		D613
Matières Particulaires, mg/L Test d'onctuosité, μm à 60°C		5.5 460	D5452 D6079
Apparence du produit		1	
CAN/ONGC à la raffinerie, octobre-mars @ 4° C avril-sept. @ 15° C		1 1	3.0-28.8

⁽¹⁾ Une conductivité minimale de 50 pS/m est requise au lieu, au moment et à la température de livraison.

⁽²⁾ A un point de trouble inférieur à -18 °C, la norme de viscosité minimale est 1.70 cSt et celle de 90% minimale est éliminée. Si un point de trouble inférieur à -23 °C est spécifié, la norme de viscosité minimale est 1.30 cSt.

[«]Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

D-2B

DATE: 29 novembre 2005

REVISION: 12

NORMES DES PRODUITS

CARBURANT DIESEL NO. 2 À BAS SOUFRE (SAISONNIER) (D25) - Page 2 de 2

NORME	PT TROUBLE MAX	D2500
	°C (MAX)	
Janvier/février/novembre 16-30/décembre (3) Mars/novembre (1-15) Avril/octobre Mai/juin/juillet/août Septembre	-23 -18 -12 -1 -6	

 $^{(3)}$ À Saint-Romuald, du 16 octobre à la mi-mars, on a accès à un mélange de D40/D25 pour les points de trouble suivants:

Octobre (16-31): -14
Novembre (1-15)/(16-30): -22/-26
Décembre & Janvier: -28
Février (1-14)/(15-28)): -27/-25
Mars (1-15): -22

Ce produit satisfait toutes les normes spécifiées dans:

CAN/CGSB-3.517-2000 et Règlement sur les produits pétroliers (Québec)

D-18A

DATE: 29 novembre 2005

Révision 11

NORMES DES PRODUITS

<u>CARBURÉACTEUR, DE TYPE A-1</u> Page 1 de 2

NORME	<u>MIN</u>	MAX	MÉTHODE <u>ASTM</u>
Point de congélation, °C		-47	D5972
Masse volumique @ 15 ⁰ C, kg/L	0.775	0.840	D1298
Point d'éclair, ⁰ C	38		D56
Soufre, % en masse Soufre mercaptanique, ppm Couleur, Saybolt	12	0.30 30	D4294/D5453 D3227 D156
Corrosion, lamelle de cuivre, 2 h @ 100 ⁰ C Gomme existante, mg/100 ml Chaleur nette de combustion, MJ/kg	42.8	No. 1 7	D130 D381 D4529/D4809
Propriétés de combustion, une des normes suivantes: 1- Point de fumée, mm 2- Point de fumée, mm avec une teneur en naphtalènes, % volume	25 18	3.0	D1322 D1322 D1840
Viscosité @ -20 ^O C, cSt		8.0	D445
Distillation, ^O C Point initial 10% 20%, 50% et 90% Point final Résidu, %vol. Perte, %vol.		à indiquer 205 à indiquer 300 1.5 1.5	D86

D-18B

DATE: 29 novembre 2005

Révision 11

NORME DES PRODUITS

CARBURÉACTEUR, DE TYPE A-1 Page 2 de 2

NORME	MIN	MAX	MÉTHODE <u>ASTM</u>
Aromatiques, % en volume Acidité totale, mg KOH/g		25 0.10	D1319 D3242
Apparence	Claire et li	mpide	
MSEP	75		D3948
Réaction à l'eau Indice interfacial		1b	D1094
Particules, mg/L Camions-citernes et aéronefs En entreposage		0.44 2.2	D2276/5452
Stabilité thermique Chute de pression, kPa Évaluation du dépôt Désactivateur de métaux (Note 1), mg/L		3.3 <3 5.7	D3241
Conductivité, pS/m, au lieu, heure et temp. de livraison Seul additif antistatique autorisé, Stadis 450, mg/L (Note 2)	50	450 3	D2624

Un avis écrit à l'acheteur peut permettre l'abaissement de quelques normes dans les cas suivants:

- Note 1 : Excluant la masse du solvant, une concentration maximale de 2.0 mg/L peut être ajoutée. On peut augmenter jusqu'à un total de 5.7 si on soupçonne une contamination au cuivre.
- Note 2: Si une perte de conductivité est constatée, un ajout de Statis 450 est permis pourvu que la concentration initiale est de 3 mg/L maximum et que la concentration cumulative n'excéde pas 5 mg/L. Si la concentration initiale est inconnue, l'ajout subséquent ne doit pas dépasser 2 mg/L.

Ce produit répond aux normes canadiennes spécifiées dans CAN/CGSB-3.23-2005 et à leurs modifications subséquentes ainsi qu'aux normes ASTM spécifiées dans D1655

Annexe 3 Détail de la session HAZID

Annexe 3 Détail de la session HAZID

Danger	Causes typiques	Conséquences	Mesures de sécurité	Commentaires
Dangers liés à la conception				
Matériaux non adaptés aux conditions de services extrêmes	Erreur dans le choix des matériaux	Corrosion Fuite, rupture	Application des normes et critères de conception	
 Matériaux sur accessoires (vannes, joints, etc) réagissant avec le produit ou ses impuretés 	Erreur dans le choix des matériaux	Corrosion, fuite	Application des normes et critères de conception	
 Accessoires ayant une résistance mécanique insuffisante (piquages sous dimensionnés) 	Erreur dans le choix des matériaux	Fuite, rupture	Application des normes et critères de conception	
Défaillance des joints ou des presse-étoupe des vannes	Erreur dans le choix des matériaux Pratiques de construction	Fuite, rupture	Normes et critères de conception Procédures d'entretien	
	ou maintenance inadéquate		Inspection avant la mise en service	
 Défaillance de la protection cathodique due à un courant de fuite aux joints isolants 	Pratiques de construction ou maintenance inadéquate	Fuite, rupture	Inspection, vérification, mesure des potentiels	
Dangers liés au fonctionnement				
 Obstruction par un corps étranger (racleur, interne de robinet, clapet ou compteur, colmatage de filtres) 	Mauvaise procédure d'opération de racleur Restrictions dans le pipeline	Obstruction, interruption des opérations	 Normes et critères de conception Procédure d'utilisation des racleurs 	
 Non fonctionnement des soupapes (défaut de tarage, Obstruction, colmatage) 	Défaut dans procédures d'opération et d'essai et inspection	Obstruction, interruption des opérations Surpression	Procédure d'essai Programme d'entretien	
Non fermeture des soupapes	Défaut dans procédures d'opération et d'essai et inspection	Fuite prolongée en cas de bris	Procédure d'essaiProgramme d'entretien	
Vibration des sections aériennes	Mauvaise conception des supports et ancrage	Bris et fuite	Normes et critères de conception Procédure d'essai	
			 Procedure d'essai Programme d'entretien 	

[«] Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

Danger	Causes typiques	Conséquences	Mesures de sécurité	Commentaires
Dilatation des sections parties aériennes (déformation, glissement des supports)	Absence de soupape pour relâcher la pression causée par l'expansion thermique	Bris et fuite	Normes et critères de conception	
Coup de bélier	Fermeture trop rapide de vannes	Bris et fuite	Normes et critères de conception	
Mélanges explosifs dans des enceintes confinées par accumulation de micro fuites	Fuite dans station de pompage	Mélange explosifExplosionIncendie	 Normes et critères de conception Détecteurs de gaz explosif dans les stations de pompage 	
Mélanges explosifs dans les égouts adjacents	Fuite sur pipeline qui a pénétré dans un égout	Mélange explosifExplosionIncendiePollution	 Système de détection des fuites Surveillance de l'activité des tiers Plan d'urgence 	
• Corrosion	 Défaillance de la protection cathodique due aux courants vagabonds interférents Pratiques de construction ou maintenance inadéquate 	Fuite, rupture	 Normes et critères de conception Inspection, vérification, mesure des potentiels 	
Surpressions				
Pompage de produits sur vanne aval fermée	Mauvaise procédure d'opération Bris mécanique	Fuite, rupture	 Procédure d'opération Boucle de contrôle avancé (SCADA) 	
Mise en contact de deux circuits de pressions maximales de services différents	Mauvaise procédure d'opérationBris mécanique	Fuite, rupture	 Procédure d'opération Boucle de contrôle avancé (SCADA) 	
Élévation de température sur tronçon aérien isolé	Absence de soupape pour relâcher la pression due à l'expansion thermique	Bris et fuite	Normes et critères de conception	

[«] Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

Danger	Causes typiques	Conséquences	Mesures de sécurité	Commentaires
Mise sous vide lors de l'arrêt				
Par aspiration	Mauvaise procédure d'opération Bris mécanique	Fuite Rupture	Normes et critères de conception Procédure d'opération	
Manoeuvres exceptionnelles sur les circuits				
Manoeuvres sur vannes entraînant un rejet de produit à l'atmosphère (purge, évents, permutations de filtres)	Mauvaise procédure d'opération Bris mécanique	• Fuite	Normes et critères de conception Procédure d'opération	
Rejet de produit dans l'atmosphère à l'occasion du passage ou de l'extraction de racleur	Mauvaise procédure d'opération Bris mécanique	• Fuite	Normes et critères de conception Procédure d'opération	
Vidange totale ou partielle à l'occasion de travaux de maintenance	Mauvaise procédure d'opération Bris mécanique	• Fuite	Normes et critères de conception Procédure d'opération	
Contamination des produits				
Entrée d'eau	Mauvaise procédure d'opération	Contamination des produits	Procédure d'opération	
Entrée d'air	Bris mécanique Mauvaise procédure d'opération Bris mécanique	Gel Bris mécanique	Procédure d'opération	
Entrée d'autres produits	Mauvaise procédure d'opération Bris mécanique	Contamination des produits Gel	Procédure d'opération	

[«] Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

Danger	Causes typiques	Conséquences	Mesures de sécurité	Commentaires
Fonctionnement				
Défaillance (ou insuffisance) électrique aux terminaux de surveillance et d'exploitation	Panne électrique	 Rupture de transmission des données Impossibilité de faire fonctionner les équipements 	 Équipement ferme en position sécuritaire (Fail safe) UPS et / ou génératrice si requis Arrêt des opérations 	
Perte d'information des instruments	 Panne d'équipement Panne électrique 	Rupture de transmission des données Impossibilité de faire fonctionner les équipements	Équipement ferme en position sécuritaire (Fail safe) UPS et / ou génératrice si requis Arrêt des opérations	
Rupture de circuit de commande à longue distance	Panne d'équipementPanne électrique	 Rupture de transmission des données Impossibilité de faire fonctionner les équipements 	 Équipement ferme en position sécuritaire (Fail safe) UPS et / ou génératrice si requis Arrêt des opérations 	
Mise hors service des liaisons transmissions radio ou téléphone	Panne d'équipement Panne électrique	Rupture de transmission des données Impossibilité de faire fonctionner les équipements	Équipement ferme en position sécuritaire (Fail safe) UPS et / ou génératrice si requis Arrêt des opérations	
Travaux sur le pipeline				
Piquage en charge 'hot taps' ou obturation en charge	Mauvaise procédure d'opération	• Fuite	Procédure d'opération	
Bouchons de glace et risques de fragilisations (lors de hot tap)	Mauvaise procédure d'opération	Fuite	Non requises, le pipeline peut être arrêté.	
Formation de dérivations	Mauvaise procédure d'opération	• Fuite	Non requises, le pipeline peut être arrêté.	

[«] Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

Danger	Causes typiques	Conséquences	Mesures de sécurité	Commentaires
Propriétés des produits				
Volatilité: tension de vapeur variable dans la plage de température d'utilisation	Mauvaise procédure d'opération	Contamination	Procédure d'opération	
Contraction du liquide et de la phase vapeur avec baisse de température	Mauvaise procédure d'opération	Fuite Bris mécanique	Procédure d'opération	
Dilatation du liquide et de la phase gazeuse avec élévation de température	Mauvaise procédure d'opération	Fuite Bris	Normes et critères de conception	
Abrasion par grande vitesse	Mauvaise procédure d'opération	Bris mécanique	Normes et critères de conception Programme d'entretien	
Charge électrique statique par écoulement	Mauvaise conception des installations	Décharge électrique Source d'allumage d'incendie	 Normes et critères de conception Procédure d'opération Mises à la terre 	
Inflammabilité en présence d'air	 Mauvaise conception des installations Fuites Source d'allumage 	Incendie Explosion	 Normes et critères de conception Procédure d'opération Mises à la terre 	
Corrosion : - due au produit - due aux impuretés - due à l'activité bactérienne - due au dépôt en général	Non applicable			
Formation de : - polymères - gommes - cristaux - hydrates Formation avec : - humidité - autres produits ayant été transportés dans la même conduite	Non applicable			
Pyrophorocité des dépôts	Non applicable			

[«] Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

Danger	Causes typiques	Conséquences	Mesures de sécurité	Commentaires
Causes naturelles				
Séisme	Mauvaise conception des installations	• Fuite	Normes et critères de	
	installations	Rupture	conception	
Glissement de terrain	Mauvaise conception des installations	Fuite	Normes et critères de	
	installations	Rupture	conception	
Ravinement/érosion des berges	Mauvaise conception des installations	Fuite	Normes et critères de	
	IIIStaliations	Rupture	conception	
Inondation	Mauvaise conception des installations	Fuite	Normes et critères de conception	
	IIIStaliations	Rupture	conception	
Agressions par travaux	Agression par des tiers	Fuite	Surveillance des tiers	
Excavation		Rupture	Signalisation	
			Info-Excavation	
			Programme de sensibilisation des	
			cédants	
Rupture de lignes électriques ou court circuit	Mauvaise conception des installations	Fuite	Normes et critères de conception	
court circuit	Agression par des tiers	Incendie	Surveillance des tiers	
Agressions accidentelles	- Agression par des tiers	Fuite	Formation des premiers	
Déraillement ferroviaire		Rupture	intervenants	
Accident de circulation routière		Incendie	Plan d'urgence	
Incendie de bâtiment				
Feu de forêt				

[«] Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

Danger	Causes typiques	Conséquences	Mesures de sécurité	Commentaires
 Facteurs de corrosion Électrochimique Agression égout fuyant Agression à proximité d'un site d'enfouissement Attaque corrosive due à une fuite sur une conduite voisine contenant un produit corrosif 		• Fuite	 Normes et critères de conception Programme d'entretien Inspection interne 	
 Courants électriques Courants vagabonds (voies ferrées) Courants de fuite de proximité des pylônes du réseau de transport électrique 		CorrosionIgnition de fuites	 Normes et critères de conception Programme d'entretien 	

[«] Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

Annexe 4 Revue historique des accidents

Annexe 4 Revue historique des accidents

Référence:

- Bureau de la sécurité des transport (BST), http://www.bst.gc.ca
 National Transport Safety Board (NTSB), http://www.ntsb.gov
- 3. Conservation of Clean Air and Water in Europe (CONCAWE), http://www.concawe.be

Date	Lieu	Cause	Produit	Détails	Réf.
19 janvier 1994	Mississauga Ontario	Corrosion.	Carburéacteur	Fuite sur conduite de 254 mm à proximité de l'aérogare Pearson refoulant le carburéacteur à la surface du sol.	1
				Quantité déversée : 6 m ³ .	
1996	Europe	Bris mécanique d'une bride causé par matériel de construction défectueux.	Produit	Brèche sur canalisation de 218 mm. Quantité déversée : 165 m³ dans secteur industriel.	3
1996	Europe	Erreur humaine.	Produit	Brèche sur canalisation de 326 mm. Quantité déversée : 292 m ³ dans sec- teur résidentiel	3
1996	Europe	Corrosion externe.	Huile chaude	Brèche sur canalisation de 305 mm. Quantité déversée : 1 m³ dans secteur commercial	3
1996	Europe	Accidentel causé par dom- mage externe.	Produit raffiné	Brèche sur canalisation de 168 mm. Quantité déversée : 19 m³ dans sec- teur rural.	3
1996	Europe				
1996	Europe	Accidentel causé par dommage externe.	n- Produit raffiné Brèche sur canalisation de 254 r Quantité déversée : 500 m³. dan teur industriel.		
23 mai 1996	Gramercy Louisiane	Dommage par machine excavatrice.	Essence	Rupture d'une canalisation de 508 mm, et déversement dans l'emprise de la canalisation et dans des marécages. L'essence s'est aussi déversée dans le Blind River. Quantité déversée : 1800 m³ (475 000 gallons).	2
5 novembre 1996	Murfreesboro Tennessee	Procédures non suivies par l'exploitant. Surpression causée par écoulement dans une canalisation bloquée.	Diesel	Rupture d'une canalisation de 203 mm de diamètre au point de soudure (lon- gitudinal). Quantité déversée : 321 m ³ (84 700 gallons).	2
1997	Europe	Corrosion externe.	Produit raffiné	Brèche sur canalisation de 305 mm. Quantité déversée : 19 m³ dans sec- teur rural.	3
1997	Europe	Corrosion interne.	Pétrole brut	Brèche sur canalisation de 254 mm. Quantité déversée : 2 m³ dans secteur industriel.	3
1997	Europe	Fissuration par corrosion sous tension.	Produit raffiné	Brèche sur canalisation de 305 mm. Quantité déversée : 435 m³ dans sec- teur résidentiel.	3
1997	Europe	Fissuration par corrosion sous tension.	Produit raffiné	Brèche sur canalisation de 305 mm. Quantité déversée : 422 m³ dans sec- teur rural.	3
1997	Europe	Accidentel.	Produit raffiné	Brèche sur canalisation de 203 mm. Quantité déversée : 13 m³ dans secteur rural.	3

Date	Lieu	Cause	Produit	Détails	Réf.
1997	Europe	Accidentel.	Produit raffiné	Quantité déversée : 40 m ³ dans secteur industriel.	3
Tennessee l'environ par le br protectri tion. 'Lo		Fissure causée par l'environnement et facilitée par le bris de l'enveloppe protectrice de la canalisation. 'Low fracture thoughness of the pipe'.	Diesel	Rupture d'une canalisation de 254 mm de diamètre. Quantité déversée : 203 m³ (53 550 gallons).	2
10 juin 1999	Bellingham Washington	Dommage par machine excavatrice.	Essence	Rupture d'une canalisation de 406 mm de diamètre. L'essence s'est déversée dans une rivière. Après 1,5 heure l'essence s'est enflammée sur 2,4 km (1,5 miles) le long de la rivière. Trois personnes ont perdu la vie. Quantité déversée : 897 m³ (237 000 gallons).	2
27 janvier 2000	Winchester Kentucky	Une fissure par fatigue cau- sée par une bosselure a en- traîné, en combinaison avec fluctuations de pression, des contraintes élevées sur la paroi de la canalisation.	Pétrole brut	Rupture d'une canalisation de 610 mm de diamètre. Huile déversée sur un terrain de golf et dans le Two Mile Creek. Quantité déversée : 1051 m ³ (489 000 gallons).	
7 avril 2000	Chalk Point Maryland	Fissure causée par un flam- bage de la conduite. Les résultats d'un sondage élec- tronique ont été mal interpré- tés, considérant l'anomalie comme étant une pièce en T.	Huile no 6 chauffée	Brèche de165,1 mm (6,5 po) de long par 9,5 mm (3/8 po) de large sur une canalisation de 329 mm de diamètre dans un marécage. De fortes pluies ont par la suite endommagé les estacades, permettant à l'huile de se déverser dans le Swanser Creek et Patuxent River. Quantité déversée : 530 m³ (140 000 gallons).	2
2001	Europe	Bris mécanique causé par un défaut de construction.	Produit raffiné	Brèche sur point de soudure circonférentiel sur canalisation de 255 mm. Quantité déversée : 1 m³.	3
2001	Europe	Accrochage accidentel par machine excavatrice.	Produit raffiné	Brèche sur canalisation de 150 mm. Quantité déversée : 5 m ³ .	3
2001	Europe	Bris mécanique causé par un défaut de construction.	Pétrole brut	Bris de la soudure du dôme de renfor- cement sur la connexion temporaire de 508 mm. Quantité déversée : 800 m ³ .	3
2001	Europe	Corrosion interne.	Produit raffiné	Brèche sur décharge de la pompe Quantité déversée : 103 m ³ .	3
2001	Europe	Accrochage accidentel par machine excavatrice.	Produit raffiné	Brèche sur canalisation de 250 mm. Quantité déversée : 10 m ³ .	3
2001	Europe	Connexion illégale pour vol de produit.		Déversement à l'occasion d'un vol sur canalisation de 400 mm. Quantité déversée : 2 m ³ .	3
2001	Europe	Corrosion externe.	Produit raffiné	Brèche sur canalisation de 300 mm. Quantité déversée : 4 m ³ .	3
2001	Europe	Accrochage accidentel par machine excavatrice.	Produit raffiné	Brèche sur canalisation de 275 mm. Quantité déversée : 55 m ³ .	3
2001	Europe	Bris mécanique causé par du matériel de construction défectueux.	Produit raffiné	Fissure dans la paroi de la canalisation de 250 mm. Quantité déversée : 5 m ³ .	3
2001	Europe	Connexion illégale pour vol de produit.	Produit raffiné	Déversement à l'occasion d'un vol sur canalisation de 200 mm. Quantité déversée : 85 m ³ .	3
2001	Europe	Bris mécanique due au matériel de construction défectueux.	Produit raffiné	Brèche sur canalisation de 300 mm. Quantité déversée : 10 m ³ .	3

Date	Lieu	Cause	Produit	Détails	Réf.	
2001	Europe	Bris mécanique causé par du matériel de construction défectueux.	Produit raffiné	Brèche sur canalisation de 150 mm. Quantité déversée : 37 m ³ .	3	
2001	Europe	Connexion illégale pour vol de produit.	Pétrole brut	Déversement là l'occasion d'un vol sur canalisation de 300 mm. Quantité déversée : 17 m ³ .	3	
2001	Europe	Connexion illégale pour vol de produit.	Pétrole brut	Déversement à l'occasion d'un vol sur canalisation de 300 mm. Quantité déversée : 10 m ³ .	3	
29 septembre 2001	Binbrook Ontario	Corrosion localisée combinée à une fissuration.	Pétrole brut	Rupture d'une canalisation de 508 mm de diamètre. La rupture s'est produite dans un champ de soja. Quantité déversée : 95 m ³ .	1	
2002	Europe	Dommage accidentel par opérateur du pipeline.	Pétrole brut	Brèche sur canalisation de 405 mm. Quantité déversée : 750 m ³ .	3	
2002	Europe	Un glissement de terrain.	Produit raffiné	Une conduite de drainage de 600 mm a été arrachée d'une vanne de sec- tionnement. Quantité déversée : 250 m ³ .	3	
2002	Europe	Fissuration par corrosion sous tension.	Produit raffiné Une pression élevée a causé une ture à la hauteur de la fissure sur u canalisation de 325 mm. Quantité versée : 225 m³.			
2002	Europe	Accrochage accidentel par machine excavatrice.	Produit raffiné	Brèche sur canalisation de 200 mm. Quantité déversée : 190 m ³ .	3	
2002	Europe	Accrochage accidentel par machine excavatrice.	Produit raffiné	Brèche sur canalisation de 200 mm. Quantité déversée : 170 m ³ .	3	
2002	Europe	Corrosion externe.			3	
2002	Europe	Corrosion externe.	Produit raffiné	Corrosion sur canalisation de 255 mm. Quantité déversée : 80 m ³ .	3	
2002	Europe	Corrosion externe.	Produit raffiné	Corrosion aux joints de soudure sur canalisation de 200 mm. Quantité déversée : 70 m ³ .	3	
2002	Europe	Connexion illégale pour vol de produit.	Pétrole brut	Déversement à l'occasion d'un vol sur canalisation de 300 mm. Quantité déversée : 40 m ³ .	3	
2002	Europe	Corrosion externe.	Produit raffiné	Brèche sur canalisation de 150 mm. Quantité déversée : 17 m ³ .	3	
2002	Europe	Bris mécanique causé par du matériel de construction défectueux.	Produit raffiné	Joint d'isolation défectueux sur canalisation de 200 mm. Quantité déversée : 10 m ³ .	3	
2002	Europe	Accrochage accidentel par machine excavatrice.	Produit raffiné	Brèche sur canalisation de 508 mm. Quantité déversée : 280 m ³ .	3	
2003	Europe	Canalisation endommagée par la pose d'un égout.	Produit raffiné	Brèche sur canalisation de 508 mm de diamètre. Pollution importante des eaux de surface et des eaux souterraines. Quantité déversée : 2 500 m ³ .		
2003	Europe	Accrochage accidentel par machine excavatrice.	Produit raffiné	La canalisation de 305 mm a été ac- crochée malgré une signalisation adé- quate. Quantité déversée : 83 m ³ .	3	
2003	Europe	Connexion illégale pour vol de produit.		Une connexion illégale sur canalisation de 305 mm a été brisée par un racleur. Quantité déversée : 74 m ³ .	3	
2003	Europe	Connexion illégale pour vol de produit.	Produit raffiné	Une connexion illégale à l'aide d'équipements inadéquats sur canali- sation de 405 mm a entraîné un déver- sement. Quantité déversée : 52 m ³ .	3	

Date	Lieu	Cause	Produit	Détails	Réf.
2003	Europe	Bris mécanique causé par soudure défectueuse	Produit raffiné	Quantité déversée : 30 m ³ .	3
2003	Europe	Connexion illégale pour vol de produit.	Produit raffiné	Une connexion illégale sur canalisation de 405 mm a causé un déversement. Quantité déversée : 28 m³.	3
2003	Europe	Accrochage accidentel par machine excavatrice.	Produit raffiné	Brèche sur canalisation de 275 mm. Pollution des eaux de surface. Quanti- té déversée : 11 m ³ .	3
2003	Europe	Connexion illégale pour vol de produit.	Pétrole brut	Une connexion illégale avec matériel inadéquat sur canalisation de 405 mm a entrainé un déversement. Quantité déversée : 5 m ³ .	3
2003	Europe	Accrochage accidentel par machine excavatrice.	Produit raffiné	Quantité déversée : 2 m ³ .	3

Annexe 5	Détail des résultats des modélisations de conséquences
	d'accident

Annexe 5 Détail des résultats des modélisations de conséquences d'accident

Le tableau suivant décrit les scénarios de rupture modélisés. Les conséquences qu'on retrouve dans les tableaux de cette annexe sont les résultats majorants des simulations.

Tableau 1 - Description des scénarios

Produit	Description scénario Pressio		Taille de la brèche	Tableau
	Section Lévis-Bo	ucherville		
Essence d'hiver Carburéacteur Diesel/mazout	Fuite sur pipeline 406,4 mm due à un mouvement de terrain.	1 480 psig 740 psig 50 psig	Rupture totale	2
Essence d'hiver Carburéacteur Diesel/mazout	Fuite sur pipeline 406,4 mm, due à un accrochage par machine excavatrice.	1 480 psig 740 psig 50 psig	40 mm	3
Essence d'hiver Carburéacteur Diesel/mazout	Fuite sur pipeline 406,4 mm, due à de la corrosion.	1 480 psig 740 psig 50 psig	10 mm	4
Essence d'hiver Carburéacteur Diesel/mazout	Fuite sur pipeline 406,4 mm Impact sur lignes Hydro-Québec	1 480 psig 740 psig 50 psig	Rupture totale 40 mm 10 mm	5
Essence d'hiver	Station de pompage : fuite à l'intérieur, accumulations de vapeurs, explosion	S.O.	s.o.	6
	Section sous f	luviale		
Essence d'hiver Carburéacteur Diesel/mazout	Fuite sur pipeline 273,1 mm due à un mouvement de terrain ou accrochage par bateau.	1 480 psig	Rupture totale	7
	Montréal quai Ultramar-	rue Sherbroo	ke	
Essence d'hiver Carburéacteur Diesel/mazout	Fuite sur pipeline 273,1 mm due à un mouvement de terrain.	740 psig	Rupture totale	8
Essence d'hiver Carburéacteur Diesel/mazout	Fuite sur pipeline 273,1 mm, due à un accrochage par machine excavatrice.	740 psig	40 mm	9
Essence d'hiver Carburéacteur Diesel/mazout	Fuite sur pipeline 273,1 mm, due à de la corrosion.	740 psig	10 mm	10
	Section Montréal rue She	rbrooke - term	inal	
Essence d'hiver Carburéacteur Diesel/mazout	Fuite sur pipeline 323,1 mm due à un mouvement de terrain.	580 psig	Rupture totale	11
Essence d'hiver Carburéacteur Diesel/mazout	Fuite sur pipeline 323,1 mm, due à un accrochage par machine excavatrice.	580 psig	40 mm	12
Essence d'hiver Carburéacteur Diesel/mazout	Fuite sur pipeline 323,1 mm, due à de la corrosion.	580 psig	10 mm	13

Tableau 2 - Rupture totale du pipeline 406,4 mm, essence, carburéacteur, Diesel, vannes fermées en 5 minutes

		SCÉN	SCÉNARIO D'ACCIDENT PIPELINE D'ESSENCE / RUPTURE SUITE À UN MOUVEMENT DE TERRAIN Rupture totale Durée de la fuite : 5 minutes plus écoulement du matériel entre deux vannes										
ÉVÉNEM	ENT		ESSENCE	de la fuite .		RBURÉACTE			DIESEL/MAZOUT				
		1 480 psig fuite: 634m³/h	740 psig fuite: 453m³/h	50 psig fuite: 124m³/h	1 480 psig fuite: 634m³/h	740 psig fuite: 453m³/h	50 psig fuite: 124m³/h	1 480 psig fuite: 634m³/h	50 psig fuite: 124m³/h				
					CONSEQ	UENCES POTE	NTIELLES						
FEU DE FLAQUE			Radiations			Radiations	T		Radiations				
1,5 m/s F	Rayon max flaque	37 m	31 m	16 m	52 m	46 m	36 m	53 m	47 m	36 m			
,	13 kW/m ²	95 m	85 m	50 m	190 m	175 m	135 m	160 m	145 m	110 m			
	5 kW/m ²	135 m	120 m	70 m	280 m	250 m	200 m	230 m	210 m	160 m			
3,5 m/s D	Rayon max flaque	35 m	30 m	15 m	51 m	46 m	36 m	53 m	53 m 47 m				
7.	13 kW/m ²	95 m	80 m	45 m	200 m	180 m	140 m	165 m	150 m	115 m			
	5 kW/m ²	135 m	115 m	65 m	285 m	250 m	200 m	235 m	215 m	165 m			
FORMATION D'UN I VAPEURS ET EXPL		Surpressions			Surpressions				Surpressions				
1,5 m/s F	2 psi	400 m	350 m	180 m	65 m	50 m	50 m						
1,5 111/5 F	1 psi	485 m	430 m	220 m	80 m	60 m	60 m	No no	Ne produit pas d'explosion				
3,5 m/s D	2 psi	235 m	205 m	135 m	30 m	30 m	30 m	ive bi	oddii pas d exp	1051011			
,	1 psi	285 m	245 m	110 m	35 m	25 m	25 m						
RETOUR DE FLAM	ΛE												
1,5 m/s F	demie LFL	270 m	245 m	110 m	45 m	40 m	30 m	Ne produi	t pas de retour	de flamme			
3,5 m/s D	demie LFL	155 m	135 m	70 m	25 m	25 m	20 m						
FEU EN CHALUME	AU .		Radiations			Radiations			Radiations				
1,5 m/s F Longueur flamme 13 kW/m² 5 kW/m² Longueur flamme 13 kW/m² 5 kW/m² 5 kW/m²													
		Ne produit	pas de feu en	cnaiumeau	Ne produit pas de feu en chalumeau			Ne produit pas de feu en chalumeau					

<u>Hypothèses</u>

Feu de flaque :

- La flaque est en surface;
- Le terrain est plat;
- L'ignition survient lorsque la flaque atteint son diamètre maximal.

Explosion:

• L'explosion survient lorsque la concentration du nuage de vapeurs atteint la demie de la limite inférieure d'explosivité (0,6% pour essence).

Retour de flamme :

• La distance associée au retour de flamme est basée sur la demie de la limite inférieure d'explosivité (0,6% pour essence).

- Le pipeline est excavé;
- La fuite est dirigée verticalement;
- Basé sur le taux de fuite correspondant à la pression maximale dans le pipeline.

Tableau 3 – Fuite 40 mm sur pipeline 406,4 mm, essence, carburéacteur, Diesel, vannes fermées en 5 minutes

			SCÉNARIO D'ACCIDENT PIPELINE D'ESSENCE / FUITE SUITE À UN ACCROCHAGE Diamètre de la fuite : 40 mm Durée de la fuite : 5 minutes plus écoulement du matériel entre deux vannes								
	ÉVÉNEME	ENT	ESSENCE			CA	RBURÉACTE	UR	DI	ESEL/MAZO	JT
			1 480 psig fuite: 467m³/h	740 psig fuite: 334m³/h	50 psig fuite: 86 m³/h	1 480 psig fuite: 467m³/h	740 psig fuite: 334m³/h	50 psig fuite: 86 m³/h	1 480 psig fuite: 467m³/h	740 psig fuite: 334m³/h	50 psig fuite: 86 m³/h
						CONSEQ	JENCES POTE	NTIELLES			
	FEU DE FLAQUE	•		Radiations			Radiations			Radiations	
	4 5 m/o 5	Rayon max flaque	32 m	26 m	24 m	43 m	35 m	30 m	46 m	40 m	30 m
	1,5 m/s F	13 kW/m ²	85 m	75 m	70 m	195 m	150 m	115 m	140 m	125 m	100 m
쁘		5 kW/m ²	120 m	105 m	95 m	270 m	215 m	170 m	205 m	180 m	145 m
ATM	3,5 m/s D	Rayon max flaque	32 m	25 m	22 m	42 m	35 m	30 m	46 m	40 m	26 m
ZC		13 kW/m ²	85 m	75 m	65 m	195 m	150 m	120 m	145 m	130 m	100 m
N N		5 kW/m ²	120 m	105 m	90 m	275 m	215 m	175 m	210 m	185 m	145 m
DIRECTION HORIZONTALE	FORMATION D'UN NUAGE DE VAPEURS ET EXPLOSION		Surpressions			Surpressions			Surpressions		
은	1,5 m/s F	2 psi	340 m	285 m	250 m	50 m	50 m	35 m			
ြု	1,5 11/5 F	1 psi	415 m	355 m	310 m	60 m	60 m	40 m	Ne nr	oduit pas d'exp	locion
<u> </u>	3,5 m/s D	2 psi	200 m	170 m	130 m	65 m	30 m	15 m	ive pi	oddit pas d exp	1031011
	•	1 psi	245 m	210 m	160 m	80 m	40 m	20 m			
	RETOUR DE FLAM	ME									
	1,5 m/s F	demie LFL	230 m	185 m	150 m	35 m	35 m	25 m	Ne produi	t pas de retour o	de flamme
	3,5 m/s D	demie LFL	130 m	110 m	85 m	45 m	25 m	15 m			
	FEU EN CHALUME	ΑU		Radiations			Radiations			Radiations	
ᇂ끡	1.5 m/s F	Longueur flamme	60 m	54 m	35 m	57 m	52 m	30 m	53 m	20 m	4 m
	1,5 111/5 F	13 kW/m ²	50 m	50 m	50 m	50 m	50 m	45 m	45 m	15 m	5 m
		5 kW/m ²	95 m	95 m	75 m	90 m	85 m	65 m	85 m	30 m	10 m
DIRECTION	2.5 m/s D	Longueur flamme	48 m	43 m	28 m	46 m	41 m	27 m	43 m	15 m	4 m
	3,5 m/s D	13 kW/m ²	55 m	55 m	45 m	55 m	55 m	45 m	50 m	15 m	5 m
		5 kW/m ²	90 m	90 m	70 m	90 m	85 m	65 m	80 m	25 m	10 m

<u>Hypothèses</u>

Feu de flaque :

- La flaque est en surface;
- Le terrain est plat;
- L'ignition survient lorsque la flaque atteint son diamètre maximal.

Explosion:

• L'explosion survient lorsque la concentration du nuage de vapeurs atteint la demie de la limite inférieure d'explosivité (0,6% pour essence).

Retour de flamme :

• La distance associée au retour de flamme est basée sur la demie de la limite inférieure d'explosivité (0,6% pour essence).

- Le pipeline est excavé;
- La fuite est dirigée verticalement;
- Basé sur le taux de fuite correspondant à la pression maximale dans le pipeline.

[«]Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

Tableau 4 – Fuite 10 mm sur pipeline 406,4 mm, essence, carburéacteur, Diesel, vannes fermées en 5 minutes

						Diamèt	re de la fuite	: 10 mm	E À DE LA Co		
	ÉVÉNEME	ENT	ESSENCE			CA	RBURÉACTE	UR	DI	ESEL/MAZO	JT
			1 480 psig fuite: 29 m³/h	740 psig fuite: 19 m³/h	50 psig fuite: 5 m³/h	1 480 psig fuite: 29 m³/h	740 psig fuite: 19 m³/h	50 psig fuite: 5 m³/h	1 480 psig fuite: 29 m³/h	740 psig fuite: 19 m³/h	50 psig fuite: 5 m³/h
						CONSEQ	JENCES POTE	NTIELLES			
	FEU DE FLAQUE			Radiations			Radiations			Radiations	
	4.5	Rayon max flaque	7 m	6 m	3 m	11 m	10 m	7 m	11 m	10 m	8 m
	1,5 m/s F	13 kW/m ²	25 m	20 m	10 m	45 m	40 m	30 m	40 m	40 m	30 m
쁘		5 kW/m ²	35 m	30 m	15 m	70 m	60 m	50 m	55 m	55 m	45 m
DIRECTION HORIZONTALE	3,5 m/s D	Rayon max flaque	7 m	6 m	3 m	11 m	10 m	7 m	11 m	10 m	8 m
20		13 kW/m ²	25 m	20 m	10 m	50 m	45 m	35 m	40 m	40 m	30 m
R		5 kW/m ²	35 m	30 m	15 m	70 m	65 m	50 m	60 m	60 m	45 m
N H	FORMATION D'UN I VAPEURS ET EXPL		Surpressions			Surpressions				Surpressions	
은	1,5 m/s F	2 psi	80 m	70 m	35 m						
ပ္ပ	1,3 11/5 F	1 psi	100 m	90 m	45 m	Ne or	oduit pas d'exp	locion	No nr	oduit pas d'exp	locion
꾶	3,5 m/s D	2 psi	45 m	45 m	15 m	ive pr	oduli pas d exp	1051011	ive bi	oddit pas d exp	1051011
	,	1 psi	55 m	55 m	20 m						
	RETOUR DE FLAMI	ME									
	1,5 m/s F	demie LFL	50 m	45 m	25 m	5 m	5 m	5 m	No produi	t noo do rotour	do flamma
	3,5 m/s D	demie LFL	35 m	35 m	20 m	5 m	5 m	5 m	ive produi	t pas de retour	de namme
	FEU EN CHALUME	ÁU		Radiations			Radiations			Radiations	
ZΨ	4 E m/o F	Longueur flamme	18 m	17 m	11 m	17 m	16 m	10 m	16 m	5 m	2 m
일본	1,5 m/s F	13 kW/m ²	20 m	20 m	15 m	15 m	15 m	15 m	15 m	5 m	1 m
[[5 kW/m ²	30 m	30 m	20 m	30 m	30 m	20 m	25 m	10 m	5 m
DIRECTION VERTICALE	2.5 m/s D	Longueur flamme	18 m	13 m	9 m	14 m	13 m	8 m	13 m	7 m	1 m
	3,5 m/s D	13 kW/m ²	20 m	20 m	15 m	15 m	15 m	15 m	15 m	5 m	1 m
		5 kW/m ²	30 m	30 m	20 m	20 m	20 m	20 m	25 m	10 m	5 m

Feu de flaque :

- La flaque est en surface;
- Le terrain est plat;
- L'ignition survient lorsque la flaque atteint son diamètre maximal.

Explosion:

• L'explosion survient lorsque la concentration du nuage de vapeurs atteint la demie de la limite inférieure d'explosivité (0,6% pour essence).

Retour de flamme :

• La distance associée au retour de flamme est basée sur la demie de la limite inférieure d'explosivité (0,6% pour essence).

- Le pipeline est excavé;
- La fuite est dirigée verticalement;
- Basé sur le taux de fuite correspondant à la pression maximale dans le pipeline.

[«]Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

Tableau 5 - Impact sur fils d'Hydro-Québec

Brèche	Vannes	Direction fuite	Substance	Radiatio	on maximale (kW/m²)	sur fils
				Pression pipeline 1 480 psig	Pression pipeline 740 psig	Pression pipeline 50 psig
10 mm	non	Н	essence	10	7	1
			carburéacteur	engouffré	engouffré	45
			diesel	engouffré	engouffré	24
10 mm	non	V	essence	3	3	1
			carburéacteur	3	3	1
			diesel	3	3	1
10 mm	oui	Н	essence	4	2	0,4
			carburéacteur	engouffré	14	8
			diesel	engouffré	10	5
10 mm	oui	V	essence	3	3	1
			carburéacteur	3	3	1
			diesel	3	3	1
40 mm	non	Н	essence	engouffré	engouffré	70
			carburéacteur	engouffré	engouffré	150
			diesel	engouffré	engouffré	117
40 mm	non	V	essence	35	30	23
			carburéacteur	30	30	2
			diesel	27	2	pas atteint
40 mm	oui	Н	essence	engouffré	engouffré	13
			carburéacteur	engouffré	engouffré	90
			diesel	engouffré	engouffré	74
40 mm	oui	V	essence	35	30	23
			carburéacteur	30	30	2
			diesel	27	2	pas atteint
Rupture totale	non	Н	essence		engouffré	
'			carburéacteur		engouffré	
			diesel		engouffré	
Rupture totale	oui	Н	essence		engouffré	
			carburéacteur		engouffré	
			diesel		engouffré	

Notes:

Engouffré signifie que les flammes atteignent les fils et les engouffrent.

Hypothèse : fils d'Hydro-Québec situés à 40 m de la brèche et 15 m en élévation.

Les fuites dirigées verticalement sont sans obstruction et produisent un feu en chalumeau.

Les fuites dirigées horizontalement produisent une flaque de 1 cm d'épaisseur qui s'allume lorsque la flaque atteint son diamètre maximal ('late pool fire'). La modélisation pose l'hypothèse que le terrain est plat, sans dépressions. Elle ne tient donc pas compte des dépressions qui pourraient être présentes, tels les fossés.

Tableau 6 - Fuites à l'intérieur d'une station de pompage

	SCÉNARIO D'ACCIDENT INTÉRIEUR STATION DE POMPAGE Explosion à la concentration stoechiométrique de la substance			
	EXPLOSION DU NUAGE DE VAPEURS D'ESSENCE			
NIVEAUX DE	13,8 kPa	6,89 kPa	2,07 kPa	
DANGER	(2 psig)	(1 psig)	(0,3 psig)	
	DISTANCE			
VENTS	(m)			
1,5 m/s F	80 130 315			
3,5 m/s D	80	130	315	

[«]Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

Tableau 7 - Rupture totale du pipeline 273,1 mm, dans le fleuve, essence, carburéacteur, Diesel, vannes fermées en 5 minutes

			ELINE D'ESSENCE / RUPTURE SUITE À Rupture totale 5 minutes plus écoulement du matériel	
ÉVÉNE	MENT	ESSENCE	CARBURÉACTEUR	DIESEL/MAZOUT
		1 480 psig fuite: 634 m³/h	1 480 psig fuite: 634 m³/h	1 480 psig fuite: 634 m³/h
		CONSEQUENCES POTENTIELLES		
FEU DE FLAQUE		Radiations	Radiations	Radiations
1,5 m/s F	Rayon max flaque	58 m	125 m	133 m
,-	13 kW/m ²	140 m	425 m	345 m
	5 kW/m ²	195 m	615 m	490 m
3,5 m/s D	Rayon max flaque	23 m	119 m	132 m
	13 kW/m ²	65 m	400 m	345 m
	5 kW/m ²	90 m	590 m	490 m
RETOUR DE FLA	мме			
1,5 m/s F	demie LFL			
3,5 m/s D	demie LFL			

Feu de flaque :

- La flaque est en surface;
- L'ignition survient lorsque la flaque atteint son diamètre maximal;
 La flaque est de forme circulaire.

Tableau 8 - Rupture totale du pipeline 273,1 mm, essence, carburéacteur, Diesel, vannes fermés en 5 minutes

		SCÉNARIO D'ACCIDENT PIPELINE D'ESSENCE / RUPTURE SUITE À UN MOUVEMENT DE TERRAIN Rupture totale Durée de la fuite : 5 minutes plus écoulement du matériel entre deux vannes				
ÉVÉNEM	IENT	ESSENCE	CARBURÉACTEUR	DIESEL/MAZOUT		
	_	740 psig fuite: 453 m³/h	740 psig fuite: 453 m³/h	740 psig fuite: 453 m³/h		
			CONSEQUENCES POTENTIELLES			
FEU DE FLAQUE		Radiations	Radiations	Radiations		
1,5 m/s F	Rayon max flaque	31 m	46 m	47 m		
	13 kW/m ²	85 m	175 m	145 m		
	5 kW/m ²	120 m	250 m	210 m		
3,5 m/s D	Rayon max flaque	30 m	46 m	47 m		
	13 kW/m ²	80 m	180 m	150 m		
	5 kW/m ²	115 m	250 m	215 m		
FORMATION D'UN VAPEURS ET EXPL		Surpressions	Surpressions	Surpressions		
1,5 m/s F	2 psi	350 m	50 m			
1,5 111/5 1	1 psi	430 m	60 m	Ne produit pas d'explosion		
3,5 m/s D	2 psi	205 m	30 m	rve produit pas a explosion		
•	1 psi	245 m	25 m			
RETOUR DE FLAM	ME					
1,5 m/s F	demie LFL	245 m	40 m	Ne produit pas de retour de flamme		
3,5 m/s D	demie LFL	135 m	25 m			
FEU EN CHALUME	_	Radiations	Radiations	Radiations		
1,5 m/s F	Longueur flamme 13 kW/m² 5 kW/m²	No seed it was to feel as a leaf	No conditions de Constant	No area de Grando de Constante		
3,5 m/s D	Longueur flamme 13 kW/m² 5 kW/m²	Ne produit pas de feu en chalumeau	Ne produit pas de feu en chalumeau	Ne produit pas de feu en chalumeau		

<u>Hypothèses</u>

Feu de flaque :

- La flaque est en surface;
- Le terrain est plat;
- L'ignition survient lorsque la flaque atteint son diamètre maximal.

Explosion:

- L'explosion survient lorsque la concentration du nuage de vapeurs atteint la demie de la limite inférieure d'explosivité (0,6% pour essence). Retour de flamme :
 - La distance associée au retour de flamme est basée sur la demie de la limite inférieure d'explosivité (0,6% pour essence).

- Le pipeline est excavé;
- La fuite est dirigée verticalement;
- Basé sur le taux de fuite correspondant à la pression maximale dans le pipeline.

[«]Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

Tableau 9 - Fuite 40 mm sur pipeline 273,1 mm, essence, carburéacteur, Diesel, vannes fermées en 5 minutes

				ENT PIPELINE D'ESSENCE / FUITE SU Diamètre de la fuite : 40 mm : 5 minutes plus écoulement du maté	
	ÉVÉNEM	ENT	ESSENCE	CARBURÉACTEUR	DIESEL/MAZOUT
			740 psig fuite: 334 m³/h	740 psig fuite: 334 m³/h	740 psig fuite: 334 m³/h
				CONSEQUENCES POTENTIELLES	
	FEU DE FLAQUE		Radiations	Radiations	Radiations
	4.5 / 5	Rayon max flaque	26 m	35 m	40 m
	1,5 m/s F	13 kW/m ²	75 m	150 m	125 m
쁘		5 kW/m ²	105 m	215 m	180 m
DIRECTION HORIZONTALE	3,5 m/s D	Rayon max flaque	25 m	35 m	40 m
		13 kW/m ²	75 m	150 m	130 m
		5 kW/m ²	105 m	215 m	185 m
N H	FORMATION D'UN VAPEURS ET EXP		Surpressions	Surpressions	Surpressions
은	1,5 m/s F	2 psi	285 m	50 m	
ပ္ပ	1,5 111/5 1	1 psi	355 m	60 m	Ne produit pas d'explosion
쮼	3,5 m/s D	2 psi	170 m	30 m	The produit pas a explosion
	•	1 psi	210 m	40 m	
	RETOUR DE FLAM	ME			
	1,5 m/s F	demie LFL	185 m	35 m	Ne produit pas de retour de flamme
	3,5 m/s D	demie LFL	110 m	25 m	
	FEU EN CHALUME		Radiations	Radiations	Radiations
ᇹ삨	1,5 m/s F	Longueur flamme	54 m	52 m	20 m
₹	1,3 111/3 F	13 kW/m ²	50 m	50 m	15 m
ล≌		5 kW/m ²	95 m	85 m	30 m
VERTICALE	3.5 m/s D	Longueur flamme	43 m	41 m	15 m
	3,5 m/s D	13 kW/m ²	55 m	55 m	15 m
		5 kW/m ²	90 m	85 m	25 m

Feu de flaque :

- La flaque est en surface;
- Le terrain est plat;
- L'ignition survient lorsque la flaque atteint son diamètre maximal.

Explosion:

L'explosion survient lorsque la concentration du nuage de vapeurs atteint la demie de la limite inférieure d'explosivité (0,6% pour essence).

Retour de flamme :

• La distance associée au retour de flamme est basée sur la demie de la limite inférieure d'explosivité (0,6% pour essence).

- Le pipeline est excavé;
- La fuite est dirigée verticalement;
- Basé sur le taux de fuite correspondant à la pression maximale dans le pipeline.

Tableau 10 – Fuite 10 mm sur pipeline 273,1 mm, essence, carburéacteur, Diesel, vannes fermées en 5 minutes

				DENT PIPELINE D'ESSENCE / FUITE SUI Diamètre de la fuite : 10 mm e : 5 minutes plus écoulement du matéri	
	ÉVÉNEM	ENT	ESSENCE	CARBURÉACTEUR	DIESEL/MAZOUT
			740 psig fuite: 19 m³/h	740 psig fuite: 19 m³/h	740 psig fuite: 19 m³/h
				CONSEQUENCES POTENTIELLES	
	FEU DE FLAQUE		Radiations	Radiations	Radiations
	45/- 5	Rayon max flaque	6 m	10 m	10 m
	1,5 m/s F	13 kW/m ²	20 m	40 m	40 m
쁘		5 kW/m ²	30 m	60 m	55 m
NTA	3,5 m/s D	Rayon max flaque	6 m	10 m	10 m
ZC		13 kW/m ²	20 m	45 m	40 m
N.		5 kW/m ²	30 m	65 m	60 m
DIRECTION HORIZONTALE	FORMATION D'UN VAPEURS ET EXPI		Surpressions	Surpressions	Surpressions
은	1,5 m/s F	2 psi	70 m		
ည	1,3 111/5 F	1 psi	90 m	Ne produit pas d'explosion Ne produit par	Ne produit pas d'explosion
RE	3,5 m/s D	2 psi	45 m		Ne produit pas a explosion
	,	1 psi	55 m		
	RETOUR DE FLAM	ME			
	1,5 m/s F	demie LFL	45 m	5 m	Ne produit pas de retour de flamme
	3,5 m/s D	demie LFL	35 m	5 m	·
	FEU EN CHALUME		Radiations	Radiations	Radiations
Z믝	1,5 m/s F	Longueur flamme	17 m	16 m	5 m
	1,3 111/3 F	13 kW/m ²	20 m	15 m	5 m
∷∷≓		5 kW/m ²	30 m	30 m	10 m
DIRECTION VERTICALE	3.5 m/s D	Longueur flamme	13 m	13 m	7 m
1	3,5 m/s D	13 kW/m ²	20 m	15 m	5 m
		5 kW/m ²	30 m	20 m	10 m

Feu de flaque :

- La flaque est en surface;
- Le terrain est plat;
- L'ignition survient lorsque la flaque atteint son diamètre maximal.

Explosion:

• L'explosion survient lorsque la concentration du nuage de vapeurs atteint la demie de la limite inférieure d'explosivité (0,6% pour essence).

Retour de flamme :

• La distance associée au retour de flamme est basée sur la demie de la limite inférieure d'explosivité (0,6% pour essence).

- Le pipeline est excavé;
- La fuite est dirigée verticalement;
- Basé sur le taux de fuite correspondant à la pression maximale dans le pipeline.

[«]Pour seule fin de simulation. À ne pas utiliser hors du contexte du présent rapport.»

Tableau 11 - Rupture totale du pipeline 323,1 mm, hors terre, essence, carburéacteur, Diesel, vannes fermées en 5 minutes

		SCÉNARIO D'ACCIDENT PIPELINE D'ESSENCE / RUPTURE SUITE À UN MOUVEMENT DE TERRAIN Rupture totale Durée de la fuite : 5 minutes plus écoulement du matériel entre deux vannes				
ÉVÉNEN	IENT	ESSENCE	CARBURÉACTEUR	DIESEL/MAZOUT		
		580 psig fuite: 400 m³/h	580 psig fuite: 400 m³/h	580 psig fuite: 400 m³/h		
			CONSEQUENCES POTENTIELLES			
FEU DE FLAQUE		Radiations	Radiations	Radiations		
1,5 m/s F	Rayon max flaque	29 m	40 m	41 m		
,-	13 kW/m ²	80 m	155 m	125 m		
	5 kW/m ²	115 m	225 m	185 m		
3,5 m/s D	Rayon max flaque	29 m	40 m	41 m		
,	13 kW/m ²	80 m	155 m	125 m		
	5 kW/m ²	115 m	225 m	185 m		
FORMATION D'UN VAPEURS ET EXPL		Surpressions	Surpressions	Surpressions		
1,5 m/s F	2 psi	305 m	50 m			
1,5 111/5 F	1 psi	380 m	65 m	Ne produit pas d'explosion		
3,5 m/s D	2 psi	190 m	30 m	ive produit pas d'explosion		
,	1 psi	230 m	35 m			
RETOUR DE FLAM	ME					
1,5 m/s F	demie LFL	200 m	30 m	Ne produit pas de retour de flamme		
3,5 m/s D	demie LFL	125 m	25 m			
FEU EN CHALUME	AU	Radiations	Radiations	Radiations		
1 5 m/o 5	Longueur flamme					
1,5 m/s F	13 kW/m ² 5 kW/m ²			N 12 17 17		
3,5 m/s D	Longueur flamme	Ne produit pas de feu en chalumeau	Ne produit pas de feu en chalumeau	Ne produit pas de feu en chalumeau		
I by math \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	13 kW/m ² 5 kW/m ²					

<u>Hypothèses</u>

Feu de flaque :

- La flaque est en surface;
- Le terrain est plat;
- L'ignition survient lorsque la flaque atteint son diamètre maximal.

Explosion:

- L'explosion survient lorsque la concentration du nuage de vapeurs atteint la demie de la limite inférieure d'explosivité (0,6% pour essence). Retour de flamme :
 - La distance associée au retour de flamme est basée sur la demie de la limite inférieure d'explosivité (0,6% pour essence).

- La fuite est dirigée verticalement;
- Basé sur le taux de fuite correspondant à la pression maximale dans le pipeline.

Tableau 12 - Fuite 40 mm sur pipeline 323,1 mm, hors terre, essence, carburéacteur, Diesel, vannes fermées en 5 minutes

				ENT PIPELINE D'ESSENCE / FUITE SI Diamètre de la fuite : 40 mm : 5 minutes plus écoulement du maté	
	ÉVÉNEM	IENT	ESSENCE	CARBURÉACTEUR	DIESEL/MAZOUT
			580 psig fuite: 294 m³/h	580 psig fuite: 294 m³/h	580 psig fuite: 294 m³/h
			raite. 234 III /II	CONSEQUENCES POTENTIELLES	Tuite: 254 III /II
	FEU DE FLAQUE		Radiations	Radiations	Radiations
	4.5 / 5	Rayon max flaque	25 m	34 m	38 m
	1,5 m/s F	13 kW/m ²	70 m	145 m	125 m
쁘		5 kW/m ²	100 m	205 m	180 m
NTA	3,5 m/s D	Rayon max flaque	24 m	34 m	38 m
ZC	3,3 111/5 D	13 kW/m ²	70 m	145 m	125 m
DIRECTION HORIZONTALE		5 kW/m ²	95 m	210 m	180 m
	FORMATION D'UN NUAGE DE VAPEURS ET EXPLOSION		Surpressions	Surpressions	Surpressions
≌	1,5 m/s F	2 psi	265 m	50 m	
١	1,5 11/5 1	1 psi	330 m	60 m	Ne produit pas d'explosion
2	3,5 m/s D	2 psi	160 m	30 m	- The product pas a explosion
ב	,	1 psi	195 m	35 m	
	RETOUR DE FLAM	IME			
	1,5 m/s F	demie LFL	180 m	30 m	No produit pop do retour de flamme
	3,5 m/s D	demie LFL	105 m	25 m	Ne produit pas de retour de flamme
	FEU EN CHALUME	AU	Radiations	Radiations	Radiations
: Щ	1,5 m/s F	Longueur flamme	51 m	49 m	15 m
` <u>₹</u>	1,5 11/5 F	13 kW/m ²	50 m	45 m	15 m
ĭ		5 kW/m ²	90 m	85 m	30 m
VERTICALE	3,5 m/s D	Longueur flamme	41 m	39 m	12 m
	3,3 111/8 D	13 kW/m ²	50 m	50 m	20 m
		5 kW/m ²	90 m	80 m	25 m

Feu de flaque :

- La flaque est en surface;
- Le terrain est plat;
- L'ignition survient lorsque la flaque atteint son diamètre maximal.

Explosion:

• L'explosion survient lorsque la concentration du nuage de vapeurs atteint la demie de la limite inférieure d'explosivité (0,6% pour essence).

Retour de flamme :

• La distance associée au retour de flamme est basée sur la demie de la limite inférieure d'explosivité (0,6% pour essence).

- La fuite est dirigée verticalement;
 Basé sur le taux de fuite correspondant à la pression maximale dans le pipeline.

Tableau 13 – Fuite 10 mm sur pipeline 323,1 mm, hors terre, essence, carburéacteur, Diesel, vannes fermées en 5 minutes

				ENT PIPELINE D'ESSENCE / FUITE SUI Diamètre de la fuite : 10 mm : 5 minutes plus écoulement du matéri	
	ÉVÉNEM	ENT	ESSENCE	CARBURÉACTEUR	DIESEL/MAZOUT
			580 psig fuite: 18 m³/h	580 psig fuite: 18 m³/h	580 psig fuite: 18 m³/h
				CONSEQUENCES POTENTIELLES	
	FEU DE FLAQUE		Radiations	Radiations	Radiations
	1,5 m/s F	Rayon max flaque	5 m	9 m	9 m
	1,5 11/5 F	13 kW/m ²	20 m	40 m	35 m
쁘		5 kW/m ²	30 m	60 m	50 m
NTA	3,5 m/s D	Rayon max flaque	5 m	9 m	9 m
ZC		13 kW/m ²	20 m	40 m	35 m
N N		5 kW/m ²	30 m	60 m	50 m
DIRECTION HORIZONTALE	FORMATION D'UN NUAGE DE VAPEURS ET EXPLOSION		Surpressions	Surpressions	Surpressions
≌	1,5 m/s F	2 psi	70 m		
ည	1,0 11//0 1	1 psi	85 m	Ne produit pas d'explosion	Ne produit pas d'explosion
골	3,5 m/s D	2 psi	45 m		140 produk pao a explosion
Δ	,	1 psi	55 m		
	RETOUR DE FLAM	ME			
	1,5 m/s F	demie LFL	40 m	5 m	Ne produit pas de retour de flamme
	3,5 m/s D	demie LFL	30 m	5 m	
	FEU EN CHALUME		Radiations	Radiations	Radiations
2 4	1,5 m/s F	Longueur flamme	16 m	15 m	5 m
I≅₹	1,5 11/5 1	13 kW/m ²	15 m	15 m	5 m
유달		5 kW/m ²	30 m	25 m	10 m
DIRECTION VERTICALE	3,5 m/s D	Longueur flamme	13 m	12 m	5 m
l	ט פיווו ט,ט	13 kW/m ²	20 m	15 m	10 m
		5 kW/m ²	25 m	25 m	15 m

Feu de flaque :

- La flaque est en surface;
- Le terrain est plat;
- L'ignition survient lorsque la flaque atteint son diamètre maximal.

Explosion:

• L'explosion survient lorsque la concentration du nuage de vapeurs atteint la demie de la limite inférieure d'explosivité (0,6% pour essence).

Retour de flamme :

• La distance associée au retour de flamme est basée sur la demie de la limite inférieure d'explosivité (0,6% pour essence).

- La fuite est dirigée verticalement;
- Basé sur le taux de fuite correspondant à la pression maximale dans le pipeline.

Annexe 6 Description des types de feux et planches de radiation	

Annexe 6 Description des types de feux et planches de radiation

La Figure 1 illustre un feu de flaque et les radiations produites. Pour les fins de calculs, deux hypothèses majorantes ont été utilisées : la flaque est sur un terrain plat et l'ignition de la flaque se fait lorsque cette dernière est à son diamètre maximal. Tel qu'illustré, la flamme couvre la totalité de la flaque et est inclinée par le vent. Les conséquences des radiations sont donc plus importantes dans la direction du vent. Ces distances sont rapportées dans cette étude. Les Figures 3 à 5 de cette annexe illustrent des feux de flaque sur la conduite de 406,4 mm dans le cas d'une rupture totale, d'une fuite de 40 mm et d'une fuite de 10 mm à la pression maximale de la conduite, 10 200 kPa (1 480 psig). Les courbes de radiations s'appliquent à des récepteurs situés au niveau du sol.

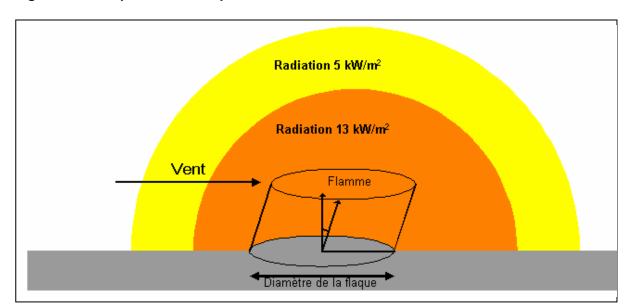
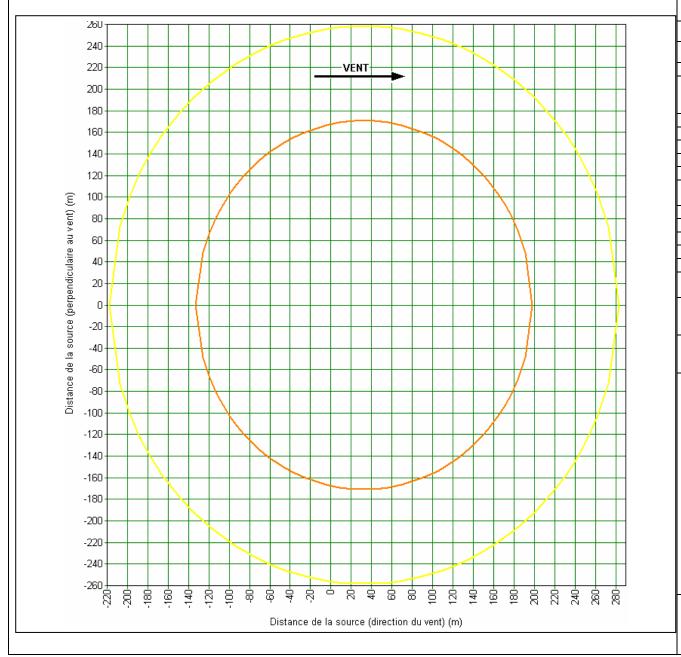


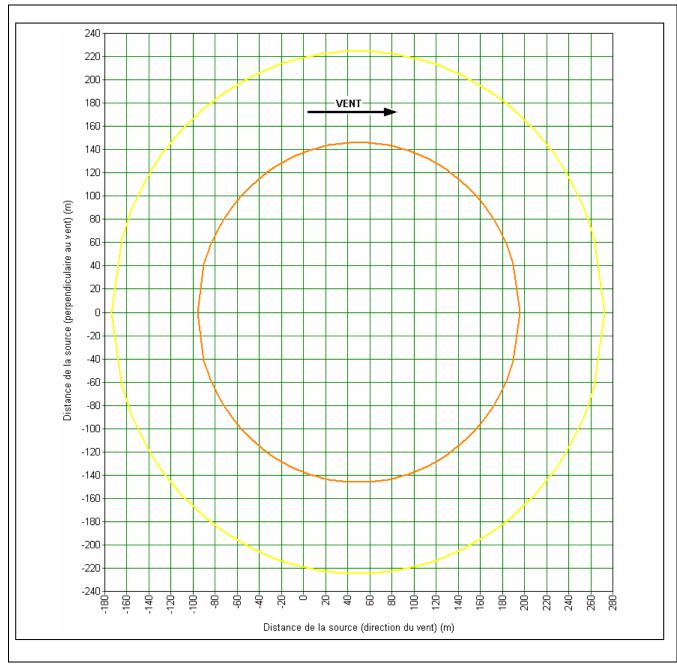
Figure 1 - Description feu de flaque


La Figure 2 illustre un feu en chalumeau. Le feu de chalumeau survient lorsqu'il y a ignition immédiatement après la perforation d'une conduite. Le feu en chalumeau origine dans la brèche de la conduite. La pression dans la conduite affecte la hauteur de la flamme produite. À mesure que la conduite se dépressurise, le jet de liquide diminue, ce qui fait également diminuer la hauteur de la flamme. Pour fins de calculs, l'hypothèse majorante d'une pression maximale dans la conduite a été utilisée pour calculer les conséquences. Tout comme pour le feu de flaque, le vent fait pencher la flamme dans sa direction. Les conséquences des radiations sont donc plus importantes dans la direction du vent. Ces distances sont rapportées dans cette étude. Les Figures 6 et 7 de cette annexe illustrent les feux en chalumeau sur la conduite de 406,4 mm pour une fuite de 40 mm et une fuite de 10 mm à la pression maximale de la conduite, 10 200 kPa (1 480 psig). Un feu en chalumeau sur une rupture totale n'est pas probable, étant donné la vitesse de sortie du liquide beaucoup moins élevée. Ces courbes de radiations s'appliquent à des récepteurs situés au niveau du sol.

Radiation 5 kW/m²

Point

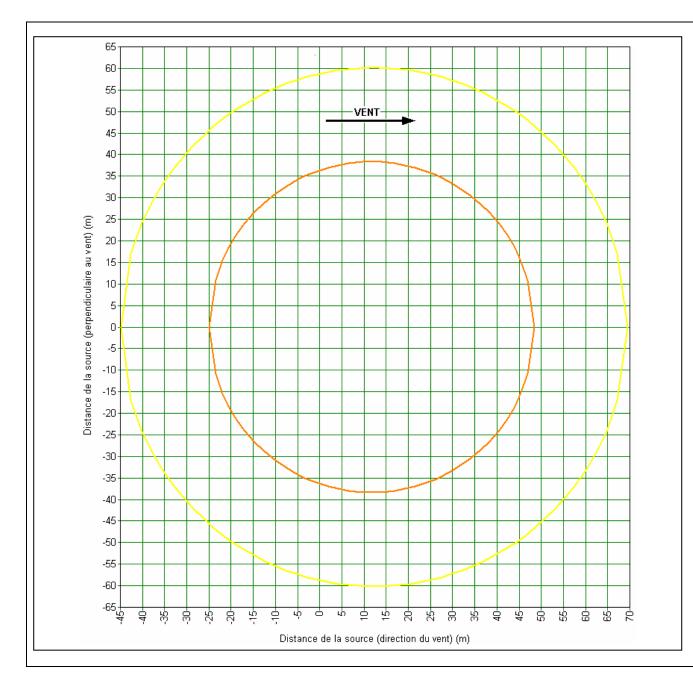
Conduite


Figure 2 - Description feu en chalumeau

Pipeline Saint-Laurent					
Carburéacteur					
Scénario d'a	Scénario d'accident				
Équipement	Pipeline 406,4 mm				
Scénario	Rupture du pipeline				
	suite à un mouvement				
	de terrain.				
Inventaire, kg	s.o.				
Pression kPa (psi)	10 212 (1 480)				
Température, °C	15				
Brèche, mm (po)	406,4 (16)				
Taux de fuite (m³/hr)	634				
Durée, s (fermeture des	300				
vannes)					
Bassin de rétention, m²	s.o.				
Vitesse du vent, m/s (km/h)	3,5 (12,6)				
Stabilité atmosphérique	D				
Température ambiante, °C	25				
Température du sol, °C	25				
Radiations	Distance maximale				
Feu de flaque					
13 kW/m²	200 m				
5 kW/m²	285 m				

Modèle : DNV Technica Phast Pro ver 6.5

Figure 3 – Rupture totale du pipeline de 406,4 mm, feu de flaque

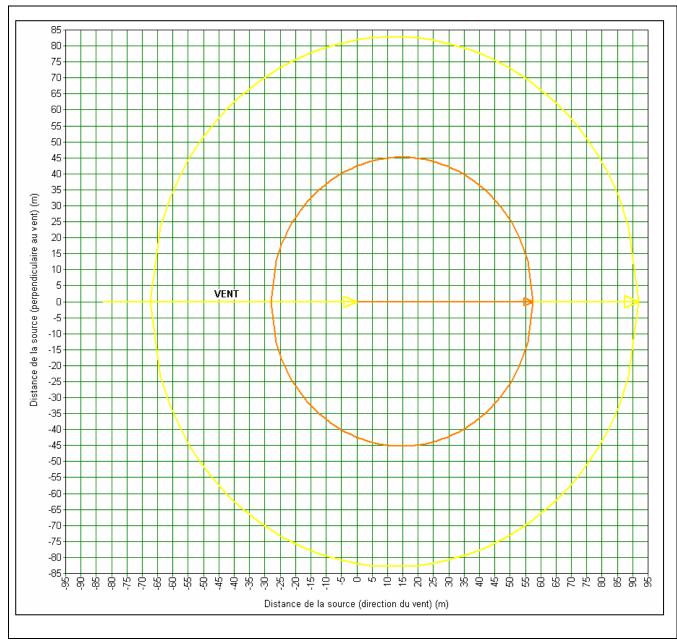


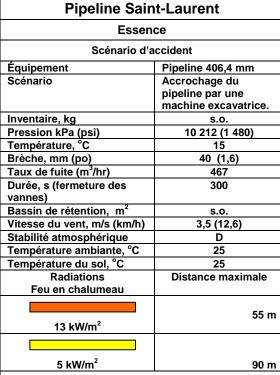
Pipeline Saint-Laurent		
Carburéacteur		
Scénario d'a	accident	
Équipement	Pipeline 406,4 mm	
Scénario	Accrochage du	
	pipeline par une	
	machine excavatrice.	
Inventaire, kg	s.o.	
Pression kPa (psi)	10 212 (1 480)	
Température, °C	15	
Brèche, mm (po)	40 (1,6)	
Taux de fuite (m³/hr)	467	
Durée, s (fermeture des	300	
vannes)		
Bassin de rétention, m ²	s.o.	
Vitesse du vent, m/s (km/h)	3,5 (12,6)	
Stabilité atmosphérique	D	
Température ambiante, °C	25	
Température du sol, °C	25	
Radiations	Distance maximale	
Feu de flaque		
13 kW/m²	195 m	
5 kW/m²	275 m	

Modèle :

DNV Technica Phast Pro ver 6.5

Figure 4 – Brèche 40 mm sur pipeline de 406,4 mm, feu de flaque

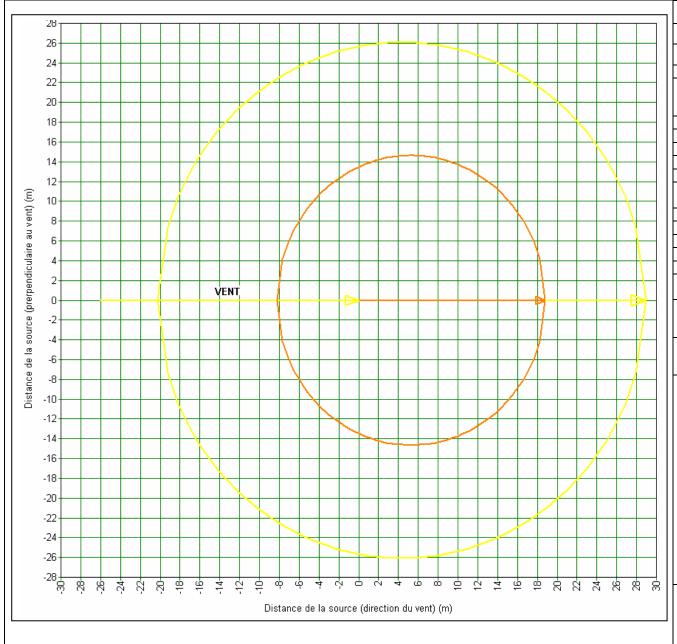



Pipeline Saint-Laurent	
Carburéacteur	
Scénario d'accident	
Équipement	Pipeline 406,4 mm
Scénario	Fuite sur pipeline
	suite à de la
	corrosion.
Inventaire, kg	s.o.
Pression kPa (psi)	10 212 (1 480)
Température, °C	15
Brèche, mm (po)	10 (0,4)
Taux de fuite (m³/hr)	29
Durée, s (fermeture des	300
vannes)	
Bassin de rétention, m²	s.o.
Vitesse du vent, m/s (km/h)	3,5 (12,6)
Stabilité atmosphérique	D
Température ambiante, °C	25
Température du sol, °C	25
Radiations	Distance maximale
Feu de flaque	
13 kW/m²	50 m
5 kW/m²	70 m

Modèle :

DNV Phast Pro ver 6.5

Figure 5 – Brèche 10 mm sur pipeline de 406,4 mm, feu de flaque



Modèle :

DNV Phast Pro ver 6.5

Figure 6 – Brèche 40 mm sur pipeline de 406,4 mm, feu en chalumeau

Pipeline Saint-Laurent	
Carburéa	cteur
Scénario d'accident	
Équipement	Pipeline 406,4 mm
Scénario	Fuite sur pipeline
	suite à de la
	corrosion.
Inventaire, kg	s.o.
Pression kPa (psi)	10 212 (1 480)
Température, °C	15
Brèche, mm (po)	10 (0,4)
Taux de fuite (m³/hr)	29
Durée, s (fermeture des	300
vannes)	
Bassin de rétention, m ²	s.o.
Vitesse du vent, m/s (km/h)	3,5 (12,6)
Stabilité atmosphérique	D
Température ambiante, °C	25
Température du sol, °C	25
Radiations	Distance maximale
Feu de flaque	
13 kW/m²	20 m
5 kW/m ²	30 m

Modèle : DNV Phast Pro ver 6.5

Figure 7 – Brèche 10 mm sur pipeline de 406,4 mm, feu en chalumeau

Annexe 7 Localisation des conduites existantes

Annexe 8 Programme modèle de gestion de l'intégrité du pipeline

Annexe 8 Programme modèle de gestion de l'intégrité du pipeline

Ce programme est s'inspire de l'Annexe N de la Norme CSA Z662-03 publiée en septembre 2005.

1. Introduction

1.1.

Cette annexe présente des lignes directrices pour le développement, la documentation et l'application d'un programme de gestion de l'intégrité d'un pipeline pour assurer un service fiable et responsable au niveau de l'environnement. Le programme de gestion de l'intégrité du Pipeline Saint-Laurent s'inspirera des éléments qui suivent.

1.2.

Les étapes principales du programme de gestion de l'intégrité du pipeline sont présentées à la Figure 1 qui contient des références aux dispositions spécifiques du programme.

2. Définitions

Les définitions suivantes s'appliquent au programme de gestion de l'intégrité du pipeline :

Événement d'interférence externe : dommage mécanique à la canalisation, à une composante, ou au revêtement, sans fuite du fluide transporté.

Événement avec bris : un écoulement non planifié du fluide transporté à la suite d'un bris de la canalisation ou de l'une de ses composantes.

Danger: une condition qui pourrait causer un bris ou un événement d'interférence externe.

3. Documentation et méthodes d'information

3.1.

Le programme de gestion de l'intégrité du pipeline doit être documenté.

3.2.

Le programme de gestion de l'intégrité du pipeline doit inclure les méthodes pour assembler et intégrer les informations reliées aux éléments suivants :

- a) design et construction;
- b) suivi de l'état du pipeline, de la maintenance et des réparations;
- c) conditions d'exploitation;
- d) événements avec bris;
- e) événements d'interférence externe
- f) dommage et détérioration, i.e., corrosion ou défauts de fabrication;
- g) protection de l'environnement; et,
- h) sécurité.

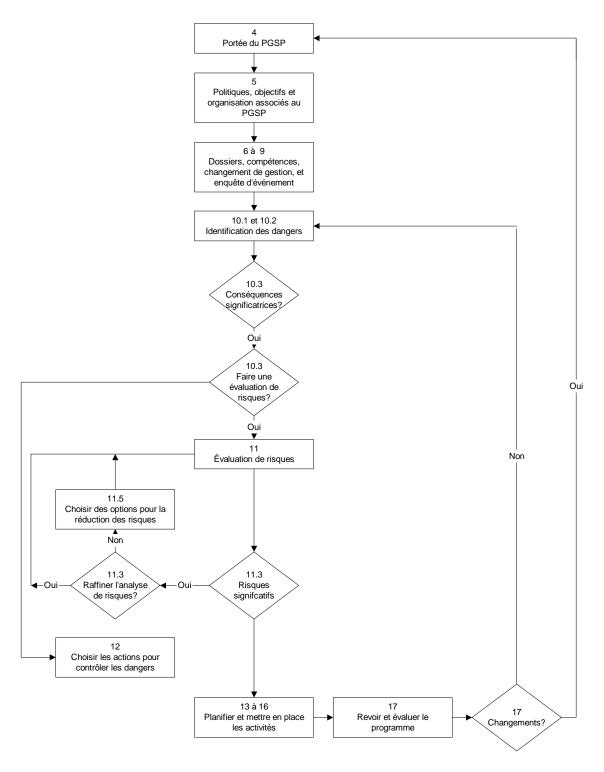


Figure 1 Processus de gestion du système d'intégrité du pipeline

4. Portée du programme de gestion de l'intégrité du pipeline

Les entreprises exploitant un pipeline doivent produire une description du pipeline faisant l'objet du programme de gestion de l'intégrité.

5. Politiques corporatives, objectifs et organisation

5.1.

Les entreprises exploitant un pipeline doivent inclure des politiques, objectifs et indicateurs de performance reliés à l'intégrité du pipeline.

6. Dossiers du programme de gestion de l'intégrité

6.1.

Les entreprises exploitant un pipeline doivent préparer et gérer les dossiers reliés à la conception du pipeline, sa construction, son exploitation et sa maintenance nécessaires à la réalisation des activités comprises dans le programme de gestion de l'intégrité.

6.2.

Les entreprises exploitant un pipeline doivent documenter les méthodes utilisées pour gérer les dossiers du système de gestion de l'intégrité.

7. Compétence et formation

7.1.

Les entreprises exploitant un pipeline doivent adopter des règles de compétence et mettre en place des programmes de formation à l'intention de leur personnel, de celui de leurs sous-traitants et de leurs consultants de façon à leur donner les connaissances et habiletés nécessaires à l'exécution du programme de gestion de l'intégrité se trouvant sous leurs responsabilités respectives.

8. Gestion des changements

8.1.

Les entreprises exploitant un pipeline doivent développer et mettre en place un processus de gestion des changements pouvant affecter l'intégrité de leur pipeline ou leur habilité de gérer l'intégrité du pipeline.

9. Enquête sur les incidents impliquant des bris ou des agressions externes

Les entreprises exploitant un pipeline doivent adopter des procédures pour enquêter et faire rapport sur les événements avec bris et sur les événements avec interférence externe.

10. Identification et contrôle des dangers

10.1.

Les entreprises exploitant un pipeline doivent identifier les dangers pouvant conduire à des événements avec bris ou des événements avec interférence externe.

11. Évaluation des risques

11.1. Général

Les lignes directrices pour l'analyse et l'évaluation des risques doivent servir à:

- a) Estimer les fréquences et les conséquences des événements;
- b) Évaluer la signification du risque estimé; et,
- c) Identifier, évaluer et mettre en place les options pour la réduction du risque.

12. Options pour le contrôle des dangers et la réduction des risques

Les entreprises exploitant un pipeline doivent identifier les dangers pouvant résulter en un des bris.

13. Planification du programme de gestion de l'intégrité du pipeline

Les entreprises exploitant un pipeline doivent établir des plans et cédules de travail reliés à l'intégrité du pipeline.

14. Inspection, essais, patrouilles et surveillance

Les entreprises exploitant un pipeline doivent documenter les méthodes et procédures pour exécuter les inspections, les essais, les patrouilles.

15. Résultats des inspections, essais, patrouilles et surveillance

Lorsque les inspections, les essais, les patrouilles et la surveillance indiquent la présence de conditions ou imperfections pouvant résulter en un bris avec des conséquences significatives, l'exploitant du pipeline doit effectuer une étude d'ingénierie pour en évaluer la condition.

16. Atténuation et réparation

Les entreprises exploitant un pipeline doivent documenter le type d'actions correctives devant être considérées pour les conditions anticipées ou les imperfections susceptibles de causer un bris avec des conséquences significatives.

17. Revue et évaluation du programme de gestion de l'intégrité du pipeline

Les programmes de gestion de l'intégrité du pipeline doivent être révisés et évalués périodiquement.