

CANADIAN MALARTIC GP

MODÉLISATION DE LA DISPERSION ATMOSPHÉRIQUE

EXTENSION CANADIAN MALARTIC

SEPTEMBRE 2015 - RÉVISION 1

MODÉLISATION DE LA DISPERSION ATMOSPHÉRIQUE EXTENSION CANADIAN MALARTIC

Canadian Malartic GP

Projet nº: 131-14654-00

Date: Septembre 2015 - Révision 1

WSP Canada Inc. 300-3450, boul. Gene-H.-Kruger Trois-Rivières (Qc) G9A 4M3

Téléphone : 819 375-1292 www.wspgroup.com

Trois-Rivières, le 11 septembre 2015

Madame Christine Baribeau, B. Sc., M. Sc. Directrice, Environnement et permis Mine Canadian Malartic 100, chemin du Lac Mourier Malartic (Québec) J0Y 1Z0

Objet : Modélisation de la dispersion atmosphérique des particules,

métaux et composés gazeux – Version finale (septembre 2015) Projet Extension Canadian Malartic et Déviation de la 117

N/Réf.: 131-14654-00

Madame Baribeau,

Vous trouverez ci-joint la version finale du rapport de modélisation de la dispersion atmosphérique des particules, métaux et composés gazeux de septembre 2015.

Prendre note que ce document doit être interprété dans le contexte des questions soulevées par le ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC) adressées à Canadian Malartic GP le 16 avril 2015 (Dossier 3211-16-013) concernant la modélisation de la dispersion atmosphérique, et ce, à la suite du dépôt de la version initiale de l'étude datée du 30 décembre 2014.

Il est important de rappeler que la démarche de modélisation préconisée dans la présente étude vise strictement à répondre aux exigences du MDDELCC et s'appuie sur la méthodologie proposée dans le Guide de modélisation de la dispersion atmosphérique du ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDEP, 2005) de même que sur le plus récent Guide d'instructions - Préparation et réalisation d'une modélisation de la dispersion des émissions atmosphériques - Projets miniers (MDDELCC, 2015).

En espérant le tout conforme à vos attentes. N'hésitez pas à contacter le soussigné pour tout complément d'information relativement à la présente.

Veuillez accepter, Madame Baribeau, l'expression de nos sentiments les meilleurs.

von Courchesne, biologiste

Precteur de projets

YC/nl

SIGNATURE

PRÉPARÉ PAR

von Courchesne, biologiste, B. Sc. pécialiste en modélisation

APPROUVÉ PAR

Guy Jérèmie, ingénieur, directeur de projet

L'original du document technologique que nous vous transmettons a été authentifié et sera conservé par WSP pour une période minimale de dix ans. Étant donné que le fichier transmis n'est plus sous le contrôle de WSP et que son intégrité n'est pas assurée, aucune garantie n'est donnée sur les modifications ultérieures qui peuvent y être apportées.

ÉQUIPE DE RÉALISATION

CANADIAN MALARTIC GP

Christian Roy, ing.

Directeur du projet Extension Canadian Malartic

Christine Baribeau, B. Sc., M. Sc. Directrice, Environnement et permis

WSP CANADA INC. (WSP)

Guy Jérémie, ing. Directeur de projet de l'étude d'impact

Yvon Courchesne, biologiste Directeur de projets

Pascal Rhéaume, ing., M. Sc. A. Conseiller en modélisation

Johan Strohmeier, physicien, M. Sc. Conseiller en modélisation

Julien Poirier, physicien, ing. jr, M. Sc. Conseiller en modélisation

Philippe Lachance, physicien, M. Sc. Conseiller en modélisation

Hong Zhang, P.Eng., EP, M.A.Sc. Ingénieure en environnement sénior

Chris Cheng, B.Sc. Spécialiste en qualité de l'air

Sylvain Marcoux, ing., MBA Spécialiste en qualité de l'air

Paul-André Biron, cartographe Cartographie et géomatique

Nancy Laurent, DEC Traitement de texte et édition

Référence à citer :

WSP. SEPTEMBRE 2015. *Modélisation de la dispersion atmosphérique – Révision 1, Extension Canadian Malartic*. Rapport produit pour Canadian Malartic GP. 64 pages et annexes.

TABLE DES MATIÈRES

1	INTRODUCTION	1
2	PROCÉDURE DE MODÉLISATION	3
2.1	DESCRIPTION DU MODÈLE DE DISPERSION AERMOD	3
2.2	PARAMÉTRAGE DU MODÈLE	4
2.2.1	DOMAINE DE MODÉLISATION	
2.2.2	GRILLE DES RÉCEPTEURS ET RÉCEPTEURS PONCTUELS	
2.2.3	PRÉPARATION DES DONNÉES MÉTÉOROLOGIQUES	
2.2.4	EFFET DES BÂTIMENTS	
2.2.5	CONFIGURATION D'AERMOD	9
3	SCÉNARIOS DE MODÉLISATION	11
3.1	IDENTIFICATION DES SOURCES D'ÉMISSIONS	11
3.2	SUBSTANCES MODÉLISÉES	11
3.3	SÉLECTION DES SCÉNARIOS MODÉLISÉS	14
3.3.1	SCÉNARIO 1 – PÉRIODE 2013	17
3.3.2	SCÉNARIO 2 – PÉRIODE 2015-2016	
3.3.3	SCÉNARIO 3 – PÉRIODE 2017 À 2028	18
3.4	SOURCES VOLUMIQUES	18
3.4.1	OPÉRATIONS	18
3.4.2	ROUTAGE	21
3.5	SOURCES PONCTUELLES	22
3.5.1	DÉPOUSSIÉREURS	22
3.5.2	CHAUDIÈRES ET FOURS DE RÉACTIVATION DU CHARBON	
3.5.3	GAZ D'ÉCHAPPEMENT DES ÉQUIPEMENTS MINIERS	23
3.6	SOURCES SURFACIQUES	24
3.7	AUTRES SOURCES	25

4	NORMES DE QUALITÉ DE L'ATMOSPHÈRE ET NIVEAUX AMBIANTS	27
4.1	NORMES DE QUALITÉ DE L'ATMOSPHÈRE	27
4.2	NIVEAUX AMBIANTS	27
5	RÉSULTATS ET ANALYSE	29
5.1	SCÉNARIO 1	29
5.1.1	SCÉNARIO DE BASE	29
5.1.2	SCÉNARIO OPTIMISÉ	32
5.2	SCÉNARIO 2	33
5.2.1	SCÉNARIO DE BASE	33
5.2.2	SCÉNARIO OPTIMISÉ	36
5.3	SCÉNARIO 3	37
5.3.1	SCÉNARIO DE BASE	37
5.3.2	SCÉNARIO OPTIMISÉ	40
6	SUIVI DE LA QUALITÉ DE L'ATMOSPHÈRE	51
6.1	MISE EN PLACE DU PROGRAMME DE SUIVI	51
6.2	PROCÉDURE D'OPÉRATION	51
6.3	OPÉRATIONS DE MAINTENANCE ET D'ÉTALONNAGE	53
6.4	GESTION DES DONNÉES ET CONTRÔLE DE LA QUALITÉ	53
6.5	RÉSUMÉ DES DONNÉES D'ÉCHANTILLONNAGE	53
7	ÉVALUATION DU CONSERVATISME	55
8	PROCESSUS DE GESTION ET DE MAÎTRISE DES ÉMISSIONS DE POUSSIÈRES	57
9	CONCLUSION	61
RÉFÉR	ENCES BIBLIOGRAPHIQUES	63

TABLEAUX

Tableau 1 :	Coordonnées des récepteurs sensibles	4
Tableau 2 :	Caractéristiques des stations météorologiques considérées	6
Tableau 3:	Pourcentage des données manquantes pour chacune des années météorologiques considérées	8
Tableau 4 :	Paramètres d'utilisation du sol	9
Tableau 5:	Distribution lithologique par secteur - Minerai	12
Tableau 6:	Distribution lithologique par secteur - Stériles	13
Tableau 7 :	Teneur en métaux par type de roche pour les différents secteurs	14
Tableau 8 :	Tonnages considérés pour les différents scénarios modélisés	15
Tableau 9 :	Normes sur la qualité de l'air et concentrations limites des substances retenues pour cette étude	28
Tableau 10 :	Séquence d'opération optimale selon la modélisation	33
Tableau 11 :	Séquence d'opération optimale selon la modélisation	37
Tableau 12 :	Séquence d'opération optimale selon la modélisation	41
Tableau 13:	Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère aux récepteurs sensibles – Scénario 1 (Scénario de base)	43
Tableau 14 :	Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère à la limite du RAA – Scénario 1 (Scénario de base)	
Tableau 15 :	Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère aux récepteurs sensibles – Scénario 2 (Scénario de base)	
Tableau 16 :	Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère à la limite du RAA – Scénario 2 (Scénario de base)	
Tableau 17 :	Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère aux récepteurs sensibles – Scénario 3 (Scénario de base)	
Tableau 18 :	Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère à la limite du RAA – Scénario 3 (Scénario de base)	
Tableau 19 :	Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère à la limite du RAA – Scénario 1 (Scénario optimisé)	
Tableau 20 :	Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère à la limite du RAA – Scénario 2 (Scénario optimisé)	
Tableau 21 :	Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère à la limite du RAA – Scénario 3 (Scénario optimisé)	

FIGURES

Figure 1 :	Roses des vents	. 7
Figure 2 :	Localisation des stations de mesures de la qualité de l'air	
	ambiant et de la station météorologique	52

ANNEXES

A N N E X E A CARACTÉRISTIQUES DES SOURCES A N N E X E B CARTES A N N E X E C EXEMPLES DE CALCULS

1 INTRODUCTION

Canadian Malartic GP (CMGP) désire concrétiser son projet d'extension de la mine aurifère Canadian Malartic (Extension Canadian Malartic), comprenant notamment l'agrandissement de la fosse à ciel ouvert existante dans le secteur Barnat, l'exploitation d'une nouvelle fosse satellite, la fosse Jeffrey ainsi que le prolongement de la halde à stériles et du parc à résidus vers l'est. Le prolongement de la butte-écran actuelle, longeant la rue de la Paix, sera également nécessaire.

Dans ce contexte, la modélisation de la dispersion atmosphérique s'inscrit en tant qu'étude complémentaire à l'étude d'impact sur l'environnement (ÉIE) et a pour objectif d'évaluer l'impact des émissions provenant des opérations d'extraction et de traitement à la Mine sur la qualité de l'atmosphère, et ce, sur la base du Règlement sur l'assainissement de l'atmosphère (RAA). La présente étude (Septembre 2015 – Révision 1) vise précisément à répondre aux demandes du Ministère du Développement durable, de l'Environnement et de la Lutte aux changements climatiques (MDDELCC¹) dans la cadre de ses questions pour la recevabilité de l'ÉIE et se veut une mise à jour plus complète de l'étude sectorielle de décembre 2014 (version 1) déposée avec le rapport de l'ÉIE en février 2015.

La démarche de modélisation préconisée dans la présente étude s'appuie sur la méthodologie proposée dans le *Guide de modélisation de la dispersion atmosphérique* du ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDEP, 2005) de même que sur le plus récent *Guide d'instructions - Préparation et réalisation d'une modélisation de la dispersion des émissions atmosphériques - Projets miniers.*(MDDELCC, 2015), et ce, de façon à respecter strictement l'article 197 du RAA. L'étude s'appuie également sur les informations fournies par Osisko avant juin 2014 et par CMGP depuis.

Malgré les nombreuses similitudes entre la version 1 et la révision 1, il est important de spécifier que le plan minier a été mis à jour, que la teneur en limon (silt) des surfaces de roulement et le taux atténuation du routage ont été ajustés, que les gaz d'échappement ont été modélisés à l'aide de sources volumiques et que la plus récente version du modèle de dispersion AERMOD officialisée par l'U.S. EPA (Environmental Protection Agency) le 30 juin 2015 a été utilisée. Ces multiples changements font en sorte que les valeurs modélisées dans la révision 1 ne sont plus directement comparables à celles de la version 1.

Les sections suivantes présentent la procédure utilisée pour modéliser les concentrations des composés particulaires et gazeux dans l'air ambiant. Les niveaux ambiants retenus ainsi que les normes de qualité de l'atmosphère considérées pour évaluer la conformité des concentrations modélisées à la réglementation québécoise sont aussi exposés. Enfin, les résultats détaillés sont présentés et interprétés en fonction des hypothèses retenues pour la modélisation.

_

Les dénominations ministère du Développement durable, de l'Environnement, de la Faune et des Parcs (MDDEFP) et ministère du Développement durable, de l'Environnement et des Parcs (MDDEP) sont également utilisées dans le présent rapport bien que renommé ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC) depuis avril 2014, et ce, afin d'éviter la confusion dans les références.

2 PROCÉDURE DE MODÉLISATION

La modélisation vise à documenter la portée et l'ampleur des rejets atmosphériques de l'Extension Canadian Malartic, et à vérifier la conformité des concentrations potentielles avec la réglementation québécoise applicable.

L'approche exigée par la Direction du suivi de l'état de l'environnement du MDDELCC pour la modélisation de la dispersion atmosphérique est basée sur l'utilisation du logiciel météorologique diagnostique AERMET (version 15181) et du modèle de dispersion AERMOD (version 15181).

2.1 DESCRIPTION DU MODÈLE DE DISPERSION AERMOD

Le programme AERMOD permet de réaliser des études de 2^e niveau (MDDEP, 2005). Ce type d'étude est exigé lorsque l'une des conditions suivantes est rencontrée :

- projet situé dans un parc industriel;
- présence de sources émettrices multiples;
- → somme des concentrations simulées et ambiantes (bruit de fond) égale ou supérieure à 80 % de la norme applicable;
- → projet situé en bordure d'un plan d'eau;
- → sources émettant des polluants toxiques ou dangereux.

Le programme AERMOD est un modèle gaussien de dispersion permettant de calculer les concentrations de composés gazeux ou de matières particulaires résultant des émissions de sources ponctuelle, surfacique ou volumique en milieu urbain ou rural. Le programme comporte les caractéristiques suivantes :

- → utilisation de données météorologiques horaires;
- création de profils de température, de vent et de turbulence afin de déterminer une hauteur de mélange mécanique et convective;
- → fonction de distribution des probabilités s'adaptant aux conditions de stabilité de l'atmosphère (gaussienne ou non);
- → intégration de caractéristiques de surface du terrain telles que la rugosité, l'albédo et le ratio de Bowen;
- → grille de points-calcul (récepteurs) flexible;
- → incorporation de termes d'ajustement permettant de tenir compte des propriétés physico-chimiques pouvant affecter le comportement de certains composés.

Le programme utilise des données météorologiques horaires afin d'estimer les concentrations de particules ou substances gazeuses dans l'air ambiant à différents points-calcul pour différentes périodes (ex. : horaire, 8 heures, 24 heures, annuelle, etc.). Il intègre également le module BPIP-PRIME (*Building Profile Input Program*) permettant de tenir compte de l'effet de sillage (turbulence) induit par la présence de bâtiments. Cette option est particulièrement importante dans le cas où des édifices susceptibles de modifier l'écoulement de l'air se retrouvent à proximité des sources d'émissions ponctuelles.

2.2 PARAMÉTRAGE DU MODÈLE

2.2.1 DOMAINE DE MODÉLISATION

Le domaine de modélisation détermine les limites géographiques dans lesquelles s'insère la modélisation de la dispersion atmosphérique.

Dans le cadre de la présente étude, le domaine est situé dans la zone UTM 17 de l'hémisphère nord et s'étend de part et d'autre des installations sur une distance de 10 km de long par 8,5 km de large (voir carte 1 à l'annexe B). Le coin sud-ouest du domaine est situé au point X = 710 500 m; Y = 5 330 250 m dans la projection Mercator (UTM) avec le Datum de référence NAD83. Il couvre ainsi une superficie suffisante afin d'inclure l'ensemble des premières zones habitées susceptibles d'être exposées aux émissions atmosphériques.

2.2.2 GRILLE DES RÉCEPTEURS ET RÉCEPTEURS PONCTUELS

La grille de récepteurs est constituée de 1 435 points de calculs dont la distribution est uniforme à tous les 250 m. La densité de la grille de récepteurs utilisée permet alors de générer suffisamment de valeurs modélisées de manière à obtenir une bonne représentativité des concentrations estimées (répartition spatiale) dans l'air ambiant. La grille de récepteurs est également présentée à la carte 1.

De plus, 10 récepteurs ponctuels ont été ajoutés afin de représenter divers milieux sensibles tels que, des résidences à proximité des opérations minières, des écoles, un CPE et un CHSLD. La carte 1 montre l'emplacement de ces récepteurs, tandis que le tableau 1 présente leurs coordonnées respectives.

Tableau 1 : Coordonnées des récepteurs sensibles

Description	Dácontour ID	Coord. Géographique (UTM17 NAD		Élévation
Description	Récepteur ID	X (m)	Y (m)	(m)
École des Explorateurs	ECO1	714043,0	5336512,0	328,5
École secondaire Le Tremplin	ECO2	714162,0	5335998,0	320,5
CPE Bambins et Câlin	CPE1	714060,0	5335717,0	320,0
Hôpital	SAN1	713607,0	5336004,0	320,0
Résidence privée nord	RES1	714493,0	5335118,0	326,0
Résidence privée nord	RES2	714281,0	5335138,0	324,8
Résidence privée nord	RES3	713717,0	5335289,0	324,8
Résidence privée sud	RES4	713493,0	5330376,0	320,0
Résidence privée sud	RES5	715128,0	5330381,0	315,7
Résidence privée sud	RES6	715486,0	5330446,0	314,0
Station de qualité de l'air A1 (Nord)	STAQAN	714571,6	5336335,6	318,0
Station de qualité de l'air A2 (Sud)	STAQAS	714014,4	5335157,5	318,0

Finalement, il est important de rappeler que les normes de qualité de l'atmosphère s'appliquent à la limite de propriété projetée lorsqu'une telle limite existe. Dans le cas où le projet se trouve en totalité ou en partie sur des terres publiques, le MDDELCC demande que les normes soient respectées à partir d'une distance de 300 m des différentes installations. La mine Canadian Malartic (Mine) est située en partie sur des terres privées, mais elle comprend également des installations en territoire public ou en bordure d'une zone industrielle. Par conséquent, la limite d'application du RAA a été tracée sur la limite de propriété dans les zones privées et à 300 m autour des installations en territoire public. Afin de satisfaire les exigences du MDDELCC, une séquence de 527 récepteurs ponctuels espacés de 50 m a donc été placée le long de cette limite.

L'élévation des différents récepteurs a été établie en tenant compte de la topographie du terrain. Celle-ci a été déterminée à partir des Données Numériques d'Élévation du Canada (DNEC) 1:50 000, offrant une résolution de 0,75 seconde décimale en latitude et longitude, du relevé LIDAR du site fourni par la Mine ainsi que de la description des infrastructures majeures pour les scénarios considérés (haldes, fosses, routes et parcs à résidus).

Les récepteurs à l'intérieur de la limite d'application considérée n'ont, quant à eux, pas été pris en compte dans l'évaluation de la conformité des concentrations modélisées aux critères de qualité de l'air, selon les spécifications du Guide de modélisation du MDDELCC et selon le RAA.

2.2.3 PRÉPARATION DES DONNÉES MÉTÉOROLOGIQUES

L'échantillon météorologique utilisé pour la modélisation avec le programme AERMOD a été préparé à l'aide du module AERMET de l'U.S. EPA (Environmental Protection Agency). Le module AERMET permet de créer un format de fichier météorologique horaire compatible avec l'exécution du programme AERMOD en combinant les données météorologiques de surface et les données prises en altitude.

2.2.3.1 DONNÉES MÉTÉOROLOGIQUES

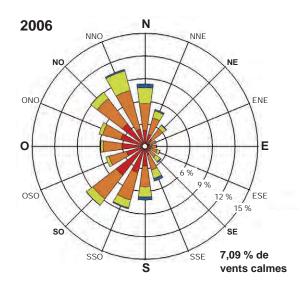
Conformément aux demandes du MDDELCC dans le cadre d'une modélisation de la dispersion atmosphérique de 2^e niveau (MDDEP, 2005), un échantillon météorologique couvrant les cinq années les plus récentes et représentatif de la région a été considéré. À la suite de l'analyse des données disponibles les plus récentes, les années météorologiques de 2006, 2007, 2008, 2009 et 2010 ont été sélectionnées.

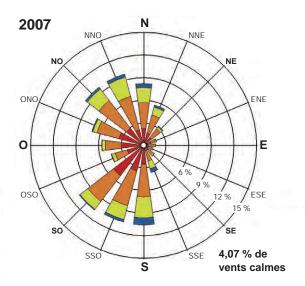
Données météorologiques de surface et couverture nuageuse

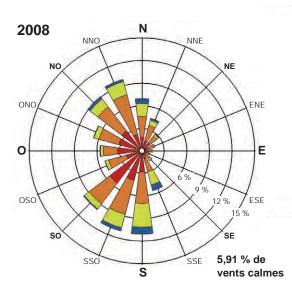
Les données météorologiques de surface utilisées dans le cadre de cette étude proviennent de la station météorologique d'Environnement Canada de l'aéroport de Val-d'Or (YVO; GVO; ID 7098600, 7098603), situé à environ 26 km à l'est-sud-est par rapport au centre des installations. Les coordonnées et l'élévation de la station sont données au tableau 2.

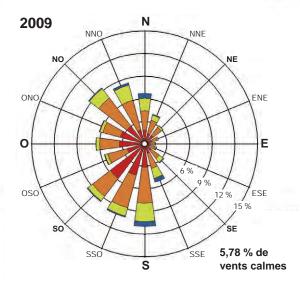
Tableau 2 : Caractéristiques des stations météorologiques considérées

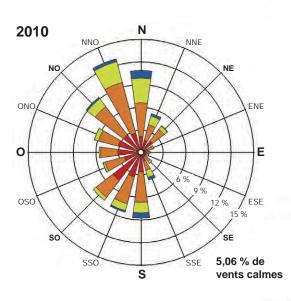
			Station de	surface ¹			
		UTM NAD	83	Élass (ms)	ID Olimer	14/140	ID
Nom	Zone	X (m)	Y (m)	Élev. (m)	ID Climat	WMO	ID
VAL-D'OR A1	18	292360	5326326	337,4	7098600	71725	YVO
VAL-D'OR A2	18	292360	5326326	337,4	7098603	71725	GVO
ROUYN	17	661215	5341840	301,1	7086720	99999	YUY
			Station aéro	ologique ²			
Nom		UTM NAD	83	4.	WEAN	WMO	ID
Nom	Zone	X (m)	Y (m)	Élev. (m)	WBAN	WMO	ID
			1	t		1 1	
MANIWAKI	18T	425407	5136727	170	4734	71722	YMW


Plus spécifiquement, les variables météorologiques de surface utilisées pour la modélisation sont la direction et la vitesse du vent, la température et la pression atmosphérique. Les données de couverture nuageuse et de hauteur de plafond mesurées à la station météorologique de l'aéroport de Val-d'Or sont également utilisées. Pour l'échantillon météorologique considéré, les données de surface et de couverture nuageuse sont complètes à plus de 99,4 % pour chacune des années considérées. Les quelques données manquantes ont été interpolées linéairement ou complétées à l'aide des données de la station météorologique de l'aéroport de Rouyn-Noranda. Le tableau 3 montre le pourcentage des données brutes manquantes pour chaque paramètre.


Les roses des vents sont présentées à la figure 1 pour chacune des années météorologiques considérées. Les vents dominants soufflent majoritairement en provenance du sud-sud-ouest et du nord-nord-ouest, alors que la vitesse moyenne du vent est de 3,57 m/s. Enfin, le pourcentage moyen de vent calme pour les 5 années considérées est de 5.58 %.


Données aérologiques


La station aérologique de Maniwaki (WMO #71722) a été retenue pour les données en altitude. L'ensemble des données a été téléchargé à partir du site web du « Earth System Research Laboratory » (http://esrl.noaa.gov/raobs/) sous la direction du « National Oceanic and Atmospheric Administration » (NOAA) des États-Unis. Les données en altitude utilisées sont complètes à plus de 99,9 %. Les radiosondages manquants ont été remplacés par ceux de la station de Moosonee (WMO #71836), préalablement ajustés pour tenir compte de la différence d'élévation entre les deux stations. En fait, ces ajustements ont été effectués à l'aide de l'équation hypsométrique permettant de déterminer la pression atmosphérique qui serait mesurée à la station de Moosonee si son élévation était identique à celle de la station de Maniwaki. Les coordonnées et l'élévation pour chacune des stations sont données au tableau 2.


Les variables météorologiques prises en altitude ayant été considérées pour la modélisation sont l'élévation à partir du sol, la pression atmosphérique et la température.

> à 7,9 m/s 5,4 à 7,9 m/s 3,1 à 5,4 m/s 0,5 à 3,1 m/s

Note :Diagramme de la fréquence de provenance du vent, par exemple, le vent souffle du nord 6,5 % du temps.

Modélisation de la dispersion atmosphérique des composés particulaires et gazeux dans l'air ambiant

Extension de la mine aurifère Canadian Malartic et déviation de la route 117 à l'entrée Est de la ville de Malartic

Roses des vents

Source

Environnement Canada, station 71725, Aéroport Val-d'Or (YVO)

Figure 1

Septembre 2015

131-14654-00_f1_get_046_Rose_150901.ai

Tableau 3 : Pourcentage des données manquantes pour chacune des années météorologiques considérées

Davamètras Station Val d'Ox A4 9 A2	% de données manquantes pour chacun des paramètres								
Paramètres - Station Val d'Or A1 & A2	2006	2007	2008	2009	2010				
Hauteur de plafond	0,00	0,00	0,00	0,05	0,32				
Point de rosée	0,13	0,16	0,08	1,51	5,35				
Vitesse du vent	0,08	0,00	0,00	0,00	0,00				
Pression	0,00	0,00	0,00	0,00	0,00				
Température (dry)	0,00	0,00	0,00	0,00	2,83				
Température (wet)	0,13	0,16	0,08	1,51	5,35				
Humidité relative	0,13	0,16	0,08	1,51	5,35				
Opacité totale des nuages (Total cloud opacity)	0,00	0,00	0,00	0,05	0,32				
Étendue totale des nuages (Total cloud amount)	29,89	29,24	29,19	100	100				
Direction du vent	0,08	0,00	0,00	0,00	0,00				
% total de données manquantes	0,03	0,00	0,00	0,02	0,58				

2.2.3.2 CLASSIFICATION DU TERRITOIRE ET UTILISATION DU SOL

Le module AERMET utilise trois paramètres d'entrée liés aux caractéristiques du sol : le ratio de Bowen, l'albédo et la rugosité. Le ratio de Bowen est une mesure de l'humidité disponible pour l'évaporation, alors que l'albédo représente la portion de luminosité qui est reflétée du sol. La rugosité du sol est associée au frottement et à la variation, à petite échelle, du relief du terrain.

Comme recommandé dans le guide d'implémentation de AERMOD (US-EPA 2009), l'évaluation de la rugosité est basée sur une moyenne géométrique pondérée par l'inverse de la distance, et ce, pour une zone de 1 km de rayon définie autour du site de mesure. Cette zone est découpée en plusieurs secteurs dont la largeur n'est pas inférieure à 30 degrés. La rugosité varie donc d'un secteur à un autre pour tenir compte des variations de la couverture terrestre. L'évaluation du ratio de Bowen et de l'albédo est effectuée sur un domaine de 10 km par 10 km centré sur le site de mesure. Une moyenne géométrique non pondérée (indépendante de la direction ou de la distance) est utilisée pour le ratio de Bowen alors qu'une moyenne arithmétique est utilisée pour l'albédo. Pour chacune des saisons et chacun des types de couverture, les valeurs de rugosité, d'albédo et de ratio de Bowen sont tirées du guide de AERSURFACE (US-EPA 2008 / Revised 01/16/2013).

Pour le site présentement à l'étude, l'utilisation du sol, autant pour la zone de 1 km de rayon que pour le domaine de 10 km par 10 km, est dominée par des milieux naturels (forêt, prairie/milieu ouvert, etc.) couvrant plus de 90 % de la superficie du territoire. Suivant les recommandations du MDDELCC, quatre saisons ont été considérées pour l'évaluation des caractéristiques de surface soit l'hiver (décembre à mars inclusivement), le printemps (avril et mai), l'été (juin à septembre inclusivement) et la fin de l'automne (octobre et novembre).

Les valeurs estimées pour les différents paramètres sont présentées au tableau 4 pour chacune des saisons, tandis que les catégories d'utilisation du sol définies dans un secteur de 1 km de rayon autour du site de mesure sont illustrées à la carte 2.

Tableau 4: Paramètres d'utilisation du sol

Cainan	Albáda 1	Baucan 1	Rugosité ² (m) par secteur						
Saison	Albédo 1	Bowen ¹	349° - 24°	24° - 81°	81° - 146°	146° - 176°	176° - 349°		
Printemps (avril, mai)	0,145	0,518	0,018	0,065	0,114	0,02	0,305		
Été (juin, juillet, août, septembre)	0,145	0,348	0,023	0,077	0,133	0,025	0,333		
Automne (octobre, novembre)	0,148	0,634	0,013	0,05	0,092	0,014	0,264		
Hiver (décembre, janvier, février, mars)	0,418	0,5	0,007	0,03	0,067	0,008	0,191		

¹ Distribution de l'utilisation du sol dans une zone de 10 km x 10 km.

2.2.4 EFFET DES BÂTIMENTS

Étant donné la proximité de certaines sources ponctuelles par rapport aux différents bâtiments, l'effet de rabattement du panache de dispersion a été calculé. Pour ce faire, le programme « *Building Profile Input Program* » (BPIP) a été utilisé afin de déterminer l'effet des bâtiments. Les résultats du calcul ont par la suite été incorporés au modèle AERMOD qui applique les corrections requises pour l'estimation des concentrations dans l'air ambiant à l'aide du module PRIME.

Pour calculer l'effet de rabattement du panache, les infrastructures actuelles et projetées du site minier ont été tracées. Les coordonnées géographiques, l'élévation des bâtiments et la position des sources d'émissions ont été déterminées à partir des plans techniques fournis par la Mine.

2.2.5 CONFIGURATION D'AERMOD

Toutes les options par défaut du modèle AERMOD ont été considérées pour son exécution en conformité avec toutes les exigences indiquées dans le guide de modélisation du MDDELCC.

² Distribution de l'utilisation du sol par secteurs sur 1 km.

3 SCÉNARIOS DE MODÉLISATION

3.1 IDENTIFICATION DES SOURCES D'ÉMISSIONS

Certaines opérations et infrastructures de la Mine sont susceptibles d'émettre des matières particulaires et divers composés gazeux dans l'atmosphère sous des conditions normales d'exploitation. Basées sur les informations fournies par la Mine, sur la description technique des équipements qui seront utilisés pour l'exploitation de l'Extension Canadian Malartic ainsi que sur l'analyse des procédés prévus pour l'extraction et le traitement du minerai, les principales sources d'émission ont été identifiées et sont brièvement décrites ci-dessous.

L'exploitation d'une mine à ciel ouvert implique plusieurs types d'activités susceptibles de générer des émissions fugitives. Plus spécifiquement, les opérations de forage ainsi que le chargement et le déchargement des camions de transport sont reconnus comme des sources fugitives de matières particulaires. Le sautage représente également une source fugitive de particules et de gaz. L'entraînement de la poussière lors du passage des véhicules lourds sur le réseau de routes non pavées de la Mine représente pour sa part une source de particules. En effet, le routage des différentes matières est habituellement le principal contributeur parmi toutes les sources fugitives d'un complexe minier.

Les poussières de minerai concassé sont captées lors du procédé par plusieurs dépoussiéreurs. Parmi ceux-ci, quatre possèdent une sortie à l'atmosphère et représentent des sources ponctuelles de particules. Plus précisément, il s'agit des dépoussiéreurs du concasseur giratoire, du dôme, du four à induction et du réservoir de sulfate de cuivre. Le dépoussiéreur à cartouches du réservoir de chaux a quant à lui été écarté de la liste des sources ponctuelles puisque ses émissions de particules sont considérées négligeables.

Les gaz d'échappement des divers équipements utilisés pour l'exploitation de la Mine représentent des sources ponctuelles de gaz de combustion et de particules. Les chaudières de gaz naturel #1 et #2 ainsi que les fours de réactivation – combustion #1 et #2 installés à l'usine de traitement représentent également des sources de gaz de combustion et de particules.

Finalement, les diverses haldes et piles de stockage sont quant à elles sujettes à l'érosion éolienne et sont considérées comme des sources surfaciques de matière particulaire.

3.2 SUBSTANCES MODÉLISÉES

Les contaminants retenus pour la modélisation de la dispersion atmosphérique sont les matières particulaires en suspension, soit les particules totales (PM_{tot}) et les particules fines (PM_{2,5}), le monoxyde de carbone (CO), le dioxyde d'azote (NO₂) et le dioxyde de soufre (SO₂).

De plus, 19 métaux et métalloïdes présents à des concentrations plus ou moins importantes dans le minerai et les stériles ont également été considérés. Parmi eux, 15 possèdent une norme de qualité de l'atmosphère définie dans le RAA. Il s'agit de l'antimoine, l'argent, l'arsenic, le baryum, le béryllium, le brome, le cadmium, le cobalt, le cuivre, le manganèse, le plomb, le sélénium, le thallium, le vanadium et le zinc. Le chrome, le mercure et le nickel possèdent une norme définie dans le règlement modifiant le RAA (décret 1228-2013, décembre 2013). Enfin, un critère a été établi pour le titane par le MDDELCC.

Les concentrations de métaux dans l'air ambiant ont été déterminées à partir des concentrations de particules totales modélisées (sauf pour le manganèse et le nickel qui est évalué à partir des PM₁₀) et de la caractérisation géochimique des différentes lithologies réalisée par Golder (Golder Associés, novembre 2014). Dans un premier temps, le pourcentage de chaque lithologie par secteur a été déterminé

à la fois pour le minerai et pour les stériles. Ces distributions sont disponibles au tableau 5 pour le minerai et au tableau 6 pour les stériles. Ensuite, connaissant les teneurs moyennes et les distributions dans chaque secteur pour les différentes lithologies, il a été possible d'estimer les teneurs effectives pour le minerai et les stériles. Ces teneurs sont présentées au tableau 7 pour tous les secteurs considérés. En ce qui concerne les teneurs de la fosse Jeffrey, puisque l'information n'est pas disponible dans l'étude de caractérisation géochimique de Golder, le maximum de chaque teneur obtenue au tableau 7 a été considéré pour cette fosse.

Finalement, prendre note que la concentration en métaux des émissions annuelles est déterminée par la moyenne pondérée de chaque lithologie, tandis que la concentration en métaux des émissions journalières et horaires est déterminée par le maximum des teneurs des lithologies, ce qui représente une estimation conservatrice étant donné la variabilité des opérations journalières au cours d'une même année.

Tableau 5 : Distribution lithologique par secteur - Minerai

Secteur	Lithologie	% lithologie / secteur			
	Greywacke (GR)	47			
DADNAT	Porphyre (PO) Ultramafique (UM)	13			
BARNAT	Ultramafique (UM)	40			
	TOTAL BARNAT	100			
	Greywacke (GR)	83			
CANADIAN MALARTIC	Porphyre (PO)	17			
	TOTAL CANADIAN MALARTIC	100			
	Greywacke (GR)	67			
GOULDIE	Porphyre (PO)	33			
	TOTAL GOULDIE	100			

Concernant l'estimation des concentrations de NO₂ dans l'air ambiant OLM (Ozone Limiting Method) a été appliquée. Cette méthode permet de calculer la conversion du NO en NO₂, en fonction du ratio NO₂/NOx à la source et de l'ozone disponible dans l'air ambiant. Pour ce faire, des concentrations d'ozone représentatives de la région ont été fournies par le MDDELCC². Il s'agit de 80 ppb (horaire), de 60 ppb (quotidienne) et de 30 ppb (annuelle). Un ratio à la source de NO₂/NOx (in-stack ratio) de 20 %, selon les valeurs tabulées dans le guide de dispersion du Newfoundland and Labrador Department of Environment and Conservation (NL DEC-2012), a été utilisé. Or, le ratio de 20 % a été sélectionné puisqu'il est représentatif des émissions provenant des gaz d'échappement de la machinerie, et conservateur par rapport aux émissions lors des sautages. En effet, il est conservateur de considérer un tel ratio lors de la détonation du mélange explosif utilisé pour les sautages puisque le ratio de NO₂/NOx produit par les explosifs composés principalement de nitrate d'ammonium est évalué à environ 4 %³, selon les données actuellement disponibles dans la littérature.

_

² MDDEFP, Communication par courriel, 5 avril 2012.

³ Attalla et al., NOx Emissions from Blasting Operations in Open-Cut Coal Mining, Atmospheric Environment 42 (2008) 7874–7883.

Tableau 6 : Distribution lithologique par secteur - Stériles

Secteur	Lithologie	% lithologie / secteur
	Greywacke altération faible (AGR)	37
	Greywacke carbonaté	5
	Porphyre carbonaté	8
	Roche ultramafique carbonatée(CUM - CCH)	14
BARNAT	Intrusion mafique (IMF)	3
	Schiste à chlorite et carbonate (SCH)	3
	Porphyre silicifié (+/- carbonaté) (SPO)	7
	Roche ultramafique (UM)	23
	TOTAL BARNAT	100
	Greywacke altération faible (AGR)	55
	Greywacke carbonaté	26
	Porphyre carbonaté	8
CANADIAN MALARTIC	Schiste à chlorite et carbonate (SCH)	2
	Greywacke silicifié (+/- carbonaté) (SGR)	4
	Porphyre silicifié (+/- carbonaté) (SPO)	6
	TOTAL CANADIAN MALARTIC	100
	Greywacke altération faible (AGR)	30
	Greywacke carbonaté	17
GOULDIE	Porphyre carbonaté	13
GOULDIE	Greywacke silicifié (+/- carbonaté) (SGR)	13
	Porphyre silicifié (+/- carbonaté) (SPO)	26
	TOTAL GOULDIE	100

Tableau 7 : Teneur en métaux par type de roche pour les différents secteurs

NA 51 mm.	0	1111.4		MINERAI		STÉRILE			
Métaux Symbole		Unité	Barnat	СМ	Gouldie	Barnat	СМ	Gouldie	
Argent	Ag	mg/mg	1,040E-06	1,191E-06	6,333E-07	5,078E-07	5,415E-07	5,130E-07	
Arsenic	As	mg/mg	2,280E-06	1,539E-06	1,767E-06	2,590E-06	1,626E-06	1,565E-06	
Baryum	Ва	mg/mg	2,215E-04	1,112E-04	7,967E-05	1,648E-04	2,245E-04	1,309E-04	
Béryllium	Ве	mg/mg	3,667E-07	4,217E-07	3,000E-07	2,474E-07	2,094E-07	7,391E-08	
Brome	Br	mg/mg	1,000E-06	1,000E-06	1,000E-06	1,000E-06	1,000E-06	7,391E-07	
Cadmium	Cd	mg/mg	2,633E-07	2,826E-07	2,333E-07	1,603E-07	1,849E-07	2,043E-07	
Cobalt	Со	mg/mg	3,020E-05	1,826E-05	1,200E-05	2,944E-05	1,762E-05	9,435E-06	
Chrome	Cr	mg/mg	3,339E-04	1,071E-04	3,733E-05	3,420E-04	1,093E-04	5,583E-05	
Cuivre	Cu	mg/mg	4,657E-05	4,265E-05	2,767E-05	4,531E-05	4,070E-05	2,483E-05	
Mercure	Hg	mg/mg	3,300E-08	3,652E-08	2,333E-08	1,466E-08	1,358E-08	1,000E-08	
Manganèse	Mn	mg/mg	5,722E-04	4,163E-04	3,000E-04	4,486E-04	3,583E-04	2,135E-04	
Nickel	Ni	mg/mg	1,272E-04	5,326E-05	2,900E-05	1,719E-04	5,363E-05	3,123E-05	
Plomb	Pb	mg/mg	9,567E-06	8,348E-06	7,333E-06	5,543E-06	1,406E-05	5,609E-06	
Antimoine	Sb	mg/mg	1,200E-07	1,435E-07	1,333E-07	1,414E-07	1,566E-07	2,322E-06	
Sélénium	Se	mg/mg	5,400E-07	6,478E-07	6,000E-07	6,086E-07	7,038E-07	6,739E-07	
Titane	Ti	mg/mg	1,271E-03	1,145E-03	6,610E-04	9,089E-04	1,341E-03	7,178E-04	
Thallium	TI	mg/mg	4,133E-07	2,913E-07	2,333E-07	2,647E-07	3,151E-07	2,087E-07	
Vanadium	V	mg/mg	6,277E-05	5,152E-05	1,700E-05	5,293E-05	5,919E-05	2,935E-05	
Zinc	Zn	mg/mg	4,957E-05	5,752E-05	4,200E-05	4,034E-05	5,879E-05	3,948E-05	

3.3 SÉLECTION DES SCÉNARIOS MODÉLISÉS

Afin d'évaluer les impacts sur la qualité de l'atmosphère de l'exploitation actuelle et future de la Mine, trois scénarios ont été déterminés en fonction du plan d'agencement général, du calendrier de production et de la description des trajets empruntés pour le transport des différentes matières sur le site. Les sections suivantes présentent un descriptif de chacun de ces scénarios. Les tonnages considérés pour les trois scénarios décrits ci-dessous sont présentés au tableau 8.

Tableau 8 : Tonnages considérés pour les différents scénarios modélisés

Production		Scénario 1		ario 2 - 2016	Scénario 3 - 2017 - 2028												
		2013	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	Total
Fosse Canadian Malartic		I	I.			L			L	I.				L	ll		
Tonnage minerai	(tm)	16 830 764	21 354 318	23 094 718	21 802 519	17 107 882	21 098 176	17 140 478	11 829 504	18 661 533	12 765 774	7 395	9 184	-	-	-	164 871 48
Tonnage total stérile*	(tm)	40 718 799	45 490 980	43 461 305	34 481 451	31 887 554	18 842 888	27 319 181	26 684 725	17 265 215	7 773 953	100 771	23 437	-	-	-	253 331 46
Tonnage total mort-terrain	(tm)	1 544 796	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fosse Barnat	L	1	<u>I</u>	1	1	<u> </u>	L	I.	L	<u>I</u>	1	I .		L	L		<u> </u>
Tonnage minerai	(tm)	-	-	-	1 451 410	3 026 600	3 878 989	3 852 814	5 645 231	4 110 876	8 535 047	16 540 796	15 650 792	10 569 675	7 425 449	-	80 687 679
Tonnage total stérile*	(tm)	-	-	-	7 768 073	15 584 248	22 272 581	19 284 763	19 594 945	20 430 562	32 332 735	49 945 376	45 062 815	29 923 417	11 620 272	-	273 819 78
Tonnage total mort-terrain	(tm)	-	-	-	11 169 000	9 211 667	-	-	-	-	-	-	-	-	-	-	20 380 667
Fosse Gouldie	l .				1	I	l	l	l			l		l	l.		·L
Tonnage minerai	(tm)	-	2 551 350	2 551 350	-	-	-	-	-	-	-	-	-	-	-	-	5 102 700
Tonnage total stérile*	(tm)	-	5 663 650	9 600 471	-	-	-	-	-	-	-	-	-	-	-	-	15 264 12
Tonnage total mort-terrain	(tm)	1 413 624	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fosse Jeffrey	I	1		ı							ı				l l		.I
Tonnage minerai	(tm)	-	-	-	3 099 105	1 474 240	-	-	-	-	-	-	-	-	-	-	4 573 345
Tonnage total stérile*	(tm)	-	-	-	5 900 209	1 672 326	-	-	-	-	-	-	-	-	-	-	7 572 535
Tonnage total mort-terrain	(tm)	-	-	-	2 328 827		-	-	-	-	-	-	-	-	-	-	2 328 827
Production totale - (Toutes fosses)	•	1	•	1	•	•	•		•	•	1			•	1		
Tonnage minerai	(tm)	16 830 764	23 905 668	25 646 068	26 353 034	21 608 722	24 977 165	20 993 292	17 474 735	22 772 409	21 300 821	16 548 191	15 659 976	10 569 675	7 425 449	-	255 235 20
Tonnage total stérile*	(tm)	40 718 799	51 154 630	53 061 776	48 149 733	49 144 128	41 115 469	46 603 944	46 279 670	37 695 777	40 106 688	50 046 147	45 086 252	29 923 417	11 620 272	-	549 987 90
Tonnage total mort-terrain	(tm)	2 958 420	-	-	13 497 827	9 211 667	-	-	-	-	-	-	-	-	-	-	22 709 494
Tonnage total	(tm)	60 507 983	75 060 298	78 707 844	88 000 594	79 964 517	66 092 634	67 597 236	63 754 405	60 468 186	61 407 509	66 594 338	60 746 228	40 493 092	19 045 721	-	827 932 60
Alimentation usine et production d'onc	es	1	•	1	•	•	•	•	<u> </u>	•	1	•		<u> </u>	1		
Alimentation usine	(tm)	16 830 461	19 524 330	20 074 860	20 075 000	20 075 000	20 075 000	20 130 000	20 075 000	20 075 000	20 075 000	20 130 000	20 075 000	20 075 000	19 297 036	-	259 756 22
Gestion Pile Basse Teneur																	
Tonnage retiré de la pile	(tm)	2 178 603	-	-	-	-	-	-	2 600 265	-	-	3 581 809	4 415 025	9 505 325	11 871 587	-	31 974 01
Tonnage déposé sur pile	(tm)	1 778 906	5 002 000	5 571 208	6 278 034	1 533 722	4 902 165	863 292	-	2 697 408	1 225 821	-	-	-	-	-	28 073 65
* Ce tonnage inclut les tonnes topo	graphiques d	e stériles.	•							•							

Ce tonnage inclut les tonnes topographiques de stériles.

Tonnage maximum pour chacun des scénarios.

3.3.1 SCÉNARIO 1 – PÉRIODE 2013

3.3.1.1 SCÉNARIO DE BASE

Le premier scénario correspond à la période d'exploitation qui a eu lieu entre le 1^{er} janvier 2013 et le 31 décembre 2013. Ce scénario correspond donc à la situation durant laquelle seule la fosse Canadian Malartic (CM) était en exploitation. Le décapage du site de la fosse Gouldie avait débuté, ce qui impliquait également des opérations d'extraction de morts-terrains. Durant cette période, environ 19 Mt de minerai, 41 Mt de stériles et 3 Mt de morts-terrains ont été extraites et manipulées sur l'ensemble du site. Pour ce scénario, 5 zones d'activités ont été considérées dans la fosse CM (CM1 à CM5). Celles-ci ont été réparties de façon à couvrir uniformément l'ensemble de la fosse. Ces zones regroupent des activités telles que le chargement de camions, les forages, les opérations de boutage et le transport par camion. À l'extérieur de la fosse, plusieurs haldes ont été définies afin qu'y soient déposés les stériles, le minerai basse-teneur ou encore les morts-terrains. Des activités de déchargement, et parfois de boutage, sont donc présentes sur ces haldes. Enfin, deux sautages par jour ont été considérés dans la fosse CM à condition que les directions de vents soient favorables (le vent ne doit pas souffler en direction de la ville de Malartic). Ce scénario correspond au mode d'exploitation normal de CMGP en 2013.

3.3.1.2 SCÉNARIO OPTIMISÉ

Le scénario optimisé correspond à la même période d'exploitation que le scénario de base soit entre le 1^{er} janvier 2013 et le 31 décembre 2013. Ce scénario consiste en une fluctuation des activités de manipulation de stériles et de minerai et à l'arrêt occasionnel du sautage et du forage. Les activités de manipulation de stériles et de minerai comprennent les chargements et déchargements dans la fosse et sur la halde de stériles, le transport de stériles et du minerai et le boutage sur la halde de stériles et de minerai.

Ce scénario a été retenu afin de déterminer par modélisation un mode d'exploitation qui permet de respecter les normes et critères du MDDELCC lorsque les conditions de dispersions sont défavorables. Ainsi, lorsque par modélisation des conditions de dispersion favorables sont obtenues, le mode d'opération est selon le scénario de base (mode d'exploitation normal) alors qu'une variation des opérations est modélisée lorsque les conditions de dispersion sont défavorables. La fluctuation des tonnages manipulés et l'arrêt de certaines opérations étant directement reliés aux concentrations maximales modélisées à la limite d'application du RAA.

Selon les résultats présentés à la section 5.1, dans le cadre de la modélisation, le scénario optimisé est mis en opération 58 % de l'année. Le tonnage annuel effectif découlant de l'altération des conditions d'exploitation modélisée passe de 63 Mt à 40 Mt, soit 63 % du tonnage du scénario de base.

3.3.2 SCÉNARIO 2 – PÉRIODE 2015-2016

3.3.2.1 SCÉNARIO DE BASE

Le second scénario correspond aux activités de la Mine durant la période d'exploitation de 2015 à 2016 inclusivement. Lors de ce scénario, deux fosses sont en exploitation ou en préparation simultanément : CM et Gouldie. Bien que son envergure soit bien moindre que celle de CM, la fosse Gouldie représente une quantité de matière non négligeable même si sa durée d'exploitation est courte.

Les tonnages utilisés lors de cette modélisation sont basés sur les valeurs d'exploitation prévisionnelles fournies par la Mine. Pour la modélisation de cette période, l'année présentant la plus grande production, soit 2016, a été retenue. Lors de cette année, environ 26 Mt de minerai et 53 Mt de stériles seront extraites et manipulées annuellement sur l'ensemble du site.

3.3.2.2 SCÉNARIO OPTIMISÉ

Le scénario optimisé correspond à la même période d'exploitation que le scénario de base et l'année présentant la plus grande production, soit 2016. Ce scénario consiste par contre en la modélisation de la fluctuation des activités de manipulation de stériles et de minerai et à l'arrêt occasionnel du sautage et du forage. La même procédure que celle pour le scénario optimisé 1, mentionnée à la section 3.3.1.2, a été appliquée.

Selon les résultats présentés à la section 5.2, dans le cadre de la modélisation, le scénario optimisé est mis en opération 65 % de l'année. Le tonnage annuel effectif découlant de l'altération des conditions d'exploitation modélisée passe de 79 Mt à 42 Mt, soit 53 % du tonnage du scénario de base.

3.3.3 SCÉNARIO 3 – PÉRIODE 2017 À 2028

3.3.3.1 SCÉNARIO DE BASE

Enfin, le troisième scénario correspond aux années d'exploitation de 2017 à 2028. Lors de ce scénario, deux fosses sont en exploitation ou en préparation simultanément : CM et Jeffrey. Bien que son envergure soit bien moindre que celle de CM, la fosse Jeffrey représente une quantité de matière non négligeable même si sa durée d'exploitation est courte. Le secteur Barnat commence quant à lui à être décapé et exploité lors de ce scénario.

L'exploitation la plus intensive de cette période se produira au tout début de cette phase, soit en 2017, avec 26 Mt de minerai, 48 Mt de stériles et 13,5 Mt de morts-terrains qui seront extraits et manipulés. Les mêmes types d'activités que les scénarios 1 et 2 sont prévus pour ce scénario, soit le chargement, le déchargement, le boutage, le forage, le sautage et le transport de matériaux par camions.

Parmi les trois scénarios modélisés, le scénario 3 présente les tonnages les plus élevés, en raison de l'important décapage de morts-terrains. Par contre, les opérations sont davantage dispersées puisque le mort-terrain est déposé complètement à l'est du site.

3.3.3.2 SCÉNARIO OPTIMISÉ

Le scénario optimisé correspond à la même période d'exploitation que le scénario de base et l'année présentant la plus grande production, soit 2017. Ce scénario consiste par contre en la modélisation de la fluctuation des activités de manipulation de stériles et de minerai et à l'arrêt occasionnel du sautage et du forage. La même procédure que celle pour le scénario optimisé 1, mentionnée à la section 3.3.1.2, a été appliquée.

Selon les résultats présentés à la section 5.3, dans le cadre de la modélisation, le scénario optimisé est mis en opération 74 % de l'année. Le tonnage annuel effectif découlant de l'altération des conditions d'exploitation modélisée passe de 88 Mt à 40 Mt, soit 45 % du tonnage du scénario de base.

3.4 SOURCES VOLUMIQUES

Les sources volumiques considérées pour le scénario 1 sont illustrées à la carte 3. Les cartes 4 et 5 illustrent respectivement les sources volumiques des scénarios 2 et 3.

3.4.1 OPÉRATIONS

Les opérations incluent le forage, le sautage, le chargement et le déchargement des camions de transport, la station de concassage des granulats et le boutage dans la fosse CM et sur les haldes à stériles. Dans le

cadre de la présente étude, ces diverses opérations sont considérées continuelles tout au long de l'année, et ce, 24 heures sur 24 pour la majorité des sources. En effet, seules certaines sources ne sont effectives que 12 heures par jour (jour ou nuit). Les émissions provenant des sautages ont quant à elles été ajustées pour être effectives une heure par jour (pas de temps minimal du logiciel AERMOD). Aux fins de la modélisation, deux sautages par jour sont considérés, le premier à 11 heures et le second à 15 heures.

Selon les scénarios, les fosses CM, Barnat, Gouldie et Jeffrey ainsi que les haldes ont été divisées en zones contenant chacune un certain nombre d'opérations. Ce sectionnement permet une uniformisation spatiale des sources dans ces fosses dont certaines ont des superficies très grandes. Ainsi, l'emplacement des opérations modélisées représente un positionnement moyen selon les périodes considérées. Les zones choisies sont les suivantes :

- → Scénario 1 : 5 zones dans CM (CM1 à CM5) et une zone pour chaque halde de minerai basse-teneur (LG1STP et LG2STP)
- → Scénario 2 : 4 zones dans CM (CM1 à CM4), 1 zone dans Gouldie (GOU) et une zone pour chaque halde de minerai basse-teneur (LG1STP et LG2STP)
- → Scénario 3 : 4 zones dans CM (CM1 à CM4), 2 zones dans Barnat (BAR1 et BAR2), une zone pour chaque halde de minerai basse-teneur (LG1STP et LG2STP)

Les caractéristiques physiques et les taux d'émission calculés des sources fugitives reliées aux différentes opérations d'extraction ont été compilés à partir des informations fournies par la Mine et sont présentés aux tableaux A1.1 à A2.3 (annexe A) pour l'ensemble des scénarios modélisés.

3.4.1.1 FORAGE ET SAUTAGE

Les taux de forage, considérés continus, ont été déterminés en fonction du nombre de trous forés par jour, et ce, pour chaque type de forage considéré (3,5 po, 4,5 po, 5,5 po et 8,5 po). Suivant les scénarios et le nombre de foreuses disponibles, les opérations de forage ont été réparties dans les différentes zones mentionnées ci-dessus (CM1, CM2, etc.).

Les taux d'émission pour les particules totales ont été estimés suivant la section 11.9 de l'AP-42 (US-EPA, 1995), ainsi que les facteurs d'échelle de 0,9 et 0,5 considérés respectivement pour les PM_{10} et les particules fines $PM_{2,5}$. Un facteur d'atténuation de 70 % des poussières de forage (DSEWPaC, 2012) est également considéré pour les foreuses de 5,5 et 8,5 po afin de tenir compte du système de forage à l'eau installé sur les foreuses. Aucune atténuation n'a été considérée pour les foreuses de 3,5 et 4,5 po.

Les caractéristiques de sautage ont été considérées identiques pour les trois scénarios. Deux sautages par jour sont planifiés, vers 11 heures et 15 heures. Il importe de rappeler que ces sautages sont conditionnels à la direction du vent puisque ce dernier ne doit pas souffler en direction de la ville de Malartic. Dans le cas où à l'heure prévue du sautage, la direction du vent favoriserait la dispersion des émissions de sautage vers Malartic, le sautage serait alors annulé, et donc non modélisé. Les angles de restrictions considérés dépendent directement de la position des sautages. Pour le premier scénario modélisé, ces angles varient de 157 à 240 degrés pour le sautage de 11 heures et de 177 à 251 degrés pour le sautage de 15 heures. À ce sujet, il est important de spécifier qu'une procédure interne a été mise en place à la Mine. Il s'agit d'une rose des vents dynamique qui détermine en fonction de la position de chaque sautage dans la fosse, les angles de restriction réellement effectifs.

La superficie de la surface sautée est d'environ 3 000 m², pour un total de 6 000 m² par jour lorsque les deux sautages journaliers ont lieu. Par conséquent, les journées où deux sautages sont modélisés sont donc considérées être les journées pire cas. La hauteur du souffle est estimée à environ 20 m. Les taux d'émission pour les PM_{tot}, PM₁₀ et PM_{2,5} ont été estimés suivant la section 11.9 de l'AP-42 (US-EPA, 1995)

tandis que les taux d'émission pour le monoxyde de carbone (CO), les oxydes d'azote (NO_x) et le dioxyde de soufre (SO₂) ont été estimés suivant le *National Pollutant Inventory: Emission Estimation Technique Manual for Explosives Detonation and Firing Ranges* (DSEWPaC, 2012) pour des explosifs composés d'émulsion à 70 % et d'ANFO à 30 %. En ce qui concerne les NO_x, un ratio NO₂/NO_x de 20 % a été utilisé et jugé conservateur.

Les opérations de forage et de sautage sont prévues à des élévations variant en fonction du positionnement à l'intérieur des différentes fosses. Ces élévations varient de 270 m à 320 m pour le scénario 1, de 160 m à 270 m pour le scénario 2 et 3.

Les caractéristiques physiques et les taux d'émission calculés pour ces activités sont présentés aux tableaux A1.1 à A1.3 pour les scénarios 1 à 3 modélisés et un calcul des taux d'émission pour le forage et le sautage est présenté en détail à l'annexe C.

3.4.1.2 CHARGEMENTS ET DÉCHARGEMENTS

Les opérations de chargement se produisent principalement au niveau des différentes fosses. Le minerai est en majorité déchargé au concasseur. Une fraction est déposée sur les différentes haldes de minerai basse-teneur présentes sur le site qui permettront de complémenter l'alimentation de l'usine de traitement du minerai. Les stériles sont déchargés sur une halde prévue à cet effet. Une certaine quantité est utilisée dans la confection des bermes et inclusions pour le parc à résidus. Finalement, une faible quantité de stériles est également déposée au concasseur mobile afin de préparer le matériel pour l'entretien des routes. Enfin, le mort-terrain est déposé uniquement sur la halde dédiée.

Les inventaires complets des chargements et déchargements ainsi que les différentes quantités de matières véhiculées sont présentés pour l'ensemble des scénarios aux tableaux A2.1 à A2.3. Les caractéristiques physiques et les taux d'émission pour chacun des volumes sources y sont également présentés.

Les taux d'émission pour chacune des sources liées aux chargements et déchargements du minerai et des stériles ont été estimés suivant la section 13.2.4 Aggregate Handling and Storage Piles de l'AP-42. Les quantités de matériel chargées et déchargées sont distribuées également sur les 24 heures de la journée pour la majorité des sources de chargement et déchargement (quelques sources ne sont actives que 12 heures par jour). L'humidité des différentes matières a été fixée à 5,4 % suivant les valeurs données à la section 13.2.4 de l'AP-42, tableau 13.2.4-1. La vitesse moyenne des vents utilisée est de 3,57 m/s. Celle-ci est obtenue de la station météorologique de Val-d'Or.

Aux concasseurs, des systèmes de dépoussiérage sont présents, un facteur d'atténuation de 90 % a donc été considéré.

Le calcul des taux d'émission pour les chargements et déchargements est présenté en détail à l'annexe C.

3.4.1.3 **BOUTAGE**

Les opérations de boutage ont été réparties à la fois dans les fosses et proches des différentes opérations de déchargement. Ces opérations sont considérées comme des sources fugitives de particules. Les taux d'émission ont été estimés suivant la section 11.9 Western Surface Coal Mining de l'AP-42, qui propose deux facteurs d'émission : un pour les travaux sur empilement de charbon et un autre pour les empilements de morts-terrains. Dans le cadre de la présente étude, le facteur d'émission proposé pour le mort-terrain a été jugé plus représentatif pour toutes les opérations de boutage à la Mine.

Il est important de noter que les bouteurs sont des sources de particules uniquement lorsqu'ils sont en mouvement. Ainsi, un facteur d'atténuation de 50 % a été considéré en fonction de l'expérience actuelle afin de considérer les périodes durant lesquelles, les bouteurs sont à l'arrêt et qu'aucun matériau n'est déplacé.

Les caractéristiques physiques et les taux d'émission pour chacun des volumes sources associés sont présentés aux tableaux A2.1 à A2.3 et un exemple de calcul est présenté à l'annexe C.

3.4.1.4 CONCASSEUR MOBILE

L'utilisation d'un concasseur mobile (granulats) est prévue pour la préparation des matériaux utilisés pour l'entretien des routes, entre autres. Un besoin de 1075 ktm par année a été évalué pour les 10 premières années. Le taux d'émission a été estimé suivant la section 11.19.2 *Crushed Stone Processing and Pulverized Mineral Processing (uncontrolled emissions)* de l'AP-42.

Les caractéristiques physiques et le taux d'émission pour cette source volumique sont présentés aux tableaux A2.1 à A2.3 et un exemple de calcul est présenté à l'annexe C.

3.4.2 ROUTAGE

Le soulèvement de la poussière lors du transport des différentes matières sur le réseau de routes non pavées est habituellement le principal contributeur parmi les sources fugitives d'un complexe minier. Or, puisque l'intensité des émissions est directement proportionnelle à la quantité de matériel transporté, au type de véhicule utilisé et à la teneur en limon (silt) contenue dans les matériaux utilisés pour la construction et l'entretien des surfaces de roulement, les différents trajets empruntés sur le réseau routier du complexe minier (fosse vers concasseur, fosse vers halde à stériles, etc.) doivent dont être suffisamment détaillés pour permettre d'établir un taux d'émissions spécifique à chacun des tronçons de route.

La description des opérations ainsi que les caractéristiques physiques des routes pour les divers scénarios, tels que l'emplacement et les dimensions (longueur et largeur), ont été compilées à partir des informations fournies par la Mine. Au scénario 1, 16 trajets ont été identifiés et subdivisés en 28 segments, formant un réseau d'environ 12.6 km. Au scénario 2, 15 trajets ont été identifiés et subdivisés en 16 segments, formant un réseau d'environ 13,6 km. Enfin, au scénario 3, 22 trajets ont été identifiés et subdivisés en 22 segments, formant un réseau d'environ 19,4 km. La largeur des routes prévue est de 30 m sur l'ensemble du site. Dans les modélisations, trois mètres additionnels sont considérés de chaque côté de la route afin de tenir compte des émissions de poussières susceptibles de se produire par turbulence, donc une largeur totale de 36 mètres est utilisée.

Chacun des segments est représenté par une série de sources volumiques alternées. La localisation des différents segments et des volumes sources est illustrée aux cartes 3, 4 et 5 pour les scénarios 1, 2 et 3 respectivement. Les véhicules utilisés pour le transport des différentes matières ainsi que leurs principales caractéristiques sont présentés au tableau A3. Les quantités de matière transportées sur chacun des trajets sont pour leurs parts données aux tableaux A4.1 à A4.3 pour l'ensemble des trois scénarios.

Pour chacun des scénarios, le nombre de passages par segment a été estimé à partir des quantités de matière transportées sur chacun des trajets et de la charge utile des camions utilisés. Ces informations ont également permis de déterminer le poids moyen et la hauteur moyenne des camions sur chaque segment. Les taux d'émissions de particules associés à chacune des sources ont finalement été estimés de façon conservatrice à partir des facteurs proposés dans la section 13.2.2 *Unpaved Roads* de l'AP-42. Ces différentes informations sont regroupées aux tableaux A5.1 à A5.3 respectivement pour les trois scénarios.

Les caractéristiques et taux d'émissions des sources volumiques composant chacun des segments sont présentés aux tableaux A6.1 à A6.3. Enfin, un exemple de calcul est présenté à l'annexe C.

Il est également important de préciser qu'une atténuation de 86 % a été considérée sur le segment non pavé, découlant d'une atténuation par arrosage régulier des routes (eau et abats poussières) de 75 % (MDDELCC, 2015) combinée à une atténuation de 44 % reliée à une limitation de la vitesse à 40 km/h de tous les camions de transport impliqués dans la manutention des stériles, du minerai et des morts-terrains.

En ce qui concerne l'atténuation découlant de la vitesse des véhicules, le facteur de 44 % provient du WRAP Fugitive Dust Handbook (WRAP, 2006). Or, bien que la section 13.2.2 de l'AP-42 mentionne que la plage d'application de l'équation de détermination des taux d'émission sur route non pavée correspond à des véhicules circulant à des vitesses entre 8 et 69 km/h, et donc que la formule d'estimation des émissions du routage tient déjà compte de la vitesse des véhicules, le WRAP a spécifiquement sélectionné des mesures afin d'ajuster la corrélation pour des vitesses limitées à 40 km/h. Ainsi, lorsque la plage d'application est entre 8 et 40 km/h, les émissions seraient plus faibles de 44 %.

Finalement, prendre note qu'une teneur en silt de 8,3 % a été utilisée pour déterminer les taux d'émissions des segments de route associés au transport du minerai et des stériles, et ce, selon la catégorie « Stone quarrying and processing, Haul road to/from pit » du tableau 13.2.2-1 de l'AP-42.

3.5 SOURCES PONCTUELLES

Le texte qui suit présente les sources ponctuelles considérées pour la modélisation, alors que les cartes 3, 4 et 5 les localisent spatialement pour chacun des scénarios. Les sources ponctuelles considérées représentent les émissions liées aux traitements du minerai (concassage et usine de traitement) et les émissions des gaz d'échappement des équipements miniers.

3.5.1 DÉPOUSSIÉREURS

Les premières sources ponctuelles considérées sont liées à l'opération de dépoussiéreurs lors du traitement du minerai. En tout, quatre dépoussiéreurs sont considérés et leurs émissions sont constituées de particules uniquement. Leurs taux d'émissions sont calculés à partir des capacités nominales des équipements extraites des demandes de certificat d'autorisation d'exploitation de l'usine. Ceux-ci sont donc constants pour l'ensemble des scénarios.

Le premier dépoussiéreur [CONCA1] considéré est un épurateur à venturi associé au concasseur giratoire. Le second dépoussiéreur [DOME] est un filtre à manches situé sous le dôme lors de la récupération du minerai. Le troisième [FOUR_IND] et le quatrième [RES_CU] sont des épurateurs à voie humide situés à la sortie du four à induction et dans le réservoir de sulfate de cuivre. Un autre dépoussiéreur est situé dans le silo d'entreposage de la chaux, mais celui-ci n'a pas été considéré dans la modélisation, car les émissions de poussières associées ont été estimées négligeables.

Pour les deux premiers cas, les émissions de poussières sont estimées à partir des émissions fugitives provenant des manipulations de minerai. À celles-ci, une efficacité typique de filtration des dépoussiéreurs, tirée de l'AP-42, a été appliquée. Les efficacités sont fournies pour chaque tranche de taille de particule, ce qui permet d'estimer les émissions pour chaque taille de particules considérée (PM_{tot}, PM₁₀ et PM_{2,5}).

Pour les deux autres cas, les taux d'émissions des composés particulaires ont été fixés à $30 \text{ mg/m}^3\text{R}$, soit la limite prescrite à l'article 10 du RAA. Les taux d'efficacité de filtration des dépoussiéreurs ont été utilisés afin d'estimer les ratios de PM_{10}/PM_{tot} et $PM_{2.5}/PM_{tot}$.

Les caractéristiques physiques des points d'émissions, telles que l'emplacement (coordonnées et élévation), les dimensions (hauteur et diamètre), la température et la vitesse de sortie des gaz ont été compilées à partir des informations contenues dans les demandes de certificat d'autorisation d'exploitation de l'usine. Celles-ci sont présentées au tableau A7.

3.5.2 CHAUDIÈRES ET FOURS DE RÉACTIVATION DU CHARBON

À l'usine de traitement du minerai, deux chaudières et deux fours à réactivation du charbon sont en opération. Ceux-ci utilisent le gaz naturel comme combustible et sont donc considérés comme des sources de particules et de gaz de combustion (CO, NO_x et SO₂). Les taux d'émissions sont calculés à partir des capacités nominales et des données fournies dans les demandes de certificat d'autorisation d'exploitation de l'usine. Ceux-ci sont donc constants pour l'ensemble des scénarios.

Pour le cas des chaudières, les taux d'émission de particules, de CO et de NO_x sont calculés à partir des données du fabricant et de leur puissance nominale. Pour les fours à réactivation, les taux d'émissions de particules, de CO et de NO_x qui ont été fournis dans les demandes de certificat d'autorisation pour l'exploitation de l'usine sont utilisés. Pour chaque source, le taux d'émission en SO_2 est calculé par un bilan de masse à partir de la capacité nominale de chaque source et de la teneur en soufre du gaz naturel de fournisseurs canadiens.

Les caractéristiques physiques des points d'émissions, telles que l'emplacement (coordonnées et élévation), les dimensions (hauteur et diamètre), la température et la vitesse de sortie des gaz ont été compilées à partir des informations contenues dans les demandes de certificat d'autorisation pour l'exploitation de l'usine. Celles-ci sont présentées tableau A7.

3.5.3 GAZ D'ÉCHAPPEMENT DES ÉQUIPEMENTS MINIERS

Les émissions provenant des gaz d'échappement (PM_{tot}, PM_{2,5}, NO_x, SO₂ et CO) des différents véhicules actifs sur le site minier ont été considérées lors de la modélisation. Suivant les informations données par la Mine, la flotte de véhicule a été analysée pour les années 2013 à 2028. Puisque les émissions varient en fonction de la certification des moteurs (*tier*), le nombre de véhicules par modèle et par *tier* a été évalué pour chacune de ces années en fonction de la planification d'achat et du *Règlement sur les émissions des moteurs hors route à allumage par compression* (DORS/2005-32) de la Loi canadienne sur la protection de l'environnement. Les facteurs d'émissions (g/hp.hr) ont été estimés suivant la méthode proposée dans le document « *Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling - Compression-Ignition »* (US-EPA, juillet 2010). Les taux d'émission moyens pour chacun des modèles de véhicule ont ensuite été calculés en considérant la puissance des moteurs (hp) ainsi que le facteur de chargement en fonction du type d'équipement. Le nombre de véhicules requis chaque année a finalement été considéré afin de déterminer la flotte moyenne par scénario.

Pour la présente étude, la teneur en soufre dans le diesel a été fixée à 15 ppm, soit la limite prescrite par le Règlement sur le soufre dans le carburant diesel (Environnement Canada, 2013) pour les carburants diesel pour les moteurs hors route. En ce qui concerne les NO_x , un ratio NO_2/NO_x de 20 % a été considéré tel que prescrit par le guide de la modélisation atmosphérique de la province de Terre-Neuve et du Labrador (NLDEC 2012). Il est important de préciser que suivant la méthode utilisée, toutes les particules émises par les systèmes d'échappement sont assumées inférieures à 10 microns (PM_{10}) de sorte que les taux d'émission pour les PM_{tot} et les PM_{10} sont égaux. De plus, la fraction de particules fines ($PM_{2,5}$) sur l'ensemble des particules émises est estimée à 97 %. Les taux d'émission de chaque véhicule considéré dans cette étude sont présentés au tableau A8.

Afin de caractériser ces sources d'émission, les équipements mobiles présents sur le site ont été répartis en 3 catégories distinctes soit le transport, le support minier (niveleuses et camions d'arrosage) et les

équipements localisés (excavatrices, chargeuses, bouteurs et foreuses). En ce qui concerne les équipements localisés, les tuyaux d'échappement sont verticaux et le comportement des émissions ne sera pas influencé de façon notable par le mouvement des véhicules puisque les déplacements ont lieu à de faibles vitesses et que les émissions sont propulsées vers le haut à des vitesses relativement grandes. Les paramètres physiques réels (tels que la vitesse et la température des émissions, la hauteur et le diamètre du point d'émission) ont tous été utilisés pour ces types de véhicules. Dans le cas des camions de transport, les tuyaux d'échappement sont positionnés horizontalement, sur le côté des véhicules. La dispersion des émissions sera ainsi affectée par le mouvement et la turbulence créée par les camions. Dans ce contexte, les gaz d'échappement des camions de transport ont été modélisés à l'aide de sources volumiques.

Les émissions associées aux véhicules de transport ont été réparties sur les différents segments en fonction du temps moyen passé sur chacun d'eux. Ces proportions ont été estimées à partir du type d'opération associé à chaque segment (chargement, déchargement), de la longueur et de la topographie du segment (terrain plat ou en pente) et du nombre de déplacements requis pour transporter le tonnage prévu entre les différents points. Une répartition identique a été utilisée pour les émissions associées aux véhicules de support. Finalement, les équipements localisés ont été positionnés en fonction de leur utilisation.

Sans alourdir inutilement le modèle, la position des sources associées au routage et aux opérations (voir section 3.4) ont également été utilisées pour les sources ponctuelles liées aux gaz d'échappement. La position de ces sources est illustrée aux cartes 3 à 5, alors que le nombre de véhicules, la classification et les sources volumiques utilisées pour le positionnement sont regroupés au tableau A9 pour chacun des scénarios.

La portion du temps passé sur chacun des segments par les véhicules de transport et de support est présentée aux tableaux A10.1 à A10.3 pour l'ensemble des scénarios. Les paramètres physiques et les taux d'émissions par segment y sont également présentés. Il est important de rappeler que les mêmes caractéristiques physiques que celles des sources volumiques du routage (matières particules de resuspension – section 3.4.2) ont été utilisées pour modéliser les sources volumiques liées aux gaz d'échappement des camions de transport. Enfin, les paramètres physiques et les taux d'émissions pour les équipements localisés sont pour leur part donnés aux tableaux A11.1 à A11.3 pour chacun des scénarios.

3.6 SOURCES SURFACIQUES

Afin de quantifier les émissions de particules dues à l'érosion éolienne sur les haldes, l'équation de l'INRP a été utilisée sur une base horaire. Pour ce faire, la vitesse du vent à chaque heure a été utilisée et comparée à la vitesse seuil de 19,3 km/h à partir de laquelle l'érosion éolienne apparaît. Le taux d'émission est alors effectif lorsque la vitesse du vent est supérieure à cette vitesse seuil et nul lorsque la vitesse du vent est inférieure à celle-ci. De plus, comme l'équation est considérée sur une base horaire, le facteur d'atténuation dû aux précipitations n'est pas pris en compte. Il est également important de mentionner que, outre l'omission du facteur d'atténuation lié aux précipitations, le total des émissions annuelles calculées suivant la formulation horaire est identique au total calculé suivant la formulation traditionnelle de l'équation de l'INRP. Seule la répartition des émissions est affectée.

En deuxième lieu, les haldes présentées dans les projets miniers sont très grandes alors qu'une petite fraction de la surface de celles-ci est véritablement « active ». En effet, les opérations de déchargement ont lieu dans des secteurs bien précis et la majeure partie des haldes est complétée et non perturbée pendant de longues périodes. Par conséquent, une fois son potentiel d'érosion vidé par de forts vents, la section non dérangée d'une halde n'émettra plus. Par ailleurs, les précipitations et l'humidité contribuent au lavage des surfaces et à la cimentation des particules fines. Il est ainsi irréaliste de considérer toute la surface des haldes comme active et émettant sans arrêt. En plus de l'éventuel épuisement du potentiel d'érosion qui est

ignoré par la méthode, les données des normales climatiques de 1971 à 2000 à la station de l'aéroport de Val-d'Or montrent des précipitations mensuelles variant entre 40,5 et 101,9 mm, ce qui est jugé amplement suffisant pour laver les haldes de leurs particules fines et contribuer à une cimentation importante. Ainsi, pour chacune des zones de déchargement, la surface rafraîchie au cours d'un mois d'activité a été estimée et utilisée comme surface active.

Les caractéristiques physiques des différentes sources surfaciques ont été compilées à partir des informations fournies sur les infrastructures prévues par la Mine et sont présentées aux tableaux A12.1 à A12.3, avec les taux d'émission calculés, pour les 3 scénarios considérés tandis que le positionnement est illustré aux cartes 3 à 5. Un exemple de calcul est présenté à l'annexe C.

3.7 AUTRES SOURCES

Les sources d'émissions occasionnelles ou présentant une contribution marginale aux émissions totales n'ont pas été prises en compte pour la modélisation de la dispersion atmosphérique, par exemple les déplacements pour la manutention de faibles volumes (camionnette, etc.).

4 NORMES DE QUALITÉ DE L'ATMOSPHÈRE ET NIVEAUX AMBIANTS

4.1 NORMES DE QUALITÉ DE L'ATMOSPHÈRE

Les normes et les critères de qualité de l'atmosphère ont été établis par le MDDELCC dans le but d'évaluer l'impact d'un projet qui est soumis à l'autorisation du MDDELCC. Les critères sont des seuils de références utilisés par le ministère en vertu de la Loi sur la qualité de l'Environnement (LQE). Les normes correspondent à des seuils de références inscrits dans un règlement tel que le RAA. Ces normes sont présentées au tableau 9.

Les normes et critères de qualité de l'atmosphère sont évalués et déterminés par le MDDELCC et correspondent à des concentrations sans effet nocif. Cette concentration est en effet la concentration la plus élevée d'un contaminant dans l'air permettant d'éviter l'apparition prédite ou démontrée d'un effet nocif sur la santé humaine, le bien-être ou l'écosystème. Quatre grands types d'effets sont évalués : les effets obtenus par exposition directe (inhalation), les effets obtenus par exposition indirecte, les nuisances et les effets sur les écosystèmes.

Dans ce contexte, le respect de ces normes permet d'assurer un environnement sécuritaire pour la santé humaine et pour l'environnement. Par conséquent, les effets appréhendés des composés particulaires et gazeux sur la santé humaine et sur l'environnement peuvent être considérés négligeables lorsque les normes sont respectées.

4.2 **NIVEAUX AMBIANTS**

Conformément au guide de modélisation du MDDELCC (MDDEP, 2005), les concentrations maximales obtenues par modélisation pour les années de données météorologiques retenues doivent être additionnées à des niveaux ambiants (concentrations initiales) représentatifs de la région étudiée.

Pour déterminer les niveaux ambiants des contaminants, différentes approches peuvent être envisagées. Les concentrations initiales peuvent être déterminées à partir :

- → des mesures effectuées sur le site dans le but d'obtenir des valeurs réelles;
- → des mesures effectuées par les stations du Réseau de surveillance de la qualité de l'air du MDDELCC. Ce bruit de fond, représentatif de la région, est fourni par le MDDELCC;
- → des concentrations initiales génériques définies par le MDDELCC dans le document « Normes et critères québécois de la qualité de l'atmosphère »⁴.

Dans le cadre d'un projet soumis à autorisation, le MDDELCC défini des concentrations initiales génériques à utiliser pour représenter la qualité de l'air ambiant à l'état initial. Ces valeurs sont répertoriées dans le document « Normes et critères québécois de la qualité de l'atmosphère ».

Toutefois, en ce qui concerne la présente étude, le MDDELCC considère que les concentrations initiales des particules provenant du RAA surestiment les concentrations réelles susceptibles d'être rencontrées dans le secteur de la Mine.

⁴ http://www.mddep.gouv.gc.ca/air/criteres/Normes-criteres-gc-qualite-atmosphere.pdf.

Des concentrations initiales ont donc été fournies par le MDDELCC pour les matières particulaires (PMtot et PM2,5) et le NO2. En revanche, les concentrations initiales pour le CO, le SO2 et les métaux et métalloïdes correspondent aux concentrations initiales mentionnées dans «Normes et critères québécois de la qualité de l'atmosphère». Le tableau 9 présente les concentrations initiales retenues dans le cadre de la présente étude.

Tableau 9 : Normes sur la qualité de l'air et concentrations limites des substances retenues pour cette étude

Paramètres	Période	Valeur limite (µg/m³)	Concentration initiale ^[2] (µg/m³)	Référence
PM _{tot}	24 heures	120	40	
PM _{2.5}	24 heures	30	15	
20	1 heure	34000	2650	
CO	8 heures	12700	1750	
	1 heure	414	40	
NO_2	24 heures	207	10	
	Annuelle	103	30	
	4 minutes	1050	150	
SO ₂	24 heures	288	50	
	Annuelle	52	20	Name (DAA)
Antimoine	Annuelle	0,17	0,007	Normes (RAA)
Argent	Annuelle	0,23	0,005	
Arsenic	Annuelle	0,003	0,002	
Baryum	Annuelle	0,05	0,025	
Béryllium	Annuelle	0,0004	0	
	4 minutes	330	0	
Brome	1 heure	6,6	0	
	Annuelle	0,13	0	
Cadmium	Annuelle	0,0036	0,003	
Chrome (trivalent)	Annuelle	0,1	0,01	
Cobalt	Annuelle	0,1	0	Critère (MDDELCC, 2015)
Cuivre	24 heures	2,5	0,2	Normes (RAA)
Manganèse ^[1]	Annuelle	0,025	0,02	Critère (MDDELCC, 2015)
Mercure	Annuelle	0,005	0,002	
Nickel [1]	24 heures	0,014	0,002	Normes (RAA)
Plomb	Annuelle	0,1	0,025	
Sélénium	1 heure	2	0,15	Critère (MDDELCC, 2015)
Thallium	Annuelle	0,25	0,05	Normes (RAA)
Titane	24 heures	2,5	0	Critère (MDDELCC, 2015)
Vanadium	Annuelle	1	0,01	Name of (DAA)
Zinc	24 heures	2,5	0,1	Normes (RAA)

5 RÉSULTATS ET ANALYSE

Les sections qui suivent présentent les résultats obtenus de la modélisation réalisée pour l'ensemble des scénarios retenus. Afin de s'assurer de la représentativité des émissions, les concentrations évaluées des composés particulaires et gazeux dans l'atmosphère sont additionnées aux concentrations initiales actuelles applicables dans le secteur et comparées aux normes en vigueur et aux critères du MDDELCC. Il est important de prendre note que les concentrations présentées dans cette section ne représentent pas des concentrations réelles mesurées, mais plutôt des concentrations obtenues par modélisation.

Les cartes illustrent les courbes associées aux résultats. En ce qui concerne les courbes d'isoconcentration, les données chiffrées apparaissant sur ces cartes correspondent à la contribution des opérations de la Mine seulement. La couleur des courbes indique si les concentrations totales, incluant les concentrations initiales, dépassent ou non les normes ou critères du RAA. Les courbes présentées pour les maximums 4 minutes, 1 heure et 24 heures illustrent la concentration maximale calculée à chaque récepteur pour la période et les années météorologiques spécifiées. Ainsi, il faut noter que ces maximums ne se produisent pas nécessairement au cours de la même heure ou de la même journée, et ce, pour chacun des points de calcul considérés.

Domaine d'application des normes et critères

=

Limite d'application du RAA

+

Domaine de modélisation excluant la limite d'application du RAA

En somme, les courbes d'isoconcentration présentent des situations hypothétiques où les conditions de dispersion les plus défavorables sont combinées simultanément sur la même carte. Ces courbes, exigées par le MDDELCC, permettent néanmoins de bien visualiser pour une zone donnée du domaine de modélisation la concentration maximale des cinq années météorologiques considérées.

5.1 SCÉNARIO 1

5.1.1 SCÉNARIO DE BASE

Les sections qui suivent présentent les résultats de la modélisation atmosphérique du scénario de base. Les tableaux des résultats sont présentés en deux parties. Les résultats obtenus pour les récepteurs sensibles sont présentés au tableau 13 tandis que les résultats à la limite d'application du RAA sont présentés au tableau 14. Les cartes 6 à 13, présentées à l'annexe B, illustrent quant à elles les courbes d'isoconcentrations associées aux résultats de la modélisation.

5.1.1.1 PARTICULES TOTALES (PM_{TOT})

Les résultats de la modélisation présentés pour les particules totales répondent aux exigences du RAA qui prescrit une norme sur une période de 24 heures. Les courbes d'isoconcentration pour le scénario 1 sont illustrées à la carte 6.

RÉCEPTEURS SENSIBLES

Les résultats de la modélisation montrent que les concentrations susceptibles d'être rencontrées dans l'air ambiant aux récepteurs sensibles de la zone d'étude dépassent les normes actuelles de qualité de l'atmosphère. En effet, parmi les récepteurs sensibles, la concentration maximale de 620 µg/m³ est obtenue au niveau des premières résidences situées au nord de la butte-écran. Cette concentration

maximale additionnée à la concentration initiale de $40 \,\mu g/m^3$ pour les particules totales donne une concentration totale modélisée dans l'air ambiant de $660 \,\mu g/m^3$, soit environ $450 \,\%$ au-dessus de la norme du RAA établie à $120 \,\mu g/m^3$ pour une période de $24 \,$ heures. Selon le modèle, la Mine contribue pour $94 \,\%$ de la concentration totale modélisée dans l'air ambiant. De façon générale, tous les récepteurs sensibles ou groupes de récepteurs sensibles dépassent la norme $24 \,$ heures pour les particules totales.

À titre comparatif, à la station A2 Sud, le modèle dénombre 191 dépassements pour la pire année soit 52 % du temps en dépassement de la norme alors qu'en moyenne selon les mesures la norme 24 heures des particules totales est respectée 85 % du temps (voir section 6.5).

LIMITE D'APPLICATION DU RAA

La concentration modélisée de particules totales dans l'air ambiant à la limite d'application du RAA montre que la norme du RAA est dépassée d'environ 783 % pour une concentration totale de 820 µg/m³. La Mine contribue pour environ 95 % de la concentration totale modélisée dans l'air ambiant.

5.1.1.2 PARTICULES FINES (PM_{2.5})

Les résultats de la modélisation présentés pour les particules fines répondent aux exigences du RAA qui prescrit une norme sur une période de 24 heures. Les courbes d'isoconcentration pour le scénario 1 sont illustrées à la carte 7.

RÉCEPTEURS SENSIBLES

Les résultats de la modélisation montrent que les concentrations susceptibles d'être rencontrées dans l'air ambiant aux récepteurs sensibles de la zone d'étude dépassent les normes actuelles de qualité de l'atmosphère. En effet, parmi les récepteurs sensibles, la concentration maximale de 57 µg/m³ est obtenue au niveau des premières résidences situées au nord de la butte-écran, près de la station de mesure A2. Cette concentration maximale additionnée à la concentration initiale de 15 µg/m³ pour les particules fines donne une concentration totale modélisée dans l'air ambiant de 72 µg/m³, soit environ 140 % au-dessus de la norme du RAA établie à 30 µg/m³ pour une période de 24 heures. La Mine contribue pour 79 % de la concentration totale modélisée dans l'air ambiant. De façon générale, tous les récepteurs sensibles ou groupes de récepteurs sensibles dépassent la norme 24 heures pour les particules fines.

À titre comparatif, à la station A2 Sud, le modèle dénombre 69 dépassements pour la pire année soit 19 % du temps au-delà de la norme alors qu'en moyenne selon les mesures la norme 24 heures des particules fines est respectée 99 % du temps (voir section 6.5).

LIMITE D'APPLICATION DU RAA

La concentration modélisée de particules fines dans l'air ambiant à la limite d'application du RAA montre que la norme du RAA est dépassée d'environ 252 % pour une concentration totale de 106 μg/m³. La Mine contribue pour environ 86 % de la concentration totale modélisée dans l'air ambiant.

5.1.1.3 MONOXYDE DE CARBONE (CO)

Les résultats de la modélisation indiquent que les concentrations de monoxyde de carbone susceptibles d'être rencontrées à la limite d'application du RAA ainsi qu'aux récepteurs sensibles considérés respectent les normes de qualité de l'atmosphère en vigueur.

Les courbes d'isoconcentration sont présentées à la carte 8 pour la norme 1 heure. Les courbes d'isoconcentration pour la période 8 heures n'ont pas été cartographiées, mais les résultats sont tout de

même présentés dans les tableaux. Les concentrations maximales modélisées à la limite du RAA représentent 41 % et 28 % de la norme, pour les périodes 1 heure et 8 heures respectivement.

5.1.1.4 DIOXYDE D'AZOTE (NO₂)

Les résultats de la modélisation présentés pour le dioxyde d'azote répondent aux exigences du RAA qui prescrit des normes 1 heure, 24 heures et annuelle. Les courbes d'isoconcentration pour le scénario 1 sont illustrées à la carte 9 pour la norme 1 heure. Les courbes d'isoconcentration pour les périodes 24 heures et annuelle n'ont pas été cartographiées, mais les résultats sont tout de même présentés dans les tableaux.

RÉCEPTEURS SENSIBLES

Pour une période de 1 heure, les résultats de la modélisation montrent que les concentrations susceptibles d'être rencontrées dans l'air ambiant aux groupes de récepteurs sensibles « résidences nord » dépassent les normes actuelles de qualité de l'atmosphère. En effet, la concentration maximale de $524 \, \mu g/m^3$ est obtenue au niveau des premières résidences situées au nord de la butte-écran. Cette concentration maximale additionnée à la concentration initiale de $40 \, \mu g/m^3$ pour le dioxyde d'azote donne une concentration totale modélisée dans l'air ambiant de $564 \, \mu g/m^3$, soit environ $36 \, \%$ au-dessus de la norme du RAA établie à $414 \, \mu g/m^3$ pour une période de 1 heure. La Mine contribue pour $93 \, \%$ de la concentration totale modélisée dans l'air ambiant. Les concentrations de NO_2 modélisées au niveau des autres récepteurs sensibles respectent la norme 1 heure pour le dioxyde d'azote.

Pour une période de 24 heures, les résultats de la modélisation montrent que les concentrations susceptibles d'être rencontrées dans l'air ambiant aux groupes de récepteurs sensibles « résidences nord » dépassent les normes actuelles de qualité de l'atmosphère. En effet, la concentration maximale de $203\,\mu\text{g/m}^3$ est obtenue au niveau des premières résidences situées au nord de la butte-écran. Cette concentration maximale additionnée à la concentration initiale de $30\,\mu\text{g/m}^3$ pour le dioxyde d'azote donne une concentration totale modélisée dans l'air ambiant de $233\,\mu\text{g/m}^3$, soit environ $12\,\%$ au-dessus de la norme du RAA établie à $207\,\mu\text{g/m}^3$ pour une période de $24\,\text{heures}$. La Mine contribue pour $87\,\%$ de la concentration totale modélisée dans l'air ambiant. Les concentrations de NO_2 modélisées au niveau des autres récepteurs sensibles respectent la norme $24\,\text{heures}$ pour le dioxyde d'azote.

Pour la période annuelle, tous les récepteurs sensibles respectent la norme de qualité de l'atmosphère en vigueur pour le dioxyde d'azote.

À titre comparatif, à la station A2 Sud, le modèle dénombre pour la pire année 11 et 2 dépassements pour les périodes 1 heure et 24 heures respectivement. Or, la station A2 Sud n'a jamais mesuré de dépassement des normes de dioxyde d'azote (voir section 6.5).

LIMITE D'APPLICATION DU RAA

Pour une période de 1 heure, la concentration modélisée de dioxyde d'azote dans l'air ambiant à la limite d'application du RAA montre que la norme du RAA est dépassée d'environ 80 % pour une concentration totale de 747 µg/m³. La Mine contribue pour environ 95 % de la concentration totale modélisée dans l'air ambiant.

Pour une période de 24 heures, la concentration modélisée de dioxyde d'azote dans l'air ambiant à la limite d'application du RAA montre que la norme du RAA est dépassée d'environ 19 % pour une concentration totale de 246 µg/m³. La Mine contribue pour environ 88 % de la concentration totale modélisée dans l'air ambiant.

Pour la période annuelle, les résultats de la modélisation indiquent que les concentrations de dioxyde d'azote susceptibles d'être rencontrées à la limite d'application du RAA respectent la norme de qualité de l'atmosphère en vigueur.

5.1.1.5 DIOXYDE DE SOUFRE (SO₂)

Les résultats de la modélisation indiquent que les concentrations de dioxyde de soufre susceptibles d'être rencontrées à la limite d'application du RAA ainsi qu'aux récepteurs sensibles considérés respectent les normes de qualité de l'atmosphère en vigueur.

Les courbes d'isoconcentration sont présentées à la carte 10 pour la norme 4 minutes. Les concentrations maximales modélisées représentent 20 %, 18 % et 39 % de la norme, pour les périodes 4 minutes, 24 heures et annuelle respectivement. En raison des faibles concentrations mesurées, les courbes d'isoconcentration des périodes 24 heures et annuelle ne sont pas cartographiées.

5.1.1.6 MÉTAUX ET MÉTALLOÏDES

À l'exception du baryum, du manganèse et du nickel, les résultats de la modélisation indiquent que les concentrations de l'ensemble des métaux et métalloïdes considérés susceptibles d'être rencontrés à la limite d'application du RAA ainsi qu'aux récepteurs sensibles considérés respectent les normes et critères de qualité de l'atmosphère en vigueur.

Concernant le manganèse, les résultats de la modélisation montrent que les concentrations susceptibles d'être rencontrées dans l'air ambiant à l'ensemble des récepteurs sensibles, à l'exception des résidences au nord du site minier, respectent les normes actuelles de qualité de l'atmosphère. En effet, la concentration maximale de 1,14E-02 µg/m³ est obtenue au niveau des premières résidences situées au nord de la butte-écran près de la station de mesure A2. Cette concentration maximale additionnée à la concentration initiale de 2,0E-2 µg/m³ pour le manganèse donne une concentration totale modélisée dans l'air ambiant de 3,14E-02 µg/m³, soit environ 26 % au-dessus de la norme du RAA établie à 2,5E-02 µg/m³ pour une période d'un an. La Mine contribue pour 36 % de la concentration totale modélisée dans l'air ambiant. La concentration modélisée de manganèse dans l'air ambiant à la limite d'application du RAA montre quant à elle que la norme du RAA est dépassée d'environ 32 % pour une concentration totale de 3,30E-02 µg/m³. La Mine contribue pour environ 39 % de la concentration totale modélisée dans l'air ambiant.

En ce qui concerne le baryum et le nickel, les dépassements sont d'au plus 1 % de la norme, et ce, à la limite d'application du RAA.

5.1.2 SCÉNARIO OPTIMISÉ

Dans le but de présenter un scénario alternatif d'opération permettant de s'assurer en tout temps du respect des normes et critères du MDDELCC, une fluctuation des activités de manipulation de stériles et de minerai et un arrêt occasionnel du forage et du boutage ont été appliqués.

Les résultats pour ce scénario alternatif sont présentés au tableau 19 pour le domaine d'application des normes et critères. Les courbes d'isoconcentration sont illustrées aux cartes 11 à 13 pour les particules totales, les particules fines et le dioxyde d'azote respectivement.

Les résultats de la modélisation indiquent que pour éliminer tous les dépassements de particules et de dioxyde d'azote, il faut réduire le tonnage manipulé sur l'ensemble du site 54 % du temps et également arrêter les opérations de boutage et de forage 48 % du temps. Le tonnage annuel effectif découlant de

l'altération des conditions d'exploitation passe donc de 63 Mt à 40 Mt, soit 63 % du tonnage modélisé au scénario de base. La séquence d'opération optimisée selon la modélisation est présentée au tableau 10.

En ce qui concerne les quelques dépassements de métaux susceptibles d'être observés en mode d'exploitation normal, l'altération des opérations nécessaire pour respecter en tout temps les normes de particules permet également d'éliminer tous ces dépassements, notamment ceux de baryum, de manganèse et de nickel.

Tableau 10 : Séquence d'opération optimale selon la modélisation

Tonnage	Nb heures	Nb heures par année	% heures
100 %	20095	4017	46
90 %	1301	260	3
80 %	1379	276	3
70 %	1781	356	4
60 %	1738	347	4
50 %	1813	362	4
40 %	2160	432	5
30 %	2309	462	5
20 %	2562	512	6
10 %	4053	810	9
0 %	4633	926	11
Arrêt complet forage et boutage	20967	4191	48

5.2 SCÉNARIO 2

5.2.1 SCÉNARIO DE BASE

Les sections qui suivent présentent les résultats de la modélisation atmosphérique du scénario de base. Les tableaux des résultats sont présentés en deux parties. Les résultats obtenus pour les récepteurs sensibles sont présentés au tableau 15 tandis que les résultats à la limite d'application du RAA sont présentés au tableau 16. Les cartes 14 à 21, présentées à l'annexe B, illustrent quant à elles les courbes d'isoconcentrations associées aux résultats de la modélisation.

5.2.1.1 PARTICULES TOTALES (PM_{TOT})

Les résultats de la modélisation présentés pour les particules totales répondent aux exigences du RAA qui prescrit une norme sur une période de 24 heures. Les courbes d'isoconcentration pour le scénario 2 sont illustrées à la carte 14.

RÉCEPTEURS SENSIBLES

Les résultats de la modélisation montrent que les concentrations susceptibles d'être rencontrées dans l'air ambiant aux récepteurs sensibles de la zone d'étude dépassent les normes actuelles de qualité de l'atmosphère. En effet, parmi les récepteurs sensibles, la concentration maximale de 1342 µg/m³ est obtenue au niveau des premières résidences situées au nord de la butte-écran. Cette concentration

maximale additionnée à la concentration initiale de $40 \,\mu g/m^3$ pour les particules totales donne une concentration totale modélisée dans l'air ambiant de $1382 \,\mu g/m^3$, soit environ $1052 \,\%$ au-dessus de la norme du RAA établie à $120 \,\mu g/m^3$ pour une période de 24 heures. Selon le modèle, la Mine contribue pour 97 % de la concentration totale modélisée dans l'air ambiant. De façon générale, tous les récepteurs sensibles ou groupes de récepteurs sensibles dépassent la norme 24 heures pour les particules totales.

LIMITE D'APPLICATION DU RAA

La concentration modélisée de particules totales dans l'air ambiant à la limite d'application du RAA montre que la norme du RAA est dépassée d'environ 1372 % pour une concentration totale de 1767 µg/m³. La Mine contribue pour environ 98 % de la concentration totale modélisée dans l'air ambiant.

5.2.1.2 PARTICULES FINES (PM_{2.5})

Les résultats de la modélisation présentés pour les particules fines répondent aux exigences du RAA qui prescrit une norme sur une période de 24 heures. Les courbes d'isoconcentration pour le scénario 2 sont illustrées à la carte 15.

RÉCEPTEURS SENSIBLES

Les résultats de la modélisation montrent que les concentrations susceptibles d'être rencontrées dans l'air ambiant aux récepteurs sensibles de la zone d'étude dépassent les normes actuelles de qualité de l'atmosphère. En effet, parmi les récepteurs sensibles, la concentration maximale de 55 µg/m³ est obtenue au niveau des premières résidences situées au nord de la butte-écran, près de la station de mesure A2. Cette concentration maximale additionnée à la concentration initiale de 15 µg/m³ pour les particules fines donne une concentration totale modélisée dans l'air ambiant de 70 µg/m³, soit environ 134 % au-dessus de la norme du RAA établie à 30 µg/m³ pour une période de 24 heures. La Mine contribue pour 79 % de la concentration totale modélisée dans l'air ambiant. De façon générale, tous les récepteurs sensibles ou groupes de récepteurs sensibles dépassent la norme 24 heures pour les particules fines.

LIMITE D'APPLICATION DU RAA

La concentration modélisée de particules fines dans l'air ambiant à la limite d'application du RAA montre que la norme du RAA est dépassée d'environ 192 % pour une concentration totale de 88 µg/m³. La Mine contribue pour environ 83 % de la concentration totale modélisée dans l'air ambiant.

5.2.1.3 MONOXYDE DE CARBONE (CO)

Les résultats de la modélisation indiquent que les concentrations de monoxyde de carbone susceptibles d'être rencontrées à la limite d'application du RAA ainsi qu'aux récepteurs sensibles considérés respectent les normes de qualité de l'atmosphère en vigueur.

Les courbes d'isoconcentration sont présentées à la carte 16 pour la norme 1 heure. Les courbes d'isoconcentration pour la période 8 heures ne sont pas cartographiées, mais les résultats sont tout de même présentés dans les tableaux. Les concentrations maximales modélisées à la limite du RAA représentent 98 % et 45 % de la norme, pour les périodes 1 heure et 8 heures respectivement.

5.2.1.4 DIOXYDE D'AZOTE (NO₂)

Les résultats de la modélisation présentés pour le dioxyde d'azote répondent aux exigences du RAA qui prescrit des normes 1 heure, 24 heures et annuelle. Les courbes d'isoconcentration pour le scénario 2 sont

illustrées à la carte 17 pour la norme 1 heure. Les courbes d'isoconcentration pour les périodes 24 heures et annuelle ne sont pas cartographiées, mais les résultats sont tout de même présentés dans les tableaux.

RÉCEPTEURS SENSIBLES

Pour une période de 1 heure, les résultats de la modélisation montrent que les concentrations susceptibles d'être rencontrées dans l'air ambiant aux groupes de récepteurs sensibles « résidences sud » dépassent les normes actuelles de qualité de l'atmosphère. En effet, la concentration maximale de 399 μ g/m³ est obtenue. Cette concentration maximale additionnée à la concentration initiale de 40 μ g/m³ pour le dioxyde d'azote donne une concentration totale modélisée dans l'air ambiant de 439 μ g/m³, soit environ 6 % audessus de la norme du RAA établie à 414 μ g/m³ pour une période de 1 heure. La Mine contribue pour 91 % de la concentration totale modélisée dans l'air ambiant. Les concentrations de NO₂ modélisées au niveau des autres récepteurs sensibles respectent la norme 1 heure pour le dioxyde d'azote.

Pour une période 24 heures, les résultats de la modélisation montrent que les concentrations susceptibles d'être rencontrées dans l'air ambiant aux groupes de récepteurs sensibles « résidences nord » dépassent les normes actuelles de qualité de l'atmosphère. En effet, la concentration maximale de 188 µg/m³ est obtenue. Cette concentration maximale additionnée à la concentration initiale de 30 µg/m³ pour le dioxyde d'azote donne une concentration totale modélisée dans l'air ambiant de 218 µg/m³, soit environ 5 % audessus de la norme du RAA établie à 207 µg/m³ pour une période de 24 heures. La Mine contribue pour 86 % de la concentration totale modélisée dans l'air ambiant.

Pour la période annuelle, tous les récepteurs sensibles respectent la norme de qualité de l'atmosphère en vigueur pour le dioxyde d'azote.

LIMITE D'APPLICATION DU RAA

Pour une période de 1 heure, la concentration modélisée de dioxyde d'azote dans l'air ambiant à la limite d'application du RAA montre que la norme du RAA est dépassée d'environ 130 % pour une concentration totale de 950 µg/m³. La Mine contribue pour environ 96 % de la concentration totale modélisée dans l'air ambiant.

Pour une période 24 heures, la concentration modélisée de dioxyde d'azote dans l'air ambiant à la limite d'application du RAA montre que la norme du RAA est dépassée d'environ 17 % pour une concentration totale de 242 µg/m³. La Mine contribue pour environ 88 % de la concentration totale modélisée dans l'air ambiant.

Pour la période annuelle, les résultats de la modélisation indiquent que les concentrations de dioxyde d'azote susceptibles d'être rencontrées à la limite d'application du RAA respectent la norme de qualité de l'atmosphère en vigueur.

5.2.1.5 DIOXYDE DE SOUFRE (SO₂)

Les résultats de la modélisation indiquent que les concentrations de dioxyde de soufre susceptibles d'être rencontrées à la limite d'application du RAA ainsi qu'aux récepteurs sensibles considérés respectent les normes de qualité de l'atmosphère en vigueur.

Les courbes d'isoconcentration sont présentées à la carte 18 pour la norme 4 minutes. Les concentrations maximales modélisées représentent 30 %, 19 % et 39 % de la norme, pour les périodes 4 minutes, 24 heures et annuelle respectivement. En raison des faibles concentrations mesurées, les courbes d'isoconcentration des périodes 24 heures et annuelle ne sont pas cartographiées.

5,2,1,6 MÉTAUX ET MÉTALLOÏDES

À l'exception du baryum, du manganèse et du nickel, les résultats de la modélisation indiquent que les concentrations de l'ensemble des métaux et métalloïdes considérés susceptibles d'être rencontrés à la limite d'application du RAA ainsi qu'aux récepteurs sensibles considérés respectent les normes et critères de qualité de l'atmosphère en vigueur.

Concernant le baryum, la concentration totale modélisée dans l'air ambiant à la limite d'application du RAA est de $6,39E-02 \mu g/m^3$, soit environ 28 % au-dessus de la norme du établie à $5,0E-02 \mu g/m^3$ pour une période d'un an. La Mine contribue pour 61 % de la concentration totale modélisée dans l'air ambiant. Le manganèse est quant à lui modélisé, avec une concentration totale à la limite d'application du RAA de $3,79E-02 \mu g/m^3$, à environ 52 % au-dessus de la norme établie à $2,50E-02 \mu g/m^3$. Enfin, le nickel, est modélisé au double de la norme 24 heures, avec une concentration totale de $2,80E-02 \mu g/m^3$.

5.2.2 SCÉNARIO OPTIMISÉ

Dans le but de présenter un scénario alternatif d'opération permettant de s'assurer en tout temps du respect des normes et critères du MDDELCC, une fluctuation des activités de manipulation de stériles et de minerai et un arrêt occasionnel du forage et du boutage ont été appliqués.

Les résultats pour ce scénario alternatif sont présentés au tableau 20 pour le domaine d'application des normes et critères. Les courbes d'isoconcentration sont illustrées aux cartes 19 à 21 pour les particules totales, les particules fines et le dioxyde d'azote respectivement.

Les résultats de la modélisation indiquent que pour éliminer tous les dépassements de particules et de dioxyde d'azote, il faut réduire le tonnage manipulé sur l'ensemble du site 65 % du temps, arrêter les opérations de boutage et de forage 21 % du temps et également restreindre plusieurs sautages, et ce, en plus de ceux déjà annulés lorsque le vent souffle en direction de la ville de Malartic. Le tonnage annuel effectif découlant de l'altération des conditions d'exploitation passe donc de 79 Mt à 42 Mt, soit 53 % du tonnage modélisé au scénario de base. La séquence d'opération optimisée selon la modélisation est présentée au tableau 11.

En ce qui concerne les quelques dépassements de métaux susceptibles d'être observés en mode d'exploitation normal, l'altération des opérations nécessaire pour respecter en tout temps les normes de particules permet également d'éliminer tous ces dépassements, notamment ceux de baryum, de manganèse et de nickel.

Tableau 11 : Séquence d'opération optimale selon la modélisation

Tonnage	Nb heures	Nb heures par année	% heures
100%	15435	3085	35
90%	1110	222	3
80%	1419	284	3
70%	1517	303	3
60%	1817	363	4
50%	2017	403	5
40%	2270	454	5
30%	2680	536	6
20%	3341	668	8
10%	3676	735	8
0%	8542	1707	19
Arrêt complet forage et boutage	9038	1807	21

5.3 SCÉNARIO 3

5.3.1 SCÉNARIO DE BASE

Les sections qui suivent présentent les résultats de la modélisation atmosphérique du scénario de base. Les tableaux des résultats sont présentés en deux parties. Les résultats obtenus pour les récepteurs sensibles sont présentés au tableau 17, tandis que les résultats à la limite d'application du RAA sont présentés au tableau 18. Les cartes 22 à 26, présentées à l'annexe B, illustrent quant à elles les courbes d'isoconcentrations associées aux résultats de la modélisation.

5.3.1.1 PARTICULES TOTALES (PM_{TOT})

Les résultats de la modélisation présentés pour les particules totales répondent aux exigences du RAA qui prescrit une norme sur une période de 24 heures. Les courbes d'isoconcentration pour le scénario 3 sont illustrées à la carte 22.

RÉCEPTEURS SENSIBLES

Les résultats de la modélisation montrent que les concentrations susceptibles d'être rencontrées dans l'air ambiant aux récepteurs sensibles de la zone d'étude dépassent les normes actuelles de qualité de l'atmosphère. En effet, parmi les récepteurs sensibles, la concentration maximale de $1203\,\mu\text{g/m}^3$ est obtenue au niveau des premières résidences situées au sud de la Mine. Cette concentration maximale additionnée à la concentration initiale de $40\,\mu\text{g/m}^3$ pour les particules totales donne une concentration totale modélisée dans l'air ambiant de $1243\,\mu\text{g/m}^3$, soit environ $936\,\%$ au-dessus de la norme du RAA établie à $120\,\mu\text{g/m}^3$ pour une période de $24\,\text{heures}$. Selon le modèle, la Mine contribue pour $97\,\%$ de la concentration totale modélisée dans l'air ambiant. De façon générale, tous les récepteurs sensibles ou groupes de récepteurs sensibles dépassent la norme $24\,\text{heures}$ pour les particules totales.

LIMITE D'APPLICATION DU RAA

La concentration modélisée de particules totales dans l'air ambiant à la limite d'application du RAA montre que la norme du RAA est dépassée d'environ 1798 % pour une concentration totale de 3357 µg/m³. La Mine contribue pour environ 99 % de la concentration totale modélisée dans l'air ambiant.

5.3.1.2 PARTICULES FINES (PM_{2.5})

Les résultats de la modélisation présentés pour les particules fines répondent aux exigences du RAA qui prescrit une norme sur une période de 24 heures. Les courbes d'isoconcentration pour le scénario 2 sont illustrées à la carte 23.

RÉCEPTEURS SENSIBLES

Les résultats de la modélisation montrent que les concentrations susceptibles d'être rencontrées dans l'air ambiant aux récepteurs sensibles de la zone d'étude dépassent les normes actuelles de qualité de l'atmosphère. En effet, parmi les récepteurs sensibles, la concentration maximale de 46 μ g/m³ est obtenue au niveau des premières résidences situées au nord de la butte-écran. Cette concentration maximale additionnée à la concentration initiale de 15 μ g/m³ pour les particules fines donne une concentration totale modélisée dans l'air ambiant de 61 μ g/m³, soit environ 104 % au-dessus de la norme du RAA établie à 30 μ g/m³ pour une période de 24 heures. La Mine contribue pour 76 % de la concentration totale modélisée dans l'air ambiant. De façon générale, tous les récepteurs sensibles ou groupes de récepteurs sensibles dépassent la norme 24 heures pour les particules fines.

LIMITE D'APPLICATION DU RAA

La concentration modélisée de particules fines dans l'air ambiant à la limite d'application du RAA montre que la norme du RAA est dépassée d'environ 340 % pour une concentration totale de 132 µg/m³. La Mine contribue pour environ 87 % de la concentration totale modélisée dans l'air ambiant.

5.3.1.3 MONOXYDE DE CARBONE (CO)

Les résultats de la modélisation indiquent que les concentrations de monoxyde de carbone susceptibles d'être rencontrées à la limite d'application du RAA ainsi qu'aux récepteurs sensibles considérés respectent les normes de qualité de l'atmosphère en vigueur.

Les courbes d'isoconcentration sont présentées à la carte 24 pour la norme 1 heure. Les courbes d'isoconcentration pour la période 8 heures ne sont pas cartographiées, mais les résultats sont tout de même présentés dans les tableaux. Les concentrations maximales modélisées à la limite du RAA représentent 94 % et 43 % de la norme, pour les périodes 1 heure et 8 heures respectivement.

5.3.1.4 DIOXYDE D'AZOTE (NO₂)

Les résultats de la modélisation présentés pour le dioxyde d'azote répondent aux exigences du RAA qui prescrit des normes 1 heure, 24 heures et annuelle. Les courbes d'isoconcentration pour le scénario 2 sont illustrées à la carte 25 pour la norme 1 heure. Les courbes d'isoconcentration pour les périodes 24 heures et annuelle ne sont pas cartographiées, mais les résultats sont tout de même présentés dans les tableaux.

RÉCEPTEURS SENSIBLES

Pour une période de 1 heure, les résultats de la modélisation montrent que les concentrations susceptibles d'être rencontrées dans l'air ambiant aux groupes de récepteurs sensibles « résidences sud » dépassent

les normes actuelles de qualité de l'atmosphère. En effet, la concentration maximale de 383 µg/m³ est obtenue. Cette concentration maximale additionnée à la concentration initiale de 40 µg/m³ pour le dioxyde d'azote donne une concentration totale modélisée dans l'air ambiant de 423 µg/m³, soit environ 2 % audessus de la norme du RAA établie à 414 µg/m³ pour une période de 1 heure. La Mine contribue pour 91 % de la concentration totale modélisée dans l'air ambiant. Les concentrations de NO₂ modélisées au niveau des autres récepteurs sensibles respectent la norme 1 heure pour le dioxyde d'azote.

Pour une période 24 heures, les résultats de la modélisation montrent que les concentrations susceptibles d'être rencontrées dans l'air ambiant aux groupes de récepteurs sensibles « résidences nord » dépassent les normes actuelles de qualité de l'atmosphère. En effet, la concentration maximale de 182 µg/m³ est obtenue. Cette concentration maximale additionnée à la concentration initiale de 30 µg/m³ pour le dioxyde d'azote donne une concentration totale modélisée dans l'air ambiant de 212 µg/m³, soit environ 2 % audessus de la norme du RAA établie à 207 µg/m³ pour une période de 24 heures. La Mine contribue pour 86 % de la concentration totale modélisée dans l'air ambiant.

Pour la période annuelle, tous les récepteurs sensibles respectent la norme de qualité de l'atmosphère en vigueur pour le dioxyde d'azote.

LIMITE D'APPLICATION DU RAA

Pour une période de 1 heure, la concentration modélisée de dioxyde d'azote dans l'air ambiant à la limite d'application du RAA montre que la norme du RAA est dépassée d'environ 120 % pour une concentration totale de 912 µg/m³. La Mine contribue pour environ 96 % de la concentration totale modélisée dans l'air ambiant.

Pour une période 24 heures, la concentration modélisée de dioxyde d'azote dans l'air ambiant à la limite d'application du RAA montre que la norme du RAA est dépassée d'environ 18 % pour une concentration totale de 244 µg/m³. La Mine contribue pour environ 88 % de la concentration totale modélisée dans l'air ambiant.

Pour la période annuelle, les résultats de la modélisation indiquent que les concentrations de dioxyde d'azote susceptibles d'être rencontrées à la limite d'application du RAA respectent la norme de qualité de l'atmosphère en vigueur.

5.3.1.5 DIOXYDE DE SOUFRE (SO₂)

Les résultats de la modélisation indiquent que les concentrations de dioxyde de soufre susceptibles d'être rencontrées à la limite d'application du RAA ainsi qu'aux récepteurs sensibles considérés respectent les normes de qualité de l'atmosphère en vigueur.

Les courbes d'isoconcentration sont présentées à la carte 26 pour la norme 4 minutes. Les concentrations maximales modélisées représentent 29 %, 19 % et 39 % de la norme, pour les périodes 4 minutes, 24 heures et annuelle respectivement. En raison des faibles concentrations mesurées, les courbes d'isoconcentration des périodes 24 heures et annuelle ne sont pas cartographiées.

5.3.1.6 MÉTAUX ET MÉTALLOÏDES

À l'exception de l'arsenic, du baryum, chrome, du manganèse, du nickel et du titane, les résultats de la modélisation indiquent que les concentrations de l'ensemble des métaux et métalloïdes considérés susceptibles d'être rencontrés à la limite d'application du RAA ainsi qu'aux récepteurs sensibles considérés respectent les normes et critères de qualité de l'atmosphère en vigueur.

Concernant l'arsenic, la concentration totale modélisée dans l'air ambiant à la limite d'application du RAA est de 3,24E-03 μ g/m³, soit environ 8 % au-dessus de la norme du établie à 3,00E-03 μ g/m³ pour une période d'un an. La Mine contribue pour 38 % de la concentration totale modélisée dans l'air ambiant. Le baryum est quant à lui modélisé, avec une concentration totale à la limite d'application du RAA de 1,32^E-01 μ g/m³, environ 165 % au-dessus de la norme établie à 5,00E-02 μ g/m³.

Concernant le chrome, la concentration totale modélisée dans l'air ambiant à la limite d'application du RAA est de 1,73E-01 µg/m³, soit environ 73 % au-dessus de la norme du établie à 1,00E-01 µg/m³ pour une période d'un an. La Mine contribue pour 94 % de la concentration totale modélisée dans l'air ambiant. Le manganèse est quant à lui modélisé, avec une concentration totale à la limite d'application du RAA de 8,13E-02 µg/m³, environ 225 % au-dessus de la norme établie à 2,50E-02 µg/m³.

Enfin, pour le nickel, la concentration modélisée à la limite d'application du RAA est de 6,39E-02 μ g/m³ et 1,63E-01 μ g/m³, soit environ 1063 % au-dessus de leur norme 24 heures. Pour le titane, la concentration modélisée à la limite d'application du RAA est de 4,42 μ g/m³, soit environ 77 % au-dessus du critère 24 heures de 2,50 μ g/m³.

5.3.2 SCÉNARIO OPTIMISÉ

Dans le but de présenter un scénario alternatif d'opération permettant de s'assurer en tout temps du respect des normes et critères du MDDELCC, une fluctuation des activités de manipulation de stériles et de minerai et un arrêt occasionnel du forage et du boutage ont été appliqués.

Les résultats pour ce scénario alternatif sont présentés au tableau 21 sur le domaine d'application des normes et critères. Les courbes d'isoconcentration sont illustrées aux cartes 27 à 29 pour les particules totales, les particules fines et le dioxyde d'azote respectivement.

Les résultats de la modélisation indiquent que pour éliminer tous les dépassements de particules et de dioxyde d'azote, il faut réduire le tonnage manipulé sur l'ensemble du site 74 % du temps, arrêter les opérations de boutage et de forage 16 % du temps et également restreindre plusieurs sautages, et ce, en plus de ceux déjà annulés lorsque le vent souffle en direction de la ville de Malartic. Le tonnage annuel effectif découlant de l'altération des conditions d'exploitation passe donc de 88 Mt à 40 Mt, soit 45 % du tonnage modélisé au scénario de base. La séquence d'opération optimisée selon la modélisation est présentée au tableau 12.

En ce qui concerne les quelques dépassements de métaux susceptibles d'être observés en mode d'exploitation normal, l'altération des opérations nécessaire pour respecter en tout temps les normes de particules permet également d'éliminer tous ces dépassements.

Tableau 12 : Séquence d'opération optimale selon la modélisation

Tonnage	Nb heures	Nb heures par année	% heures
100%	11577	2314	26%
90%	919	184	2%
80%	1159	232	3%
70%	1539	308	4%
60%	2093	418	5%
50%	2361	472	5%
40%	2602	520	6%
30%	2851	570	7%
20%	3185	637	7%
10%	4219	843	10%
0%	11319	2263	26%
Arrêt complet forage et boutage	6987	1397	16%

Tableau 13 : Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère aux récepteurs sensibles – Scénario 1 (Scénario de base)

			Con	centrations modélisé	es aux récepteurs	sensibles (µg/m³)		Concentration	Concentration	Contribution du	Norme [1]	Pourcentage de	Pourcentage
Substance	Période	Statistique		Maximum pour chacu	une des catégories		Maximum	initiale (µg/m³)	totale <u>modélisée</u> (µg/m³)	projet (%)	(μg/m³)	la norme (projet seul.) (%)	de la norme (%)
			Résidences nord	Résidences sud	Station A1	Station A2	а	b	c=a+b	d=(a/c)*100	е	h=(a/e)*100	p=(c/e)*100
PM _{tot}	24 heures	1 ^{er} Maximum	566	367	550	620	620	40	660	93,9	120	517	550
PM _{2.5}	24 heures	1 ^{er} Maximum	41	24	35	57	57	15	72	79,1	30	190	240
СО	1 heure	1 ^{er} Maximum	724	6180	369	467	6180	2650	8830	70,0	34000	18	26
СО	8 heures	1 ^{er} Maximum	250	938	186	224	938	1750	2688	34,9	12700	7	21
	1 heure	1 ^{er} Maximum	524	349	383	438	524	40	564	92,9	414	127	136
NO_2	24 heures	1 ^{er} Maximum	203	164	190	197	203	30	233	87,1	207	98	112
	Annuelle	Moyenne	66,1	13,9	32,0	74,3	74	10	84,3	88,1	103	72	82
	4 Minutes	1 ^{er} Maximum	4,2	32,1	2,7	3,4	32	150	182,1	17,6	1050	3	17
SO ₂	24 heures	1 ^{er} Maximum	5,40E-01	9,96E-01	4,51E-01	5,00E-01	9,96E-01	50,0	51,0	2,0	288	0	18
	Annuelle	Moyenne	8,31E-02	1,95E-02	3,97E-02	9,54E-02	9,54E-02	20,0	20,1	0,5	52	0	39
Antimoine	1 an	Moyenne	1,31E-05	3,02E-06	6,55E-06	1,53E-05	1,53E-05	7,00E-03	7,02E-03	0,2	1,70E-01	0	4
Argent	1 an	Moyenne	4,78E-05	1,07E-05	2,36E-05	5,75E-05	5,75E-05	5,00E-03	5,06E-03	1,1	2,30E-01	0	2
Arsenic	1 an	Moyenne	1,36E-04	3,14E-05	6,81E-05	1,58E-04	1,58E-04	2,00E-03	2,16E-03	7,3	3,00E-03	5	72
Baryum	1 an	Moyenne	1,87E-02	4,33E-03	9,37E-03	2,18E-02	2,18E-02	2,50E-02	4,68E-02	46,6	5,00E-02	44	94
Béryllium	1 an	Moyenne	1,83E-05	4,14E-06	9,08E-06	2,20E-05	2,20E-05	0,00E+00	2,20E-05	100,0	4,00E-04	5	5
	4 minutes	1 ^{er} Maximum	4,20E-03	2,76E-03	3,72E-03	3,88E-03	4,20E-03	0,00E+00	4,20E-03	100,0	3,30E+02	0	0
Brome	1 heure	1 ^{er} Maximum	2,20E-03	1,45E-03	1,95E-03	2,03E-03	2,20E-03	0,00E+00	2,20E-03	100,0	6,60E+00	0	0
	1 an	Moyenne	8,34E-05	1,93E-05	4,19E-05	9,75E-05	9,75E-05	0,00E+00	9,75E-05	100,0	1,30E-01	0	0
Cadmium	1 an	Moyenne	1,58E-05	3,61E-06	7,89E-06	1,87E-05	1,87E-05	3,00E-03	3,02E-03	0,6	3,60E-03	1	84
Chrome	1 an	Moyenne	9,11E-03	2,11E-03	4,57E-03	1,07E-02	1,07E-02	1,00E-02	2,07E-02	51,6	1,00E-01	11	21
Cobalt	1 an	Moyenne	1,47E-03	3,41E-04	7,39E-04	1,72E-03	1,72E-03	0,00E+00	1,72E-03	100,0	1,00E-01	2	2
Cuivre	24 heures	1 ^{er} Maximum	2,19E-02	1,44E-02	2,16E-02	2,44E-02	2,44E-02	2,00E-01	2,24E-01	10,9	2,50E+00	1	9
Manganèse [2]	1 an	Moyenne	9,40E-03	2,05E-03	4,55E-03	1,14E-02	1,14E-02	2,00E-02	3,14E-02	36,3	2,50E-02	46	126
Mercure	1 an	Moyenne	1,23E-06	2,72E-07	6,03E-07	1,49E-06	1,49E-06	2,00E-03	2,00E-03	0,1	5,00E-03	0	40
Nickel [2]	24 heures	1 ^{er} Maximum	8,33E-03	5,50E-03	8,27E-03	1,05E-02	1,05E-02	2,00E-03	1,25E-02	84,0	1,40E-02	75	89
Plomb	1 an	Moyenne	1,17E-03	2,71E-04	5,87E-04	1,37E-03	1,37E-03	2,50E-02	2,64E-02	5,2	1,00E-01	1	26
Sélénium	1 heure	1 ^{er} Maximum	1,55E-03	1,02E-03	1,37E-03	1,43E-03	1,55E-03	1,50E-01	1,52E-01	1,0	2,00E+00	0	8
Thallium	1 an	Moyenne	2,63E-05	6,08E-06	1,32E-05	3,07E-05	3,07E-05	5,00E-02	5,00E-02	0,1	2,50E-01	0	20
Titane	24 heures	1 ^{er} Maximum	7,21E-01	4,74E-01	7,12E-01	8,01E-01	8,01E-01	0,00E+00	8,01E-01	100,0	2,50E+00	32	32
Vanadium	1 an	Moyenne	4,93E-03	1,14E-03	2,48E-03	5,76E-03	5,76E-03	1,00E-02	1,58E-02	36,6	1,00E+00	1	2
Zinc	24 heures	1 ^{er} Maximum	3,16E-02	2,08E-02	3,12E-02	3,51E-02	3,51E-02	1,00E-01	1,35E-01	26,0	2,50E+00	1	5

^[1] Normes et critères québécois de qualité de l'atmosphère (MDDEFP, version 3, 2014).

^[2] Calculé sur les PM₁₀.

Tableau 14 : Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère à la limite du RAA – Scénario 1 (Scénario de base)

			Concentrati	ions <u>modélisée</u>	<u>s</u> à la limite et (µg/	au-delà de la lin m³)	nite d'application	n du RAA	Concentration initiale	Concentration totale modélisée	Contribution du projet	Norme [1]	Pourcentage de la norme	Pourcentage de la norme
Substance	Période	Statistique		Ma	aximum par an	née		Maximum	(µg/m³)	(µg/m³)	(%)	(µg/m³)	(projet seul.) (%)	(%)
			2006	2007	2008	2009	2010	а	b	c=a+b	d=(a/c)*100	е	h=(a/e)*100	p=(c/e)*100
PM _{tot}	24 heures	1 ^{er} Maximum	651	570	556	705	780	780	40	820	95,1	120	650	683
PM _{2.5}	24 heures	1 ^{er} Maximum	79	56	73	91	70	91	15	106	85,8	30	302	352
СО	1 heure	1 ^{er} Maximum	7838	10679	11441	10929	9606	11441	2650	14091	81,2	34000	34	41
СО	8 heures	1 ^{er} Maximum	980	1807	1438	1371	1431	1807	1750	3557	50,8	12700	14	28
	1 heure	1 ^{er} Maximum	658	707	639	624	692	707	40	747	94,6	414	171	180
NO ₂	24 heures	1 ^{er} Maximum	203	191	192	213	216	216	30	246	87,8	207	104	119
	Annuelle	Moyenne	74,5	74,3	75,4	76,6	70,5	77	10	86,6	88,5	103	74	84
	4 Minutes	1 ^{er} Maximum	40,7	55,4	59,4	56,7	49,9	59	150	209,4	28,4	1050	6	20
SO ₂	24 heures	1 ^{er} Maximum	1,06E+00	1,67E+00	1,46E+00	1,50E+00	1,48E+00	1,67E+00	50,0	51,7	3,2	288	1	18
	Annuelle	Moyenne	9,71E-02	9,42E-02	1,02E-01	1,10E-01	8,75E-02	1,10E-01	20,0	20,1	0,5	52	0	39
Antimoine	1 an	Moyenne	1,64E-05	1,49E-05	1,61E-05	1,80E-05	1,47E-05	1,80E-05	7,00E-03	7,02E-03	0,3	1,70E-01	0	4
Argent	1 an	Moyenne	5,90E-05	5,54E-05	6,06E-05	6,61E-05	5,31E-05	6,61E-05	5,00E-03	5,07E-03	1,3	2,30E-01	0	2
Arsenic	1 an	Moyenne	1,70E-04	1,55E-04	1,67E-04	1,87E-04	1,53E-04	1,87E-04	2,00E-03	2,19E-03	8,5	3,00E-03	6	73
Baryum	1 an	Moyenne	2,34E-02	2,13E-02	2,30E-02	2,57E-02	2,11E-02	2,57E-02	2,50E-02	5,07E-02	50,7	5,00E-02	51	101
Béryllium	1 an	Moyenne	2,27E-05	2,12E-05	2,31E-05	2,52E-05	2,04E-05	2,52E-05	0,00E+00	2,52E-05	100,0	4,00E-04	6	6
	4 minutes	1 ^{er} Maximum	7,69E-03	8,41E-03	7,36E-03	7,12E-03	8,16E-03	8,41E-03	0,00E+00	8,41E-03	100,0	3,30E+02	0	0
Brome	1 heure	1 ^{er} Maximum	4,03E-03	4,41E-03	3,85E-03	3,73E-03	4,28E-03	4,41E-03	0,00E+00	4,41E-03	100,0	6,60E+00	0	0
	1 an	Moyenne	1,05E-04	9,52E-05	1,03E-04	1,15E-04	9,41E-05	1,15E-04	0,00E+00	1,15E-04	100,0	1,30E-01	0	0
Cadmium	1 an	Moyenne	1,97E-05	1,80E-05	1,96E-05	2,16E-05	1,77E-05	2,16E-05	3,00E-03	3,02E-03	0,7	3,60E-03	1	84
Chrome	1 an	Moyenne	1,14E-02	1,04E-02	1,12E-02	1,25E-02	1,03E-02	1,25E-02	1,00E-02	2,25E-02	55,6	1,00E-01	13	23
Cobalt	1 an	Moyenne	1,84E-03	1,68E-03	1,81E-03	2,02E-03	1,66E-03	2,02E-03	0,00E+00	2,02E-03	100,0	1,00E-01	2	2
Cuivre	24 heures	1 ^{er} Maximum	2,56E-02	2,25E-02	2,18E-02	2,77E-02	3,07E-02	3,07E-02	2,00E-01	2,31E-01	13,3	2,50E+00	1	9
Manganèse [2]	1 an	Moyenne	1,17E-02	1,10E-02	1,18E-02	1,30E-02	1,04E-02	1,30E-02	2,00E-02	3,30E-02	39,4	2,50E-02	52	132
Mercure	1 an	Moyenne	1,53E-06	1,44E-06	1,57E-06	1,72E-06	1,36E-06	1,72E-06	2,00E-03	2,00E-03	0,1	5,00E-03	0	40
Nickel [2]	24 heures	1 ^{er} Maximum	1,14E-02	8,50E-03	8,70E-03	1,21E-02	1,17E-02	1,21E-02	2,00E-03	1,41E-02	85,8	1,40E-02	86	101
Plomb	1 an	Moyenne	1,47E-03	1,34E-03	1,44E-03	1,61E-03	1,32E-03	1,61E-03	2,50E-02	2,66E-02	6,1	1,00E-01	2	27
Sélénium	1 heure	1 ^{er} Maximum	2,83E-03	3,10E-03	2,71E-03	2,63E-03	3,01E-03	3,10E-03	1,50E-01	1,53E-01	2,0	2,00E+00	0	8
Thallium	1 an	Moyenne	3,29E-05	3,00E-05	3,23E-05	3,61E-05	2,96E-05	3,61E-05	5,00E-02	5,00E-02	0,1	2,50E-01	0	20
Titane	24 heures	1 ^{er} Maximum	8,42E-01	7,41E-01	7,18E-01	9,11E-01	1,01E+00	1,01E+00	0,00E+00	1,01E+00	100,0	2,50E+00	40	40
Vanadium	1 an	Moyenne	6,18E-03	5,63E-03	6,07E-03	6,79E-03	5,56E-03	6,79E-03	1,00E-02	1,68E-02	40,4	1,00E+00	1	2
Zinc	24 heures	1 ^{er} Maximum	3,69E-02	3,25E-02	3,15E-02	3,99E-02	4,43E-02	4,43E-02	1,00E-01	1,44E-01	30,7	2,50E+00	2	6

^[1] Normes et critères québécois de qualité de l'atmosphère (MDDEFP, version 3, 2014).

^[2] Calculé sur les PM₁₀.

Tableau 15 : Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère aux récepteurs sensibles – Scénario 2 (Scénario de base)

		Statistique	Concentrations <u>modélisées</u> aux récepteurs sensibles (μg/m³)						Concentration	Contribution du	Norme [1]	Pourcentage de	Pourcentage
Substance	Période			Maximum pour chac	une des catégories		Maximum	initiale (µg/m³)	totale <u>modélisée</u> (µg/m³)	projet (%)	(μg/m³)	la norme (projet seul.) (%)	de la norme (%)
			Résidences nord	Résidences sud	Station A1	Station A2	a	b	c=a+b	d=(a/c)*100	е	h=(a/e)*100	p=(c/e)*100
PM _{tot}	24 heures	1 ^{er} Maximum	1323	706	801	1342	1342	40	1382	97,1	120	1118	1152
PM _{2.5}	24 heures	1 ^{er} Maximum	54	28	34	55	55	15	70	78,6	30	184	234
CO	1 heure	1 ^{er} Maximum	6105	4801	1520	678	6105	2650	8755	69,7	34000	18	26
CO	8 heures	1 ^{er} Maximum	1019	881	200	170	1019	1750	2769	36,8	12700	8	22
	1 heure	1 ^{er} Maximum	331	285	296	399	399	40	439	90,9	414	96	106
NO ₂	24 heures	1 ^{er} Maximum	179	153	163	188	188	30	218	86,2	207	91	105
	Annuelle	Moyenne	53,5	12,6	23,2	49,4	54	10	63,5	84,3	103	52	62
	4 Minutes	1 ^{er} Maximum	31,7	24,9	7,9	3,5	32	150	181,7	17,4	1050	3	17
SO ₂	24 heures	1 ^{er} Maximum	8,33E-01	8,03E-01	2,81E-01	4,29E-01	8,33E-01	50,0	50,8	1,6	288	0	18
	Annuelle	Moyenne	7,25E-02	2,18E-02	3,06E-02	6,39E-02	7,25E-02	20,0	20,1	0,4	52	0	39
Antimoine	1 an	Moyenne	3,80E-04	9,41E-05	1,68E-04	3,48E-04	3,80E-04	7,00E-03	7,38E-03	5,2	1,70E-01	0	4
Argent	1 an	Moyenne	9,03E-05	2,23E-05	3,99E-05	8,34E-05	9,03E-05	5,00E-03	5,09E-03	1,8	2,30E-01	0	2
Arsenic	1 an	Moyenne	2,69E-04	6,66E-05	1,19E-04	2,47E-04	2,69E-04	2,00E-03	2,27E-03	11,9	3,00E-03	9	76
Baryum	1 an	Moyenne	3,71E-02	9,17E-03	1,64E-02	3,40E-02	3,71E-02	2,50E-02	6,21E-02	59,7	5,00E-02	74	124
Béryllium	1 an	Moyenne	3,49E-05	8,61E-06	1,54E-05	3,22E-05	3,49E-05	0,00E+00	3,49E-05	100,0	4,00E-04	9	9
	4 minutes	1 ^{er} Maximum	6,21E-03	4,76E-03	5,57E-03	6,39E-03	6,39E-03	0,00E+00	6,39E-03	100,0	3,30E+02	0	0
Brome	1 heure	1 ^{er} Maximum	3,25E-03	2,49E-03	2,92E-03	3,35E-03	3,35E-03	0,00E+00	3,35E-03	100,0	6,60E+00	0	0
	1 an	Moyenne	1,65E-04	4,09E-05	7,31E-05	1,52E-04	1,65E-04	0,00E+00	1,65E-04	100,0	1,30E-01	0	0
Cadmium	1 an	Moyenne	3,39E-05	8,37E-06	1,50E-05	3,12E-05	3,39E-05	3,00E-03	3,03E-03	1,1	3,60E-03	1	84
Chrome	1 an	Moyenne	1,81E-02	4,47E-03	7,98E-03	1,66E-02	1,81E-02	1,00E-02	2,81E-02	64,4	1,00E-01	18	28
Cobalt	1 an	Moyenne	2,92E-03	7,21E-04	1,29E-03	2,68E-03	2,92E-03	0,00E+00	2,92E-03	100,0	1,00E-01	3	3
Cuivre	24 heures	1 ^{er} Maximum	5,32E-02	2,84E-02	3,21E-02	5,39E-02	5,39E-02	2,00E-01	2,54E-01	21,2	2,50E+00	2	10
Manganèse ^[2]	1 an	Moyenne	1,71E-02	4,22E-03	7,52E-03	1,57E-02	1,71E-02	2,00E-02	3,71E-02	46,0	2,50E-02	68	148
Mercure	1 an	Moyenne	2,27E-06	5,61E-07	1,00E-06	2,10E-06	2,27E-06	2,00E-03	2,00E-03	0,1	5,00E-03	0	40
Nickel [2]	24 heures	1 ^{er} Maximum	2,01E-02	1,06E-02	1,21E-02	2,03E-02	2,03E-02	2,00E-03	2,23E-02	91,0	1,40E-02	145	159
Plomb	1 an	Moyenne	2,32E-03	5,74E-04	1,03E-03	2,13E-03	2,32E-03	2,50E-02	2,73E-02	8,5	1,00E-01	2	27
Sélénium	1 heure	1 ^{er} Maximum	2,29E-03	1,76E-03	2,05E-03	2,35E-03	2,35E-03	1,50E-01	1,52E-01	1,5	2,00E+00	0	8
Thallium	1 an	Moyenne	5,21E-05	1,29E-05	2,30E-05	4,79E-05	5,21E-05	5,00E-02	5,01E-02	0,1	2,50E-01	0	20
Titane	24 heures	1 ^{er} Maximum	1,75E+00	9,34E-01	1,06E+00	1,78E+00	1,78E+00	0,00E+00	1,78E+00	100,0	2,50E+00	71	71
Vanadium	1 an	Moyenne	9,79E-03	2,42E-03	4,32E-03	8,99E-03	9,79E-03	1,00E-02	1,98E-02	49,5	1,00E+00	1	2
Zinc	24 heures	1 ^{er} Maximum	7,69E-02	4,10E-02	4,64E-02	7,79E-02	7,79E-02	1,00E-01	1,78E-01	43,8	2,50E+00	3	7

^[1] Normes et critères québécois de qualité de l'atmosphère (MDDEFP, version 3, 2014).

^[2] Calculé sur les PM₁₀.

Tableau 16 : Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère à la limite du RAA – Scénario 2 (Scénario de base)

			Concentrati	ions <u>modélisée</u>	<u>s</u> à la limite et (µg/	au-delà de la lin m³)	nite d'application	n du RAA	Concentration initiale	Concentration totale modélisée	Contribution du projet	Norme [1]	Pourcentage de la norme	Pourcentage de la norme
Substance	Période	Statistique		Ma	aximum par an	née		Maximum	(µg/m³)	(µg/m³)	(%)	(µg/m³)	(projet seul.) (%)	(%)
			2006	2007	2008	2009	2010	а	b	c=a+b	d=(a/c)*100	е	h=(a/e)*100	p=(c/e)*100
PM _{tot}	24 heures	1 ^{er} Maximum	1389	1582	1487	1727	1680	1727	40	1767	97,7	120	1439	1472
PM _{2.5}	24 heures	1 ^{er} Maximum	56	65	61	73	68	73	15	88	82,9	30	242	292
СО	1 heure	1 ^{er} Maximum	16183	10150	18628	30808	19229	30808	2650	33458	92,1	34000	91	98
СО	8 heures	1 ^{er} Maximum	2267	1481	2699	3913	2417	3913	1750	5663	69,1	12700	31	45
	1 heure	1 ^{er} Maximum	819	801	721	910	774	910	40	950	95,8	414	220	230
NO ₂	24 heures	1 ^{er} Maximum	194	201	194	212	204	212	30	242	87,6	207	102	117
	Annuelle	Moyenne	55,8	50,9	55,3	59,8	50,1	60	10	69,8	85,7	103	58	68
	4 Minutes	1 ^{er} Maximum	84,1	52,7	96,7	159,8	99,8	160	150	309,8	51,6	1050	15	30
SO ₂	24 heures	1 ^{er} Maximum	2,20E+00	1,36E+00	2,47E+00	4,08E+00	2,29E+00	4,08E+00	50,0	54,1	7,5	288	1	19
	Annuelle	Moyenne	9,59E-02	9,70E-02	1,12E-01	1,23E-01	1,04E-01	1,23E-01	20,0	20,1	0,6	52	0	39
Antimoine	1 an	Moyenne	3,71E-04	3,39E-04	3,68E-04	4,00E-04	3,35E-04	4,00E-04	7,00E-03	7,40E-03	5,4	1,70E-01	0	4
Argent	1 an	Moyenne	8,81E-05	8,05E-05	8,74E-05	9,49E-05	7,96E-05	9,49E-05	5,00E-03	5,09E-03	1,9	2,30E-01	0	2
Arsenic	1 an	Moyenne	2,62E-04	2,40E-04	2,60E-04	2,83E-04	2,37E-04	2,83E-04	2,00E-03	2,28E-03	12,4	3,00E-03	9	76
Baryum	1 an	Moyenne	3,61E-02	3,30E-02	3,58E-02	3,89E-02	3,27E-02	3,89E-02	2,50E-02	6,39E-02	60,9	5,00E-02	78	128
Béryllium	1 an	Moyenne	3,40E-05	3,11E-05	3,37E-05	3,67E-05	3,07E-05	3,67E-05	0,00E+00	3,67E-05	100,0	4,00E-04	9	9
	4 minutes	1 ^{er} Maximum	2,48E-02	2,40E-02	2,14E-02	2,06E-02	2,36E-02	2,48E-02	0,00E+00	2,48E-02	100,0	3,30E+02	0	0
Brome	1 heure	1 ^{er} Maximum	1,30E-02	1,26E-02	1,12E-02	1,08E-02	1,24E-02	1,30E-02	0,00E+00	1,30E-02	100,0	6,60E+00	0	0
	1 an	Moyenne	1,61E-04	1,47E-04	1,60E-04	1,74E-04	1,46E-04	1,74E-04	0,00E+00	1,74E-04	100,0	1,30E-01	0	0
Cadmium	1 an	Moyenne	3,30E-05	3,02E-05	3,28E-05	3,56E-05	2,99E-05	3,56E-05	3,00E-03	3,04E-03	1,2	3,60E-03	1	84
Chrome	1 an	Moyenne	1,76E-02	1,61E-02	1,75E-02	1,90E-02	1,59E-02	1,90E-02	1,00E-02	2,90E-02	65,5	1,00E-01	19	29
Cobalt	1 an	Moyenne	2,84E-03	2,60E-03	2,82E-03	3,06E-03	2,57E-03	3,06E-03	0,00E+00	3,06E-03	100,0	1,00E-01	3	3
Cuivre	24 heures	1 ^{er} Maximum	5,59E-02	6,36E-02	5,98E-02	6,94E-02	6,75E-02	6,94E-02	2,00E-01	2,69E-01	25,7	2,50E+00	3	11
Manganèse [2]	1 an	Moyenne	1,66E-02	1,52E-02	1,65E-02	1,79E-02	1,51E-02	1,79E-02	2,00E-02	3,79E-02	47,3	2,50E-02	72	152
Mercure	1 an	Moyenne	2,22E-06	2,03E-06	2,20E-06	2,39E-06	2,00E-06	2,39E-06	2,00E-03	2,00E-03	0,1	5,00E-03	0	40
Nickel [2]	24 heures	1 ^{er} Maximum	2,10E-02	2,38E-02	2,24E-02	2,60E-02	2,53E-02	2,60E-02	2,00E-03	2,80E-02	92,9	1,40E-02	186	200
Plomb	1 an	Moyenne	2,26E-03	2,07E-03	2,24E-03	2,44E-03	2,05E-03	2,44E-03	2,50E-02	2,74E-02	8,9	1,00E-01	2	27
Sélénium	1 heure	1 ^{er} Maximum	9,13E-03	8,84E-03	7,90E-03	7,59E-03	8,70E-03	9,13E-03	1,50E-01	1,59E-01	5,7	2,00E+00	0	8
Thallium	1 an	Moyenne	5,08E-05	4,64E-05	5,04E-05	5,47E-05	4,59E-05	5,47E-05	5,00E-02	5,01E-02	0,1	2,50E-01	0	20
Titane	24 heures	1 ^{er} Maximum	1,84E+00	2,09E+00	1,97E+00	2,28E+00	2,22E+00	2,28E+00	0,00E+00	2,28E+00	100,0	2,50E+00	91	91
Vanadium	1 an	Moyenne	9,54E-03	8,71E-03	9,46E-03	1,03E-02	8,62E-03	1,03E-02	1,00E-02	2,03E-02	50,7	1,00E+00	1	2
Zinc	24 heures	1 ^{er} Maximum	8,06E-02	9,18E-02	8,63E-02	1,00E-01	9,75E-02	1,00E-01	1,00E-01	2,00E-01	50,0	2,50E+00	4	8

^[1] Normes et critères québécois de qualité de l'atmosphère (MDDEFP, version 3, 2014).

^[2] Calculé sur les PM₁₀.

Tableau 17 : Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère aux récepteurs sensibles – Scénario 3 (Scénario de base)

			Con	centrations modélisé	es aux récepteurs	sensibles (µg/m³)		Concentration	Concentration	Contribution du	Norme [1]	Pourcentage de	Pourcentage
Substance	Période	Statistique		Maximum pour chacu	une des catégories		Maximum	initiale (µg/m³)	totale <u>modélisée</u> (µg/m³)	projet (%)	(μg/m³)	la norme (projet seul.) (%)	de la norme (%)
			Résidences nord	Résidences sud	Station A1	Station A2	а	b	c=a+b	d=(a/c)*100	е	h=(a/e)*100	p=(c/e)*100
PM _{tot}	24 heures	1 ^{er} Maximum	1148	1203	866	1155	1203	40	1243	96,8	120	1002	1036
PM _{2.5}	24 heures	1 ^{er} Maximum	46	45	36	46	46	15	61	75,5	30	154	204
CO	1 heure	1 ^{er} Maximum	5766	4545	1440	643	5766	2650	8416	68,5	34000	17	25
CO	8 heures	1 ^{er} Maximum	963	836	190	175	963	1750	2713	35,5	12700	8	21
	1 heure	1 ^{er} Maximum	330	277	292	383	383	40	423	90,6	414	93	102
NO ₂	24 heures	1 ^{er} Maximum	175	163	167	182	182	30	212	85,9	207	88	102
	Annuelle	Moyenne	53,9	14,4	25,2	49,8	54	10	63,9	84,4	103	52	62
	4 Minutes	1 ^{er} Maximum	29,9	23,6	7,5	3,3	30	150	179,9	16,6	1050	3	17
SO ₂	24 heures	1 ^{er} Maximum	7,93E-01	7,62E-01	3,05E-01	3,91E-01	7,93E-01	50,0	50,8	1,6	288	0	18
	Annuelle	Moyenne	7,28E-02	2,40E-02	3,30E-02	6,38E-02	7,28E-02	20,0	20,1	0,4	52	0	39
Antimoine	1 an	Moyenne	2,19E-05	9,29E-06	1,25E-05	1,98E-05	2,19E-05	7,00E-03	7,02E-03	0,3	1,70E-01	0	4
Argent	1 an	Moyenne	7,64E-05	3,24E-05	4,35E-05	6,95E-05	7,64E-05	5,00E-03	5,08E-03	1,5	2,30E-01	0	2
Arsenic	1 an	Moyenne	3,60E-04	1,53E-04	2,06E-04	3,26E-04	3,60E-04	2,00E-03	2,36E-03	15,3	3,00E-03	12	79
Baryum	1 an	Moyenne	3,13E-02	1,33E-02	1,78E-02	2,84E-02	3,13E-02	2,50E-02	5,63E-02	55,6	5,00E-02	63	113
Béryllium	1 an	Moyenne	3,47E-05	1,47E-05	1,98E-05	3,15E-05	3,47E-05	0,00E+00	3,47E-05	100,0	4,00E-04	9	9
	4 minutes	1 ^{er} Maximum	1,03E-02	6,99E-03	6,33E-03	9,61E-03	1,03E-02	0,00E+00	1,03E-02	100,0	3,30E+02	0	0
Brome	1 heure	1 ^{er} Maximum	5,41E-03	3,66E-03	3,32E-03	5,04E-03	5,41E-03	0,00E+00	5,41E-03	100,0	6,60E+00	0	0
	1 an	Moyenne	1,40E-04	5,94E-05	7,96E-05	1,27E-04	1,40E-04	0,00E+00	1,40E-04	100,0	1,30E-01	0	0
Cadmium	1 an	Moyenne	2,59E-05	1,10E-05	1,48E-05	2,35E-05	2,59E-05	3,00E-03	3,03E-03	0,9	3,60E-03	1	84
Chrome	1 an	Moyenne	4,75E-02	2,02E-02	2,71E-02	4,29E-02	4,75E-02	1,00E-02	5,75E-02	82,6	1,00E-01	47	57
Cobalt	1 an	Moyenne	4,10E-03	1,74E-03	2,34E-03	3,71E-03	4,10E-03	0,00E+00	4,10E-03	100,0	1,00E-01	4	4
Cuivre	24 heures	1 ^{er} Maximum	5,14E-02	5,40E-02	3,87E-02	5,17E-02	5,40E-02	2,00E-01	2,54E-01	21,3	2,50E+00	2	10
Manganèse ^[2]	1 an	Moyenne	1,80E-02	7,65E-03	1,02E-02	1,63E-02	1,80E-02	2,00E-02	3,80E-02	47,3	2,50E-02	72	152
Mercure	1 an	Moyenne	2,07E-06	8,78E-07	1,18E-06	1,89E-06	2,07E-06	2,00E-03	2,00E-03	0,1	5,00E-03	0	40
Nickel [2]	24 heures	1 ^{er} Maximum	5,55E-02	5,83E-02	4,18E-02	5,59E-02	5,83E-02	2,00E-03	6,03E-02	96,7	1,40E-02	417	431
Plomb	1 an	Moyenne	1,96E-03	8,33E-04	1,12E-03	1,77E-03	1,96E-03	2,50E-02	2,70E-02	7,3	1,00E-01	2	27
Sélénium	1 heure	1 ^{er} Maximum	3,81E-03	2,58E-03	2,33E-03	3,54E-03	3,81E-03	1,50E-01	1,54E-01	2,5	2,00E+00	0	8
Thallium	1 an	Moyenne	4,40E-05	1,87E-05	2,51E-05	3,99E-05	4,40E-05	5,00E-02	5,00E-02	0,1	2,50E-01	0	20
Titane	24 heures	1 ^{er} Maximum	1,52E+00	1,60E+00	1,15E+00	1,53E+00	1,60E+00	0,00E+00	1,60E+00	100,0	2,50E+00	64	64
Vanadium	1 an	Moyenne	8,26E-03	3,51E-03	4,71E-03	7,49E-03	8,26E-03	1,00E-02	1,83E-02	45,2	1,00E+00	1	2
Zinc	24 heures	1 ^{er} Maximum	6,67E-02	7,00E-02	5,02E-02	6,71E-02	7,00E-02	1,00E-01	1,70E-01	41,2	2,50E+00	3	7

^[1] Normes et critères québécois de qualité de l'atmosphère (MDDEFP, version 3, 2014).

^[2] Calculé sur les PM₁₀.

Tableau 18 : Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère à la limite du RAA – Scénario 3 (Scénario de base)

			Concentrati	ions <u>modélisée</u>	<u>s</u> à la limite et (µg/		nite d'application	n du RAA	Concentration initiale	Concentration totale modélisée	Contribution du projet	Norme [1]	Pourcentage de la norme	Pourcentage de la norme
Substance	Période	Statistique		Ma	aximum par an	née		Maximum	(µg/m³)	(µg/m³)	(%)	(µg/m³)	(projet seul.) (%)	(%)
			2006	2007	2008	2009	2010	а	b	c=a+b	d=(a/c)*100	е	h=(a/e)*100	p=(c/e)*100
PM _{tot}	24 heures	1 ^{er} Maximum	2529	2131	2241	2960	3317	3317	40	3357	98,8	120	2765	2798
PM _{2.5}	24 heures	1 ^{er} Maximum	89	76	81	104	117	117	15	132	88,6	30	390	440
СО	1 heure	1 ^{er} Maximum	15354	9626	17656	29326	18226	29326	2650	31976	91,7	34000	86	94
СО	8 heures	1 ^{er} Maximum	2159	1413	2558	3723	2291	3723	1750	5473	68,0	12700	29	43
	1 heure	1 ^{er} Maximum	820	814	722	872	787	872	40	912	95,6	414	211	220
NO ₂	24 heures	1 ^{er} Maximum	197	203	196	214	207	214	30	244	87,7	207	103	118
	Annuelle	Moyenne	65,3	59,3	62,5	69,2	58,9	69	10	79,2	87,4	103	67	77
	4 Minutes	1 ^{er} Maximum	79,8	50,0	91,6	152,1	94,5	152	150	302,1	50,3	1050	14	29
SO ₂	24 heures	1 ^{er} Maximum	2,12E+00	1,32E+00	2,34E+00	3,90E+00	2,17E+00	3,90E+00	50,0	53,9	7,2	288	1	19
	Annuelle	Moyenne	9,74E-02	9,72E-02	1,11E-01	1,22E-01	1,04E-01	1,22E-01	20,0	20,1	0,6	52	0	39
Antimoine	1 an	Moyenne	7,05E-05	6,42E-05	6,73E-05	7,49E-05	6,31E-05	7,49E-05	7,00E-03	7,07E-03	1,1	1,70E-01	0	4
Argent	1 an	Moyenne	2,44E-04	2,22E-04	2,33E-04	2,59E-04	2,19E-04	2,59E-04	5,00E-03	5,26E-03	4,9	2,30E-01	0	2
Arsenic	1 an	Moyenne	1,17E-03	1,06E-03	1,11E-03	1,24E-03	1,04E-03	1,24E-03	2,00E-03	3,24E-03	38,2	3,00E-03	41	108
Baryum	1 an	Moyenne	1,01E-01	9,20E-02	9,65E-02	1,07E-01	9,04E-02	1,07E-01	2,50E-02	1,32E-01	81,1	5,00E-02	215	265
Béryllium	1 an	Moyenne	1,12E-04	1,01E-04	1,06E-04	1,18E-04	9,98E-05	1,18E-04	0,00E+00	1,18E-04	100,0	4,00E-04	30	30
	4 minutes	1 ^{er} Maximum	2,10E-02	2,24E-02	2,14E-02	1,99E-02	2,13E-02	2,24E-02	0,00E+00	2,24E-02	100,0	3,30E+02	0	0
Brome	1 heure	1 ^{er} Maximum	1,10E-02	1,17E-02	1,12E-02	1,04E-02	1,11E-02	1,17E-02	0,00E+00	1,17E-02	100,0	6,60E+00	0	0
	1 an	Moyenne	4,51E-04	4,10E-04	4,30E-04	4,79E-04	4,03E-04	4,79E-04	0,00E+00	4,79E-04	100,0	1,30E-01	0	0
Cadmium	1 an	Moyenne	8,34E-05	7,58E-05	7,96E-05	8,85E-05	7,46E-05	8,85E-05	3,00E-03	3,09E-03	2,9	3,60E-03	2	86
Chrome	1 an	Moyenne	1,54E-01	1,40E-01	1,47E-01	1,63E-01	1,38E-01	1,63E-01	1,00E-02	1,73E-01	94,2	1,00E-01	163	173
Cobalt	1 an	Moyenne	1,33E-02	1,21E-02	1,26E-02	1,41E-02	1,19E-02	1,41E-02	0,00E+00	1,41E-02	100,0	1,00E-01	14	14
Cuivre	24 heures	1 ^{er} Maximum	1,14E-01	9,58E-02	1,01E-01	1,33E-01	1,49E-01	1,49E-01	2,00E-01	3,49E-01	42,7	2,50E+00	6	14
Manganèse [2]	1 an	Moyenne	5,77E-02	5,25E-02	5,51E-02	6,13E-02	5,16E-02	6,13E-02	2,00E-02	8,13E-02	75,4	2,50E-02	245	325
Mercure	1 an	Moyenne	6,62E-06	6,02E-06	6,31E-06	7,02E-06	5,92E-06	7,02E-06	2,00E-03	2,01E-03	0,4	5,00E-03	0	40
Nickel [2]	24 heures	1 ^{er} Maximum	1,23E-01	1,03E-01	1,08E-01	1,44E-01	1,61E-01	1,61E-01	2,00E-03	1,63E-01	98,8	1,40E-02	1149	1164
Plomb	1 an	Moyenne	6,33E-03	5,76E-03	6,04E-03	6,72E-03	5,66E-03	6,72E-03	2,50E-02	3,17E-02	21,2	1,00E-01	7	32
Sélénium	1 heure	1 ^{er} Maximum	7,73E-03	8,24E-03	7,87E-03	7,33E-03	7,83E-03	8,24E-03	1,50E-01	1,58E-01	5,2	2,00E+00	0	8
Thallium	1 an	Moyenne	1,42E-04	1,29E-04	1,36E-04	1,51E-04	1,27E-04	1,51E-04	5,00E-02	5,02E-02	0,3	2,50E-01	0	20
Titane	24 heures	1 ^{er} Maximum	3,37E+00	2,83E+00	2,98E+00	3,94E+00	4,42E+00	4,42E+00	0,00E+00	4,42E+00	100,0	2,50E+00	177	177
Vanadium	1 an	Moyenne	2,67E-02	2,43E-02	2,55E-02	2,83E-02	2,39E-02	2,83E-02	1,00E-02	3,83E-02	73,9	1,00E+00	3	4
Zinc	24 heures	1 ^{er} Maximum	1,48E-01	1,24E-01	1,31E-01	1,73E-01	1,94E-01	1,94E-01	1,00E-01	2,94E-01	65,9	2,50E+00	8	12

^[1] Normes et critères québécois de qualité de l'atmosphère (MDDEFP, version 3, 2014).

^[2] Calculé sur les PM₁₀.

Tableau 19 : Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère à la limite du RAA – Scénario 1 (Scénario optimisé)

Substance	Période	Statistique	Concentrations <u>modélisées</u> à la limite et au-delà de la limite d'application du RAA (µg/m³)					Concentration initiale	Concentration totale modélisée	Contribution du projet	Norme [1]	Pourcentage de la norme	Pourcentage de la norme	
			Maximum par année					Maximum	(µg/m³)	(µg/m³)	(%)	(µg/m³)	(projet seul.) (%)	(%)
			2006	2007	2008	2009	2010	а	b	c=a+b	d=(a/c)*100	е	h=(a/e)*100	p=(c/e)*100
PM _{tot}	24 heures	1 ^{er} Maximum	72	73	75	71	69	75	40	115	65,3	120	63	96
PM _{2.5}	24 heures	1 ^{er} Maximum	11	12	12	13	13	13	15	28	45,6	30	42	92
NO	1 heure	1 ^{er} Maximum	214	214	214	214	214	214	40	254	84,3	414	52	61
NO ₂	24 heures	1 ^{er} Maximum	155	157	156	157	158	158	30	188	84,0	207	76	91
[1] Normes et critères québécois de qualité de l'atmosphère (MDDEFP, version 3, 2014).														

Tableau 20 : Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère à la limite du RAA – Scénario 2 (Scénario optimisé)

Substance	Période	Statistique	Concentrations <u>modélisées</u> à la limite et au-delà de la limite d'application du RAA (µg/m³)					Concentration initiale	Concentration totale modélisée	Contribution du projet	Norme [1]	Pourcentage de la norme	Pourcentage de la norme	
			Maximum par année					Maximum	(µg/m³)	(µg/m³)	(%)	(µg/m³)	(projet seul.) (%)	(%)
			2006	2007	2008	2009	2010	а	b	c=a+b	d=(a/c)*100	е	h=(a/e)*100	p=(c/e)*100
PM _{tot}	24 heures	1 ^{er} Maximum	67	68	70	67	66	70	40	110	63,5	120	58	91
PM _{2.5}	24 heures	1 ^{er} Maximum	11	12	11	12	11	12	15	27	44,6	30	40	90
NO ₂	1 heure	1 ^{er} Maximum	214	214	214	214	214	214	40	254	84,3	414	52	61
	24 heures	1 ^{er} Maximum	149	149	147	154	156	156	30	186	83,9	207	75	90
[1] No	rmes et critères q	uébécois de qualité de	l'atmosphère (MD	DEFP, version 3,	2014).		•	•						

Tableau 21 : Concentrations des composés particulaires et gazeux susceptibles d'être rencontrés dans l'atmosphère à la limite du RAA – Scénario 3 (Scénario optimisé)

Substance	Période	Statistique	Concentrations <u>modélisées</u> à la limite et au-delà de la limite d'application du RAA (µg/m³)						Concentration initiale	Concentration totale modélisée	Contribution du projet	Norme [1]	Pourcentage de la norme	Pourcentage de la norme
			Maximum par année					Maximum	(µg/m³)	(µg/m³)	(%)	(µg/m³)	(projet seul.) (%)	(%)
			2006	2007	2008	2009	2010	а	b	c=a+b	d=(a/c)*100	е	h=(a/e)*100	p=(c/e)*100
PM _{tot}	24 heures	1 ^{er} Maximum	66	69	68	75	68	75	40	115	65,2	120	62	96
PM _{2.5}	24 heures	1 ^{er} Maximum	11	11	12	13	11	13	15	28	46,7	30	44	94
NO	1 heure	1 ^{er} Maximum	214	214	214	214	214	214	40	254	84,3	414	52	61
NO ₂	24 heures	1 ^{er} Maximum	147	149	151	153	150	153	30	183	83,6	207	74	89
[1] Normes et critères québécois de qualité de l'atmosphère (MDDEFP, version 3, 2014).														

6 SUIVI DE LA QUALITÉ DE L'ATMOSPHÈRE

6.1 MISE EN PLACE DU PROGRAMME DE SUIVI

Le programme de surveillance de la qualité de l'atmosphère de la Mine est défini dans le *Programme de suivi environnemental* (PSE). Ce document présente les points de mesure, la méthodologie et les activités de contrôle qualité établis pour le suivi. Dès l'automne 2011, deux stations du suivi de la qualité de l'atmosphère ont été déployées conformément au programme. La position des deux stations apparaît sur la figure 2. La première station (A1) au nord est positionnée à plus de 1 300 m de la fosse CM dans un secteur résidentiel. La seconde (A2) plus au sud est située à moins de 150 m de la fosse CM, près de la butte-écran. Les deux stations ont été installées dans le but de mesurer les paramètres suivants :

Mesures en continu (station A1 et A2) :

- → Particules totales (instrument de mesure : Met-One BAM TSP);
- → Particules fines PM_{2.5} (instrument de mesure : Met-One BAM PM_{2.5});
- → Oxydes d'azote (instrument de mesure : Teledyne T200).

Mesures sur filtre (station A2 uniquement):

- → Particules totales (échantillonneur d'air grand débit Tisch TE5170);
- → Composition en métaux (mesures en laboratoire sur les filtres de particules totales);
- → Silice cristalline (échantillonneur PQ167).

La stratégie de gestion des particules dans l'atmosphère repose sur des instruments électroniques de mesure en continu des particules totales et fines. En effet, la Mine a installé des appareils de mesure à atténuation bêta (BAM) qui estime la perte des électrons qui pénètrent dans un filtre sur lequel les particules se sont déposées. Ce type d'appareil en continu permet d'avoir une mesure relativement précise et rapide. Cette stratégie permet aussi, le cas échéant, de mettre en place des actions correctives en cas de dépassement.

L'échantillonneur d'air à grand débit installé à la station A2 permet quant à lui de vérifier la conformité à la norme concernant les particules totales en fonction d'une méthode de référence reconnue par le MDDELCC. Cet échantillonneur permet aussi la quantification des métaux présents dans les particules à l'aide d'une analyse en laboratoire supplémentaire. La Mine a aussi installé une station météorologique complète dont la position apparaît également sur la figure 2.

6.2 PROCÉDURE D'OPÉRATION

La Mine a mis en place diverses procédures d'opérations pour assurer le bon fonctionnement de chaque instrument. De plus, un manuel détaille l'ensemble des procédures d'entretien et de maintenance des équipements et des instruments des stations de la qualité de l'atmosphère. Finalement, une série de fiches de vérification ont également été produites pour s'assurer du bon fonctionnement des équipements et des instruments aux deux stations.

6.3 OPÉRATIONS DE MAINTENANCE ET D'ÉTALONNAGE

La maintenance et l'étalonnage ont été réalisés par WSP (anciennement GENIVAR) depuis son installation, et ce, jusqu'au transfert opérationnel des stations à la Mine en mars 2013. Les activités de maintenance et d'étalonnage décrites aux procédures et aux manuels ont donc été réalisées en fonction des périodes prescrites par les méthodes et/ou les fabricants des appareils. Les activités effectuées sont disponibles dans un registre de maintenance.

6.4 GESTION DES DONNÉES ET CONTRÔLE DE LA QUALITÉ

WSP a installé un système de collecte des données numériques relié aux appareils de mesures en continu des particules totales et fines, de même que les appareils de mesure de NO_x. Les données colligées sont traitées et affichées sur une interface web. L'interface calcule les moyennes nécessaires à la détermination de la conformité avec les normes ou critères applicables. L'interface est aussi en mesure de recueillir les informations relatives à la qualité des données et l'état des instruments : valeurs au-delà de la limite de quantification, appareil en panne ou sujet à une situation technique atypique, etc.

Les données des appareils non électroniques requérants des manipulations et des analyses en laboratoires (PQ167 et échantillonneur grand-débit) sont transférées manuellement sur l'interface par le personnel de la Mine.

Depuis 2012, la Mine dépose un rapport au MDDELCC dans le cadre de son programme de suivi de la qualité de l'atmosphère à Malartic, tel qu'établi dans le PSE.

6.5 RÉSUMÉ DES DONNÉES D'ÉCHANTILLONNAGE

L'analyse de la qualité de l'air à partir des stations d'air ambiant de la Mine a été détaillée dans la réponse 26 de la première série de questions du MDDELCC en relation avec l'ÉIE. Cette réponse remplace la section 4.12 Qualité de l'atmosphère de cette ÉIE.

En résumé, l'examen des concentrations mesurées de particules totales sur les filtres de l'échantillonneur à grand volume de la station A2 Sud montrent qu'en moyenne la norme 24 heures des particules totales est respectée 85 % du temps. Le nombre de dépassements mesurés oscille autour de neuf par année. Il faut préciser que ce ne sont pas tous les dépassements observés qui sont reliés aux opérations de la Mine d'autres sources urbaines peuvent générer de tels dépassements. La moyenne des concentrations mesurées se situe à 70,9 µg/m³ soit un peu plus que la moitié de la norme qui est fixée à 120 µg/m³.

Tel que mentionné précédemment à la section 6.1, la station A1 Nord ne possède pas d'échantillonneur à grand volume. Il est quand même possible de donner un portrait ou d'établir une tendance des concentrations de particules totales à partir des mesures faites avec un BAM. La majorité des concentrations mesurées de particules totales entre septembre 2012 et décembre 2014, soit 822 données journalières avec plus de 18 mesures valides sur une période de 24 heures restent inférieures à la norme du RAA. Seulement cinq valeurs sont au-delà la norme. La norme est donc respectée 99 % du temps.

Pour les particules fines ($PM_{2,5}$) la moyenne des valeurs journalières observée entre 2012 et 2014 est sensiblement la même pour les deux stations A1 Nord et A2 Sud soit respectivement 7 et 6 μ g/m³. La norme journalière de qualité de l'atmosphère du RAA pour les particules fines ($PM_{2,5}$) est de 30 μ g/m³. Cette norme est respectée 99 % du temps à la station A1 Nord et 100 % du temps à la station A2 Sud. La valeur correspondant au 98 $^{\circ}$ centile oscille entre 16 μ g/m³ et 22 μ g/m³ à la station A1 Nord et entre 14 μ g/m³ et 17 μ g/m³ à la station A2 Sud. Enfin la valeur maximale mesurée a été de 41 μ g/m³ en 2014 à la station A1 Nord. Cette valeur maximale n'était pas reliée aux opérations de la minière puisque la station A2 Sud n'a mesuré aucun dépassement la même journée.

L'échantillonnage et l'analyse des métaux présents dans les particules totales en suspension à la station A2 Sud entre 2012 et 2104 ont permis de démontrer que les concentrations de l'ensemble des métaux (à l'exception du nickel) étaient conformes aux normes applicables du RAA. En effet, on note en moyenne trois dépassements de la norme 24 heures du nickel pour chacune des années. Donc en moyenne, 95 % des valeurs mesurées sont en dessous de la norme. Rappelons que la norme s'applique sur les concentrations quotidiennes de nickel mesurées dans les PM₁₀. Or les mesures ont été faites seulement dans les particules totales. Les concentrations réelles en nickel sont donc probablement plus faibles.

Entre le 1^{er} septembre 2012 et le 31 décembre 2014, il n'y a eu aucun dépassement de la norme horaire pour le dioxyde d'azote. En effet, la concentration maximale mesurée de 104 μ/m^3 est sous la norme horaire fixée à 414 μ g/m³. Il en est de même pour la norme journalière établie à 207 μ g/m³ et la norme annuelle de 103 μ g/m³ avec des valeurs maximales mesurées de 41 μ g/m³ et 10 μ g/m³ respectivement.

7 ÉVALUATION DU CONSERVATISME

La modélisation de la dispersion atmosphérique strictement réalisée selon les exigences du MDDELCC a pour but d'évaluer les concentrations potentielles maximales dans l'air ambiant et de s'assurer que les normes et critères seront respectés en tout temps. En effet, selon le « Guide de modélisation de la dispersion atmosphérique » du MDDELCC les résultats présentés doivent toujours correspondre aux maximums obtenus, pour chacune des périodes, à chacun des récepteurs identifiés. Il s'agit donc d'une approche très conservatrice puisqu'aucune valeur modélisée n'est retirée de l'analyse et aucun traitement par centiles n'est effectué.

De plus, pour évaluer les impacts d'un projet à l'aide de la modélisation, des scénarios conservateurs doivent être considérés. Par conséquent, des « scénarios pire cas » doivent être modélisés afin de bien représenter les maximums pouvant survenir pendant toute la durée de vie du projet, et ce, même si une fluctuation importante des opérations est planifiée.

Également, en ce qui concerne spécifiquement les modélisations de la dispersion atmosphérique de projets miniers, il est important de préciser que les taux d'émission sont estimés à l'aide d'équations empiriques visant à donner un ordre de grandeur des émissions plutôt qu'un chiffre exact. En effet, les principaux contributeurs d'une mine sont des sources fugitives dont la caractérisation demeure un exercice difficile puisque leurs émissions varient en fonction du vent, de l'heure dans la journée et de la variation des opérations. L'efficacité de l'atténuation appliquée dans le but de réduire ces émissions ne peut de plus qu'être estimée grossièrement. Les estimations des émissions des sources fugitives sont d'ailleurs basées sur des équations dont les facteurs d'émissions proviennent de l'AP-42, souvent entachées d'une grande incertitude. Ces équations ont effectivement été développées à l'aide de mesures effectuées dans des contextes et des climats variés. Par exemple, aucune de ces équations ne prend en compte les conditions hivernales et la couverture de neige, ce qui est pourtant une réalité importante au Québec.

D'autre part, suivant les directives du MDDELCC, la déposition des particules n'est pas prise en compte dans les modélisations. Or, la déposition contribue à réduire de façon considérable les concentrations de particules totales dans l'air, particulièrement par vent faible, alors que la dispersion est faible.

À ce sujet, il est important de rappeler que, dans la version de décembre 2014 (version 1) de la présente étude, à la section 6.1.7 (ÉIE, annexe 10-3), il a été démontré que le modèle AERMOD, même s'il est reconnu par le MDDELCC, possède certaines faiblesses reconnues. Les différences sont principalement évidentes au niveau des particules totales.

En effet, en comparant pour la même période, soit 2013, les résultats de la modélisation du scénario 1 aux données d'échantillonnage mesurées aux deux stations de la qualité de l'atmosphère de la Mine, les résultats pour les données d'échantillonnage montrent que les concentrations moyennes de particules totales augmentent avec la vitesse du vent, particulièrement pour la station A2, positionnée plus près de la Mine. La modélisation, pour sa part, montre un comportement contraire, alors que les concentrations moyennes les plus élevées sont obtenues par vents faibles et diminuent avec l'augmentation de la vitesse du vent. De plus, en comparant les résultats pour les stations A1 (nord) et A2 (sud), il semble que les concentrations modélisées diminuent de façon moins importante que les données d'échantillonnage réelles en fonction de la distance.

Les résultats de la modélisation produisant des valeurs beaucoup plus élevées que les mesures réelles s'expliquent par le fait que la presque totalité des taux d'émission utilisés et recommandés par le MDDELCC est indépendante de la vitesse horaire du vent et que la déposition des particules n'est pas prise en compte dans la modélisation. En effet, pour des taux d'émission constants et aucune déplétion des panaches d'émissions, l'augmentation de la vitesse du vent engendre une meilleure dispersion des

émissions et donc, des concentrations modélisées plus faibles. La dispersion modélisée pour les particules totales est donc en tout point identique à la dispersion d'une substance gazeuse. Les résultats de modélisation respectent donc le comportement et la logique attendus conséquents aux directives de modélisation actuellement recommandées par le MDDELCC qui ne tiennent pas compte de la vitesse du vent ni de la déposition des particules, mais ne respectent pas nécessairement le comportement réel de dispersion des particules.

Pour les résultats réels d'échantillonnage, il y a clairement une relation inverse en fonction de la vitesse du vent. En effet, particulièrement par vents faibles, la déposition des particules contribue grandement à diminuer les concentrations dans l'atmosphère, alors que ces particules déposées sont remises en suspension par vents forts. Ce duo déposition-resuspension contribue donc à « reporter » dans le temps la propagation d'une partie importante des émissions. Les particules s'accumulent au sol de façon plus importante par vents faibles et sont réémises par vent fort. Il est important de rappeler que dans le secteur de la Mine, les périodes de vents faibles sont plus fréquentes que celles de vents forts.

Plusieurs conséquences découlent de cet important écart observé entre les résultats modélisés et les résultats mesurés aux deux stations. D'abord, puisque les vents faibles sont plus fréquents que les vents forts, les occurrences de dépassements et les moyennes annuelles modélisées sont du fait même surestimées. Il est également important de souligner que les concentrations modélisées pour les différents métaux sont calculées à partir des concentrations modélisées pour les particules totales. Ainsi, la surestimation des moyennes annuelles de particules totales implique également une surestimation des moyennes annuelles modélisées pour les métaux.

À la lumière de ces résultats, il est important de comprendre que la modélisation de la dispersion atmosphérique des particules totales suivant les lignes directrices recommandées par le MDDELCC rend difficile l'évaluation de scénarios alternatifs d'opération. L'évaluation des conditions météorologiques lors de dépassements est en effet contradictoire suivant les directives actuelles de la modélisation. De plus, puisque la granulométrie des émissions varie grandement d'un type de source à l'autre, la magnitude de la déposition et son effet attendu sont différents en fonction des sources d'émission. La contribution modélisée des sources d'émission est donc faussée, ce qui place l'accent sur des sources qui ne sont en réalité pas nécessairement problématiques.

Dans ce contexte, bien que des scénarios d'opération alternatifs aient été modélisés pour identifier les conditions d'exploitation permettant de s'assurer en tout temps du respect des normes et critères du MDDELCC, il est impératif de mettre en perspective les résultats obtenus dans la présente étude selon les arguments énumérés précédemment. Ces résultats proviennent en effet essentiellement de modélisations sans rétroaction ou calibration à partir des mesures du programme de suivi de la qualité de l'air de la Mine. Un processus de validation des résultats de modélisation à partir des mesures est donc essentiel.

PROCESSUS DE GESTION ET DE MAÎTRISE DES ÉMISSIONS DE POUSSIÈRES

Tel que mentionné précédemment, les stations de suivi de la qualité de l'air à Malartic sont opérées, maintenues et étalonnées selon des procédures établies en fonction des méthodes en vigueur et des recommandations des fabricants. Les données sont colligées et des activités de contrôle de la qualité rendent possible l'identification de données problématiques.

La Mine a aussi une procédure d'alerte pour éviter les dépassements de norme.

SUIVI EN SITUATION PROBABLE DE DÉPASSEMENT DE NORME

Rappelons que CMGP mesure en continu les particules totales (PMT) et fines (PM_{2,5}) avec une jauge radiométrique Met One BAM 1020 et ce, à chacune de ses deux stations de qualité de l'atmosphère. Le plan d'action pour la gestion de la poussière intègre un système d'alerte interne qui envoie automatiquement un courriel au personnel en faction (répartiteurs, contremaitres, personnels en environnement, direction, etc.) lorsqu'une valeur horaire des particules PMT ou PM_{2,5} mesurées atteint 80 % de la norme journalière. Cette première alerte est appelée « Alerte jaune ». Une deuxième série de courriels est envoyée lorsque la valeur horaire mesurée de PMT ou de PM_{2,5} atteint 100 % de la norme journalière. Cette alerte est appelée « Alerte rouge ».

- → Lorsque l'alerte « Jaune » est déclenchée, le principal intervenant ciblé (par courriel) est le répartiteur des opérations minières. Même si plusieurs intervenants peuvent agir, cette personne est en contact avec tous les opérateurs (camions, pelles, camions-citernes, chargeuses, foreuses, parc à résidus, etc.). Il a également accès aux caméras du site minier. Il doit vérifier si les opérations en cours causent des poussières visibles et doit mettre en place des correctifs qu'il adresse directement aux opérateurs sur le terrain. Les interventions importantes d'une journée sont consignées dans un fichier informatique en format tableur.
- → Lorsque l'alerte « Rouge » est signalée, même si plusieurs intervenants peuvent agir, le principal intervenant ciblé (par courriel) est toujours le répartiteur des opérations minières, mais dans le cas de l'alerte « rouge » le département environnement joue un rôle plus soutenu au niveau des constats sur le site et dans les environs de la ville de Malartic. Le technicien environnement doit alors suivre la procédure en vigueur. Sommairement, le technicien en environnement se rend au bureau du répartiteur afin d'avoir accès aux caméras du site et de pouvoir identifier les sources potentielles d'émission de poussières qui sont perceptibles. Si des sources émettrices provenant du site peuvent être identifiées, le contremaitre ou le répartiteur avise immédiatement l'opérateur en cause afin de corriger la situation. Par la suite, le technicien en environnement se rend sur le terrain pour identifier si d'autres sources peuvent provenir des activités de la Mine (non visible aux caméras), du parc industriel adjacent au site ainsi que des activités dans la ville de Malartic (incendie, activités dans le parc, construction, réfection des rues, chauffage au bois, activités de terrassement, balayage de rue, rafale, etc.). Les points de vérifications de la procédure sont les suivants :
 - Site de la Mine:
 - Chemin du Lac Mourier, parc industriel et aréna;
 - Milieu urbain de la ville de Malartic;
 - Stations de qualité de l'air;

Belvédère de la butte-écran actuelle.

Le technicien en environnement doit prendre des photographies de ses observations, consigner le tout dans un formulaire et déposer les photographies sur le serveur avec une codification préétablie. Si les observations montrent une cause associée aux opérations minières, le contremaitre est appelé par cellulaire pour qu'il corrige la situation immédiatement.

Les causes les plus fréquentes sont les suivantes :

- → Présence de vents forts au-delà de 10 km/h en provenance de la Mine et en direction de la ville de Malartic:
- → Chauffage au bois en hiver dans la ville de Malartic;
- → Circulation des équipements au nord de la fosse;
- → Présence de foreuses à proximité de la butte-écran actuelle;
- Opération de chargement des camions à proximité de la butte-écran actuelle;
- → Déplacement des matelas pare-éclats par des pelles mécaniques;
- Opération du concasseur mobile;
- → Bris d'équipement sur des foreuses;
- Vitesse des camions;
- → Action combinée du vent et des opérations.

Les mesures de contrôle déployées par CMGP sur le site lorsque le niveau de poussière approche les normes de qualité de l'atmosphère sont multiples. D'abord, CMGP maintient sur le site plusieurs camions-citernes pour arroser presque en continu les voies de circulation des camions miniers. Si le niveau de poussière approche les normes de qualité de l'atmosphère, il y aura une alerte « jaune ou rouge » et les répartiteurs ou le contremaitre des opérations minières demanderont alors aux opérateurs de réduire la vitesse des camions et d'augmenter la fréquence d'arrosage. Si la situation se détériore, il y a aura une réduction du nombre de camions en service ou un arrêt des opérations dans les secteurs problématiques.

Le programme d'alerte aux dépassements des normes de CMGP débouche sur des mesures correctives concrètes qui sont appliquées rapidement :

Par exemple:

- Arrosage continu du réseau de chemins;
- → Arrosage des matelas avant leur déplacement;
- Réduction de la vitesse des camions:
- Arrosage du matériel chargé;
- Arrosage des zones de sautage;
- Arrosage des zones problématiques;
- Système d'arrosage au concasseur mobile;
- → Arrêt immédiat de certains équipements, ex. : foreuse, chargeuses ou camions.

Les mesures d'atténuation sont choisies en fonction de la source, de l'importance du dépassement anticipé, des conditions météorologiques présentes et à venir, des concentrations de particules dans l'air ambiant, etc. Plusieurs mesures d'atténuation des poussières peuvent être combinées et appliquées en même temps.

Malgré ces efforts non négligeables des opérations et la surveillance environnementale, quelques dépassements subsistent. Par conséquent, la Mine a pris l'engagement de mettre en place un *Plan intégré de gestion des émissions atmosphériques* plus ciblé en 2015. Ce nouveau plan comprendra entre autres les éléments suivants :

- → L'installation d'une nouvelle station de mesure de la qualité de l'air ambiant localisée à l'est de la ville de Malartic:
- → La mise en place d'un « Comité poussière » incluant des employés de la mine, de l'usine de traitement du minerai et de l'environnement dont le mandat est de rechercher des nouvelles méthodes ou approches de gestion pour réduire les émissions de poussières;
- → Le développement d'une carte dynamique montrant les zones les plus susceptibles de contribuer à la présence de poussière dans l'atmosphère en fonction des conditions météorologiques;
- → La mise en place d'un programme de formation pour les employés de la mine et pour les sous-traitants concernant le programme de gestion des poussières.

CMGP a démontré que son programme d'alerte permet de contrôler les poussières en augmentant les contraintes. Cependant, l'amélioration de son plan intégré de gestion des émissions atmosphériques est primordiale afin de minimiser les épisodes de dépassements et assurer en tout temps le respect des normes de la qualité de l'atmosphère.

9 CONCLUSION

Les impacts appréhendés sur la qualité de l'atmosphère des émissions découlant des activités minières du projet d'extension de la mine aurifère Canadian Malartic ont été évalués à l'aide d'une modélisation de la dispersion atmosphérique. Les contaminants retenus pour les modélisations sont les matières particulaires en suspension, soit les particules totales (PM_{tot}) et les particules fines (PM_{2,5}), ainsi que 19 métaux et métalloïdes pour lesquels une norme ou un critère de qualité de l'atmosphère a été établi par le ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC). Trois composés gazeux, le monoxyde de carbone (CO), le dioxyde d'azote (NO₂) et le dioxyde de soufre (SO₂) ont également été modélisés.

La démarche de modélisation préconisée dans la présente étude s'appuie strictement sur la méthodologie proposée dans le *Guide de modélisation de la dispersion atmosphérique* du Québec (MDDEP, 2005), de même que sur le plus récent *Guide d'instructions - Préparation et réalisation d'une modélisation de la dispersion des émissions atmosphériques - Projets miniers* (MDDELCC, 2015).

Des données de référence spécifiques à l'exploitation de la mine Canadian Malartic ont été utilisées, à savoir les spécifications associées aux activités, équipements et infrastructures minières fournies par la Corporation Minière Osisko, et plus récemment par CMGP. Les taux d'émission ont donc été établis à partir des données techniques les plus récentes disponibles. La dispersion atmosphérique a été effectuée à l'aide du logiciel AERMOD sur cinq années de données météorologiques.

Les résultats de tous les scénarios considérés indiquent que les concentrations modélisées de PM_{tot} , de $PM_{2,5}$, de NO_2 et de certains métaux dépassent les normes et critères du MDDELCC à la limite d'application du RAA et à plusieurs récepteurs sensibles. Dans ce contexte, des scénarios d'opération alternatifs ont été modélisés pour identifier les conditions d'exploitation permettant de s'assurer du respect des normes et critères. Les tonnages annuels effectifs découlant de l'altération des conditions d'exploitation menant aux scénarios optimisés varient entre 45 % et 65 % des tonnages prévus au plan minier actuel.

Par contre, il est impératif de mettre en perspective les résultats obtenus selon les arguments énumérés dans la présente étude concernant le conservatisme du modèle. En effet, les résultats proviennent essentiellement de modélisations sans rétroaction ou calibration à partir des mesures du programme de suivi de la qualité de l'air de la Mine. Un processus de validation des résultats de modélisation à partir des mesures est donc essentiel puisque le suivi de la qualité de l'air de la Mine ne montre aucun dépassement de PM_{2.5}, de NO₂ et de métaux, et ceux de PM_{tot} sont beaucoup plus fréquents que ceux modélisés.

Il est important de rappeler que CMGP mesure en continu les particules totales (PM_{tot}) et fines (PM_{2,5}) à chacune de ses deux stations de qualité de l'air (A1 et A2). Il est également prévu d'en ajouter une nouvelle à l'est. La Mine a également mis en place un système d'alerte pour la gestion des poussières. Ce système transmet les résultats des équipements de mesure en continu aux principaux intervenants afin que ceux-ci puissent prendre des actions appropriées le plus rapidement possible.

Il est important de mentionner, par ailleurs, que les modélisations demeurent des estimations faites avec des hypothèses très conservatrices et peu représentatives d'une opération minière qui est en mouvement et déplacement constant. Or, dans le cas présent, le fait que la Mine soit déjà en opération, depuis plusieurs années, permet d'obtenir des données de terrain crédibles qui permettent d'apprécier les incertitudes associées aux modélisations. La Mine se doit de caler le modèle pour augmenter le niveau de confiance du modèle par rapport à la réalité observée sur le terrain. Cette calibration permettra de mieux apprécier les impacts anticipés par les activités de la Mine.

RÉFÉRENCES BIBLIOGRAPHIQUES

- → ALBERTA ENVIRONMENT. Preparation of Alberta Environment Regional AERMOD Screening Meteorology Data Sets. Alberta Environment (AENV) Science and Standards, T/641. 2002.
- → AUSTRALIAN GOVERNMENT, DEPARTMENT OF SUSTAINABILITY, ENVIRONMENT, WATER, POPULATION AND COMMUNITIES (DSEWPaC). *National Pollutant Inventory. Emission estimation technique manual for mining. Version 3.1.* January 2012.
- → AUSTRALIAN GOVERNMENT, DEPARTMENT OF SUSTAINABILITY, ENVIRONMENT, WATER, POPULATION AND COMMUNITIES (DSEWPaC). National Pollutant Inventory. Emission Estimation Technique Manual for Explosives Detonation and Firing Ranges. Version 3.0. January 2012.
- → BRITISH COLUMBIA MINISTRY OF ENVIRONMENT. Guidelines for Air Quality Dispersion Modelling in British Columbia. Environmental Protection Division, Environmental Quality Branch, Air Protection Section, Victoria, B.C. 2006.
- → COUNTESS ENVIRONMENTAL. WRAP Fugitive Dust Handbook. Prepared for Western Governor' Association, Western Regional Air Partnership. 2006.
- → ENVIRONNEMENT CANADA. Règlement sur le soufre dans le carburant diesel. 2013.
- → GOLDER ASSOCIÉS. Programme de caractérisation géochimique 2012-2013, Mine Canadian Malartic, Malartic, Québec. Réf. 046-13-1221-0020-5010-RF-Rev0, Novembre 2014.
- → GOUVERNEMENT DU QUÉBEC, MINISTÈRE DU DÉVELOPPEMENT DURABLE, DE L'ENVIRONNEMENT ET DES PARCS. Normes et critères québécois de qualité de l'atmosphère, Québec, Direction du suivi de l'état de l'environnement. Version 4, 2015.
- → GOUVERNEMENT DU QUÉBEC, MINISTÈRE DU DÉVELOPPEMENT DURABLE, DE L'ENVIRONNEMENT ET DES PARCS. Guide de la modélisation de la dispersion atmosphérique. 2005.
- → GOUVERNEMENT DU QUÉBEC. Règlement modifiant le Règlement sur l'assainissement de l'atmosphère, Décret 1228-2013, 27 novembre 2013.
- → GOUVERNEMENT DU QUÉBEC. Loi sur la qualité de l'environnement, Règlement sur l'assainissement de l'atmosphère. c. Q-2, r. 4.1. 2010.
- → MINISTÈRE DU DÉVELOPPEMENT DURABLE, DE L'ENVIRONNEMENT ET DE LA LUTTE CONTRE LES CHANGEMENTS CLIMATIQUES. Guide d'instructions Préparation et réalisation d'une modélisation de la dispersion des émissions atmosphériques Projets miniers. 2014. 94p. [En ligne]. http://www.mddelcc.gouv.gc.ca/air/criteres/index.htm (page consultée le 26/08/2015)
- → NEWFOUNDLAND AND LABRADOR, DEPARTMENT OF ENVIRONMENT AND CONSERVATION (NLDEC). Guideline for Plume Dispersion Modelling. 2nd Revision, Saint John's, NL. September 18, 2012.
- → ONTARIO MINISTRY OF THE ENVIRONMENT. Proposed Guidance for Air Dispersion Modelling. SSB-034875. 2003.
- → U.S. ENVIRONMENTAL PROTECTION AGENCY. Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling Compression-Ignition. Juillet 2010.
- → U.S. ENVIRONMENTAL PROTECTION AGENCY. AERMOD Implementation Guide. 2009.
- → U.S. ENVIRONMENTAL PROTECTION AGENCY. Emission Factors for Locomotives. 2009.
- → U.S. ENVIRONMENTAL PROTECTION AGENCY. AERSURFACE User's Guide. 2008. (Revised 01/16/2013).

- → U.S. ENVIRONMENTAL PROTECTION AGENCY. Median life, annual activity, and load factor values for nonroad engine emissions modeling. Avril 2004.
- → U.S. ENVIRONMENTAL PROTECTION AGENCY. Compilation of Air Pollutant Emission Factors: AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources. 1995.

Annexe A

CARACTÉRISTIQUES DES SOURCES

LISTE DES TABLEAUX

Tableau A 1.1 :	Caractéristiques physiques et taux d'émission des sources de forage et de sautage – Scénario 1
Tableau A 1.2 :	Caractéristiques physiques et taux d'émission des sources de forage et de sautage – Scénario 2A-4
Tableau A 1.3:	Caractéristiques physiques et taux d'émission des sources de forage et de sautage – Scénario 3A-5
Tableau A 2.1:	Caractéristiques physiques et taux d'émission des sources fugitives des opérations – Scénario 1A-6
Tableau A 2.2 :	Caractéristiques physiques et taux d'émission des sources fugitives des opérations – Scénario 2A-8
Tableau A 2.3:	Caractéristiques physiques et taux d'émission des sources fugitives des opérations – Scénario 3
Tableau A 3:	Caractéristiques des véhicules de transport – Scénarios 1, 2 et 3A-13
Tableau A 4.1:	Quantité de matière déplacée par trajets – Scénario 1
Tableau A 4.2:	Quantité de matière déplacée par trajets – Scénario 2
Tableau A 4.3:	Quantité de matière déplacée par trajets – Scénario 3
Tableau A 5.1 :	Caractéristiques de chacun des segments de routage et leurs taux d'émission associés – Scénario 1
Tableau A 5.2 :	Caractéristiques de chacun des segments de routage et leurs taux d'émission associés – Scénario 2
Tableau A 5.3:	Caractéristiques de chacun des segments de routage et leurs taux d'émission associés – Scénario 3
Tableau A 6.1:	Caractéristiques des sources volumiques de routage – Scénario 1A-21
Tableau A 6.2:	Caractéristiques des sources volumiques de routage – Scénario 2A-25
Tableau A 6.3:	Caractéristiques des sources volumiques de routage – Scénario 3A-30
Tableau A 7 :	Caractéristiques physiques et taux d'émission des sources ponctuelles – Scénarios 1, 2, et 3
Tableau A 8 :	Taux d'émission moyen des gaz d'échappement pour chaque type de véhicules utilisé – Scénarios 1, 2, et 3
Tableau A 9 :	Scénarios considérés pour les gaz d'échappement des véhicules miniers – Scénarios 1, 2, et 3
Tableau A 10.1 :	Caractéristiques physiques et taux d'émission des gaz d'échappement associés au routage et au support pour chacun des segments – Scénario 1
Tableau A 10.2 :	Caractéristiques physiques et taux d'émission des gaz d'échappement associés au routage et au support pour chacun des segments – Scénario 2
Tableau A 10.3 :	Caractéristiques physiques et taux d'émission des gaz d'échappement associés au routage et au support pour chacun des segments – Scénario 3
Tableau A 11.1:	Caractéristiques physiques et taux d'émission des gaz d'échappement associés aux sources localisées – Scénario 1A-45
Tableau A 11.2:	Caractéristiques physiques et taux d'émission des gaz d'échappement associés aux sources localisées – Scénario 2A-47

A-2

Tableau A 11.3:	Caractéristiques physiques et taux d'émission des gaz d'échappement associés aux sources localisées – Scénario 3A-49
Tableau A 12.1:	Caractéristiques physiques et taux d'émission associés aux sources surfaciques – Scénario 1
Tableau A 12.2:	Caractéristiques physiques et taux d'émission associés aux sources surfaciques – Scénario 2
Tableau A 12.3:	Caractéristiques physiques et taux d'émission associés aux sources surfaciques – Scénario 3A-51

Tableau A 1.1 : Caractéristiques physiques et taux d'émission des sources de forage et de sautage – Scénario 1

Source ID	Description	Coord. Gé (UTM1)	ographiques 7 NAD83)	Élévation	Hauteur de relâche	Sigma Y	Sigma Z	Atténuation ¹	Taux d'émission (g/s)					
Source ID	Description	X (m)	Y (m)	(m)	(m)	(m)	(m)	(%)	PM _{tot}	PM ₁₀	PM _{2.5}	СО	NOx	SO ₂
S1_42_1	2013 - 57549563 t - 4/sem - 2 zones	713900,0	5334544,0	269,0	10,000	12,659	9,302	0	9,857E+00	5,126E+00	2,957E-01	2,625E+02	3,018E+01	7,128E-01
S1_42_2	2013 - 57549563 t - 4/sem - 2 zones	713380,0	5334544,0	280,0	10,000	12,659	9,302	0	9,857E+00	5,126E+00	2,957E-01	2,625E+02	3,018E+01	7,128E-01
DRILL1	Foreuse 4.5po ou 3.5po	713569,3	5334933,2	314,4	1,250	0,581	1,163	0	1,297E-01	1,168E-01	6,487E-02	-	-	-
DRILL2	Foreuse 4.5po ou 3.5po	713599,3	5334933,2	314,4	1,250	0,581	1,163	0	1,297E-01	1,168E-01	6,487E-02	-	-	-
DRILL3	Foreuse 4.5po ou 3.5po	713629,3	5334933,2	314,4	1,250	0,581	1,163	0	1,297E-01	1,168E-01	6,487E-02	-	-	-
DRILL4	Foreuse 4.5po ou 3.5po	713659,3	5334933,2	314,4	1,250	0,581	1,163	0	1,297E-01	1,168E-01	6,487E-02	-	-	-
DRILL5	Mustang Castonguay (5.5po)	713604,2	5334773,7	310,9	1,250	0,581	1,163	70	2,936E-02	2,643E-02	1,468E-02	-	-	-
DRILL6	Mustang Castonguay (5.5po)	713634,2	5334773,7	310,9	1,250	0,581	1,163	70	2,936E-02	2,643E-02	1,468E-02	-	-	-
DRILL7	Mustang Castonguay (5.5po)	713664,2	5334773,7	310,9	1,250	0,581	1,163	70	2,936E-02	2,643E-02	1,468E-02	-	-	-
DRILL8	Mustang Castonguay (5.5po)	713694,2	5334773,7	310,9	1,250	0,581	1,163	70	2,936E-02	2,643E-02	1,468E-02	-	-	-
DRILL9	Cubex QXR 920 Osisko (5.5po)	714450,4	5334765,1	309,6	1,750	0,814	1,628	70	2,936E-02	2,643E-02	1,468E-02	-	-	-
DRILL10	Cubex QXR 920 Osisko (5.5po)	714480,4	5334765,1	309,6	1,750	0,814	1,628	70	2,936E-02	2,643E-02	1,468E-02	-	-	-
DRILL11	Cubex QXR 920 Osisko (5.5po)	714510,4	5334765,1	309,6	1,750	0,814	1,628	70	2,936E-02	2,643E-02	1,468E-02	-	-	-
DRILL12	Cubex QXR 920 RC Osisko (5.5po)	714105,6	5334875,6	317,0	1,750	0,814	1,628	70	2,936E-02	2,643E-02	1,468E-02	-	-	-
DRILL13	Cubex QXR 920 RC Osisko (5.5po)	714135,6	5334875,6	317,0	1,750	0,814	1,628	70	2,936E-02	2,643E-02	1,468E-02	-	-	-
DRILL14	Pit Viper Osisko (8.5po)	714001,8	5334542,6	269,4	3,200	1,488	2,977	70	6,521E-02	5,869E-02	3,261E-02	-	-	-
DRILL15	Pit Viper Osisko (8.5po)	714031,8	5334542,6	269,4	3,200	1,488	2,977	70	6,521E-02	5,869E-02	3,261E-02	-	-	-
DRILL16	Pit Viper Osisko (8.5po)	713550,8	5334542,6	281,4	3,200	1,488	2,977	70	6,521E-02	5,869E-02	3,261E-02	-	-	-
DRILL17	Pit Viper Osisko (8.5po)	713580,8	5334542,6	281,4	3,200	1,488	2,977	70	6,521E-02	5,869E-02	3,261E-02	-	-	-
DRILL18	Pit Viper Osisko (8.5po)	713336,4	5334679,6	290,3	3,200	1,488	2,977	70	6,521E-02	5,869E-02	3,261E-02	-	-	-
DRILL19	Pit Viper Osisko (8.5po)	713366,4	5334679,6	290,3	3,200	1,488	2,977	70	6,521E-02	5,869E-02	3,261E-02	-	-	-
	Is 70.0/ assumbs formulas a Neticinal Dellutes		–									1	ı	

¹ Atténuation de 70 % pour les foreuses : National Pollutant Inventory - Emission Estimation Technique Manual For Mining. Version 3.1, Janvier 2012 (Australian Gvt) ; Tableau 4 "Drilling : 70% for water sprays".

Tableau A 1.2 : Caractéristiques physiques et taux d'émission des sources de forage et de sautage – Scénario 2

Source ID	Description	Coord. Géographiques (UTM17 NAD83)		Élévation	Hauteur de relâche	Sigma Y	Sigma Z	Atténuation ¹	Taux d'émission (g/s)							
oource ib	Description	X (m)	Y (m)	(m)	(m)	(m)	(m)	(%)	PM _{tot}	PM ₁₀	PM _{2.5}	СО	NOx	SO ₂		
SAUT1	Sautage #1 Fosse CM	713646,3	5334725,7	160,0	10,00	19,504	9,302	0	3,61E+01	1,87E+01	1,08E+00	6,20E+02	7,12E+01	1,68E+00		
SAUT2	Sautage #2 Fosse CM	714656,0	5334515,7	260,0	10,00	19,504	9,302	0	3,61E+01	1,87E+01	1,08E+00	6,20E+02	7,12E+01	1,68E+00		
DRILL1	Foreuse 4.5po ou 3.5po	713940,9	5334926,3	260,0	1,25	0,581	1,163	70	3,89E-02	3,50E-02	1,95E-02	-	-	-		
DRILL2	Mustang Castonguay (5.5po)	713764,6	5334866,1	160,0	1,25	0,581	1,163	70	3,89E-02	3,50E-02	1,95E-02	-	-	-		
DRILL3	Mustang Castonguay (5.5po)	713815,0	5334841,0	160,0	1,25	0,581	1,163	70	3,89E-02	3,50E-02	1,95E-02	-	-	-		
DRILL4	Mustang Castonguay (5.5po)	715110,9	5333736,5	270,0	1,25	0,581	1,163	70	5,19E-02	4,67E-02	2,60E-02	-	-	-		
DRILL5	Mustang Castonguay (5.5po)	715110,9	5333706,5	270,0	1,25	0,581	1,163	70	5,19E-02	4,67E-02	2,60E-02	-	-	-		
DRILL6	Mustang Castonguay (5.5po)	715110,9	5333676,5	270,0	1,25	0,581	1,163	70	5,19E-02	4,67E-02	2,60E-02	-	-	-		
DRILL7	Cubex QXR 920 Osisko (5.5po)	714600,3	5334756,2	260,0	1,75	0,814	1,628	70	3,89E-02	3,50E-02	1,95E-02	-	-	-		
DRILL8	Cubex QXR 920 Osisko (5.5po)	714650,3	5334756,2	260,0	1,75	0,814	1,628	70	3,89E-02	3,50E-02	1,95E-02	-	-	-		
DRILL9	Cubex QXR 920 Osisko (5.5po)	714700,3	5334756,2	260,0	1,75	0,814	1,628	70	3,89E-02	3,50E-02	1,95E-02	-	-	-		
DRILL10	Cubex QXR 920 RC Osisko (5.5po)	715133,3	5334536,4	260,0	1,75	0,814	1,628	70	3,89E-02	3,50E-02	1,95E-02	-	-	-		
DRILL11	Cubex QXR 920 RC Osisko (5.5po)	715183,3	5334536,4	260,0	1,75	0,814	1,628	70	3,89E-02	3,50E-02	1,95E-02	-	-	-		
DRILL12	Pit Viper Osisko (8.5po)	714212,5	5334648,4	260,0	3,20	1,488	2,977	70	5,27E-02	4,74E-02	2,63E-02	-	-	-		
DRILL13	Pit Viper Osisko (8.5po)	714262,5	5334648,4	260,0	3,20	1,488	2,977	70	5,27E-02	4,74E-02	2,63E-02	-	-	-		
DRILL14	Pit Viper Osisko (8.5po)	714911,4	5334235,7	260,0	3,20	1,488	2,977	70	5,27E-02	4,74E-02	2,63E-02	-	-	-		
DRILL15	Pit Viper Osisko (8.5po)	714961,4	5334235,7	260,0	3,20	1,488	2,977	70	5,27E-02	4,74E-02	2,63E-02	-	-	-		
DRILL16	Pit Viper Osisko (8.5po)	713828,9	5334702,3	160,0	3,20	1,488	2,977	70	5,27E-02	4,74E-02	2,63E-02	-	-	-		
DRILL17	Pit Viper Osisko (8.5po)	713878,9	5334702,3	160,0	3,20	1,488	2,977	70	5,27E-02	4,74E-02	2,63E-02	-	-	-		
DRILL18	Pit Viper Osisko (8.5po)	713418,3	5334646,3	160,0	3,20	1,488	2,977	70	5,27E-02	4,74E-02	2,63E-02	-	-	-		

Atténuation de 70 % pour les foreuses : National Pollutant Inventory - Emission Estimation Technique Manual For Mining. Version 3.1, Janvier 2012 (Australian Gvt) ; Tableau 4 "Drilling : 70% for water sprays".

Tableau A 1.3 : Caractéristiques physiques et taux d'émission des sources de forage et de sautage – Scénario 3

Source ID Description Coord. Géographiques (UTM17 NAD83)				Élévation Hauteur de relâche Sigma Y Sigma Z Attér				Atténuation ¹			Taux d'émission (g/s)				
Cource ID	Description	X (m)	Y (m)	(m)	(m)	(m)	(m)	(%)	PM _{tot}	PM ₁₀	PM _{2.5}	со	NOx	SO ₂	
S1_42_1	Sautage #1 Fosse CM	713646,3	5334725,7	160,0	10,000	18,976	9,302	0	3,32E+01	1,73E+01	9,96E-01	5,87E+02	6,74E+01	1,59E+00	
S1_42_2	Sautage #2 Fosse CM	714656,0	5334515,7	260,0	10,000	18,976	9,302	0	3,32E+01	1,73E+01	9,96E-01	5,87E+02	6,74E+01	1,59E+00	
DRILL1	Mustang Castonguay (5,5po)	717446,8	5334509,3	230,0	1,250	0,581	1,163	70	3,07E-02	2,77E-02	1,54E-02	-	-	-	
DRILL2	Mustang Castonguay (5,5po)	717396,8	5334509,3	230,0	1,250	0,581	1,163	70	3,07E-02	2,77E-02	1,54E-02	-	-	-	
DRILL3	Mustang Castonguay (5,5po)	715391,2	5334848,1	300,0	1,250	0,581	1,163	70	2,91E-02	2,62E-02	1,46E-02	-	-	-	
DRILL4	Mustang Castonguay (5,5po)	715441,2	5334848,1	300,0	1,250	0,581	1,163	70	2,91E-02	2,62E-02	1,46E-02	-	-	-	
DRILL5	Mustang Castonguay (5,5po)	715455,6	5334670,9	300,0	1,250	0,581	1,163	70	2,91E-02	2,62E-02	1,46E-02	-	-	-	
DRILL6	Mustang Castonguay (5,5po)	715505,6	5334670,9	300,0	1,250	0,581	1,163	70	2,91E-02	2,62E-02	1,46E-02	-	-	-	
DRILL7	Cubex QXR 920 Osisko (5,5po)	714600,3	5334756,2	260,0	1,750	0,814	1,628	70	2,91E-02	2,62E-02	1,46E-02	-	-	-	
DRILL8	Cubex QXR 920 Osisko (5,5po)	714650,3	5334756,2	260,0	1,750	0,814	1,628	70	2,91E-02	2,62E-02	1,46E-02	-	-	-	
DRILL9	Cubex QXR 920 Osisko (5,5po)	714700,3	5334756,2	260,0	1,750	0,814	1,628	70	2,91E-02	2,62E-02	1,46E-02	-	-	-	
DRILL10	Cubex QXR 920 RC Osisko (5,5po)	715133,3	5334536,4	260,0	1,750	0,814	1,628	70	2,91E-02	2,62E-02	1,46E-02	-	-	-	
DRILL11	Cubex QXR 920 RC Osisko (5,5po)	715183,3	5334536,4	260,0	1,750	0,814	1,628	70	2,91E-02	2,62E-02	1,46E-02	-	-	-	
DRILL12	Pit Viper Osisko (8,5po)	714212,5	5334648,4	260,0	3,200	1,488	2,977	70	5,65E-02	5,08E-02	2,82E-02	-	-	-	
DRILL13	Pit Viper Osisko (8,5po)	714262,5	5334648,4	260,0	3,200	1,488	2,977	70	5,65E-02	5,08E-02	2,82E-02	-	-	-	
DRILL14	Pit Viper Osisko (8,5po)	714911,4	5334235,7	260,0	3,200	1,488	2,977	70	5,65E-02	5,08E-02	2,82E-02	-	-	-	
DRILL15	Pit Viper Osisko (8,5po)	714961,4	5334235,7	260,0	3,200	1,488	2,977	70	5,65E-02	5,08E-02	2,82E-02	-	-	-	
DRILL16	Pit Viper Osisko (8,5po)	713828,9	5334702,3	160,0	3,200	1,488	2,977	70	5,65E-02	5,08E-02	2,82E-02	-	-	-	
DRILL17	Pit Viper Osisko (8,5po)	713878,9	5334702,3	160,0	3,200	1,488	2,977	70	5,65E-02	5,08E-02	2,82E-02	-	-	-	
DRILL18	Pit Viper Osisko (8,5po)	713418,3	5334646,3	160,0	3,200	1,488	2,977	70	5,65E-02	5,08E-02	2,82E-02	-	-	-	

¹ Atténuation de 70 pour les foreuses : National Pollutant Inventory - Emission Estimation Technique Manual For Mining. Version 3.1, Janvier 2012 (Australian Gvt) ; Tableau 4 "Drilling : 70 for water sprays".

Tableau A 2.1 : Caractéristiques physiques et taux d'émission des sources fugitives des opérations – Scénario 1

Source ID	Description	Quantité de tonnage manipulé	Coord. Géo (UTM17	graphiques NAD83)	Élévation	Hauteur de relâche	Sigma Y	Sigma Z	Atténuation ^{1,2}	Tau	x d'émission (g/s)
	·	(ktm/an)	X (m)	Y (m)	(m)	(m)	(m)	(m)	(%)	PM _{tot}	PM ₁₀	PM _{2.5}
BULL1	D10T_1 / STE	-	715677,2	5333886,1	369,2	1,125	1,223	1,047	50	2,064E-01	3,406E-02	2,168E-02
BULL2	D10T_2/STE	-	715658,3	5333792,2	369,2	1,125	1,223	1,047	50	2,064E-01	3,406E-02	2,168E-02
BULL3	D10T_3 / CM	-	714628,5	5334660,6	301,0	1,125	1,223	1,047	50	2,064E-01	3,406E-02	2,168E-02
BULL4	D10T_4A / CM	-	713937,7	5334917,9	304,4	1,125	1,223	1,047	50	2,064E-01	3,406E-02	2,168E-02
BULL5	D10T_4B / STE	-	715775,6	5333873,7	359,0	1,125	1,223	1,047	50	2,064E-01	3,406E-02	2,168E-02
BULL6	CAT854H_1 / CM	-	713437,7	5334640,4	280,3	1,090	1,470	1,014	50	2,064E-01	3,406E-02	2,168E-02
BULL7	CAT854H_2 / CM	-	714132,8	5334442,4	259,8	1,090	1,470	1,014	50	2,064E-01	3,406E-02	2,168E-02
DUMP1	CM1_CONCAS / From CM1 to CONCAS	4884,0	713045,0	5334088,2	343,9	1,301	1,615	6,455	90	8,565E-03	4,051E-03	6,134E-04
DUMP2	CM1_STERILES / From CM1 to STERILES	8143,8	715697,8	5333944,4	369,1	1,301	1,615	6,455	0	1,428E-01	6,755E-02	1,023E-02
DUMP3	CM2_CONCAS / From CM2 to CONCAS	4884,0	713045,0	5334088,2	343,9	1,301	1,615	6,455	90	8,565E-03	4,051E-03	6,134E-04
DUMP4	CM2_STERILES / From CM2 to STERILES	8143,8	715697,8	5333944,4	369,1	1,301	1,615	6,455	0	1,428E-01	6,755E-02	1,023E-02
DUMP5	CM3_CONCAS / From CM3 to CONCAS	4884,0	713045,0	5334088,2	343,9	1,301	1,615	6,455	90	8,565E-03	4,051E-03	6,134E-04
DUMP6	CM3_STERILES / From CM3 to STERILES	8143,8	715697,8	5333944,4	369,1	1,301	1,615	6,455	0	1,428E-01	6,755E-02	1,023E-02
DUMP7	CM4_LG1STP / From CM4 to LG1STP	667,5	712964,6	5334422,0	358,1	0,645	0,900	4,093	0	2,341E-02	1,107E-02	1,677E-03
DUMP8	CM4_LG2STP / From CM4 to LG2STP	1111,4	713807,0	5333910,7	343,5	0,645	0,900	4,093	0	3,898E-02	1,844E-02	2,792E-03
DUMP9	CM4_STERILES / From CM4 to STERILES	8143,8	715697,8	5333944,4	369,1	1,301	1,615	6,455	0	1,428E-01	6,755E-02	1,023E-02
DUMP10	CM5_STERILES / From CM5 to STERILES	7468,8	715697,8	5333944,4	369,1	1,301	1,615	6,455	0	1,310E-01	6,195E-02	9,381E-03
DUMP11	CM5_OB / From CM5 to OB	1544,8	714649,2	5333894,6	350,1	0,965	1,209	4,802	0	2,709E-02	1,281E-02	1,940E-03
DUMP12	CM5_CONC_MOB / From CM5 to CONC_MOB	1075,0	714181,7	5332933,6	351,0	0,635	0,858	3,167	0	3,770E-02	1,783E-02	2,700E-03
DUMP13	GOU_OB / From GOU to OB	1413,6	714649,2	5333894,6	350,1	0,965	1,209	4,802	0	2,479E-02	1,173E-02	1,776E-03
DUMP14	CONC_MOB_CONCAS / From CONC_MOB to CONCAS	0,0	713045,0	5334088,2	343,9	1,301	1,615	6,455	90	0,000E+00	0,000E+00	0,000E+00
DUMP15	LG1STP_CONCAS / From LG1STP to CONCAS	665,4	713045,0	5334088,2	343,9	1,301	1,615	6,455	90	1,167E-03	5,519E-04	8,358E-05
DUMP16	LG2STP_CONCAS / From LG2STP to CONCAS	1513,2	713045,0	5334088,2	343,9	1,301	1,615	6,455	90	2,654E-03	1,255E-03	1,901E-04
LOAD1	PC800 / From CM5 to CONC_MOB	1075,0	714581,7	5334726,0	301,0	2,282	0,488	0,326	0	3,770E-02	1,783E-02	2,700E-03
LOAD2	PC1250_1 / From CM4 to LG1STP	333,8	713998,7	5334918,9	302,9	2,800	0,523	0,372	0	1,171E-02	5,537E-03	8,384E-04
LOAD3	PC1250_1 / From CM4 to LG2STP	555,7	713998,7	5334918,9	302,9	2,800	0,523	0,372	0	1,949E-02	9,218E-03	1,396E-03
LOAD4	PC1250_2 / From CM4 to LG1STP	333,8	714024,6	5334902,0	302,3	2,800	0,523	0,372	0	1,171E-02	5,537E-03	8,384E-04
LOAD5	PC1250_2 / From CM4 to LG2STP	555,7	714024,6	5334902,0	302,3	2,800	0,523	0,372	0	1,949E-02	9,218E-03	1,396E-03
LOAD6	RH340_1 / From CM1 to CONCAS	4884,0	714137,4	5334487,1	260,0	4,900	1,163	0,760	0	8,565E-02	4,051E-02	6,134E-03
LOAD7	RH340_1 / From CM1 to STERILES	8143,8	714137,4	5334487,1	260,0	4,900	1,163	0,760	0	1,428E-01	6,755E-02	1,023E-02

Tableau A 2.1 : Caractéristiques physiques et taux d'émission des sources fugitives des opérations – Scénario 1 (suite)

Source ID	Description	Quantité de tonnage manipulé		ographiques ' NAD83)	Élévation	Hauteur de relâche			Atténuation ^{1,2}	Taux d'émission (g/s)		
	·	(ktm/an)	X (m)	Y (m)	(m)	(m)	(m)	(m)	(%)	PM _{tot}	PM ₁₀	PM _{2.5}
LOAD8	RH340_2 / From CM2 to CONCAS	4884,0	713686,2	5334518,2	269,8	4,900	1,163	0,760	0	8,565E-02	4,051E-02	6,134E-03
LOAD9	RH340_2 / From CM2 to STERILES	8143,8	713686,2	5334518,2	269,8	4,900	1,163	0,760	0	1,428E-01	6,755E-02	1,023E-02
LOAD10	RH340_3 / From CM3 to CONCAS	4884,0	713454,1	5334673,8	280,0	4,900	1,163	0,760	0	8,565E-02	4,051E-02	6,134E-03
LOAD11	RH340_3 / From CM3 to STERILES	8143,8	713454,1	5334673,8	280,0	4,900	1,163	0,760	0	1,428E-01	6,755E-02	1,023E-02
LOAD12	L1850_1 / From CM4 to STERILES	8143,8	714028,0	5334873,3	302,5	4,900	1,488	0,760	0	1,428E-01	6,755E-02	1,023E-02
LOAD13	L1850_2 / From CM5 to STERILES	7468,8	714614,8	5334738,7	301,0	4,900	1,488	0,760	0	1,310E-01	6,195E-02	9,381E-03
LOAD14	PC2000 / From CM5 to OB	1544,8	714635,1	5334708,2	301,0	3,433	0,742	0,441	0	2,709E-02	1,281E-02	1,940E-03
LOAD15	CAT345_1 / From LG1STP to CONCAS	665,4	712948,9	5334427,6	358,1	4,900	0,319	0,760	0	1,167E-02	5,519E-03	8,358E-04
LOAD16	CAT345_2 / From LG2STP to CONCAS	1513,2	713839,2	5333925,3	343,7	4,900	0,319	0,760	0	2,654E-02	1,255E-02	1,901E-03
LOAD17	CAT345_3 / From GOU to OB	1413,6	714950,8	5333684,8	332,8	2,439	0,319	0,372	0	2,479E-02	1,173E-02	1,776E-03
LOAD18	CAT980 / From CONC_MOB to CONCAS	0,0	714165,9	5332919,7	351,0	4,900	0,853	0,760	0	0,000E+00	0,000E+00	0,000E+00
CRUSHS	Concasseur granulats	1075,0	714192,1	5332915,2	351,0	3,490	1,255	0,737	0	9,204E-02	4,091E-02	4,091E-02

¹ Un facteur d'utilisation de 50 % a été considéré afin de tenir compte de la disponibilité et l'efficacité des bouteurs (BULL1 à BULL7).

² Les déchargements au concasseur primaire sont atténués à 90 % en raison de sa localisation à l'intérieur d'un bâtiment fermé, équipé d'un dépoussiéreur.

Tableau A 2.2 : Caractéristiques physiques et taux d'émission des sources fugitives des opérations – Scénario 2

Source ID	Description	Quantité de tonnage manipulé		ographiques ' NAD83)	Élévation	Hauteur de relâche	Sigma Y	Sigma Z	Atténuation ^{1,2}	Taux	d'émission (g/s)
Source ID	Description	(ktm/an)	X (m)	Y (m)	(m)	(m)	(m)	(m)	(%)	PM _{tot}	PM ₁₀	PM _{2.5}
BULL1	D10T_1 / STE	-	717318,2	5333962,8	370,0	1,125	1,223	1,047	50	2,064E-01	3,406E-02	2,168E-02
BULL2	D10T_2 / STE	-	717266,6	5334146,4	370,0	1,125	1,223	1,047	50	2,064E-01	3,406E-02	2,168E-02
BULL3	D10T_3 / CM	-	713993,3	5334508,6	160,0	1,125	1,223	1,047	50	2,064E-01	3,406E-02	2,168E-02
BULL4	D10T_4A / LG2STP	-	713817,0	5333957,2	380,0	1,125	1,223	1,047	50	2,064E-01	3,406E-02	2,168E-02
BULL5	D10T_4B / CM	-	713394,5	5334709,5	160,0	1,125	1,223	1,047	50	2,064E-01	3,406E-02	2,168E-02
BULL6	CAT854H_1A / CM	-	713458,9	5334571,1	160,0	1,090	1,470	1,014	50	2,064E-01	3,406E-02	2,168E-02
BULL7	CAT854H_1B / LG2STP	-	713709,0	5333887,1	380,0	1,090	1,470	1,014	50	2,064E-01	3,406E-02	2,168E-02
BULL8	CAT854H_2 / CM	-	714008,4	5334605,3	160,0	1,090	1,470	1,014	50	2,064E-01	3,406E-02	2,168E-02
DUMP1	CM1_CONCAS / From CM1 to CONCAS	4380,9	713048,6	5334046,4	344,0	1,301	1,615	6,455	90	7,683E-03	3,634E-03	5,503E-04
DUMP2	CM1_LG1STP / From CM1 to LG1STP	1392,8	713047,7	5334358,6	344,0	0,697	0,862	3,299	0	2,443E-02	1,155E-02	1,749E-03
DUMP3	CM1_STERILES / From CM1 to STERILES	10865,3	717308,7	5334049,7	370,0	1,301	1,615	6,455	0	1,905E-01	9,012E-02	1,365E-02
DUMP4	CM2_CONCAS / From CM2 to CONCAS	4380,9	713048,6	5334046,4	344,0	1,301	1,615	6,455	90	7,683E-03	3,634E-03	5,503E-04
DUMP5	CM2_LG1STP / From CM2 to LG1STP	1392,8	713047,7	5334358,6	344,0	0,697	0,862	3,299	0	2,443E-02	1,155E-02	1,749E-03
DUMP6	CM2_STERILES / From CM2 to STERILES	10865,3	717308,7	5334049,7	370,0	1,301	1,615	6,455	0	1,905E-01	9,012E-02	1,365E-02
DUMP7	CM3_CONCAS / From CM3 to CONCAS	4380,9	713048,6	5334046,4	344,0	1,301	1,615	6,455	90	7,683E-03	3,634E-03	5,503E-04
DUMP8	CM3_LG2STP / From CM3 to LG2STP	1392,8	713778,4	5333937,9	380,0	0,697	0,862	3,299	0	2,443E-02	1,155E-02	1,749E-03
DUMP9	CM3_STERILES / From CM3 to STERILES	10865,3	717308,7	5334049,7	370,0	1,301	1,615	6,455	0	1,905E-01	9,012E-02	1,365E-02
DUMP10	CM4_CONCAS / From CM4 to CONCAS	4380,9	713048,6	5334046,4	344,0	1,301	1,615	6,455	90	7,683E-03	3,634E-03	5,503E-04
DUMP11	CM4_LG2STP / From CM4 to LG2STP	1392,8	713778,4	5333937,9	380,0	0,697	0,862	3,299	0	2,443E-02	1,155E-02	1,749E-03
DUMP12	CM4_STERILES / From CM4 to STERILES	10865,3	717308,7	5334049,7	370,0	1,301	1,615	6,455	0	1,905E-01	9,012E-02	1,365E-02
DUMP15	GOU_CONCAS / From GOU to CONCAS	2551,4	713048,6	5334046,4	344,0	0,965	1,209	4,802	90	4,474E-03	2,116E-03	3,205E-04
DUMP16	GOU_STERILES / From GOU to STERILES	9493,0	717308,7	5334049,7	370,0	0,965	1,209	4,802	0	1,665E-01	7,874E-02	1,192E-02
DUMP17	GOU_CONCAS_MOB / From GOU to CONCAS_MOB	107,5	713985,4	5332882,5	351,0	0,965	1,209	4,802	0	1,885E-03	8,917E-04	1,350E-04
LOAD1	PC800 / From GOU to CONCAS	1275,7	715267,2	5333712,4	260,0	3,433	0,488	0,441	0	2,237E-02	1,058E-02	1,602E-03
LOAD2	PC800 / From GOU to STERILES	3164,3	715267,2	5333712,4	260,0	3,433	0,488	0,441	0	5,549E-02	2,625E-02	3,974E-03
LOAD3	PC1250_1 / From GOU to STERILES	3164,3	715211,7	5333673,4	260,0	3,433	0,523	0,441	0	5,549E-02	2,625E-02	3,974E-03
LOAD4	PC1250_2 / From CM1 to STERILES	5432,7	713509,6	5334819,4	160,0	4,900	0,523	0,760	0	9,527E-02	4,506E-02	6,824E-03
LOAD5	RH340_1 / From CM1 to CONCAS	4380,9	713556,1	5334859,2	160,0	4,900	1,163	0,760	0	7,683E-02	3,634E-02	5,503E-03

Tableau A 2.2 : Caractéristiques physiques et taux d'émission des sources fugitives des opérations – Scénario 2 (suite)

Source ID	Description	Quantité de tonnage manipulé	Coord. Géo (UTM17	graphiques NAD83)	Élévation	Élévation Hauteur de relâche Sig		Sigma Z Atténuation ^{1,2}		Taux d'émission (g/s)		
00010015	2000. p. ion	(ktm/an)	X (m)	Y (m)	(m)	(m)	(m)	(m)	(%)	PM _{tot}	PM ₁₀	PM _{2.5}
LOAD6	RH340_1 / From CM1 to LG1STP	1392,8	713556,1	5334859,2	160,0	2,439	1,163	0,372	0	2,443E-02	1,155E-02	1,749E-03
LOAD7	RH340_2 / From CM2 to CONCAS	4380,9	713960,1	5334567,0	160,0	4,900	1,163	0,760	0	7,683E-02	3,634E-02	5,503E-03
LOAD8	RH340_2 / From CM2 to LG1STP	1392,8	713960,1	5334567,0	160,0	2,439	1,163	0,372	0	2,443E-02	1,155E-02	1,749E-03
LOAD9	RH340_3 / From CM3 to CONCAS	4380,9	714187,4	5334819,5	260,0	4,900	1,163	0,760	0	7,683E-02	3,634E-02	5,503E-03
LOAD10	RH340_3 / From CM3 to LG2STP	1392,8	714187,4	5334819,5	260,0	2,439	1,163	0,372	0	2,443E-02	1,155E-02	1,749E-03
LOAD11	RH200 / From CM3 to STERILES	5432,7	714243,3	5334842,9	260,0	4,900	1,116	0,760	0	9,527E-02	4,506E-02	6,824E-03
LOAD12	L1850_1 / From CM2 to STERILES	5432,7	713916,8	5334520,1	160,0	4,900	1,488	0,760	0	9,527E-02	4,506E-02	6,824E-03
LOAD13	L1850_2 / From CM4 to CONCAS	4380,9	715022,5	5334668,0	260,0	4,900	1,488	0,760	0	7,683E-02	3,634E-02	5,503E-03
LOAD14	L1850_2 / From CM4 to LG2STP	1392,8	715022,5	5334668,0	260,0	2,439	1,488	0,372	0	2,443E-02	1,155E-02	1,749E-03
LOAD15	994F / From CM4 to STERILES	5432,7	715080,2	5334626,5	260,0	4,900	1,442	0,760	0	9,527E-02	4,506E-02	6,824E-03
LOAD16	980 / From CM1 to STERILES	5432,7	713617,4	5334833,9	160,0	4,900	0,853	0,760	0	9,527E-02	4,506E-02	6,824E-03
LOAD17	PC2000 / From GOU to CONCAS	1275,7	715226,3	5333712,0	260,0	3,433	0,742	0,441	0	2,237E-02	1,058E-02	1,602E-03
LOAD18	PC2000 / From GOU to STERILES	3164,3	715226,3	5333712,0	260,0	3,433	0,742	0,441	0	5,549E-02	2,625E-02	3,974E-03
LOAD19	PC2000 / From GOU to CONCAS_MOB	107,5	715226,3	5333712,0	260,0	3,433	0,742	0,441	0	1,885E-03	8,917E-04	1,350E-04
LOAD20	345_1 / From CM2 to STERILES	5432,7	713932,0	5334621,5	160,0	4,900	0,319	0,760	0	9,527E-02	4,506E-02	6,824E-03
LOAD21	345_2 / From CM3 to STERILES	5432,7	714296,4	5334861,0	260,0	4,900	0,319	0,760	0	9,527E-02	4,506E-02	6,824E-03
LOAD22	345_3 / From CM4 to STERILES	5432,7	715050,3	5334532,0	260,0	4,900	0,319	0,760	0	9,527E-02	4,506E-02	6,824E-03
CRUSHS	Concasseur granulats	QA	714007,2	5332881,2	351,0	3,490	1,255	0,737	0	9,204E-03	4,091E-03	4,091E-03

¹ Un facteur d'utilisation de 50 % a été considéré afin de tenir compte de la disponibilité et l'efficacité des bouteurs (BULL1 à BULL7).

² Les déchargements au concasseur primaire sont atténués à 90 % en raison de sa localisation à l'intérieur d'un bâtiment fermé, équipé d'un dépoussiéreur.

Tableau A 2.3 : Caractéristiques physiques et taux d'émission des sources fugitives des opérations – Scénario 3

Source ID	Description	Quantité de tonnage manipulé	Coord. Géd (UTM17	ographiques 7 NAD83)	Élévation	Hauteur de relâche	Sigma Y	Sigma Z	Atténuation	Taux	k d'émission (g/s)
		(ktm/an)	X (m)	Y (m)	(m)	(m)	(m)	(m)	(%)	PM _{tot}	PM ₁₀	PM _{2.5}
BULL1	D10T_1 / STE	-	717318,2	5333962,8	370,0	1,125	1,223	1,047	50,0	2,064E-01	3,406E-02	2,168E-02
BULL2	D10T_2 / STE	-	717266,6	5334146,4	370,0	1,125	1,223	1,047	50,0	2,064E-01	3,406E-02	2,168E-02
BULL3	D10T_3 / CM	-	713993,3	5334508,6	160,0	1,125	1,223	1,047	50,0	2,064E-01	3,406E-02	2,168E-02
BULL4	D10T_4A / LG2STP	-	713817,0	5333957,2	380,0	1,125	1,223	1,047	50,0	2,064E-01	3,406E-02	2,168E-02
BULL5	D10T_4B / CM	-	713394,5	5334709,5	160,0	1,125	1,223	1,047	50,0	2,064E-01	3,406E-02	2,168E-02
BULL6	CAT854H_1A / CM	-	713458,9	5334571,1	160,0	1,090	1,470	1,014	50,0	2,064E-01	3,406E-02	2,168E-02
BULL7	CAT854H_1B / LG2STP	-	713709,0	5333887,1	380,0	1,090	1,470	1,014	50,0	2,064E-01	3,406E-02	2,168E-02
BULL8	CAT854H_2 / CM	-	714008,4	5334605,3	160,0	1,090	1,470	1,014	50,0	2,064E-01	3,406E-02	2,168E-02
DUMP1	CM1_CONCAS / From CM1 to CONCAS	3881,1	713048,6	5334046,4	344,0	1,301	1,615	6,455	90,0	6,806E-03	3,219E-03	4,875E-04
DUMP2	CM1_LG1STP / From CM1 to LG1STP	1569,5	713047,7	5334358,6	344,0	1,301	1,615	6,455	0,0	2,752E-02	1,302E-02	1,971E-03
DUMP3	CM1_STERILES / From CM1 to STERILES	8620,4	717308,7	5334049,7	370,0	1,301	1,615	6,455	0,0	1,512E-01	7,150E-02	1,083E-02
DUMP4	CM2_CONCAS / From CM2 to CONCAS	3881,1	713048,6	5334046,4	344,0	1,301	1,615	6,455	90,0	6,806E-03	3,219E-03	4,875E-04
DUMP5	CM2_LG1STP / From CM2 to LG1STP	1569,5	713047,7	5334358,6	344,0	1,301	1,615	6,455	0,0	2,752E-02	1,302E-02	1,971E-03
DUMP6	CM2_STERILES / From CM2 to STERILES	8620,4	717308,7	5334049,7	370,0	1,301	1,615	6,455	0,0	1,512E-01	7,150E-02	1,083E-02
DUMP7	CM3_CONCAS / From CM3 to CONCAS	3881,1	713048,6	5334046,4	344,0	1,301	1,615	6,455	90,0	6,806E-03	3,219E-03	4,875E-04
DUMP8	CM3_LG2STP / From CM3 to LG2STP	1569,5	713778,4	5333937,9	380,0	1,301	1,615	6,455	0,0	2,752E-02	1,302E-02	1,971E-03
DUMP9	CM3_STERILES / From CM3 to STERILES	8620,4	717308,7	5334049,7	370,0	1,301	1,615	6,455	0,0	1,512E-01	7,150E-02	1,083E-02
DUMP10	CM4_CONCAS / From CM4 to CONCAS	3881,1	713048,6	5334046,4	344,0	1,301	1,615	6,455	90,0	6,806E-03	3,219E-03	4,875E-04
DUMP11	CM4_LG2STP / From CM4 to LG2STP	1569,5	713778,4	5333937,9	380,0	1,301	1,615	6,455	0,0	2,752E-02	1,302E-02	1,971E-03
DUMP12	CM4_STERILES / From CM4 to STERILES	8512,9	717308,7	5334049,7	370,0	1,301	1,615	6,455	0,0	1,493E-01	7,061E-02	1,069E-02
DUMP13	CM4_CONC_MOB / From CM4 to CONC_MOB	107,5	713985,4	5332882,5	351,0	1,301	1,615	6,455	0,0	1,885E-03	8,917E-04	1,350E-04
DUMP14	BAR1_CONCAS / From BAR1 to CONCAS	725,7	713048,6	5334046,4	344,0	0,645	0,900	4,093	90,0	1,273E-03	6,019E-04	9,115E-05
DUMP15	BAR1_STERILES / From BAR1 to STERILES	3884,0	717308,7	5334049,7	370,0	0,645	0,900	4,093	0,0	6,811E-02	3,222E-02	4,878E-03
DUMP16	BAR1_OB / From BAR1 to OB	5584,5	718740,2	5333572,1	312,0	0,697	0,862	3,299	0,0	9,794E-02	4,632E-02	7,014E-03
DUMP17	BAR2_CONCAS / From BAR2 to CONCAS	725,7	713048,6	5334046,4	344,0	0,645	0,900	4,093	90,0	1,273E-03	6,019E-04	9,115E-05
DUMP18	BAR2_STERILES / From BAR2 to STERILES	3884,0	717308,7	5334049,7	370,0	0,645	0,900	4,093	0,0	6,811E-02	3,222E-02	4,878E-03
DUMP19	BAR2_OB / From BAR2 to OB	5584,5	718740,2	5333572,1	312,0	0,697	0,862	3,299	0,0	9,794E-02	4,632E-02	7,014E-03
DUMP20	JEF_CONCAS / From JEF to CONCAS	3099,1	713048,6	5334046,4	344,0	0,965	1,209	4,802	90,0	5,435E-03	2,571E-03	3,893E-04
DUMP21	JEF_STERILES / From JEF to STERILES	5900,2	717308,7	5334049,7	370,0	0,965	1,209	4,802	0,0	1,035E-01	4,894E-02	7,411E-03
DUMP22	JEF_OB / From JEF to OB	2328,8	718740,2	5333572,1	312,0	0,635	0,858	3,167	0,0	4,084E-02	1,932E-02	2,925E-03

Tableau A 2.3 : Caractéristiques physiques et taux d'émission des sources fugitives des opérations – Scénario 3 (suite)

Source ID	Description	Quantité de tonnage manipulé	Coord. Géo (UTM17	ographiques ' NAD83)	Élévation	Hauteur de relâche	Sigma Y	Sigma Z	Atténuation	Taux	d'émission (g/s)
	·	(ktm/an)	X (m)	Y (m)	(m)	(m)	(m)	(m)	(%)	PM _{tot}	PM ₁₀	PM _{2.5}
LOAD1	PC800 / From JEF to CONCAS	3099,1	717304,1	5334559,8	230,0	3,433	0,488	0,441	0,0	5,435E-02	2,571E-02	3,893E-03
LOAD2	PC800 / From JEF to STERILES	5900,2	717304,1	5334559,8	230,0	3,433	0,488	0,441	0,0	1,035E-01	4,894E-02	7,411E-03
LOAD3	PC1250_1 / From BAR1 to OB	5584,5	715246,1	5335035,9	300,0	2,439	0,523	0,372	0,0	9,794E-02	4,632E-02	7,014E-03
LOAD4	PC1250_2 / From BAR2 to OB	5584,5	715482,4	5334552,5	300,0	2,439	0,523	0,372	0,0	9,794E-02	4,632E-02	7,014E-03
LOAD5	RH340_1 / From CM1 to CONCAS	3881,1	713556,1	5334859,2	160,0	4,900	1,163	0,760	0,0	6,806E-02	3,219E-02	4,875E-03
LOAD6	RH340_1 / From CM1 to LG1STP	1569,5	713556,1	5334859,2	160,0	4,900	1,163	0,760	0,0	2,752E-02	1,302E-02	1,971E-03
LOAD7	RH340_2 / From CM2 to CONCAS	3881,1	713960,1	5334567,0	160,0	4,900	1,163	0,760	0,0	6,806E-02	3,219E-02	4,875E-03
LOAD8	RH340_2 / From CM2 to LG1STP	1569,5	713960,1	5334567,0	160,0	4,900	1,163	0,760	0,0	2,752E-02	1,302E-02	1,971E-03
LOAD9	RH340_3 / From CM3 to CONCAS	3881,1	714187,4	5334819,5	260,0	4,900	1,163	0,760	0,0	6,806E-02	3,219E-02	4,875E-03
LOAD10	RH340_3 / From CM3 to LG2STP	1569,5	714187,4	5334819,5	260,0	4,900	1,163	0,760	0,0	2,752E-02	1,302E-02	1,971E-03
LOAD11	RH200 / From CM3 to STERILES	8620,4	714243,3	5334842,9	260,0	4,900	1,116	0,760	0,0	1,512E-01	7,150E-02	1,083E-02
LOAD12	L1850_1 / From CM2 to STERILES	8620,4	713916,8	5334520,1	160,0	4,900	1,488	0,760	0,0	1,512E-01	7,150E-02	1,083E-02
LOAD13	L1850_2 / From CM4 to CONCAS	3881,1	715022,5	5334668,0	260,0	4,900	1,488	0,760	0,0	6,806E-02	3,219E-02	4,875E-03
LOAD14	L1850_2 / From CM4 to LG2STP	1569,5	715022,5	5334668,0	260,0	4,900	1,488	0,760	0,0	2,752E-02	1,302E-02	1,971E-03
LOAD15	994F / From CM4 to STERILES	8512,9	715080,2	5334626,5	260,0	4,900	1,442	0,760	0,0	1,493E-01	7,061E-02	1,069E-02
LOAD16	994F / From CM4 to CONC_MOB	107,5	715080,2	5334626,5	260,0	4,900	1,442	0,760	0,0	1,885E-03	8,917E-04	1,350E-04
LOAD17	980 / From CM1 to STERILES	8620,4	713617,4	5334833,9	160,0	4,900	0,853	0,760	0,0	1,512E-01	7,150E-02	1,083E-02
LOAD18	PC2000 / From BAR1 to CONCAS	725,7	715283,6	5334976,2	300,0	2,800	0,742	0,372	0,0	1,273E-02	6,019E-03	9,115E-04
LOAD19	PC2000 / From BAR1 to STERILES	3884,0	715283,6	5334976,2	300,0	2,800	0,742	0,372	0,0	6,811E-02	3,222E-02	4,878E-03
LOAD20	345_1 / From BAR2 to CONCAS	725,7	715518,4	5334486,3	300,0	2,800	0,319	0,372	0,0	1,273E-02	6,019E-03	9,115E-04
CRUSHS	Concasseur granulats	107,5	714007,2	5332881,2	351,0	3,490	1,255	0,737	0,0	9,204E-03	4,091E-03	4,091E-03
LOAD1	PC800 / From JEF to CONCAS	3099,1	717304,1	5334559,8	230,0	3,433	0,488	0,441	0,0	5,435E-02	2,571E-02	3,893E-03
LOAD2	PC800 / From JEF to STERILES	5900,2	717304,1	5334559,8	230,0	3,433	0,488	0,441	0,0	1,035E-01	4,894E-02	7,411E-03

¹ Un facteur d'utilisation de 50 % a été considéré afin de tenir compte de la disponibilité et l'efficacité des bouteurs (BULL1 à BULL7).

Les déchargements au concasseur primaire sont atténués à 90 % en raison de sa localisation à l'intérieur d'un bâtiment fermé, équipé d'un dépoussiéreur.

Tableau A 3 : Caractéristiques des véhicules de transport – Scénarios 1, 2 et 3

Véhicule	Hauteur	Largeur	Poids du véhicule (vide)	Charge utile
	(m)	(m)	(t)	(t)
Komatsu HD465-7	4,065	4,595	43,8	55,0
Caterpillar 777	4,567	5,262	61,0	100,0
Caterpillar 793F	6,603	7,626	159,2	226,8
Caterpillar 740	3,745	3,43	33,1	39,5
Caterpillar 735	2,982	3,43	31,4	32,7

Tableau A 4.1 : Quantité de matière déplacée par trajets – Scénario 1

Trajet	Description	Type de camion	Quantité de matière déplacée par année	Poids moyen sur le trajet	Nombre de transport par jour (aller + retour)
			(ktm/an)	(t)	, ,
CM1_CONCAS	From CM1 to CONCAS	Caterpillar 793F	4884,0	272,6	118
CM1_STERILES	From CM1 to STERILES	Caterpillar 793F	8143,8	272,6	197
CM2_CONCAS	From CM2 to CONCAS	Caterpillar 793F	4884,0	272,6	118
CM2_STERILES	From CM2 to STERILES	Caterpillar 793F	8143,8	272,6	197
CM3_CONCAS	From CM3 to CONCAS	Caterpillar 793F	4884,0	272,6	118
CM3_STERILES	From CM3 to STERILES	Caterpillar 793F	8143,8	272,6	197
CM4_LG1STP	From CM4 to LG1STP	Komatsu HD465-7	667,5	71,3	67
CM4_LG2STP	From CM4 to LG2STP	Komatsu HD465-7	1111,4	71,3	111
CM4_STERILES	From CM4 to STERILES	Caterpillar 793F	8143,8	272,6	197
CM5_STERILES	From CM5 to STERILES	Caterpillar 793F	7468,8	272,6	181
CM5_OB	From CM5 to OB	Caterpillar 777	1544,8	111,0	85
CM5_CONC_MOB	From CM5 to CONC_MOB	Caterpillar 735	1075,0	47,7	181
GOU_OB	From GOU to OB	Caterpillar 740	1413,6	52,9	197
CONC_MOB_CONCAS	From CONC_MOB to CONCAS	Caterpillar 793F	0,0	272,6	0
LG1STP_CONCAS	From LG1STP to CONCAS	Caterpillar 793F	665,4	272,6	17
LG2STP_CONCAS	From LG2STP to CONCAS	Caterpillar 793F	1513,2	272,6	37

Tableau A 4.2 : Quantité de matière déplacée par trajets – Scénario 2

Trajet	Description	Type de camion	Quantité de matière déplacée par année (ktm/an)	Poids moyen sur le trajet (t)	Nombre de transport par jour (aller + retour)
CM1_CONCAS	From CM1 to CONCAS	Caterpillar 793F	4380,88	272,6	106
CM1_LG1STP	From CM1 to LG1STP	Caterpillar 740	1392,80	52,9	194
_		'	,	,	1.7.
CM1_STERILES	From CM1 to STERILES	Caterpillar 793F	10865,33	272,6	263
CM2_CONCAS	From CM2 to CONCAS	Caterpillar 793F	4380,88	272,6	106
CM2_LG1STP	From CM2 to LG1STP	Caterpillar 740	1392,80	52,9	194
CM2_STERILES	From CM2 to STERILES	Caterpillar 793F	10865,33	272,6	263
CM3_CONCAS	From CM3 to CONCAS	Caterpillar 793F	4380,88	272,6	106
CM3_LG2STP	From CM3 to LG2STP	Caterpillar 740	1392,80	52,9	194
CM3_STERILES	From CM3 to STERILES	Caterpillar 793F	10865,33	272,6	263
CM4_CONCAS	From CM4 to CONCAS	Caterpillar 793F	4380,88	272,6	106
CM4_LG2STP	From CM4 to LG2STP	Caterpillar 740	1392,80	52,9	194
CM4_STERILES	From CM4 to STERILES	Caterpillar 793F	10865,33	272,6	263
GOU_CONCAS	From GOU to CONCAS	Caterpillar 777	2551,35	111,0	140
GOU_STERILES	From GOU to STERILES	Caterpillar 777	9492,97	111,0	521
GOU_CONCAS_MOB	From GOU to CONCAS_MOB	Caterpillar 777	107,50	111,0	6

Tableau A 4.3 : Quantité de matière déplacée par trajets – Scénario 3

Trajet	Description	Type de camion	Quantité de matière déplacée par année (ktm/an)	Poids moyen sur le trajet (t)	Nombre de transport par jour (aller + retour)
CM1_CONCAS	From CM1 to CONCAS	Caterpillar 793F	3881,12	272,6	94
CM1_LG1STP	From CM1 to LG1STP	Caterpillar 793F	1569,51	272,6	38
CM1_STERILES	From CM1 to STERILES	Caterpillar 793F	8620,36	272,6	209
CM2_CONCAS	From CM2 to CONCAS	Caterpillar 793F	3881,12	272,6	94
CM2_LG1STP	From CM2 to LG1STP	Caterpillar 793F	1569,51	272,6	38
CM2_STERILES	From CM2 to STERILES	Caterpillar 793F	8620,36	272,6	209
CM3_CONCAS	From CM3 to CONCAS	Caterpillar 793F	3881,12	272,6	94
CM3_LG2STP	From CM3 to LG2STP	Caterpillar 793F	1569,51	272,6	38
CM3_STERILES	From CM3 to STERILES	Caterpillar 793F	8620,36	272,6	209
CM4_CONCAS	From CM4 to CONCAS	Caterpillar 793F	3881,12	272,6	94
CM4_LG2STP	From CM4 to LG2STP	Caterpillar 793F	1569,51	272,6	38
CM4_STERILES	From CM4 to STERILES	Caterpillar 793F	8512,86	272,6	206
CM4_CONC_MOB	From CM4 to CONC_MOB	Caterpillar 793F	107,50	272,6	3
BAR1_CONCAS	From BAR1 to CONCAS	Komatsu HD465-7	725,71	71,3	73
BAR1_STERILES	From BAR1 to STERILES	Komatsu HD465-7	3884,04	71,3	387
BAR1_OB	From BAR1 to OB	Caterpillar 740	5584,50	52,9	775
BAR2_CONCAS	From BAR2 to CONCAS	Komatsu HD465-7	725,71	71,3	73
BAR2_STERILES	From BAR2 to STERILES	Komatsu HD465-7	3884,04	71,3	387
BAR2_OB	From BAR2 to OB	Caterpillar 740	5584,50	52,9	775
JEF_CONCAS	From JEF to CONCAS	Caterpillar 777	3099,11	111,0	170
JEF_STERILES	From JEF to STERILES	Caterpillar 777	5900,21	111,0	324
JEF_OB	From JEF to OB	Caterpillar 735	2328,83	47,7	391

Tableau A 5.1 : Caractéristiques de chacun des segments de routage et leurs taux d'émission associés – Scénario 1

Segment ID	Largeur	Longueur	Limon	Nombre de déplacement	Temps d'opération	Poids moyen	Hauteur moyenne	Fa	cteur d'émiss (lb/VMT)	ion	VKT	T	aux d'émissio (g/s)	on	Hauteur de relâche	Sigma Y	Sigma Z	Atténuation
Ū	(m)	(m)	(%)	par jour	par jour (h)	(t)	(m)	PM _{tot}	PM ₁₀	PM _{2.5}		PM _{tot}	PM ₁₀	PM _{2.5}	(m)	(m)	(m)	(%)
А	30	645	8,3	375	24,0	195,2	5,4	2,478E+01	7,046E+00	7,046E-01	242,1	1,957E+01	5,565E+00	5,565E-01	5,398	33,488	5,022	86
В	30	699	8,3	315	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	220,1	2,161E+01	6,145E+00	6,145E-01	6,603	33,488	6,142	86
С	30	270	8,3	690	24,0	243,2	5,9	2,736E+01	7,781E+00	7,781E-01	186,1	1,661E+01	4,724E+00	4,724E-01	5,948	33,488	5,533	86
D	30	265	8,3	690	24,0	243,2	5,9	2,736E+01	7,781E+00	7,781E-01	183,0	1,634E+01	4,645E+00	4,645E-01	5,948	33,488	5,533	86
E	30	168	8,3	315	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	52,9	5,195E+00	1,477E+00	1,477E-01	6,603	33,488	6,142	86
F	30	399	8,3	611	24,0	235,8	5,9	2,698E+01	7,673E+00	7,673E-01	243,7	2,145E+01	6,101E+00	6,101E-01	5,864	33,488	5,455	86
G	30	356	8,3	315	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	112,2	1,102E+01	3,132E+00	3,132E-01	6,603	33,488	6,142	86
Н	30	668	8,3	532	24,0	226,2	5,8	2,648E+01	7,531E+00	7,531E-01	355,6	3,073E+01	8,737E+00	8,737E-01	5,754	33,488	5,352	86
I	30	441	8,3	0	0,0	0,0	0,0	0,000E+00	0,000E+00	0,000E+00	0,0	0,000E+00	0,000E+00	0,000E+00	0,000	33,488	0,000	86
J	30	92	8,3	266	24,0	74,9	3,5	1,610E+01	4,580E+00	4,580E-01	24,4	1,280E+00	3,640E-01	3,640E-02	3,488	33,488	3,245	86
K	20	224	8,3	148	24,0	134,1	4,7	2,093E+01	5,951E+00	5,951E-01	33,1	2,260E+00	6,427E-01	6,427E-02	4,700	24,186	4,372	86
L	30	478	8,3	148	24,0	134,1	4,7	2,093E+01	5,951E+00	5,951E-01	70,7	4,827E+00	1,373E+00	1,373E-01	4,700	33,488	4,372	86
М	30	784	8,3	197	24,0	58,3	3,7	1,438E+01	4,090E+00	4,090E-01	154,5	7,251E+00	2,062E+00	2,062E-01	3,745	33,488	3,484	86
N	30	146	8,3	378	24,0	55,6	3,4	1,408E+01	4,003E+00	4,003E-01	55,1	2,532E+00	7,199E-01	7,199E-02	3,380	33,488	3,144	86
0	30	465	8,3	282	24,0	77,6	4,0	1,636E+01	4,652E+00	4,652E-01	131,1	6,998E+00	1,990E+00	1,990E-01	3,993	33,488	3,714	86
Р	30	95	8,3	111	24,0	78,6	4,1	1,646E+01	4,680E+00	4,680E-01	10,6	5,669E-01	1,612E-01	1,612E-02	4,065	33,488	3,781	86
Q	30	819	8,3	266	24,0	74,9	3,5	1,610E+01	4,580E+00	4,580E-01	217,9	1,145E+01	3,256E+00	3,256E-01	3,488	33,488	3,245	86
R	20	1653	8,3	181	24,0	52,6	3,0	1,374E+01	3,907E+00	3,907E-01	299,2	1,341E+01	3,814E+00	3,814E-01	2,982	24,186	2,774	86
S	30	436	8,3	788	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	343,7	3,375E+01	9,597E+00	9,597E-01	6,603	33,488	6,142	86
Т	30	534	8,3	1235	24,0	251,9	5,9	2,780E+01	7,904E+00	7,904E-01	659,6	5,982E+01	1,701E+01	1,701E+00	5,932	33,488	5,518	86
U	30	1311	8,3	969	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	1270,3	1,247E+02	3,546E+01	3,546E+00	6,603	33,488	6,142	86
V	30	448	8,3	447	24,0	166,3	4,7	2,305E+01	6,556E+00	6,556E-01	200,4	1,508E+01	4,288E+00	4,288E-01	4,750	33,488	4,418	86
W	30	227	8,3	421	24,0	265,2	6,2	2,845E+01	8,089E+00	8,089E-01	95,7	8,885E+00	2,527E+00	2,527E-01	6,199	33,488	5,767	86
Χ	30	202	8,3	37	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	7,5	7,355E-01	2,091E-01	2,091E-02	6,603	33,488	6,142	86
Υ	30	129	8,3	204	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	26,3	2,583E+00	7,346E-01	7,346E-02	6,603	33,488	6,142	86
Z	30	259	8,3	204	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	52,7	5,179E+00	1,473E+00	1,473E-01	6,603	33,488	6,142	86
AA	20	115	8,3	271	24,0	245,6	6,0	2,748E+01	7,815E+00	7,815E-01	31,1	2,790E+00	7,934E-01	7,934E-02	5,976	24,186	5,559	86
AB	20	297	8,3	84	24,0	123,5	4,6	2,017E+01	5,735E+00	5,735E-01	25,0	1,643E+00	4,672E-01	4,672E-02	4,579	24,186	4,259	86

Tableau A 5.2 : Caractéristiques de chacun des segments de routage et leurs taux d'émission associés – Scénario 2

Segment ID	Largeur	Longueur	Limon	Nombre de déplacement	Temps d'opération	Poids moyen	Hauteur moyenne	Fac	cteur d'émiss (lb/VMT)	sion	VKT	Ta	aux d'émissio (g/s)	on	Hauteur de relâche	Sigma Y	Sigma Z	Atténuation
	(m)	(m)	(%)	par jour	par jour (h)	(t)	(m)	PM _{tot}	PM10	PM _{2,5}		PM _{tot}	PM10	PM _{2,5}	(m)	(m)	(m)	(%)
А	30	238	8,3	563	24,0	217,0	5,6	2,599E+01	7,391E+00	7,391E-01	134,0	1,136E+01	3,231E+00	3,231E-01	5,618	33,488	5,226	86
В	30	408	8,3	563	24,0	217,0	5,6	2,599E+01	7,391E+00	7,391E-01	229,6	1,948E+01	5,538E+00	5,538E-01	5,618	33,488	5,226	86
С	30	2265	8,3	1 126	24,0	217,0	5,6	2,599E+01	7,391E+00	7,391E-01	2550,9	2,163E+02	6,152E+01	6,152E+00	5,618	33,488	5,226	86
D	30	747	8,3	563	24,0	217,0	5,6	2,599E+01	7,391E+00	7,391E-01	420,3	3,565E+01	1,014E+01	1,014E+00	5,618	33,488	5,226	86
E	30	716	8,3	563	24,0	217,0	5,6	2,599E+01	7,391E+00	7,391E-01	402,8	3,416E+01	9,715E+00	9,715E-01	5,618	33,488	5,226	86
F	30	1201	8,3	1 126	24,0	217,0	5,6	2,599E+01	7,391E+00	7,391E-01	1352,0	1,147E+02	3,260E+01	3,260E+00	5,618	33,488	5,226	86
N	30	2257	8,3	1 573	24,0	241,5	5,9	2,727E+01	7,755E+00	7,755E-01	3549,8	3,159E+02	8,982E+01	8,982E+00	5,929	33,488	5,515	86
0	30	847	8,3	1 647	24,0	187,1	5,3	2,431E+01	6,914E+00	6,914E-01	1394,7	1,106E+02	3,146E+01	3,146E+00	5,286	33,488	4,917	86
Р	30	1521	8,3	667	24,0	122,4	4,6	2,008E+01	5,711E+00	5,711E-01	1014,5	6,648E+01	1,890E+01	1,890E+00	4,567	33,488	4,248	86
Q	30	247	8,3	661	24,0	122,4	4,6	2,008E+01	5,711E+00	5,711E-01	163,2	1,070E+01	3,042E+00	3,042E-01	4,567	33,488	4,248	86
R	30	1100	8,3	6	24,0	122,4	4,6	2,008E+01	5,711E+00	5,711E-01	6,6	4,325E-01	1,230E-01	1,230E-02	4,567	33,488	4,248	86
S	30	395	8,3	1 266	24,0	206,6	5,5	2,542E+01	7,229E+00	7,229E-01	500,4	4,151E+01	1,180E+01	1,180E+00	5,502	33,488	5,118	86
Т	30	607	8,3	388	24,0	58,3	3,7	1,438E+01	4,090E+00	4,090E-01	235,7	1,106E+01	3,145E+00	3,145E-01	3,745	33,488	3,484	86
U	30	749	8,3	878	24,0	272,1	6,3	2,878E+01	8,183E+00	8,183E-01	657,8	6,176E+01	1,756E+01	1,756E+00	6,278	33,488	5,840	86
V	30	185	8,3	388	24,0	58,3	3,7	1,438E+01	4,090E+00	4,090E-01	71,7	3,364E+00	9,567E-01	9,567E-02	3,745	33,488	3,484	86
W	30	169	8,3	564	24,0	256,3	6,1	2,801E+01	7,965E+00	7,965E-01	95,6	8,737E+00	2,484E+00	2,484E-01	6,098	33,488	5,672	86

Tableau A 5.3 : Caractéristiques de chacun des segments de routage et leurs taux d'émission associés – Scénario 3

Segment ID	Largeur	Longueur	Limon	Nombre de déplacement	Temps d'opération	Poids moyen	Hauteur moyenne	Fa	cteur d'émiss (lb/VMT)	sion	VKT	Т	aux d'émissio (g/s)	on	Hauteur de relâche	Sigma Y	Sigma Z	Atténuation
. 5	(m)	(m)	(%)	par jour	par jour (h)	(t)	(m)	PM _{tot}	PM ₁₀	PM _{2,5}		PM _{tot}	PM ₁₀	PM _{2,5}	(m)	(m)	(m)	(%)
А	30	238	8,3	341	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	81,1	7,967E+00	2,265E+00	2,265E-01	6,603	33,488	6,142	86
В	30	408	8,3	341	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	139,1	1,366E+01	3,883E+00	3,883E-01	6,603	33,488	6,142	86
С	30	2 265	8,3	682	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	1545,1	1,517E+02	4,314E+01	4,314E+00	6,603	33,488	6,142	86
D	30	747	8,3	341	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	254,6	2,500E+01	7,108E+00	7,108E-01	6,603	33,488	6,142	86
Е	30	716	8,3	341	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	244,0	2,396E+01	6,812E+00	6,812E-01	6,603	33,488	6,142	86
F	30	1 201	8,3	682	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	818,9	8,040E+01	2,286E+01	2,286E+00	6,603	33,488	6,142	86
G	30	1 190	8,3	1 235	24,0	65,8	3,9	1,520E+01	4,321E+00	4,321E-01	1470,1	7,288E+01	2,073E+01	2,073E+00	3,864	33,488	3,595	86
Н	30	972	8,3	1 235	24,0	65,8	3,9	1,520E+01	4,321E+00	4,321E-01	1200,7	5,953E+01	1,693E+01	1,693E+00	3,864	33,488	3,595	86
I	30	394	8,3	2 470	24,0	65,8	3,9	1,520E+01	4,321E+00	4,321E-01	974,2	4,830E+01	1,373E+01	1,373E+00	3,864	33,488	3,595	86
J	30	1 590	8,3	1 414	24,0	93,9	4,2	1,783E+01	5,069E+00	5,069E-01	2248,7	1,308E+02	3,719E+01	3,719E+00	4,240	33,488	3,945	86
К	30	851	8,3	2 044	24,0	73,7	3,9	1,599E+01	4,548E+00	4,548E-01	1740,0	9,079E+01	2,582E+01	2,582E+00	3,944	33,488	3,669	86
L	30	416	8,3	885	24,0	91,5	3,9	1,763E+01	5,012E+00	5,012E-01	368,3	2,118E+01	6,023E+00	6,023E-01	3,867	33,488	3,597	86
М	30	1 888	8,3	1 941	24,0	57,1	3,6	1,426E+01	4,054E+00	4,054E-01	3663,7	1,704E+02	4,846E+01	4,846E+00	3,591	33,488	3,341	86
N	30	2 257	8,3	1 931	24,0	181,7	5,2	2,399E+01	6,823E+00	6,823E-01	4357,7	3,411E+02	9,701E+01	9,701E+00	5,244	33,488	4,878	86
0	30	847	8,3	1 001	24,0	237,9	5,9	2,709E+01	7,703E+00	7,703E-01	847,6	7,491E+01	2,130E+01	2,130E+00	5,887	33,488	5,476	86
Q	30	247	8,3	3	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	0,7	7,274E-02	2,068E-02	2,068E-03	6,603	33,488	6,142	86
R	30	1 100	8,3	3	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	3,3	3,240E-01	9,213E-02	9,213E-03	6,603	33,488	6,142	86
S	30	395	8,3	998	24,0	237,7	5,9	2,708E+01	7,700E+00	7,700E-01	394,5	3,485E+01	9,911E+00	9,911E-01	5,885	33,488	5,474	86
Т	30	607	8,3	76	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	46,2	4,532E+00	1,289E+00	1,289E-01	6,603	33,488	6,142	86
U	30	749	8,3	922	24,0	232,5	5,8	2,681E+01	7,624E+00	7,624E-01	690,8	6,043E+01	1,718E+01	1,718E+00	5,826	33,488	5,419	86
V	30	185	8,3	76	24,0	300,5	6,6	3,009E+01	8,557E+00	8,557E-01	14,0	1,379E+00	3,921E-01	3,921E-02	6,603	33,488	6,142	86
W	30	169	8,3	692	24,0	209,9	5,6	2,561E+01	7,281E+00	7,281E-01	117,3	9,799E+00	2,786E+00	2,786E-01	5,567	33,488	5,179	86

Tableau A 6.1 : Caractéristiques des sources volumiques de routage – Scénario 1

Source ID	Description	X (m)	Y (m)	Élévation (m)	Source ID	Description	X (m)	Y (m)	Élévation (m)
ROUT001	A_1	713980,2	5334877,8	305,1	ROUT026	D_3	714319,8	5334458,8	260,0
ROUT002	A_2	713923,8	5334838,0	309,5	ROUT027	D_4	714287,6	5334394,5	260,0
ROUT003	A_3	713852,5	5334848,4	310,5	ROUT028	E_1	714184,2	5334450,3	259,8
ROUT004	A_4	713780,7	5334843,4	304,0	ROUT029	E_2	714238,1	5334402,7	259,9
ROUT005	A_5	713797,0	5334807,8	300,4	ROUT030	F_1	714268,2	5334355,0	259,7
ROUT006	A_6	713865,9	5334794,0	298,9	ROUT031	F_2	714241,1	5334288,3	259,8
ROUT007	A_7	713933,4	5334771,1	299,9	ROUT032	F_3	714196,1	5334235,0	259,7
ROUT008	A_8	713998,2	5334740,3	295,9	ROUT033	F_4	714126,7	5334248,8	263,7
ROUT009	A_9	714060,1	5334704,5	289,0	ROUT034	F_5	714058,8	5334271,4	270,8
ROUT010	B_01	713467,3	5334629,3	280,0	ROUT035	F_6	713989,9	5334291,1	277,6
ROUT011	B_02	713513,7	5334600,7	280,0	ROUT036	G_1	713727,2	5334478,6	269,9
ROUT012	B_03	713584,7	5334612,8	280,7	ROUT037	G_2	713785,6	5334436,6	270,7
ROUT013	B_04	713655,8	5334624,1	281,1	ROUT038	G_3	713844,6	5334395,5	270,1
ROUT014	B_05	713715,5	5334653,7	279,9	ROUT039	G_4	713909,6	5334365,0	271,8
ROUT015	B_06	713787,3	5334658,1	279,9	ROUT040	G_5	713970,0	5334330,9	278,0
ROUT016	B_07	713859,3	5334657,1	279,9	ROUT041	H_1	713926,0	5334303,4	284,1
ROUT017	B_08	713931,3	5334658,0	280,0	ROUT042	H_2	713857,2	5334323,1	290,0
ROUT018	B_09	714003,2	5334659,4	280,0	ROUT043	H_3	713787,8	5334340,8	297,0
ROUT019	B_10	714071,4	5334666,8	281,2	ROUT044	H_4	713718,6	5334359,2	304,0
ROUT020	C_1	714113,7	5334675,5	282,1	ROUT045	H_5	713650,1	5334380,7	311,0
ROUT021	C_2	714182,5	5334655,5	275,9	ROUT046	H_6	713580,1	5334376,9	317,5
ROUT022	C_3	714249,7	5334630,9	269,1	ROUT047	H_7	713514,5	5334347,8	323,0
ROUT023	C_4	714318,7	5334617,6	262,2	ROUT048	H_8	713446,3	5334326,4	327,8
ROUT024	D_1	714353,8	5334593,8	259,7	ROUT049	H_9	713375,5	5334316,1	334,1
ROUT025	D_2	714351,1	5334523,6	259,7	ROUT050	I_1	714196,1	5334028,1	330,9

Tableau A 6.1 : Caractéristiques des sources volumiques de routage – Scénario 1 (suite)

Source ID	Description	X (m)	Y (m)	Élévation (m)	Source ID	Description	X (m)	Y (m)	Élévation (m)
ROUT051	I_2	714125,7	5334043,4	332,2	ROUT076	M_09	714334,6	5333787,5	334,2
ROUT052	I_3	714056,2	5334061,9	333,7	ROUT077	M_10	714262,9	5333793,5	333,8
ROUT053	I_4	713986,8	5334081,2	335,7	ROUT078	M_11	714190,9	5333796,0	333,9
ROUT054	I_5	713917,3	5334099,8	337,5	ROUT079	N_1	714174,5	5333830,1	333,3
ROUT055	I_6	713848,8	5334121,7	337,8	ROUT080	N_2	714200,7	5333897,1	332,5
ROUT056	J_1	714224,1	5333976,3	331,3	ROUT081	0_1	714264,4	5333928,5	333,0
ROUT057	K_1	713802,0	5334103,0	337,3	ROUT082	0_2	714335,5	5333922,6	334,8
ROUT058	K_2	713796,8	5334051,3	340,0	ROUT083	O_3	714397,7	5333953,8	333,5
ROUT059	K_3	713798,0	5333999,7	342,8	ROUT084	O_4	714467,9	5333962,1	335,0
ROUT060	K_4	713811,1	5333949,5	343,9	ROUT085	O_5	714536,7	5333961,5	341,0
ROUT061	L_1	713788,7	5334141,8	338,1	ROUT086	O_6	714589,1	5333922,8	347,0
ROUT062	L_2	713719,3	5334160,9	338,7	ROUT087	P_1	713329,8	5334250,1	339,5
ROUT063	L_3	713649,4	5334178,5	339,4	ROUT088	Q_01	714285,4	5334025,2	329,6
ROUT064	L_4	713579,2	5334194,3	340,2	ROUT089	Q_02	714357,3	5334028,9	329,3
ROUT065	L_5	713507,8	5334202,9	341,2	ROUT090	Q_03	714429,3	5334031,6	329,5
ROUT066	L_6	713435,9	5334204,4	341,7	ROUT091	Q_04	714501,2	5334033,7	330,4
ROUT067	L_7	713363,9	5334203,6	342,4	ROUT092	Q_05	714573,2	5334033,7	330,4
ROUT068	M_01	714899,5	5333720,2	333,9	ROUT093	Q_06	714645,1	5334037,4	329,7
ROUT069	M_02	714836,7	5333751,2	334,1	ROUT094	Q_07	714716,3	5334028,4	329,3
ROUT070	M_03	714765,7	5333762,9	334,7	ROUT095	Q_08	714787,7	5334027,8	330,1
ROUT071	M_04	714694,1	5333769,9	334,7	ROUT096	Q_09	714857,9	5334043,3	330,8
ROUT072	M_05	714622,3	5333776,0	334,7	ROUT097	Q_10	714924,6	5334070,0	330,5
ROUT073	M_06	714550,4	5333777,7	334,7	ROUT098	Q_11	714991,9	5334095,5	330,0
ROUT074	M_07	714478,4	5333780,0	334,6	ROUT099	R_01	714153,4	5333777,0	333,4
ROUT075	M_08	714406,5	5333782,7	334,5	ROUT100	R_02	714138,6	5333727,2	333,2

Tableau A 6.1 : Caractéristiques des sources volumiques de routage – Scénario 1 (suite)

Source ID	Description	X (m)	Y (m)	Élévation (m)	Source ID	Description	X (m)	Y (m)	Élévation (m)
ROUT101	R_03	714123,2	5333677,5	333,8	ROUT126	R_28	713952,0	5332892,4	351,2
ROUT102	R_04	714109,0	5333627,8	334,1	ROUT127	R_29	713997,8	5332916,8	351,0
ROUT103	R_05	714080,6	5333584,3	333,8	ROUT128	R_30	714046,8	5332933,3	351,0
ROUT104	R_06	714045,9	5333545,5	333,7	ROUT129	R_31	714097,6	5332944,1	351,0
ROUT105	R_07	714009,3	5333508,6	334,2	ROUT130	R_32	714148,9	5332941,6	351,0
ROUT106	R_08	713974,9	5333469,7	334,4	ROUT131	S_1	714382,0	5334606,2	259,7
ROUT107	R_09	713944,2	5333427,9	334,4	ROUT132	S_2	714450,7	5334587,8	265,0
ROUT108	R_10	713919,0	5333382,5	334,5	ROUT133	S_3	714475,1	5334524,7	270,8
ROUT109	R_11	713904,2	5333332,7	334,8	ROUT134	S_4	714480,7	5334453,1	276,3
ROUT110	R_12	713889,6	5333282,8	336,2	ROUT135	S_5	714503,0	5334385,1	281,6
ROUT111	R_13	713874,7	5333233,0	338,0	ROUT136	S_6	714539,8	5334324,6	287,6
ROUT112	R_14	713864,9	5333182,1	340,3	ROUT137	T_1	714617,1	5334285,8	295,8
ROUT113	R_15	713850,9	5333132,3	342,7	ROUT138	T_2	714686,8	5334269,1	302,9
ROUT114	R_16	713830,6	5333084,6	345,3	ROUT139	T_3	714756,9	5334254,7	309,9
ROUT115	R_17	713795,3	5333048,1	348,8	ROUT140	T_4	714827,1	5334239,4	315,4
ROUT116	R_18	713781,2	5333003,1	349,9	ROUT141	T_5	714896,8	5334222,3	320,9
ROUT117	R_19	713782,0	5332951,2	350,8	ROUT142	T_6	714964,9	5334199,6	326,4
ROUT118	R_20	713782,3	5332899,2	351,4	ROUT143	T_7	715024,5	5334163,2	329,0
ROUT119	R_21	713782,3	5332847,2	352,0	ROUT144	U_01	715079,8	5334125,7	329,3
ROUT120	R_22	713787,5	5332795,4	351,9	ROUT145	U_02	715150,5	5334139,0	329,3
ROUT121	R_23	713809,6	5332757,1	351,8	ROUT146	U_03	715220,8	5334154,0	330,3
ROUT122	R_24	713861,5	5332756,4	351,0	ROUT147	U_04	715285,3	5334185,7	329,6
ROUT123	R_25	713911,6	5332766,4	350,6	ROUT148	U_05	715338,7	5334233,9	332,1
ROUT124	R_26	713907,6	5332813,3	352,6	ROUT149	U_06	715397,2	5334275,1	333,5
ROUT125	R_27	713911,3	5332860,1	353,0	ROUT150	U_07	715465,7	5334292,8	334,5

5334185,4

5334167,5

5334121,3

713169,1

713122,9

713069,0

Tableau A 6.1	: Caractéris	stiques des so	ources volumiq	ues de routage – S	Scénario 1 (suit	e)		
Source ID	Description	X (m)	Y (m)	Élévation (m)	Source ID	Description	X (m)	Y (m)
ROUT151	U_08	715536,3	5334288,1	335,7	ROUT176	Z_1	713024,3	5334109,1
ROUT152	U_09	715601,5	5334258,4	336,8	ROUT177	Z_2	712961,8	5334138,0
ROUT153	U_10	715654,3	5334211,4	339,1	ROUT178	Z_3	712958,8	5334205,3
ROUT154	U_11	715717,3	5334176,9	341,3	ROUT179	Z_4	713019,5	5334240,6
ROUT155	U_12	715783,3	5334148,6	346,3	ROUT180	AA_1	713114,3	5334206,7
ROUT156	U_13	715846,2	5334114,4	352,3	ROUT181	AA_2	713067,7	5334229,7
ROUT157	U_14	715905,8	5334074,9	357,6	ROUT182	AB_1	713034,9	5334262,7
ROUT158	U_15	715913,9	5334021,5	359,3	ROUT183	AB_2	713022,3	5334312,1
ROUT159	U_16	715850,6	5334053,7	363,0	ROUT184	AB_3	712984,0	5334342,2
ROUT160	U_17	715783,2	5334077,2	366,8	ROUT185	AB_4	712933,3	5334350,4
ROUT161	U_18	715733,5	5334036,8	369,3	ROUT186	AB_5	712898,6	5334373,3
ROUT162	V_1	714591,2	5334676,3	301,0	ROUT187	AB_6	712938,8	5334406,3
ROUT163	V_2	714579,1	5334605,4	300,2				
ROUT164	V_3	714548,6	5334542,6	294,0				
ROUT165	V_4	714530,5	5334476,0	289,6				
ROUT166	V_5	714550,9	5334408,0	290,8				
ROUT167	V_6	714576,8	5334342,5	290,3				
ROUT168	W_1	713299,6	5334273,8	339,7				
ROUT169	W_2	713230,6	5334253,4	342,4				
ROUT170	W_3	713166,0	5334222,8	342,0				
ROUT171	X_1	713312,1	5334201,1	342,6				
ROUT172	X_2	713240,5	5334194,1	342,7				

342,5

343,2

343,8

ROUT173

ROUT174

ROUT175

X_3

Y_1

Y_2

Élévation (m) 343,7

343,3

342,7

343,9 343,0 343,4 344,1 343,9

348,6

353,5

357,3

357,7

Tableau A 6.2 : Caractéristiques des sources volumiques de routage – Scénario 2

Source ID	D	Х	Υ	Élévation	0	De contratte a	Х	Υ	Élévation
Source ID	Description	(m)	(m)	(m)	Source ID	Description	(m)	Y (m) 5334279 5334255 5334238 5334245 5334255 5334267 5334282 5334293 5334313 5334336 5334356 5334375 5334395 5334384 5334352 5334299 5334265 5334243	(m)
ROUT001	A_1	713558	5334778	160	ROUT021	C_12	714314	5334279	234
ROUT002	A_2	713545	5334707	160	ROUT022	C_13	714378	5334255	240
ROUT003	A_3	713542	5334636	160	ROUT023	C_14	714322	5334238	244
ROUT004	B_1	713903	5334565	160	ROUT024	C_15	714251	5334245	251
ROUT005	B_2	713838	5334595	160	ROUT025	C_16	714180	5334255	258
ROUT006	B_3	713769	5334616	160	ROUT026	C_17	714109	5334267	265
ROUT007	B_4	713699	5334633	160	ROUT027	C_18	714039	5334282	272
ROUT008	B_5	713628	5334627	160	ROUT028	C_19	713969	5334293	279
ROUT009	B_6	713562	5334602	160	ROUT029	C_20	713900	5334313	286
ROUT010	C_01	713577	5334550	161	ROUT030	C_21	713832	5334336	293
ROUT011	C_02	713645	5334530	165	ROUT031	C_22	713763	5334356	300
ROUT012	C_03	713713	5334505	171	ROUT032	C_23	713694	5334375	308
ROUT013	C_04	713778	5334476	178	ROUT033	C_24	713625	5334395	314
ROUT014	C_05	713843	5334445	185	ROUT034	C_25	713558	5334384	319
ROUT015	C_06	713907	5334413	192	ROUT035	C_26	713494	5334352	325
ROUT016	C_07	713971	5334382	199	ROUT036	C_27	713428	5334322	331
ROUT017	C_08	714038	5334357	206	ROUT037	C_28	713360	5334299	336
ROUT018	C_09	714106	5334333	213	ROUT038	C_29	713297	5334265	340
ROUT019	C_10	714174	5334311	221	ROUT039	C_30	713229	5334243	342
ROUT020	C_11	714243	5334293	227	ROUT040	C_31	713161	5334220	342

Tableau A 6.2 : Caractéristiques des sources volumiques de routage – Scénario 2 (suite)

Source ID	B dudi	Х	Υ	Élévation	Source ID	Description	Х	Υ	Élévation
Source ID	Description	(m)	(m)	(m)	Source ID	Description	(m)	(m) 5334179 5334182 5334188 5334205 5334184 5334125 5334108 5334093 5334079 5334066 5334056 5334053 5334053 5334053 5334048 5334034 5334019 5334010	(m)
ROUT041	D_01	714278	5334779	260	ROUT061	F_01	714475	5334179	260
ROUT042	D_02	714337	5334738	260	ROUT062	F_02	714403	5334182	260
ROUT043	D_03	714390	5334689	260	ROUT063	F_03	714331	5334188	260
ROUT044	D_04	714442	5334639	260	ROUT064	F_04	714261	5334205	260
ROUT045	D_05	714480	5334581	260	ROUT065	F_05	714216	5334184	261
ROUT046	D_06	714505	5334513	260	ROUT066	F_06	714273	5334143	267
ROUT047	D_07	714514	5334442	260	ROUT067	F_07	714342	5334125	273
ROUT048	D_08	714517	5334370	260	ROUT068	F_08	714412	5334108	280
ROUT049	D_09	714515	5334298	260	ROUT069	F_09	714482	5334093	287
ROUT050	D_10	714508	5334227	260	ROUT070	F_10	714552	5334079	294
ROUT051	E_01	715010	5334578	260	ROUT071	F_11	714623	5334066	301
ROUT052	E_02	714973	5334516	260	ROUT072	F_12	714694	5334056	307
ROUT053	E_03	714932	5334458	260	ROUT073	F_13	714765	5334048	313
ROUT054	E_04	714886	5334402	260	ROUT074	F_14	714837	5334053	318
ROUT055	E_05	714838	5334348	260	ROUT075	F_15	714908	5334053	324
ROUT056	E_06	714788	5334297	260	ROUT076	F_16	714980	5334048	329
ROUT057	E_07	714732	5334253	260	ROUT077	F_17	715050	5334034	328
ROUT058	E_08	714671	5334215	260	ROUT180	N_01	715121	5334019	328
ROUT059	E_09	714604	5334192	260	ROUT181	N_02	715193	5334010	328
ROUT060	E_10	714533	5334183	260	ROUT182	N_03	715264	5334020	334

Tableau A 6.2 : Caractéristiques des sources volumiques de routage – Scénario 2 (suite)

Course ID	Description	Х	Υ	Élévation	Cauras ID	Description	Х	Υ	Élévation
Source ID	Description	(m)	(m)	(m)	Source ID	Description	(m)	(m)	(m)
ROUT183	N_04	715335	5334030	341	ROUT203	N_24	716736	5334238	372
ROUT184	N_05	715405	5334043	348	ROUT204	N_25	716806	5334225	370
ROUT185	N_06	715476	5334054	355	ROUT205	N_26	716878	5334219	370
ROUT186	N_07	715547	5334064	362	ROUT206	N_27	716950	5334214	370
ROUT187	N_08	715618	5334075	369	ROUT207	N_28	717017	5334188	370
ROUT188	N_09	715688	5334086	376	ROUT208	N_29	717081	5334156	370
ROUT189	N_10	715758	5334075	383	ROUT209	N_30	717143	5334119	370
ROUT190	N_11	715830	5334069	390	ROUT210	N_31	717209	5334090	370
ROUT191	N_12	715901	5334065	397	ROUT211	O_01	714262	5334030	331
ROUT192	N_13	715973	5334065	400	ROUT212	O_02	714334	5334027	330
ROUT193	N_14	716042	5334086	400	ROUT213	O_03	714406	5334023	331
ROUT194	N_15	716111	5334108	400	ROUT214	O_04	714478	5334018	331
ROUT195	N_16	716180	5334129	400	ROUT215	O_05	714549	5334007	329
ROUT196	N_17	716249	5334150	400	ROUT216	O_06	714620	5333996	327
ROUT197	N_18	716318	5334170	400	ROUT217	O_07	714692	5333988	328
ROUT198	N_19	716387	5334190	400	ROUT218	O_08	714763	5333980	329
ROUT199	N_20	716456	5334211	399	ROUT219	O_09	714835	5333988	329
ROUT200	N_21	716522	5334239	393	ROUT220	O_10	714906	5333997	329
ROUT201	N_22	716593	5334246	386	ROUT221	0_11	714978	5334006	329
ROUT202	N_23	716664	5334244	379	ROUT222	0_12	715048	5334023	328

Tableau A 6.2 : Caractéristiques des sources volumiques de routage – Scénario 2 (suite)

0	B dudi	Х	Υ	Élévation	0	December	Х	Y	Élévation
Source ID	Description	(m)	(m)	(m)	Source ID	Description	(m)	(m)	(m)
ROUT223	P_01	715288	5333663	260	ROUT243	P_21	714199	5333795	334
ROUT224	P_02	715354	5333634	260	ROUT244	Q_1	714225	5333980	332
ROUT225	P_03	715334	5333609	262	ROUT245	Q_2	714204	5333912	333
ROUT226	P_04	715263	5333609	269	ROUT246	Q_3	714179	5333844	334
ROUT227	P_05	715191	5333610	276	ROUT247	R_01	714146	5333753	334
ROUT228	P_06	715120	5333614	283	ROUT248	R_02	714125	5333684	335
ROUT229	P_07	715062	5333573	289	ROUT249	R_03	714107	5333614	335
ROUT230	P_08	715000	5333553	296	ROUT250	R_04	714066	5333560	335
ROUT231	P_09	714935	5333583	302	ROUT251	R_05	714011	5333513	336
ROUT232	P_10	714865	5333586	309	ROUT252	R_06	713965	5333459	336
ROUT233	P_11	714795	5333597	315	ROUT253	R_07	713934	5333394	335
ROUT234	P_12	714750	5333650	322	ROUT254	R_08	713911	5333326	335
ROUT235	P_13	714739	5333721	328	ROUT255	R_09	713901	5333255	336
ROUT236	P_14	714702	5333771	334	ROUT256	R_10	713908	5333183	339
ROUT237	P_15	714631	5333778	336	ROUT257	R_11	713906	5333112	343
ROUT238	P_16	714559	5333782	336	ROUT258	R_12	713897	5333040	347
ROUT239	P_17	714487	5333784	336	ROUT259	R_13	713884	5332970	350
ROUT240	P_18	714415	5333789	336	ROUT260	R_14	713877	5332898	352
ROUT241	P_19	714343	5333792	335	ROUT261	R_15	713919	5332856	353
ROUT242	P_20	714271	5333792	335	ROUT262	S_1	714182	5334036	332

Tableau A 6.2 : Caractéristiques des sources volumiques de routage – Scénario 2 (suite)

Course ID	December	Х	Υ	Élévation	Course ID	Description	x	Y	Élévation
Source ID	Description	(m)	(m)	(m)	Source ID	Description	(m)	(m)	(m)
ROUT263	S_2	714111	5334049	333	ROUT277	U_03	713665	5334175	339
ROUT264	S_3	714042	5334070	335	ROUT278	U_04	713595	5334191	340
ROUT265	S_4	713971	5334083	337	ROUT279	U_05	713523	5334201	341
ROUT266	S_5	713902	5334104	338	ROUT280	U_06	713451	5334204	342
ROUT267	T_1	713835	5334070	340	ROUT281	U_07	713379	5334203	342
ROUT268	T_2	713882	5334027	344	ROUT282	U_08	713307	5334201	342
ROUT269	T_3	713927	5333991	349	ROUT283	U_09	713236	5334199	342
ROUT270	T_4	713915	5333921	356	ROUT284	U_10	713164	5334199	342
ROUT271	T_5	713889	5333854	363	ROUT285	V_1	713097	5334212	343
ROUT272	T_6	713829	5333827	369	ROUT286	V_2	713039	5334249	344
ROUT273	T_7	713762	5333847	376	ROUT287	V_3	713037	5334320	344
ROUT274	T_8	713739	5333890	380	ROUT288	W_1	713109	5334151	343
ROUT275	U_01	713803	5334136	339	ROUT289	W_2	713061	5334101	344
ROUT276	U_02	713734	5334156	339		•	•	•	•

Tableau A 6.3 : Caractéristiques des sources volumiques de routage – Scénario 3

	5	х	Y	Élévation		.	х	Υ	Élévation
Source ID	Description	(m)	(m)	(m)	Source ID	Description	(m)	(m)	(m)
ROUT001	A_1	713558	5334778	160	ROUT021	C_12	714314	5334279	234
ROUT002	A_2	713545	5334707	160	ROUT022	C_13	714378	5334255	240
ROUT003	A_3	713542	5334636	160	ROUT023	C_14	714322	5334238	244
ROUT004	B_1	713903	5334565	160	ROUT024	C_15	714251	5334245	251
ROUT005	B_2	713838	5334595	160	ROUT025	C_16	714180	5334255	258
ROUT006	B_3	713769	5334616	160	ROUT026	C_17	714109	5334267	265
ROUT007	B_4	713699	5334633	160	ROUT027	C_18	714039	5334282	272
ROUT008	B_5	713628	5334627	160	ROUT028	C_19	713969	5334293	279
ROUT009	B_6	713562	5334602	160	ROUT029	C_20	713900	5334313	286
ROUT010	C_01	713577	5334550	161	ROUT030	C_21	713832	5334336	293
ROUT011	C_02	713645	5334530	165	ROUT031	C_22	713763	5334356	300
ROUT012	C_03	713713	5334505	171	ROUT032	C_23	713694	5334375	308
ROUT013	C_04	713778	5334476	178	ROUT033	C_24	713625	5334395	314
ROUT014	C_05	713843	5334445	185	ROUT034	C_25	713558	5334384	319
ROUT015	C_06	713907	5334413	192	ROUT035	C_26	713494	5334352	325
ROUT016	C_07	713971	5334382	199	ROUT036	C_27	713428	5334322	331
ROUT017	C_08	714038	5334357	206	ROUT037	C_28	713360	5334299	336
ROUT018	C_09	714106	5334333	213	ROUT038	C_29	713297	5334265	340
ROUT019	C_10	714174	5334311	221	ROUT039	C_30	713229	5334243	342
ROUT020	C_11	714243	5334293	227	ROUT040	C_31	713161	5334220	342

Tableau A 6.3 : Caractéristiques des sources volumiques de routage – Scénario 3 (suite)

	X		Y	Élévation			х	Y	Élévation	
Source ID	Description	(m)	(m)	(m)	Source ID	Description	(m)	(m)	(m)	
ROUT041	D_01	714278	5334779	260	ROUT061	F_01	714475	5334179	260	
ROUT042	D_02	714337	5334738	260	ROUT062	F_02	714403	5334182	260	
ROUT043	D_03	714390	5334689	260	ROUT063	F_03	714331	5334188	260	
ROUT044	D_04	714442	5334639	260	ROUT064	F_04	714261	5334205	260	
ROUT045	D_05	714480	5334581	260	ROUT065	F_05	714216	5334184	261	
ROUT046	D_06	714505	5334513	260	ROUT066	F_06	714273	5334143	267	
ROUT047	D_07	714514	5334442	260	ROUT067	F_07	714342	5334125	273	
ROUT048	D_08	714517	5334370	260	ROUT068	F_08	714412	5334108	280	
ROUT049	D_09	714515	5334298	260	ROUT069	F_09	714482	5334093	287	
ROUT050	D_10	714508	5334227	260	ROUT070	F_10	714552	5334079	294	
ROUT051	E_01	715010	5334578	260	ROUT071	F_11	714623	5334066	301	
ROUT052	E_02	714973	5334516	260	ROUT072	F_12	714694	5334056	307	
ROUT053	E_03	714932	5334458	260	ROUT073	F_13	714765	5334048	313	
ROUT054	E_04	714886	5334402	260	ROUT074	F_14	714837	5334053	318	
ROUT055	E_05	714838	5334348	260	ROUT075	F_15	714908	5334053	324	
ROUT056	E_06	714788	5334297	260	ROUT076	F_16	714980	5334048	329	
ROUT057	E_07	714732	5334253	260	ROUT077	F_17	715050	5334034	328	
ROUT058	E_08	714671	5334215	260	ROUT078	G_01	715335	5335006	300	
ROUT059	E_09	714604	5334192	260	ROUT079	G_02	715404	5334986	300	
ROUT060	E_10	714533	5334183	260	ROUT080	G_03	715473	5334966	300	

Tableau A 6.3 : Caractéristiques des sources volumiques de routage – Scénario 3 (suite)

		х	Y	Élévation			х	Y	Élévation
Source ID	Description	(m)	(m)	(m)	Source ID	Description	(m)	(m)	(m)
ROUT081	G_04	715542	5334946	300	ROUT101	H_07	715971	5334638	300
ROUT082	G_05	715612	5334926	300	ROUT102	H_08	716042	5334645	300
ROUT083	G_06	715681	5334905	300	ROUT103	H_09	716114	5334653	300
ROUT084	G_07	715750	5334885	300	ROUT104	H_10	716185	5334664	300
ROUT085	G_08	715819	5334865	300	ROUT105	H_11	716253	5334686	300
ROUT086	G_09	715889	5334849	300	ROUT106	H_12	716322	5334708	300
ROUT087	G_10	715959	5334832	300	ROUT107	H_13	716390	5334732	300
ROUT088	G_11	716029	5334815	300	ROUT108	H_14	716458	5334756	300
ROUT089	G_12	716100	5334805	300	ROUT109	I_1	716527	5334750	300
ROUT090	G_13	716172	5334804	300	ROUT110	l_2	716592	5334721	302
ROUT091	G_14	716244	5334803	300	ROUT111	I_3	716634	5334665	308
ROUT092	G_15	716315	5334795	300	ROUT112	I_4	716629	5334595	314
ROUT093	G_16	716386	5334780	300	ROUT113	I_5	716590	5334536	316
ROUT094	G_17	716456	5334766	300	ROUT114	J_01	715110	5334047	328
ROUT095	H_01	715551	5334542	300	ROUT115	J_02	715174	5334079	328
ROUT096	H_02	715620	5334561	300	ROUT116	J_03	715236	5334115	327
ROUT097	H_03	715690	5334579	300	ROUT117	J_04	715301	5334147	327
ROUT098	H_04	715759	5334600	300	ROUT118	J_05	715366	5334178	329
ROUT099	H_05	715828	5334620	300	ROUT119	J_06	715432	5334206	332
ROUT100	H_06	715899	5334632	300	ROUT120	J_07	715499	5334231	337

Tableau A 6.3 : Caractéristiques des sources volumiques de routage – Scénario 3 (suite)

	-	Х	Y	Élévation			Х	Y	Élévation
Source ID	Description	(m)	(m)	(m)	Source ID	Description	(m)	(m)	(m)
ROUT121	J_08	715567	5334255	339	ROUT141	K_06	716973	5334488	315
ROUT122	J_09	715635	5334277	338	ROUT142	K_07	717045	5334481	315
ROUT123	J_10	715704	5334296	330	ROUT143	K_08	717115	5334468	316
ROUT124	J_11	715774	5334313	319	ROUT144	K_09	717185	5334450	316
ROUT125	J_12	715843	5334331	318	ROUT145	K_10	717254	5334430	316
ROUT126	J_13	715913	5334349	317	ROUT146	K_11	717323	5334410	314
ROUT127	J_14	715982	5334367	318	ROUT147	K_12	717393	5334391	311
ROUT128	J_15	716052	5334385	320	ROUT148	L_1	717436	5334405	303
ROUT129	J_16	716123	5334394	320	ROUT149	L_2	717502	5334424	299
ROUT130	J_17	716195	5334399	321	ROUT150	L_3	717532	5334478	283
ROUT131	J_18	716265	5334419	320	ROUT151	L_4	717494	5334528	253
ROUT132	J_19	716334	5334437	320	ROUT152	L_5	717433	5334557	235
ROUT133	J_20	716404	5334453	320	ROUT153	L_6	717364	5334566	228
ROUT134	J_21	716475	5334468	319	ROUT154	M_01	717465	5334378	310
ROUT135	J_22	716546	5334480	319	ROUT155	M_02	717536	5334369	310
ROUT136	K_01	716614	5334487	319	ROUT156	M_03	717608	5334361	310
ROUT137	K_02	716686	5334489	318	ROUT157	M_04	717679	5334351	310
ROUT138	K_03	716758	5334492	315	ROUT158	M_05	717750	5334342	309
ROUT139	K_04	716830	5334497	316	ROUT159	M_06	717822	5334332	309
ROUT140	K_05	716901	5334495	317	ROUT160	M_07	717891	5334314	309

Tableau A 6.3 : Caractéristiques des sources volumiques de routage – Scénario 3 (suite)

		х	Y	Élévation			х	Y	Élévation
Source ID	Description	(m)	(m)	(m)	Source ID	Description	(m)	(m)	(m)
ROUT161	M_08	717959	5334291	309	ROUT181	N_02	715193	5334010	328
ROUT162	M_09	717989	5334233	309	ROUT182	N_03	715264	5334020	334
ROUT163	M_10	718005	5334163	310	ROUT183	N_04	715335	5334030	341
ROUT164	M_11	718008	5334092	311	ROUT184	N_05	715405	5334043	348
ROUT165	M_12	718003	5334020	312	ROUT185	N_06	715476	5334054	355
ROUT166	M_13	717998	5333948	312	ROUT186	N_07	715547	5334064	362
ROUT167	M_14	717995	5333877	313	ROUT187	N_08	715618	5334075	369
ROUT168	M_15	718021	5333814	313	ROUT188	N_09	715688	5334086	376
ROUT169	M_16	718072	5333764	313	ROUT189	N_10	715758	5334075	383
ROUT170	M_17	718129	5333748	313	ROUT190	N_11	715830	5334069	390
ROUT171	M_18	718196	5333774	312	ROUT191	N_12	715901	5334065	397
ROUT172	M_19	718268	5333784	312	ROUT192	N_13	715973	5334065	400
ROUT173	M_20	718339	5333790	312	ROUT193	N_14	716042	5334086	400
ROUT174	M_21	718411	5333787	312	ROUT194	N_15	716111	5334108	400
ROUT175	M_22	718479	5333799	312	ROUT195	N_16	716180	5334129	400
ROUT176	M_23	718545	5333773	312	ROUT196	N_17	716249	5334150	400
ROUT177	M_24	718613	5333749	312	ROUT197	N_18	716318	5334170	400
ROUT178	M_25	718678	5333723	312	ROUT198	N_19	716387	5334190	400
ROUT179	M_26	718709	5333658	312	ROUT199	N_20	716456	5334211	399
ROUT180	N_01	715121	5334019	328	ROUT200	N_21	716522	5334239	393

Tableau A 6.3 : Caractéristiques des sources volumiques de routage – Scénario 3 (suite)

0	December 1 and	х	Y	Élévation	0	D	Х	Y	Élévation
Source ID	Description	(m)	(m)	(m)	Source ID	Description	(m)	(m)	(m)
ROUT201	N_22	716593	5334246	386	ROUT221	0_11	714978	5334006	329
ROUT202	N_23	716664	5334244	379	ROUT222	0_12	715048	5334023	328
ROUT203	N_24	716736	5334238	372	ROUT244	Q_1	714225	5333980	332
ROUT204	N_25	716806	5334225	370	ROUT245	Q_2	714204	5333912	333
ROUT205	N_26	716878	5334219	370	ROUT246	Q_3	714179	5333844	334
ROUT206	N_27	716950	5334214	370	ROUT247	R_01	714146	5333753	334
ROUT207	N_28	717017	5334188	370	ROUT248	R_02	714125	5333684	335
ROUT208	N_29	717081	5334156	370	ROUT249	R_03	714107	5333614	335
ROUT209	N_30	717143	5334119	370	ROUT250	R_04	714066	5333560	335
ROUT210	N_31	717209	5334090	370	ROUT251	R_05	714011	5333513	336
ROUT211	O_01	714262	5334030	331	ROUT252	R_06	713965	5333459	336
ROUT212	O_02	714334	5334027	330	ROUT253	R_07	713934	5333394	335
ROUT213	O_03	714406	5334023	331	ROUT254	R_08	713911	5333326	335
ROUT214	O_04	714478	5334018	331	ROUT255	R_09	713901	5333255	336
ROUT215	O_05	714549	5334007	329	ROUT256	R_10	713908	5333183	339
ROUT216	O_06	714620	5333996	327	ROUT257	R_11	713906	5333112	343
ROUT217	O_07	714692	5333988	328	ROUT258	R_12	713897	5333040	347
ROUT218	O_08	714763	5333980	329	ROUT259	R_13	713884	5332970	350
ROUT219	O_09	714835	5333988	329	ROUT260	R_14	713877	5332898	352
ROUT220	O_10	714906	5333997	329	ROUT261	R_15	713919	5332856	353

Tableau A 6.3 : Caractéristiques des sources volumiques de routage – Scénario 3 (suite)

0	D de ti	х	Y	Élévation	0	D	Х	Υ	Élévation
Source ID	Description	(m)	(m)	(m)	Source ID	Description	(m)	(m)	(m)
ROUT262	S_1	714182	5334036	332	ROUT276	U_02	713734	5334156	339
ROUT263	S_2	714111	5334049	333	ROUT277	U_03	713665	5334175	339
ROUT264	S_3	714042	5334070	335	ROUT278	U_04	713595	5334191	340
ROUT265	S_4	713971	5334083	337	ROUT279	U_05	713523	5334201	341
ROUT266	S_5	713902	5334104	338	ROUT280	U_06	713451	5334204	342
ROUT267	T_1	713835	5334070	340	ROUT281	U_07	713379	5334203	342
ROUT268	T_2	713882	5334027	344	ROUT282	U_08	713307	5334201	342
ROUT269	T_3	713927	5333991	349	ROUT283	U_09	713236	5334199	342
ROUT270	T_4	713915	5333921	356	ROUT284	U_10	713164	5334199	342
ROUT271	T_5	713889	5333854	363	ROUT285	V_1	713097	5334212	343
ROUT272	T_6	713829	5333827	369	ROUT286	V_2	713039	5334249	344
ROUT273	T_7	713762	5333847	376	ROUT287	V_3	713037	5334320	344
ROUT274	T_8	713739	5333890	380	ROUT288	W_1	713109	5334151	343
ROUT275	U_01	713803	5334136	339	ROUT289	W_2	713061	5334101	344

Tableau A 7 : Caractéristiques physiques et taux d'émission des sources ponctuelles – Scénarios 1, 2, et 3

Source ID	Description	No, équipement	Coord, Géographiques (UTM18 NAD83)		Élévation	Hauteur	Température	Vitesse	Diamètre équivalent	Tally d'emission (d/s)				Référence		
			X (m)	Y (m)	(m)	(m)	(°K)	(m/s)	(m)	PM _{tot}	PM ₁₀	PM _{2,5}	NOx	СО	SO ₂	
CONCA1	Dépouss, Concasseur giratoire	603-575-01	713041,3	5334046,6	342,8	20,16	285,85	18,35	0,650	8,479E-02	7,143E-02	4,089E-02	-	-	-	[1]
DOME	Dépoussièreur dome #1-2-3	605-575-01 / 02 / 03	713139,5	5332863,7	350,8	4,60	294,15	16,90	0,434	6,771E-03	5,990E-03	3,125E-03	-	-	-	[2]
CHA_1	Chaudière gaz nat #1	625-430-001	713445,7	5332878,2	350,8	18,21	423,15	1,87	0,600	5,796E-03	5,796E-03	5,796E-03	6,955E-02	7,998E-02	3,914E-04	[3]
CHA_2	Chaudière gaz nat #2	625-430-002	713445,7	5332877,2	350,8	18,21	423,15	1,87	0,600	5,796E-03	5,796E-03	5,796E-03	6,955E-02	7,998E-02	3,914E-04	[3]
FOUR_1	Four de réactivation - combustion #1	625-269-001	713445,7	5332867,8	350,8	18,21	423,15	4,32	0,350	3,510E-03	3,510E-03	3,510E-03	8,483E-02	1,199E-02	3,144E-04	[4]
FOUR_2	Four de réactivation - combustion #2	625-269-002	713445,7	5332867,0	350,8	18,21	423,15	4,32	0,350	3,510E-03	3,510E-03	3,510E-03	8,483E-02	1,199E-02	3,144E-04	[4]
FOUR_IND	Four à induction (Dépoussiéreur humide)	625-575-001	713395,8	5332845,1	350,8	15,82	326,15	24,03	0,200	2,071E-02	2,051E-02	1,961E-02	-	-	-	[5]
RES_CU	Dépoussiéreur humide du réservoir de sulfate de cuivre	630-575-001	713435,0	5332845,2	350,8	15,82	293,15	37,53	0,200	3,538E-02	3,538E-02	3,538E-02	-	-	-	[6]

^[1] Annexe D (art 48) du CA_Traitement primaire du minerai-rev1; Concasseur giratoire - Épurateur 603-575-001 (Ducon Technologies inc,_Vertical ventury scrubber-Type VVO).

^[2] Dôme d'entreposage de minerai concassé - Dépoussiérieur 605-575-01-02-03 ; art 48 du CA_Traitement primaire du minerai-rev1 ; 1 dépoussiéreur sur 3 fonctionne.

^[3] Fiche technique Parker Boiler co, : Emission data for atmospheric natural gas ; Réponse à la question 28 du MDDEFP, janvier 2011 ; Fiche technique de Gaz metro et Gas Union.

^[4] Demande de CA - Exploitation de l'usine (tome 2) ; Questions MDDEFP_janvier 2011 - Qc36 et 37 ; Fiche technique de Gaz metro et Gas Union.

^[5] Demande de CA - Exploitation de l'usine (tome 2) ; art 48 - dépoussiéreur collecteur à voir humide 625-575-01.

^[6] Demande de CA - Exploitation de l'usine (tome 2) ; art 48 - dépoussiéreur collecteur à voir humide 630-575-01.

Tableau A 8 : Taux d'émission moyen des gaz d'échappement pour chaque type de véhicules utilisé – Scénarios 1, 2, et 3

Description	Catégorie	Puissance (hp)	Certification	Facteur de chargement [1]		Taı	ıx d'émissio	n (g/s)	
·		,		(-)	PM ₁₀ ^[2]	PM _{2,5}	СО	NOx	SO ₂
Caterpillar 735	Articulated Truck	424	Т3	0,59	1,892E-02	1,835E-02	1,031E-01	1,821E-01	3,423E-04
Komatsu HD465-7	Off-Highway Truck	739	T2	0,59	2,252E-02	2,184E-02	2,708E-01	4,760E-01	5,965E-04
Caterpillar 793F	Off-Highway Truck	2478	T2	0,59	7,551E-02	7,325E-02	5,228E-01	1,596E+00	2,000E-03
Caterpillar 777F	Off-Highway Truck	938	T2	0,59	2,858E-02	2,773E-02	1,979E-01	6,042E-01	7,572E-04
Caterpillar 740	Articulated Truck	458	Т3	0,59	2,044E-02	1,983E-02	1,114E-01	1,967E-01	3,697E-04
Komatsu PC800	Excavator	496	Т3	0,59	2,214E-02	2,147E-02	1,206E-01	2,130E-01	4,004E-04
Komatsu PC1250	Excavator	688	Т3	0,59	3,070E-02	2,978E-02	2,635E-01	2,955E-01	5,554E-04
Terex RH340	Excavator	2520	T1	0,59	1,088E-01	1,056E-01	5,317E-01	2,472E+00	2,033E-03
Létourneau L-1850-2	Wheel Loader	2000	T1	0,59	8,638E-02	8,379E-02	4,220E-01	1,962E+00	1,613E-03
Komatsu PC2000-8	Excavator	956	T2	0,59	2,913E-02	2,826E-02	2,017E-01	6,158E-01	7,717E-04
Caterpillar 345D-L	Excavator	380	Т3	0,59	1,696E-02	1,645E-02	9,240E-02	1,632E-01	3,067E-04
Caterpillar 980H	Wheel Loader	353	Т3	0,59	1,575E-02	1,528E-02	8,583E-02	1,516E-01	2,849E-04
Caterpillar D10T	Crawler Dozer	603	Т3	0,59	2,691E-02	2,610E-02	2,310E-01	2,590E-01	4,867E-04
Caterpillar 854G	Wheel Dozer	800	T1	0,59	3,455E-02	3,351E-02	1,688E-01	7,847E-01	6,453E-04
A, Copco Mustang 4-F1	Drill Rig	97	Т3	0,43	2,744E-03	2,661E-03	3,155E-02	3,504E-02	6,282E-05
Cubex QXR-920	Drill Rig	540	Т3	0,43	1,090E-02	1,057E-02	6,255E-02	1,625E-01	3,146E-04
A, Copco PV 235	Drill Rig	800	T2	0,43	1,356E-02	1,315E-02	8,040E-02	3,953E-01	4,660E-04
Caterpillar 16M	Grader	332	Т3	0,59	1,482E-02	1,437E-02	8,073E-02	1,426E-01	2,680E-04
Caterpillar 777D	Off-Highway Truck	938	T1	0,59	4,051E-02	3,930E-02	1,979E-01	9,201E-01	7,566E-04
Terex RH200	Excavator	2520	T1	0,59	1,088E-01	1,056E-01	5,317E-01	2,472E+00	2,033E-03
Caterpillar 994F	Wheel Loader	1463	T1	0,59	6,319E-02	6,129E-02	3,087E-01	1,435E+00	1,180E-03

^[1] Appendix A, Median life, annual activity and load factor values for nonroad engine emissions modeling, US-EPA, Report No, NR-005c, April 2004

^[2] Toutes les émissions de particules sont considérées plus petites que 10 µm, donc PMtot = PM10,

Tableau A 9 : Scénarios considérés pour les gaz d'échappement des véhicules miniers – Scénarios 1, 2, et 3

Description	Catágorio	N	ombre considé	eré		Sources associées pour le positionnement	
Description	Catégorie	Scénario 1	Scénario 2	Scénario 3	Scénario 1	Scénario 2	Scénario 3
Caterpillar 735	Hauling	3	3	3			
Komatsu HD465-7	Hauling	7	7	8			
Caterpillar 793F	Hauling	20	24	25		Ensemble des sources associées au routage	
Caterpillar 777F	Hauling	4	4	4			
Caterpillar 740	Hauling	4	4	4			
Komatsu PC800	Local	1	1	1	LOAD1	LOAD1, LOAD2	LOAD1, LOAD2
Komatsu PC1250	Local	2	2	2	LOAD2, LOAD3, LOAD4, LOAD5	LOAD3, LOAD4	LOAD3, LOAD4
Terex RH340	Local	3	3	3	LOAD6, LOAD7, LOAD8, LOAD9, LOAD10, LOAD11	LOAD5, LOAD6, LOAD7, LOAD8, LOAD9, LOAD10	LOAD5, LOAD6, LOAD7, LOAD8, LOAD9, LOAD10
Létourneau L-1850-2	Local	2	2	2	LOAD12, LOAD13	LOAD12, LOAD13, LOAD14	LOAD12, LOAD13, LOAD14
Komatsu PC2000-8	Local	1	1	1	LOAD14	LOAD17, LOAD18, LOAD19	LOAD18, LOAD19
Caterpillar 345D-L	Local	3	3	3	LOAD15, LOAD16, LOAD17	LOAD20, LOAD21, LOAD22	LOAD20, LOAD21, LOAD22
Caterpillar 980H	Local	1	1	1	LOAD18	LOAD16	LOAD17
Caterpillar D10T	Local	4	4	4	BULL1, BULL2, BULL3, BULL4, BULL5	BULL1, BULL2, BULL3, BULL4, BULL5	BULL1, BULL2, BULL3, BULL4, BULL5
Caterpillar 854G	Local	2	2	2	BULL6, BULL7	BULL6, BULL7, BULL8	BULL6, BULL7, BULL8
A. Copco Mustang 4-F1	Local	8	6	6	DRILL1, DRILL2, DRILL3, DRILL4, DRILL5, DRILL6, DRILL7, DRILL8	DRILL1, DRILL2, DRILL3, DRILL4, DRILL5, DRILL6	DRILL1, DRILL2, DRILL3, DRILL4, DRILL5, DRILL6
Cubex QXR-920	Local	5	5	5	DRILL9, DRILL10, DRILL11, DRILL12, DRILL13	DRILL7, DRILL8, DRILL9, DRILL10, DRILL11	DRILL7, DRILL8, DRILL9, DRILL10, DRILL11
A. Copco PV 235	Local	6	7	7	DRILL14, DRILL15, DRILL16, DRILL17, DRILL18, DRILL19	DRILL12, DRILL13, DRILL14, DRILL15, DRILL16, DRILL17, DRILL18	DRILL12, DRILL13, DRILL14, DRILL15, DRILL16, DRILL17, DRILL18
Caterpillar 16M	Support	2	2	2			•
Caterpillar 777D	Support	2	2	2		Ensemble des sources associées au routage	
Terex RH200	Local	0	1	1	-	LOAD11	LOAD11
Caterpillar 994F	Local	0	1	1	-	LOAD15	LOAD15, LOAD16

Tableau A 10.1 : Caractéristiques physiques et taux d'émission des gaz d'échappement associés au routage et au support pour chacun des segments – Scénario 1

Segment	Temps passé sur chaque segment	Hauteur de relâche	Sigma Y	Sigma Z		Taux d'émission	des sources par seg (g/s)	ment (routage + suppor	rt)
J	(%)	(m)	(m)	(m)	PM ₁₀ ^[1]	PM _{2,5}	со	NOx	SO ₂
Α	4,4	5,40	33,49	5,02	9,54E-03	9,26E-03	8,38E-02	2,01E-01	2,48E-04
В	4,6	6,60	33,49	6,14	1,07E-02	1,04E-02	7,31E-02	2,25E-01	2,79E-04
С	2,8	5,95	33,49	5,53	1,45E-02	1,41E-02	1,15E-01	3,05E-01	3,78E-04
D	3,8	5,95	33,49	5,53	2,04E-02	1,98E-02	1,58E-01	4,29E-01	5,32E-04
Е	1,1	6,60	33,49	6,14	1,29E-02	1,25E-02	8,78E-02	2,70E-01	3,36E-04
F	5,2	5,86	33,49	5,46	1,81E-02	1,76E-02	1,43E-01	3,81E-01	4,72E-04
G	2,4	6,60	33,49	6,14	1,09E-02	1,06E-02	7,44E-02	2,29E-01	2,84E-04
Н	7,7	5,75	33,49	5,35	1,76E-02	1,71E-02	1,44E-01	3,71E-01	4,60E-04
I	0,0	0,00	33,49	0,00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
J	0,3	3,49	33,49	3,25	4,61E-03	4,47E-03	2,96E-02	8,41E-02	1,10E-04
K	0,8	4,70	24,19	4,37	3,31E-03	3,21E-03	3,34E-02	6,95E-02	8,59E-05
L	1,0	4,70	33,49	4,37	2,38E-03	2,31E-03	2,41E-02	4,99E-02	6,18E-05
M	2,2	3,75	33,49	3,48	3,60E-03	3,49E-03	1,95E-02	3,67E-02	6,52E-05
N	0,8	3,38	33,49	3,14	4,76E-03	4,62E-03	2,58E-02	4,99E-02	8,63E-05
0	3,1	3,99	33,49	3,71	1,14E-02	1,10E-02	6,84E-02	1,67E-01	2,44E-04
Р	0,1	4,07	33,49	3,78	2,34E-03	2,27E-03	2,69E-02	4,91E-02	6,06E-05
Q	3,1	3,49	33,49	3,25	3,75E-03	3,64E-03	2,41E-02	6,84E-02	8,94E-05
R	5,1	2,98	24,19	2,77	9,38E-04	9,10E-04	5,04E-03	1,07E-02	1,70E-05
S	7,2	6,60	33,49	6,14	2,77E-02	2,69E-02	1,90E-01	5,84E-01	7,24E-04
Т	14,5	5,93	33,49	5,52	4,29E-02	4,16E-02	2,90E-01	8,83E-01	1,10E-03
U	22,2	6,60	33,49	6,14	2,85E-02	2,76E-02	1,95E-01	6,00E-01	7,44E-04
V	3,9	4,75	33,49	4,42	1,13E-02	1,10E-02	7,49E-02	2,22E-01	2,83E-04
W	1,8	6,20	33,49	5,77	1,28E-02	1,24E-02	9,50E-02	2,69E-01	3,33E-04
Х	0,1	6,60	33,49	6,14	6,93E-04	6,72E-04	4,74E-03	1,46E-02	1,81E-05
Υ	0,3	6,60	33,49	6,14	3,65E-03	3,54E-03	2,50E-02	7,69E-02	9,54E-05
Z	0,6	6,60	33,49	6,14	3,66E-03	3,55E-03	2,50E-02	7,70E-02	9,56E-05
AA	0,4	5,98	24,19	5,56	4,10E-03	3,98E-03	3,20E-02	8,63E-02	1,07E-04
AB	0,5	4,58	24,19	4,26	1,30E-03	1,27E-03	1,35E-02	2,74E-02	3,39E-05

Tableau A 10.2 : Caractéristiques physiques et taux d'émission des gaz d'échappement associés au routage et au support pour chacun des segments – Scénario 2

Segment	Temps passé sur chaque segment	Hauteur de relâche	Sigma Y	Sigma Z		Taux d'émission de	s sources par segmen (g/s)	t (routage + support)	
	(%)	(m)	(m)	(m)	PM ₁₀ ^[1]	PM _{2,5}	со	NOx	SO ₂
Α	0,89	5,62	33,49	5,23	9,796E-03	9,421E-03	6,599E-02	1,998E-01	2,508E-04
В	1,52	5,62	33,49	5,23	8,396E-03	8,075E-03	5,656E-02	1,712E-01	2,149E-04
С	17,92	5,62	33,49	5,23	1,800E-02	1,732E-02	1,209E-01	3,650E-01	4,590E-04
D	2,79	5,62	33,49	5,23	9,221E-03	8,868E-03	6,211E-02	1,881E-01	2,361E-04
E	2,67	5,62	33,49	5,23	8,837E-03	8,499E-03	5,953E-02	1,802E-01	2,262E-04
F	9,40	5,62	33,49	5,23	1,757E-02	1,690E-02	1,181E-01	3,570E-01	4,487E-04
N	20,21	5,93	33,49	5,52	1,948E-02	1,871E-02	1,323E-01	4,071E-01	5,053E-04
0	5,97	5,29	33,49	4,92	1,149E-02	1,105E-02	7,690E-02	2,334E-01	2,920E-04
Р	4,68	4,57	33,49	4,25	2,795E-03	2,688E-03	1,809E-02	5,722E-02	6,877E-05
Q	0,68	4,57	33,49	4,25	2,873E-03	2,763E-03	1,860E-02	5,881E-02	7,069E-05
R	0,03	4,57	33,49	4,25	1,987E-05	1,911E-05	1,286E-04	4,068E-04	4,889E-07
S	3,16	5,50	33,49	5,12	1,516E-02	1,459E-02	1,018E-01	3,078E-01	3,863E-04
Т	1,85	3,75	33,49	3,48	1,423E-03	1,405E-03	7,700E-03	1,724E-02	2,626E-05
U	3,31	6,28	33,49	5,84	1,028E-02	9,869E-03	7,001E-02	2,150E-01	2,674E-04
V	0,30	3,75	33,49	3,48	6,241E-04	6,159E-04	3,376E-03	7,559E-03	1,152E-05
W	0,50	6,10	33,49	5,67	6,849E-03	6,577E-03	4,659E-02	1,432E-01	1,780E-04

[1] Les taux d'emissions illustres ici ne tiennent pas compte de l'atténuation due à l'arrosage, ni au facteur de rétention de la fosse

Tableau A 10.3 : Caractéristiques physiques et taux d'émission des gaz d'échappement associés au routage et au support pour chacun des segments – Scénario 3

Segment	Temps passé sur chaque segment	Hauteur de relâche	Sigma Y	Sigma Z		Taux d'émission des	s sources par segmen (g/s)	t (routage + support)	
	(%)	(m)	(m)	(m)	PM ₁₀ ^[1]	PM _{2,5}	СО	NOx	SO ₂
Α	0,89	3,30	33,488	6,142	9,812E-03	9,422E-03	6,720E-02	2,057E-01	2,568E-04
В	1,52	3,30	33,488	6,142	8,410E-03	8,076E-03	5,759E-02	1,763E-01	2,201E-04
С	17,92	3,30	33,488	6,142	1,777E-02	1,707E-02	1,217E-01	3,726E-01	4,652E-04
D	2,79	3,30	33,488	6,142	9,236E-03	8,869E-03	6,325E-02	1,936E-01	2,418E-04
E	2,67	3,30	33,488	6,142	8,851E-03	8,500E-03	6,062E-02	1,856E-01	2,317E-04
F	9,40	3,30	33,488	6,142	1,744E-02	1,674E-02	1,194E-01	3,656E-01	4,564E-04
G	2,31	2,03	33,488	3,595	2,752E-03	2,662E-03	2,366E-02	4,723E-02	6,121E-05
Н	1,88	2,03	33,488	3,595	2,729E-03	2,640E-03	2,347E-02	4,684E-02	6,070E-05
I	1,71	2,03	33,488	3,595	7,234E-03	7,003E-03	6,126E-02	1,228E-01	1,598E-04
J	4,36	1,49	33,488	3,945	4,294E-03	4,117E-03	3,941E-02	8,822E-02	1,078E-04
K	4,55	3,30	33,488	3,669	3,329E-03	3,243E-03	1,991E-02	5,467E-02	7,230E-05
L	2,53	1,49	33,488	3,597	5,541E-03	5,291E-03	3,308E-02	8,357E-02	1,186E-04
М	6,76	3,30	33,488	3,341	3,269E-03	3,155E-03	1,761E-02	3,719E-02	5,958E-05
N	20,21	3,30	33,488	4,878	1,992E-02	1,912E-02	1,459E-01	4,160E-01	5,174E-04
0	5,97	3,30	33,488	5,476	1,101E-02	1,057E-02	7,671E-02	2,305E-01	2,873E-04
Q	0,68	2,28	33,488	6,142	7,658E-05	7,354E-05	5,245E-04	1,606E-03	2,005E-06
R	0,03	2,28	33,488	6,142	5,918E-05	5,683E-05	4,053E-04	1,241E-03	1,549E-06
S	3,16	3,30	33,488	5,474	1,572E-02	1,510E-02	1,095E-01	3,291E-01	4,103E-04
Т	1,85	1,87	33,488	6,142	2,086E-03	2,003E-03	1,429E-02	4,374E-02	5,461E-05
U	3,31	3,30	33,488	5,419	1,029E-02	9,884E-03	7,185E-02	2,154E-01	2,685E-04
V	0,30	1,87	33,488	6,142	9,704E-04	9,318E-04	6,646E-03	2,034E-02	2,540E-05
W	0,50	3,30	33,488	5,179	7,601E-03	7,299E-03	5,360E-02	1,590E-01	1,980E-04

Tableau A 11.1 : Caractéristiques physiques et taux d'émission des gaz d'échappement associés aux sources localisées – Scénario 1

Source ID	Description	х	Y	Élévation	Hauteur de relâche	Température	Vitesse	Diamètre équivalent		7	Γaux d'émissio (g/s)	on	
	·	(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	PM ₁₀	PM _{2,5}	СО	NO _x	SO ₂
BULL1E	D10T_1 / STE	715677,2	5333886,1	369,2	4,51	778,15	56,13	0,13	2,691E-02	2,610E-02	2,310E-01	2,590E-01	4,867E-04
BULL2E	D10T_2/STE	715658,3	5333792,2	369,2	4,51	778,15	56,13	0,13	2,691E-02	2,610E-02	2,310E-01	2,590E-01	4,867E-04
BULL3E	D10T_3 / CM	714628,5	5334660,6	301,0	4,51	778,15	56,13	0,13	2,691E-02	2,610E-02	2,310E-01	2,590E-01	4,867E-04
BULL4E	D10T_4A / CM	713937,7	5334917,9	304,4	4,51	778,15	56,13	0,13	1,346E-02	1,305E-02	1,155E-01	1,295E-01	2,434E-04
BULL5E	D10T_4B / STE	715775,6	5333873,7	359,0	4,51	778,15	56,13	0,13	1,346E-02	1,305E-02	1,155E-01	1,295E-01	2,434E-04
BULL6E	CAT854H_1 / CM	713437,7	5334640,4	280,3	5,23	755,35	47,21	0,17	3,455E-02	3,351E-02	1,688E-01	7,847E-01	6,453E-04
BULL7E	CAT854H_2 / CM	714132,8	5334442,4	259,8	5,23	755,35	47,21	0,17	3,455E-02	3,351E-02	1,688E-01	7,847E-01	6,453E-04
LOAD1E	PC800 / From CM5 to CONC_MOB	714581,7	5334726,0	301,0	4,00	738,75	70,47	0,19	2,214E-02	2,147E-02	1,206E-01	2,130E-01	4,004E-04
LOAD2E	PC1250_1 / From CM4 to LG1STP	713998,7	5334918,9	302,9	5,18	738,75	70,47	0,19	1,535E-02	1,489E-02	1,318E-01	1,478E-01	2,777E-04
LOAD3E	PC1250_1 / From CM4 to LG2STP	713998,7	5334918,9	302,9	5,18	738,75	70,47	0,19	1,535E-02	1,489E-02	1,318E-01	1,478E-01	2,777E-04
LOAD4E	PC1250_2 / From CM4 to LG1STP	714024,6	5334902,0	302,3	5,18	738,75	70,47	0,19	1,535E-02	1,489E-02	1,318E-01	1,478E-01	2,777E-04
LOAD5E	PC1250_2 / From CM4 to LG2STP	714024,6	5334902,0	302,3	5,18	738,75	70,47	0,19	1,535E-02	1,489E-02	1,318E-01	1,478E-01	2,777E-04
LOAD6E	RH340_1 / From CM1 to CONCAS	714137,4	5334487,1	260,0	6,85	755,35	111,28	0,17	5,442E-02	5,279E-02	2,658E-01	1,236E+00	1,016E-03
LOAD7E	RH340_1 / From CM1 to STERILES	714137,4	5334487,1	260,0	6,85	755,35	111,28	0,17	5,442E-02	5,279E-02	2,658E-01	1,236E+00	1,016E-03
LOAD8E	RH340_2 / From CM2 to CONCAS	713686,2	5334518,2	269,8	6,85	755,35	111,28	0,17	5,442E-02	5,279E-02	2,658E-01	1,236E+00	1,016E-03
LOAD9E	RH340_2 / From CM2 to STERILES	713686,2	5334518,2	269,8	6,85	755,35	111,28	0,17	5,442E-02	5,279E-02	2,658E-01	1,236E+00	1,016E-03
LOAD10E	RH340_3 / From CM3 to CONCAS	713454,1	5334673,8	280,0	6,85	755,35	111,28	0,17	5,442E-02	5,279E-02	2,658E-01	1,236E+00	1,016E-03
LOAD11E	RH340_3 / From CM3 to STERILES	713454,1	5334673,8	280,0	6,85	755,35	111,28	0,17	5,442E-02	5,279E-02	2,658E-01	1,236E+00	1,016E-03
LOAD12E	L1850_1 / From CM4 to STERILES	714028,0	5334873,3	302,5	6,26	727,55	70,87	0,20	8,638E-02	8,379E-02	4,220E-01	1,962E+00	1,613E-03
LOAD13E	L1850_2 / From CM5 to STERILES	714614,8	5334738,7	301,0	6,26	727,55	70,87	0,20	8,638E-02	8,379E-02	4,220E-01	1,962E+00	1,613E-03
LOAD14E	PC2000 / From CM5 to OB	714635,1	5334708,2	301,0	6,61	755,35	43,94	0,20	2,913E-02	2,826E-02	2,017E-01	6,158E-01	7,717E-04
LOAD15E	CAT345_1 / From LG1STP to CONCAS	712948,9	5334427,6	358,1	3,69	754,26	32,37	0,17	1,696E-02	1,645E-02	9,240E-02	1,632E-01	3,067E-04
LOAD16E	CAT345_2 / From LG2STP to CONCAS	713839,2	5333925,3	343,7	3,69	754,26	32,37	0,17	1,696E-02	1,645E-02	9,240E-02	1,632E-01	3,067E-04
LOAD17E	CAT345_3 / From GOU to OB	714950,8	5333684,8	332,8	3,69	754,26	32,37	0,17	1,696E-02	1,645E-02	9,240E-02	1,632E-01	3,067E-04
LOAD18E	CAT980 / From CONC_MOB to CONCAS	714165,9	5332919,7	351,0	3,72	678,75	33,74	0,17	1,575E-02	1,528E-02	8,583E-02	1,516E-01	2,849E-04
DRILL1E	Foreuse 4,5po ou 3,5po	713569,3	5334933,2	314,4	1,37	727,55	30,56	0,10	2,744E-03	2,661E-03	3,155E-02	3,504E-02	6,282E-05
DRILL2E	Foreuse 4,5po ou 3,5po	713599,3	5334933,2	314,4	1,37	727,55	30,56	0,10	2,744E-03	2,661E-03	3,155E-02	3,504E-02	6,282E-05
DRILL3E	Foreuse 4,5po ou 3,5po	713629,3	5334933,2	314,4	1,37	727,55	30,56	0,10	2,744E-03	2,661E-03	3,155E-02	3,504E-02	6,282E-05
DRILL4E	Foreuse 4,5po ou 3,5po	713659,3	5334933,2	314,4	1,37	727,55	30,56	0,10	2,744E-03	2,661E-03	3,155E-02	3,504E-02	6,282E-05
DRILL5E	Mustang Castonguay (5,5po)	713604,2	5334773,7	310,9	1,37	727,55	30,56	0,10	2,744E-03	2,661E-03	3,155E-02	3,504E-02	6,282E-05
DRILL6E	Mustang Castonguay (5,5po)	713634,2	5334773,7	310,9	1,37	727,55	30,56	0,10	2,744E-03	2,661E-03	3,155E-02	3,504E-02	6,282E-05

Tableau A 11.1 : Caractéristiques physiques et taux d'émission des gaz d'échappement associés aux sources localisées – Scénario 1 (suite)

Source ID	Description	х	Y	Élévation	Hauteur de relâche	Température	Vitesse	Diamètre équivalent		Т	aux d'émissio (g/s)	on	
	·	(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	PM ₁₀	PM _{2,5}	СО	NO _x	SO ₂
DRILL7E	Mustang Castonguay (5,5po)	713664,2	5334773,7	310,9	1,37	727,55	30,56	0,10	2,744E-03	2,661E-03	3,155E-02	3,504E-02	6,282E-05
DRILL8E	Mustang Castonguay (5,5po)	713694,2	5334773,7	310,9	1,37	727,55	30,56	0,10	2,744E-03	2,661E-03	3,155E-02	3,504E-02	6,282E-05
DRILL9E	Cubex QXR 920 Osisko (5,5po)	714450,4	5334765,1	309,6	2,50	785,35	46,54	0,20	1,090E-02	1,057E-02	6,255E-02	1,625E-01	3,146E-04
DRILL10E	Cubex QXR 920 Osisko (5,5po)	714480,4	5334765,1	309,6	2,50	785,35	46,54	0,20	1,090E-02	1,057E-02	6,255E-02	1,625E-01	3,146E-04
DRILL11E	Cubex QXR 920 Osisko (5,5po)	714510,4	5334765,1	309,6	2,50	785,35	46,54	0,20	1,090E-02	1,057E-02	6,255E-02	1,625E-01	3,146E-04
DRILL12E	Cubex QXR 920 RC Osisko (5,5po)	714105,6	5334875,6	317,0	2,50	785,35	46,54	0,20	1,090E-02	1,057E-02	6,255E-02	1,625E-01	3,146E-04
DRILL13E	Cubex QXR 920 RC Osisko (5,5po)	714135,6	5334875,6	317,0	2,50	785,35	46,54	0,20	1,090E-02	1,057E-02	6,255E-02	1,625E-01	3,146E-04
DRILL14E	Pit Viper Osisko (8,5po)	714001,8	5334542,6	269,4	6,40	788,15	17,18	0,20	1,356E-02	1,315E-02	8,040E-02	3,953E-01	4,660E-04
DRILL15E	Pit Viper Osisko (8,5po)	714031,8	5334542,6	269,4	6,40	788,15	17,18	0,20	1,356E-02	1,315E-02	8,040E-02	3,953E-01	4,660E-04
DRILL16E	Pit Viper Osisko (8,5po)	713550,8	5334542,6	281,4	6,40	788,15	17,18	0,20	1,356E-02	1,315E-02	8,040E-02	3,953E-01	4,660E-04
DRILL17E	Pit Viper Osisko (8,5po)	713580,8	5334542,6	281,4	6,40	788,15	17,18	0,20	1,356E-02	1,315E-02	8,040E-02	3,953E-01	4,660E-04
DRILL18E	Pit Viper Osisko (8,5po)	713336,4	5334679,6	290,3	6,40	788,15	17,18	0,20	1,356E-02	1,315E-02	8,040E-02	3,953E-01	4,660E-04
DRILL19E	Pit Viper Osisko (8,5po)	713366,4	5334679,6	290,3	6,40	788,15	17,18	0,20	1,356E-02	1,315E-02	8,040E-02	3,953E-01	4,660E-04

Tableau A 11.2 : Caractéristiques physiques et taux d'émission des gaz d'échappement associés aux sources localisées – Scénario 2

Source ID	Description	х	Y	Élévation	Hauteur de relâche	Température	Vitesse	Diamètre équivalent			「aux d'émissio (g/s)	on	
	·	(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	PM ₁₀	PM _{2,5}	СО	NO _x	SO ₂
BULL1E	D10T_1 / STE	717318,2	5333962,8	370	4,505	778,15	56,128	0,13	2,700E-02	2,600E-02	2,310E-01	2,590E-01	4,870E-04
BULL2E	D10T_2/STE	717266,6	5334146,4	370	4,505	778,15	56,128	0,13	2,700E-02	2,600E-02	2,310E-01	2,590E-01	4,870E-04
BULL3E	D10T_3 / CM	713993,3	5334508,6	160	4,505	778,15	56,128	0,13	2,700E-02	2,600E-02	2,310E-01	2,590E-01	4,870E-04
BULL4E	D10T_4A / LG2STP	713817	5333957,2	380	4,505	778,15	56,128	0,13	1,350E-02	1,300E-02	1,155E-01	1,295E-01	2,435E-04
BULL5E	D10T_4B / CM	713394,5	5334709,5	160	4,505	778,15	56,128	0,13	1,350E-02	1,300E-02	1,155E-01	1,295E-01	2,435E-04
BULL6E	CAT854H_1A / CM	713458,9	5334571,1	160	5,234	755,35	47,2105	0,168	3,500E-02	3,400E-02	1,690E-01	7,850E-01	6,450E-04
BULL7E	CAT854H_1B / LG2STP	713709	5333887,1	380	5,234	755,35	47,2105	0,168	1,750E-02	1,700E-02	8,450E-02	3,925E-01	3,225E-04
BULL8E	CAT854H_2 / CM	714008,4	5334605,3	160	5,234	755,35	47,2105	0,168	1,750E-02	1,700E-02	8,450E-02	3,925E-01	3,225E-04
LOAD1E	PC800 / From JEF to CONCAS	715267,2	5333712,4	260	4	738,75	70,469	0,19	1,100E-02	1,050E-02	6,050E-02	1,065E-01	2,000E-04
LOAD2E	PC800 / From JEF to STERILES	715267,2	5333712,4	260	4	738,75	70,469	0,19	1,100E-02	1,050E-02	6,050E-02	1,065E-01	2,000E-04
LOAD3E	PC1250_1 / From BAR1 to OB	715211,7	5333673,4	260	5,18	738,75	70,469	0,19	3,100E-02	3,000E-02	2,640E-01	2,960E-01	5,550E-04
LOAD4E	PC1250_2 / From BAR2 to OB	713509,6	5334819,4	160	5,18	738,75	70,469	0,19	3,100E-02	3,000E-02	2,640E-01	2,960E-01	5,550E-04
LOAD5E	RH340_1 / From CM1 to CONCAS	713556,1	5334859,2	160	6,845	755,35	111,277	0,167	5,450E-02	5,300E-02	2,660E-01	1,236E+00	1,017E-03
LOAD6E	RH340_1 / From CM1 to LG1STP	713556,1	5334859,2	160	6,845	755,35	111,277	0,167	5,450E-02	5,300E-02	2,660E-01	1,236E+00	1,017E-03
LOAD7E	RH340_2 / From CM2 to CONCAS	713960,1	5334567	160	6,845	755,35	111,277	0,167	5,450E-02	5,300E-02	2,660E-01	1,236E+00	1,017E-03
LOAD8E	RH340_2 / From CM2 to LG1STP	713960,1	5334567	160	6,845	755,35	111,277	0,167	5,450E-02	5,300E-02	2,660E-01	1,236E+00	1,017E-03
LOAD9E	RH340_3 / From CM3 to CONCAS	714187,4	5334819,5	260	6,845	755,35	111,277	0,167	5,450E-02	5,300E-02	2,660E-01	1,236E+00	1,017E-03
LOAD10E	RH340_3 / From CM3 to LG2STP	714187,4	5334819,5	260	6,845	755,35	111,277	0,167	5,450E-02	5,300E-02	2,660E-01	1,236E+00	1,017E-03
LOAD11E	RH200 / From CM3 to STERILES	714243,3	5334842,9	260	6,789	755,35	111,277	0,167	1,090E-01	1,060E-01	5,320E-01	2,472E+00	2,033E-03
LOAD12E	L1850_1 / From CM2 to STERILES	713916,8	5334520,1	160	6,258	727,55	70,8661	0,2	8,600E-02	8,400E-02	4,220E-01	1,962E+00	1,613E-03
LOAD13E	L1850_2 / From CM4 to CONCAS	715022,5	5334668	260	6,258	727,55	70,8661	0,2	4,300E-02	4,200E-02	2,110E-01	9,810E-01	8,065E-04
LOAD14E	L1850_2 / From CM4 to LG2STP	715022,5	5334668	260	6,258	727,55	70,8661	0,2	4,300E-02	4,200E-02	2,110E-01	9,810E-01	8,065E-04
LOAD15E	994F / From CM4 to STERILES	715080,2	5334626,5	260	6,988	755,15	38,6151	0,16	6,300E-02	6,100E-02	3,090E-01	1,435E+00	1,180E-03
LOAD16E	980 / From CM1 to STERILES	713617,4	5334833,9	160	3,716	678,75	33,7385	0,17	1,600E-02	1,500E-02	8,600E-02	1,520E-01	2,850E-04
LOAD17E	PC2000 / From GOU to CONCAS	715226,3	5333712	260	6,605	755,35	43,9427	0,2	9,667E-03	9,333E-03	6,733E-02	2,053E-01	2,573E-04
LOAD18E	PC2000 / From GOU to STERILES	715226,3	5333712	260	6,605	755,35	43,9427	0,2	9,667E-03	9,333E-03	6,733E-02	2,053E-01	2,573E-04
LOAD19E	PC2000 / From GOU to CONCAS_MOB	715226,3	5333712	260	6,605	755,35	43,9427	0,2	9,667E-03	9,333E-03	6,733E-02	2,053E-01	2,573E-04
LOAD20E	345_1 / From BAR1 to OB	713932	5334621,5	160	3,689	754,26	32,3678	0,17	1,700E-02	1,600E-02	9,200E-02	1,630E-01	3,070E-04
LOAD21E	345_2 / From BAR2 to OB	714296,4	5334861	260	3,689	754,26	32,3678	0,17	1,700E-02	1,600E-02	9,200E-02	1,630E-01	3,070E-04
LOAD22E	345_3 / From JEF to OB	715050,3	5334532	260	3,689	754,26	32,3678	0,17	1,700E-02	1,600E-02	9,200E-02	1,630E-01	3,070E-04

Tableau A 11.2 : Caractéristiques physiques et taux d'émission des gaz d'échappement associés aux sources localisées – Scénario 2 (suite)

Source ID	Description	х	Υ	Élévation	Hauteur de relâche	Température	Vitesse	Diamètre équivalent		1	aux d'émissio (g/s)	n	
	·	(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	PM ₁₀	PM _{2,5}	СО	NO _x	SO ₂
DRILL1E	Foreuse 4,5po ou 3,5po	713941	5334926	260	1,37	727,55	30,5577	0,1	3,000E-03	3,000E-03	3,200E-02	3,500E-02	6,300E-05
DRILL2E	Mustang Castonguay (5,5po)	713765	5334866	160	1,37	727,55	30,5577	0,1	3,000E-03	3,000E-03	3,200E-02	3,500E-02	6,300E-05
DRILL3E	Mustang Castonguay (5,5po)	713815	5334841	160	1,37	727,55	30,5577	0,1	3,000E-03	3,000E-03	3,200E-02	3,500E-02	6,300E-05
DRILL4E	Mustang Castonguay (5,5po)	715111	5333737	270	1,37	727,55	30,5577	0,1	3,000E-03	3,000E-03	3,200E-02	3,500E-02	6,300E-05
DRILL5E	Mustang Castonguay (5,5po)	715111	5333707	270	1,37	727,55	30,5577	0,1	3,000E-03	3,000E-03	3,200E-02	3,500E-02	6,300E-05
DRILL6E	Mustang Castonguay (5,5po)	715111	5333677	270	1,37	727,55	30,5577	0,1	3,000E-03	3,000E-03	3,200E-02	3,500E-02	6,300E-05
DRILL7E	Cubex QXR 920 Osisko (5,5po)	714600	5334756	260	2,5	785,35	46,5369	0,2	1,100E-02	1,100E-02	6,300E-02	1,630E-01	3,150E-04
DRILL8E	Cubex QXR 920 Osisko (5,5po)	714650	5334756	260	2,5	785,35	46,5369	0,2	1,100E-02	1,100E-02	6,300E-02	1,630E-01	3,150E-04
DRILL9E	Cubex QXR 920 Osisko (5,5po)	714700	5334756	260	2,5	785,35	46,5369	0,2	1,100E-02	1,100E-02	6,300E-02	1,630E-01	3,150E-04
DRILL10E	Cubex QXR 920 RC Osisko (5,5po)	715133	5334536	260	2,5	785,35	46,5369	0,2	1,100E-02	1,100E-02	6,300E-02	1,630E-01	3,150E-04
DRILL11E	Cubex QXR 920 RC Osisko (5,5po)	715183	5334536	260	2,5	785,35	46,5369	0,2	1,100E-02	1,100E-02	6,300E-02	1,630E-01	3,150E-04
DRILL12E	Pit Viper Osisko (8,5po)	714213	5334648	260	6,4	788,15	17,1848	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04
DRILL13E	Pit Viper Osisko (8,5po)	714263	5334648	260	6,4	788,15	17,1848	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04
DRILL14E	Pit Viper Osisko (8,5po)	714911	5334236	260	6,4	788,15	17,1848	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04
DRILL15E	Pit Viper Osisko (8,5po)	714961	5334236	260	6,4	788,15	17,1848	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04
DRILL16E	Pit Viper Osisko (8,5po)	713829	5334702	160	6,4	788,15	17,1848	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04
DRILL17E	Pit Viper Osisko (8,5po)	713879	5334702	160	6,4	788,15	17,1848	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04
DRILL18E	Pit Viper Osisko (8,5po)	713418	5334646	160	6,4	788,15	17,1848	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04

Tableau A 11.3 : Caractéristiques physiques et taux d'émission des gaz d'échappement associés aux sources localisées – Scénario 3

Source ID	Description	x	Y	Élévation	Hauteur de relâche	Température	Vitesse	Diamètre équivalent			aux d'émissio (g/s)	n	
	·	(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	PM ₁₀	PM _{2,5}	СО	NO _x	SO ₂
BULL1E	D10T_1 / STE	717318,2	5333962,8	370	4,51	778,15	56,13	0,13	2,700E-02	2,600E-02	2,310E-01	2,590E-01	4,870E-04
BULL2E	D10T_2 / STE	717266,6	5334146,4	370	4,51	778,15	56,13	0,13	2,700E-02	2,600E-02	2,310E-01	2,590E-01	4,870E-04
BULL3E	D10T_3 / CM	713993,3	5334508,6	160	4,51	778,15	56,13	0,13	2,700E-02	2,600E-02	2,310E-01	2,590E-01	4,870E-04
BULL4E	D10T_4A / LG2STP	713817	5333957,2	380	4,51	778,15	56,13	0,13	1,350E-02	1,300E-02	1,155E-01	1,295E-01	2,435E-04
BULL5E	D10T_4B / CM	713394,5	5334709,5	160	4,51	778,15	56,13	0,13	1,350E-02	1,300E-02	1,155E-01	1,295E-01	2,435E-04
BULL6E	CAT854H_1A / CM	713458,9	5334571,1	160	5,23	755,35	47,21	0,17	3,500E-02	3,400E-02	1,690E-01	7,850E-01	6,450E-04
BULL7E	CAT854H_1B / LG2STP	713709	5333887,1	380	5,23	755,35	47,21	0,17	1,750E-02	1,700E-02	8,450E-02	3,925E-01	3,225E-04
BULL8E	CAT854H_2 / CM	714008,4	5334605,3	160	5,23	755,35	47,21	0,17	1,750E-02	1,700E-02	8,450E-02	3,925E-01	3,225E-04
LOAD1E	PC800 / From JEF to CONCAS	717304,1	5334559,8	230	4	738,75	70,47	0,19	1,100E-02	1,050E-02	6,050E-02	1,065E-01	2,000E-04
LOAD2E	PC800 / From JEF to STERILES	717304,1	5334559,8	230	4	738,75	70,47	0,19	1,100E-02	1,050E-02	6,050E-02	1,065E-01	2,000E-04
LOAD3E	PC1250_1 / From BAR1 to OB	715246,1	5335035,9	300	5,18	738,75	70,47	0,19	3,100E-02	3,000E-02	2,640E-01	2,960E-01	5,550E-04
LOAD4E	PC1250_2 / From BAR2 to OB	715482,4	5334552,5	300	5,18	738,75	70,47	0,19	3,100E-02	3,000E-02	2,640E-01	2,960E-01	5,550E-04
LOAD5E	RH340_1 / From CM1 to CONCAS	713556,1	5334859,2	160	6,85	755,35	111,28	0,17	5,450E-02	5,300E-02	2,660E-01	1,236E+00	1,017E-03
LOAD6E	RH340_1 / From CM1 to LG1STP	713556,1	5334859,2	160	6,85	755,35	111,28	0,17	5,450E-02	5,300E-02	2,660E-01	1,236E+00	1,017E-03
LOAD7E	RH340_2 / From CM2 to CONCAS	713960,1	5334567	160	6,85	755,35	111,28	0,17	5,450E-02	5,300E-02	2,660E-01	1,236E+00	1,017E-03
LOAD8E	RH340_2 / From CM2 to LG1STP	713960,1	5334567	160	6,85	755,35	111,28	0,17	5,450E-02	5,300E-02	2,660E-01	1,236E+00	1,017E-03
LOAD9E	RH340_3 / From CM3 to CONCAS	714187,4	5334819,5	260	6,85	755,35	111,28	0,17	5,450E-02	5,300E-02	2,660E-01	1,236E+00	1,017E-03
LOAD10E	RH340_3 / From CM3 to LG2STP	714187,4	5334819,5	260	6,85	755,35	111,28	0,17	5,450E-02	5,300E-02	2,660E-01	1,236E+00	1,017E-03
LOAD11E	RH200 / From CM3 to STERILES	714243,3	5334842,9	260	6,79	755,35	111,28	0,17	1,090E-01	1,060E-01	5,320E-01	2,472E+00	2,033E-03
LOAD12E	L1850_1 / From CM2 to STERILES	713916,8	5334520,1	160	6,26	727,55	70,87	0,2	8,600E-02	8,400E-02	4,220E-01	1,962E+00	1,613E-03
LOAD13E	L1850_2 / From CM4 to CONCAS	715022,5	5334668	260	6,26	727,55	70,87	0,2	4,300E-02	4,200E-02	2,110E-01	9,810E-01	8,065E-04
LOAD14E	L1850_2 / From CM4 to LG2STP	715022,5	5334668	260	6,26	727,55	70,87	0,2	4,300E-02	4,200E-02	2,110E-01	9,810E-01	8,065E-04
LOAD15E	994F / From CM4 to STERILES	715080,2	5334626,5	260	6,99	755,15	38,62	0,16	3,150E-02	3,050E-02	1,545E-01	7,175E-01	5,900E-04
LOAD16E	994F / From CM4 to CONC_MOB	715080,2	5334626,5	260	6,99	755,15	38,62	0,16	3,150E-02	3,050E-02	1,545E-01	7,175E-01	5,900E-04
LOAD17E	980 / From CM1 to STERILES	713617,4	5334833,9	160	3,72	678,75	33,74	0,17	1,600E-02	1,500E-02	8,600E-02	1,520E-01	2,850E-04
LOAD18E	PC2000 / From BAR1 to CONCAS	715283,6	5334976,2	300	6,61	755,35	43,94	0,2	1,450E-02	1,400E-02	1,010E-01	3,080E-01	3,860E-04
LOAD19E	PC2000 / From BAR1 to STERILES	715283,6	5334976,2	300	6,61	755,35	43,94	0,2	1,450E-02	1,400E-02	1,010E-01	3,080E-01	3,860E-04
LOAD20E	345_1 / From BAR2 to CONCAS	715518,4	5334486,3	300	3,69	754,26	32,37	0,17	1,700E-02	1,600E-02	9,200E-02	1,630E-01	3,070E-04
LOAD21E	345_2 / From BAR2 to STERILES	715584,7	5334499,4	300	3,69	754,26	32,37	0,17	1,700E-02	1,600E-02	9,200E-02	1,630E-01	3,070E-04
LOAD22E	345_3 / From JEF to OB	717343,2	5334526,9	230	3,69	754,26	32,37	0,17	1,700E-02	1,600E-02	9,200E-02	1,630E-01	3,070E-04

Tableau A 11.3 : Caractéristiques physiques et taux d'émission des gaz d'échappement associés aux sources localisées – Scénario 3 (suite)

Source ID	Description	х	Υ	Élévation	Hauteur de relâche	Température	Vitesse	Diamètre équivalent		Т	aux d'émissio (g/s)	n	
	·	(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	PM ₁₀	PM _{2,5}	СО	NO _x	SO ₂
DRILL1E	Mustang Castonguay (5,5po)	717447	5334509	230	1,37	727,55	30,56	0,1	3,000E-03	3,000E-03	3,200E-02	3,500E-02	6,300E-05
DRILL2E	Mustang Castonguay (5,5po)	717397	5334509	230	1,37	727,55	30,56	0,1	3,000E-03	3,000E-03	3,200E-02	3,500E-02	6,300E-05
DRILL3E	Mustang Castonguay (5,5po)	715391	5334848	300	1,37	727,55	30,56	0,1	3,000E-03	3,000E-03	3,200E-02	3,500E-02	6,300E-05
DRILL4E	Mustang Castonguay (5,5po)	715441	5334848	300	1,37	727,55	30,56	0,1	3,000E-03	3,000E-03	3,200E-02	3,500E-02	6,300E-05
DRILL5E	Mustang Castonguay (5,5po)	715456	5334671	300	1,37	727,55	30,56	0,1	3,000E-03	3,000E-03	3,200E-02	3,500E-02	6,300E-05
DRILL6E	Mustang Castonguay (5,5po)	715506	5334671	300	1,37	727,55	30,56	0,1	3,000E-03	3,000E-03	3,200E-02	3,500E-02	6,300E-05
DRILL7E	Cubex QXR 920 Osisko (5,5po)	714600	5334756	260	2,5	785,35	46,54	0,2	1,100E-02	1,100E-02	6,300E-02	1,630E-01	3,150E-04
DRILL8E	Cubex QXR 920 Osisko (5,5po)	714650	5334756	260	2,5	785,35	46,54	0,2	1,100E-02	1,100E-02	6,300E-02	1,630E-01	3,150E-04
DRILL9E	Cubex QXR 920 Osisko (5,5po)	714700	5334756	260	2,5	785,35	46,54	0,2	1,100E-02	1,100E-02	6,300E-02	1,630E-01	3,150E-04
DRILL10E	Cubex QXR 920 RC Osisko (5,5po)	715133	5334536	260	2,5	785,35	46,54	0,2	1,100E-02	1,100E-02	6,300E-02	1,630E-01	3,150E-04
DRILL11E	Cubex QXR 920 RC Osisko (5,5po)	715183	5334536	260	2,5	785,35	46,54	0,2	1,100E-02	1,100E-02	6,300E-02	1,630E-01	3,150E-04
DRILL12E	Pit Viper Osisko (8,5po)	714213	5334648	260	6,4	788,15	17,18	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04
DRILL13E	Pit Viper Osisko (8,5po)	714263	5334648	260	6,4	788,15	17,18	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04
DRILL14E	Pit Viper Osisko (8,5po)	714911	5334236	260	6,4	788,15	17,18	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04
DRILL15E	Pit Viper Osisko (8,5po)	714961	5334236	260	6,4	788,15	17,18	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04
DRILL16E	Pit Viper Osisko (8,5po)	713829	5334702	160	6,4	788,15	17,18	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04
DRILL17E	Pit Viper Osisko (8,5po)	713879	5334702	160	6,4	788,15	17,18	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04
DRILL18E	Pit Viper Osisko (8,5po)	713418	5334646	160	6,4	788,15	17,18	0,2	1,400E-02	1,300E-02	8,000E-02	3,950E-01	4,660E-04

Tableau A 12.1 : Caractéristiques physiques et taux d'émission associés aux sources surfaciques – Scénario 1

Source ID	Description	Élévation	Hauteur de relâche	Sigma Z	Surface considérée	Teneur en limon	Taux c	d'émission (g/s,m²)
		(m)	(m)	(m)	(m²)	(%)	PM _{tot}	PM ₁₀	PM _{2,5}
LGO1	Minerai basse teneur #1	340,0	1,0	0,47	23 985	3,9	5,933E-05	2,966E-05	1,187E-05
LGO2	Minerai basse teneur #2	340,0	1,0	0,47	32 367	3,9	5,933E-05	2,966E-05	1,187E-05
ОВ	Mort-terrain #1	350,0	5,0	2,33	13 530	7,5	1,141E-04	5,705E-05	2,282E-05
STE	Stériles #1	360,0	5,0	2,33	104 322	3,9	5,933E-05	2,966E-05	1,187E-05
STECM	Stériles Concasseur mobile	360,0	1,0	0,47	29 949	3,9	5,933E-05	2,966E-05	1,187E-05

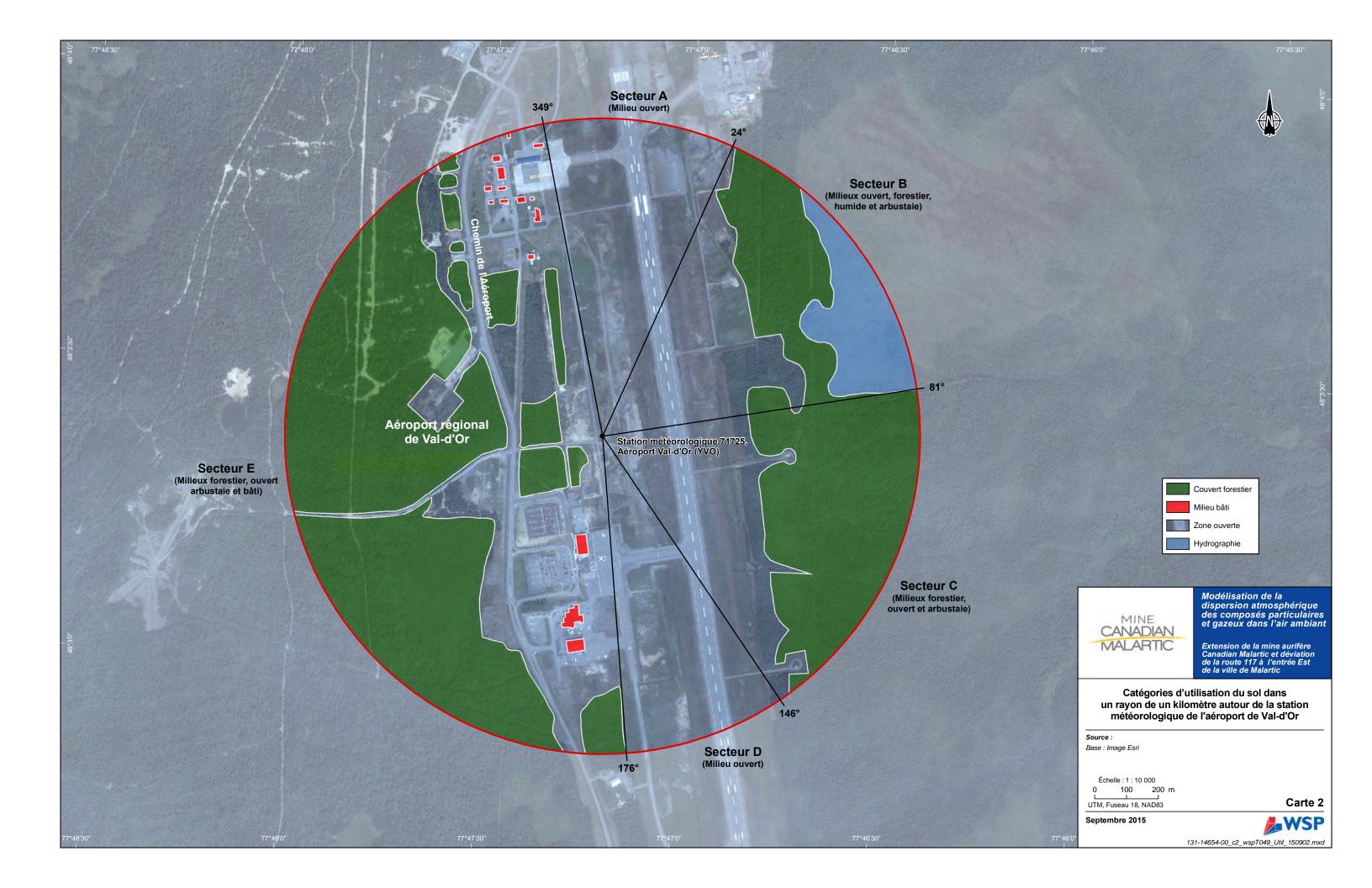
Tableau A 12.2 : Caractéristiques physiques et taux d'émission associés aux sources surfaciques – Scénario 2

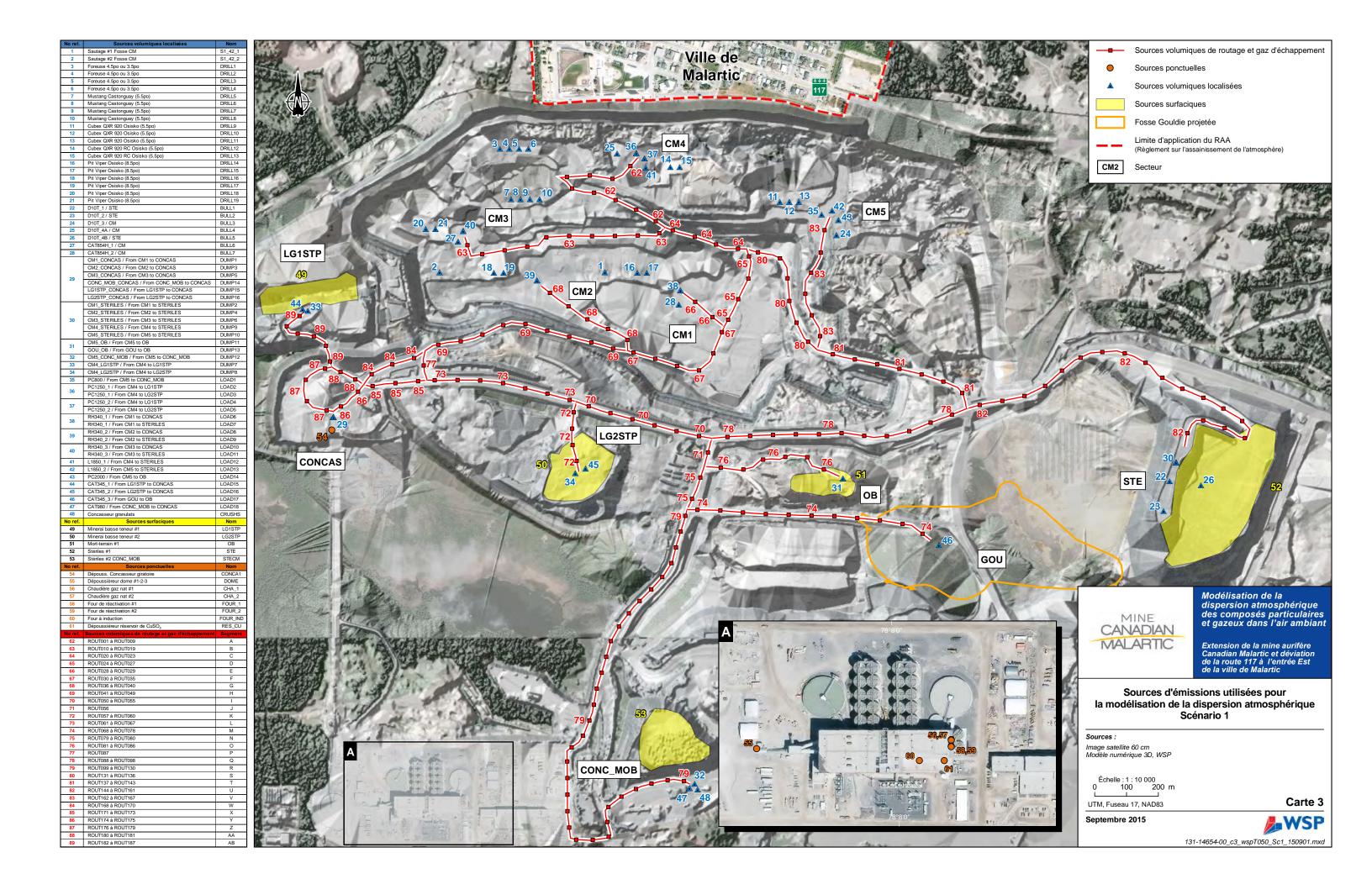
Source ID	Description	Élévation	Hauteur de relâche	Sigma Z	Surface considérée	Teneur en limon	Taux o	l'émission (g/s,m²)
	-	(m)	(m)	(m)	(m²)	(%)	PM _{tot}	PM ₁₀	PM _{2,5}
LG1STP	Minerai basse teneur #1	350	2,5	1,16	22 084	3,9	5,933E-05	2,966E-05	1,187E-05
LG2STP	Minerai basse teneur #2	370	2,5	1,16	22 084	3,9	5,933E-05	2,966E-05	1,187E-05
STE	Stérile #1	360	5	2,33	209 909	3,9	5,933E-05	2,966E-05	1,187E-05

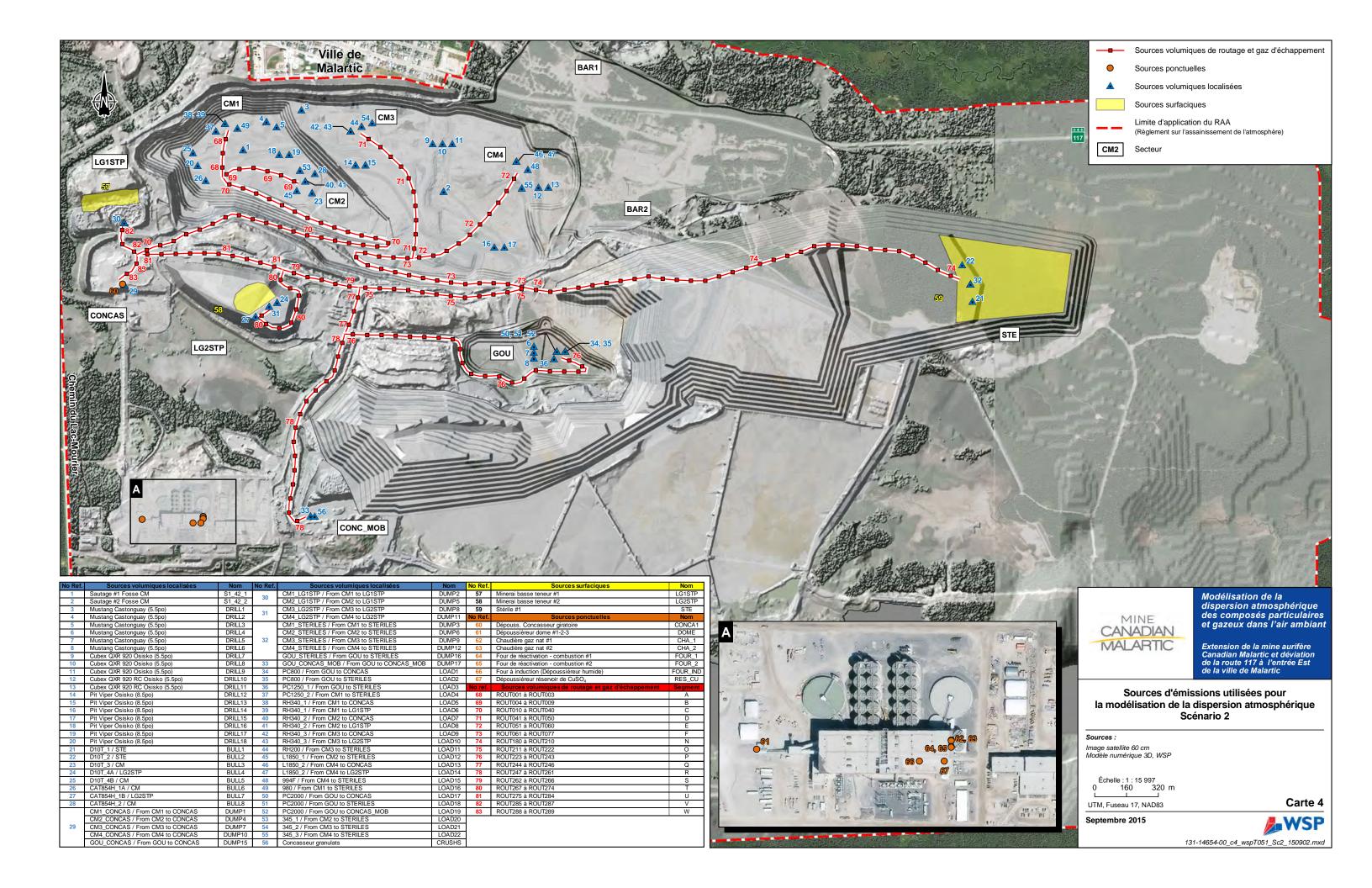
Tableau A 12.3 : Caractéristiques physiques et taux d'émission associés aux sources surfaciques – Scénario 3

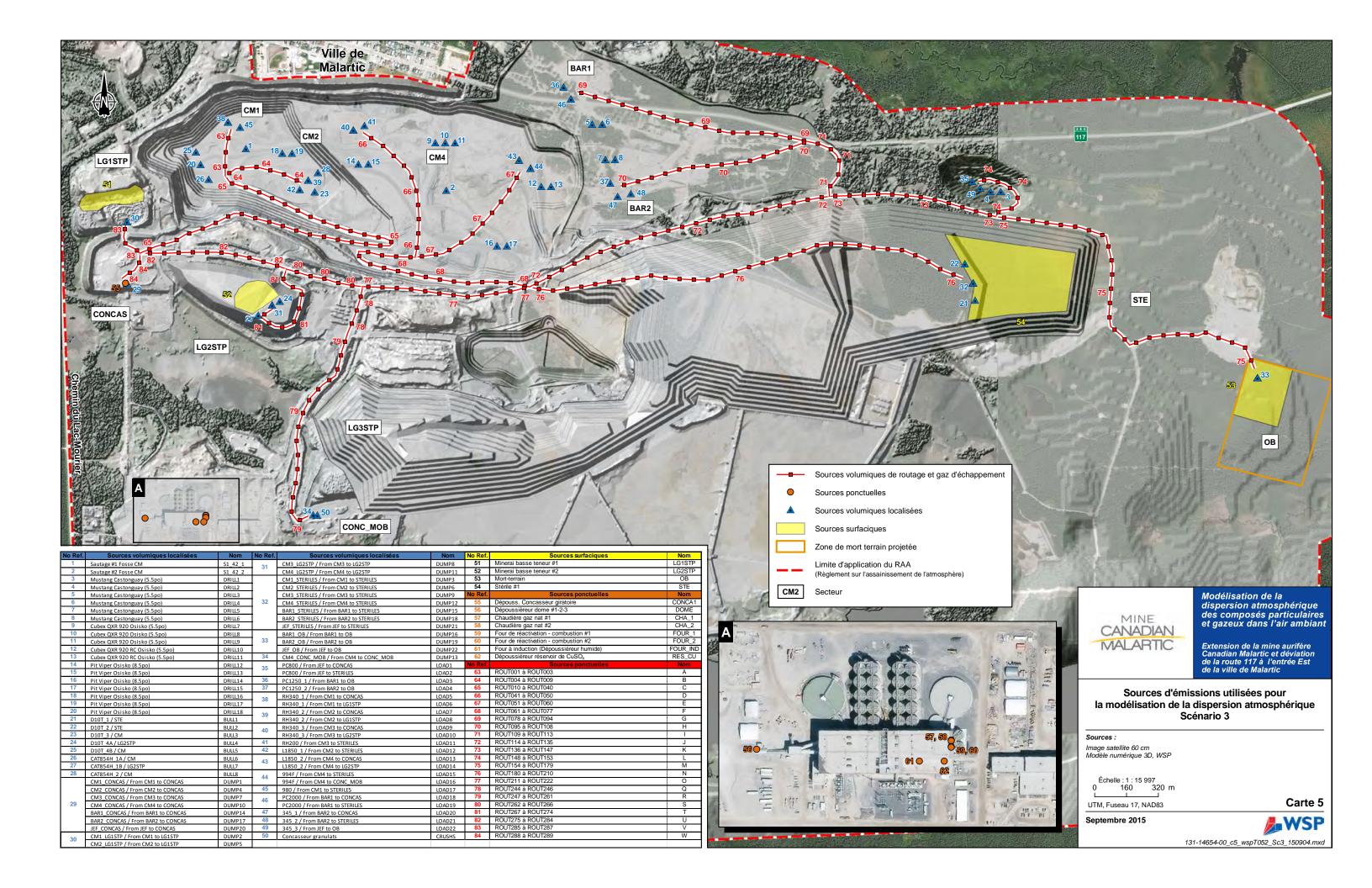
Source ID	Description	Élévation	Hauteur de relâche	Sigma Z	Surface considérée	Teneur en limon	Taux o	l'émission (g/s,m²)
		(m)	(m)	(m)	(m²)	(%)	PM _{tot}	PM ₁₀	PM _{2,5}
LG1STP	Minerai basse teneur #1	350,0	2,5	1,16	23 985	3,9	5,933E-05	2,966E-05	1,187E-05
LG2STP	Minerai basse teneur #2	370,0	2,5	1,16	55 235	3,9	5,933E-05	2,966E-05	1,187E-05
ОВ	Mort-terrain #1	310,0	5,0	2,33	242 161	7,5	1,141E-04	5,705E-05	2,282E-05
STE	Stérile #1	360,0	5,0	2,33	459 368	3,9	5,933E-05	2,966E-05	1,187E-05

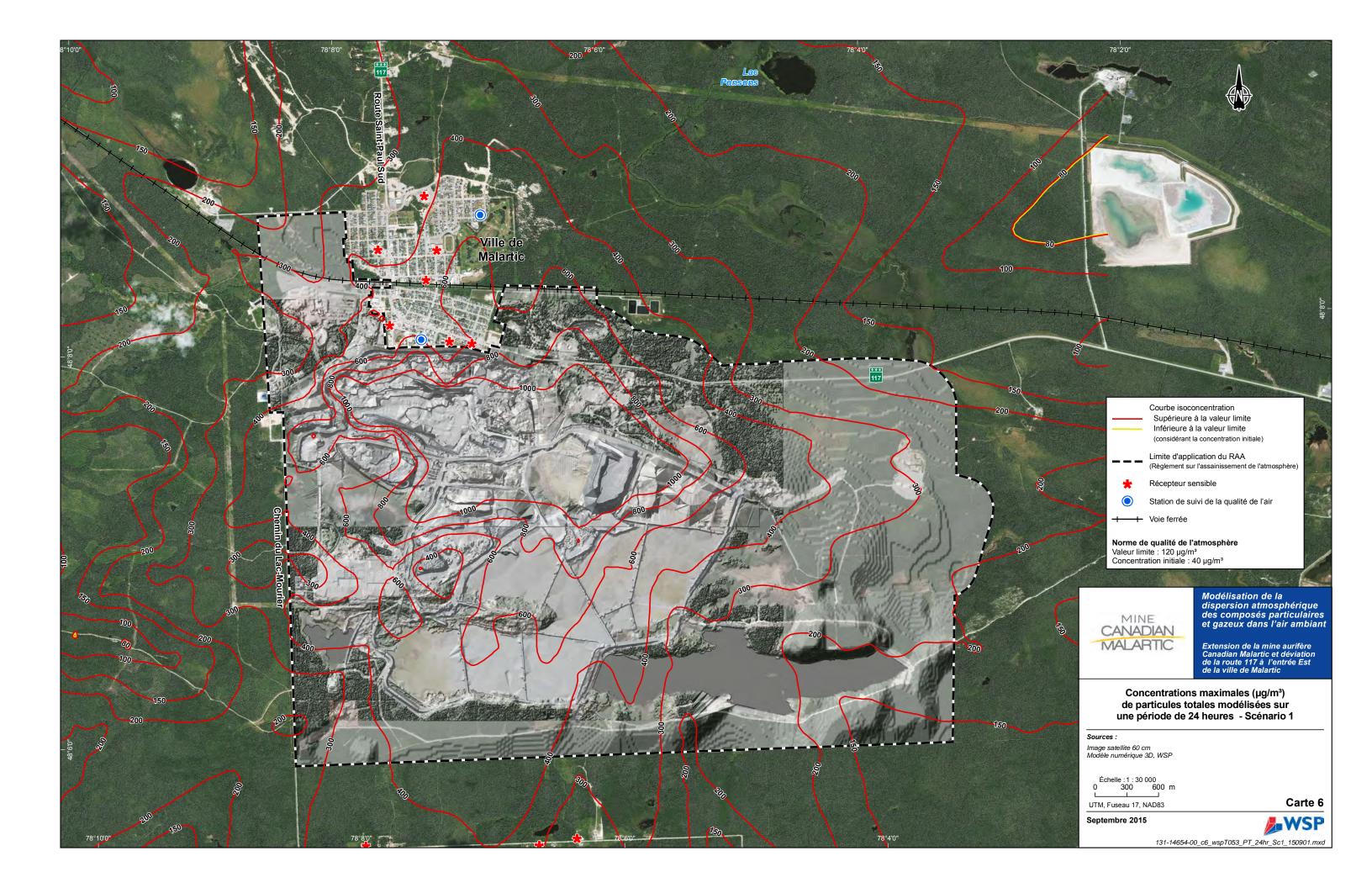

Annexe B

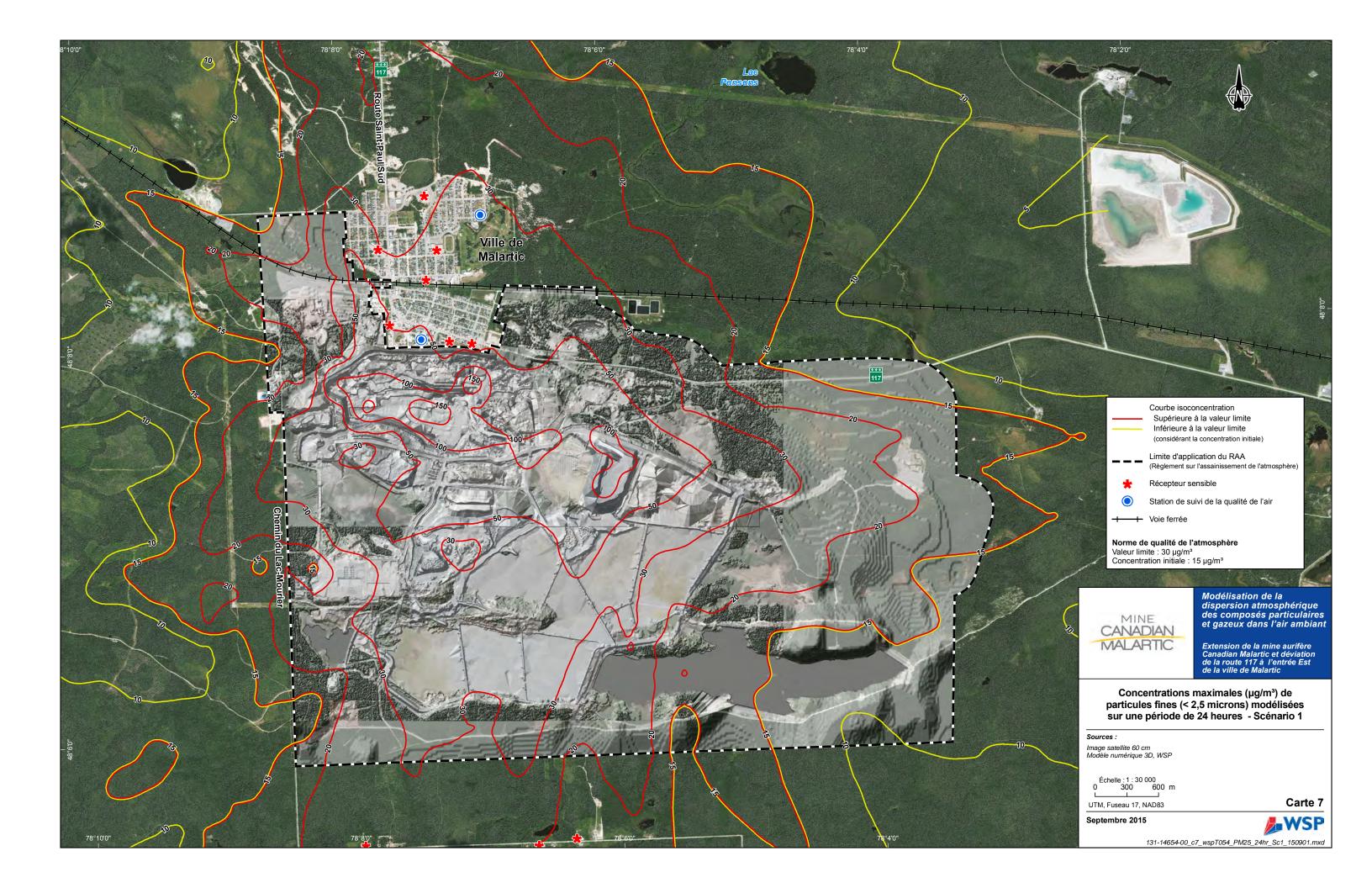

CARTES

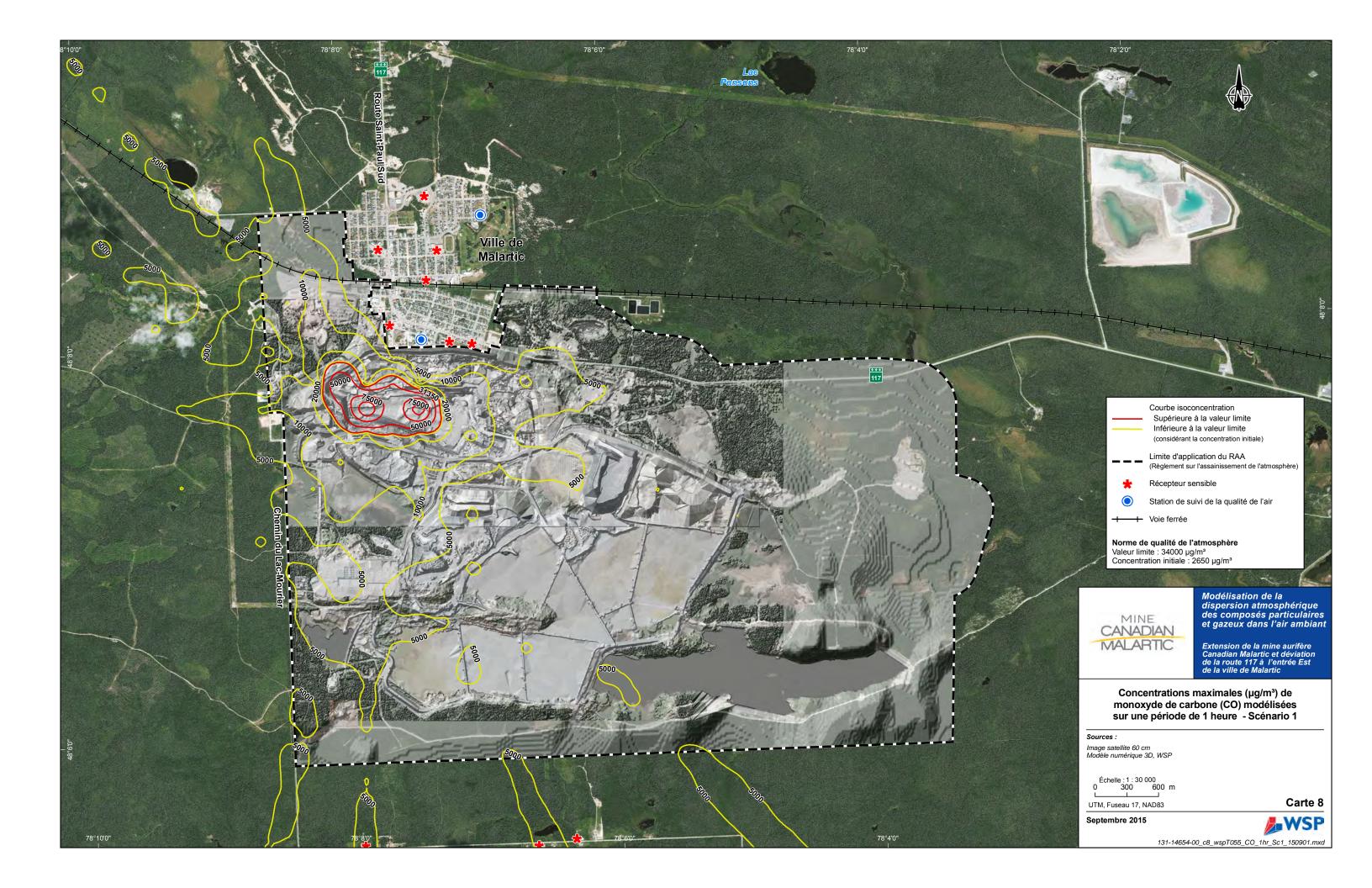

LISTE DES CARTES

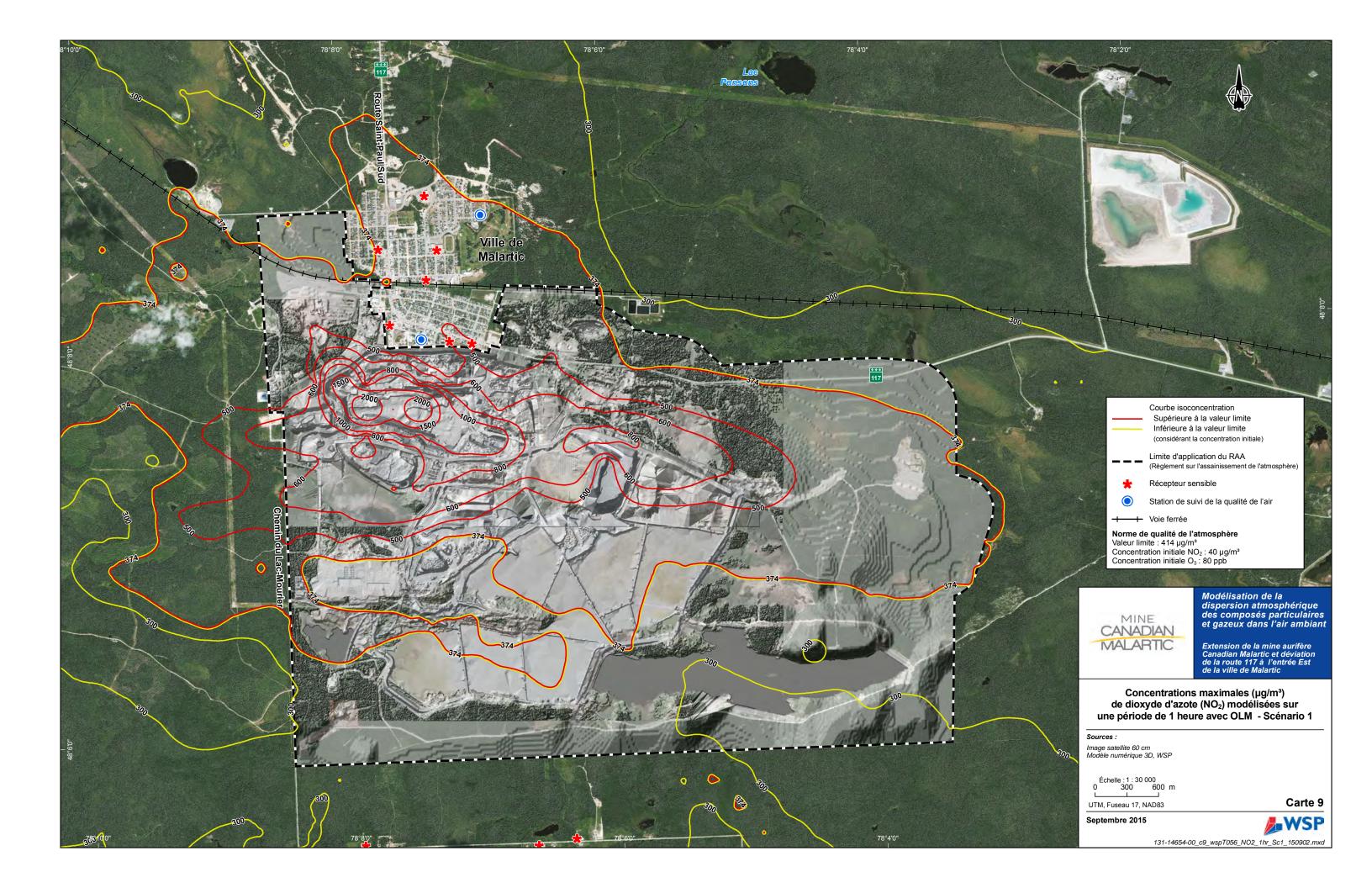

Carte 1 :	Domaine et répartition des récepteurs utilisés pour la modélisation de la dispersion atmosphériqueB-3
Carte 2 :	Catégories d'utilisation du sol dans un rayon de un kilomètre autour de la station météorologique de l'aéroport de Val d'OrB-5
Carte 3:	Sources d'émissions utilisées pour la modélisation de la dispersion atmosphérique – Scénario 1B-7
Carte 4:	Sources d'émissions utilisées pour la modélisation de la dispersion atmosphérique – Scénario 2B-9
Carte 5 :	Sources d'émissions utilisées pour la modélisation de la dispersion atmosphérique – Scénario 3B-11
Carte 6:	Concentrations maximales (µg/m³) de particules totales modélisées sur une période de 24 heures – Scénario 1B-13
Carte 7:	Concentrations maximales (µg/m³) de particules fines (< 2,5 microns) modélisées sur une période de 24 heures – Scénario 1
Carte 8:	Concentrations maximales (µg/m³) de monoxyde de carbone (CO) modélisées sur une période de 1 heure – Scénario 1B-17
Carte 9:	Concentrations maximales (µg/m³) de dioxyde d'azote (NO ₂) modélisées sur une période de 1 heure avec OML – Scénario 1B-19
Carte 10 :	Concentrations maximales (µg/m³) de dioxyde de soufre (SO ₂) modélisées sur une période de 4 minutes – Scénario 1B-21
Carte 11:	Concentrations maximales (µg/m³) de particules totales modélisées sur une période de 24 heures – Scénario 1 OptimiséB-23
Carte 12:	Concentrations maximales (µg/m³) de particules fines (< 2,5 microns) modélisées sur une période de 24 heures – Scénario 1 OptimiséB-25
Carte 13:	Concentrations maximales (µg/m³) de dioxyde d'azote (NO ₂) modélisées sur une période de 1 heure – Scénario 1 OptimiséB-27
Carte 14:	Concentrations maximales (µg/m³) de particules totales modélisées sur une période de 24 heures – Scénario 2B-29
Carte 15:	Concentrations maximales (µg/m³) de particules fines (< 2,5 microns) modélisées sur une période de 24 heures – Scénario 2B-31
Carte 16:	Concentrations maximales (µg/m³) de monoxyde de carbone (CO) modélisées sur une période de 1 heure – Scénario 2 B-B-33
Carte 17:	Concentrations maximales (µg/m³) de dioxyde d'azote (NO ₂) modélisées sur une période de 1 heure avec OLM – Scénario 2B-35
Carte 18:	Concentrations maximales (µg/m³) de dioxyde de soufre (SO ₂) modélisées sur une période de 4 minutes – Scénario 2B-37
Carte 19:	Concentrations maximales (µg/m³) de particules totales modélisées sur une période de 24 heures – Scénario 2 OptimiséB-39
Carte 20 :	Concentrations maximales (µg/m³) de particules fines (< 2,5 microns) modélisées sur une période de 24 heures – Scénario 2 Optimisé B-41
Carte 21 :	Concentrations maximales (µg/m³) de dioxyde d'azote (NO₂) modélisées sur une période de 1 heure avec OLM – Scénario 2

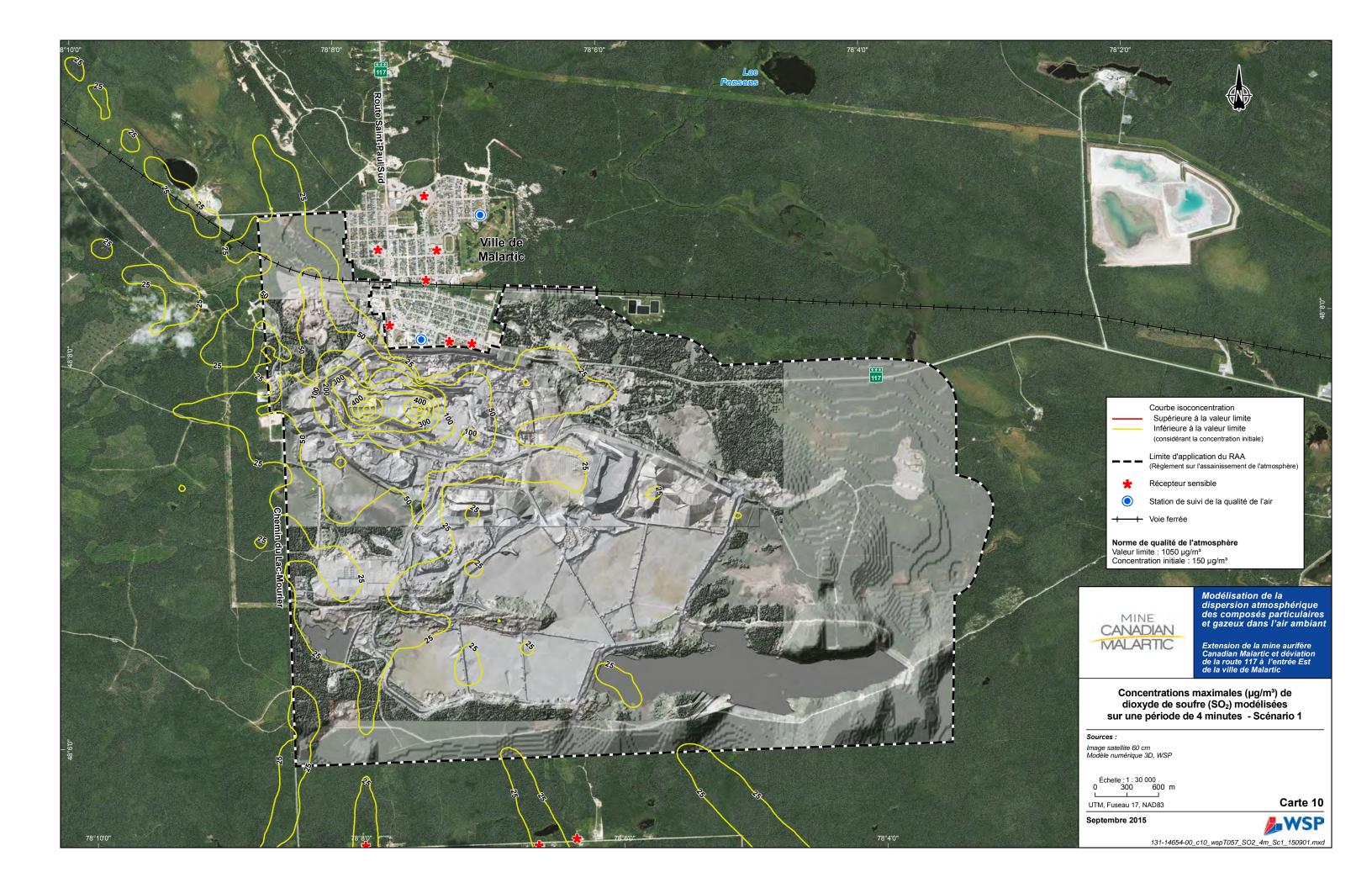

Carte 22 :	Concentrations maximales (µg/m³) de particules totales modélisées sur une période de 24 heures – Scénario 3B-45
Carte 23 :	Concentrations maximales (µg/m³) de particules fines (< 2,5 microns) modélisées sur une période de 24 heures – Scénario 3B-47
Carte 24 :	Concentrations maximales (µg/m³) de monoxyde de carbone (CO) modélisées sur une période de 1 heure – Scénario 3
Carte 25 :	Concentrations maximales (µg/m³) de dioxyde d'azote (NO ₂) modélisées sur une période de 1 heure avec OLM – Scénario 3B-51
Carte 26 :	Concentrations maximales (µg/m³) de dioxyde de soufre (SO ₂) modélisées sur une période de 4 minutes – Scénario 3B-53
Carte 27 :	Concentrations maximales (µg/m³) de particules totales modélisées sur une période de 24 heures – Scénario 3 OptimiséB-55
Carte 28 :	Concentrations maximales (µg/m³) de particules fines (< 2,5 microns) modélisées sur une période de 24 heures – Scénario 3 Optimisé B-57
Carte 29 :	Concentrations maximales (µg/m³) de dioxyde d'azote (NO ₂) modélisées sur une période de 1 heure avec OLM – Scénario 3
	OptimiséB-59

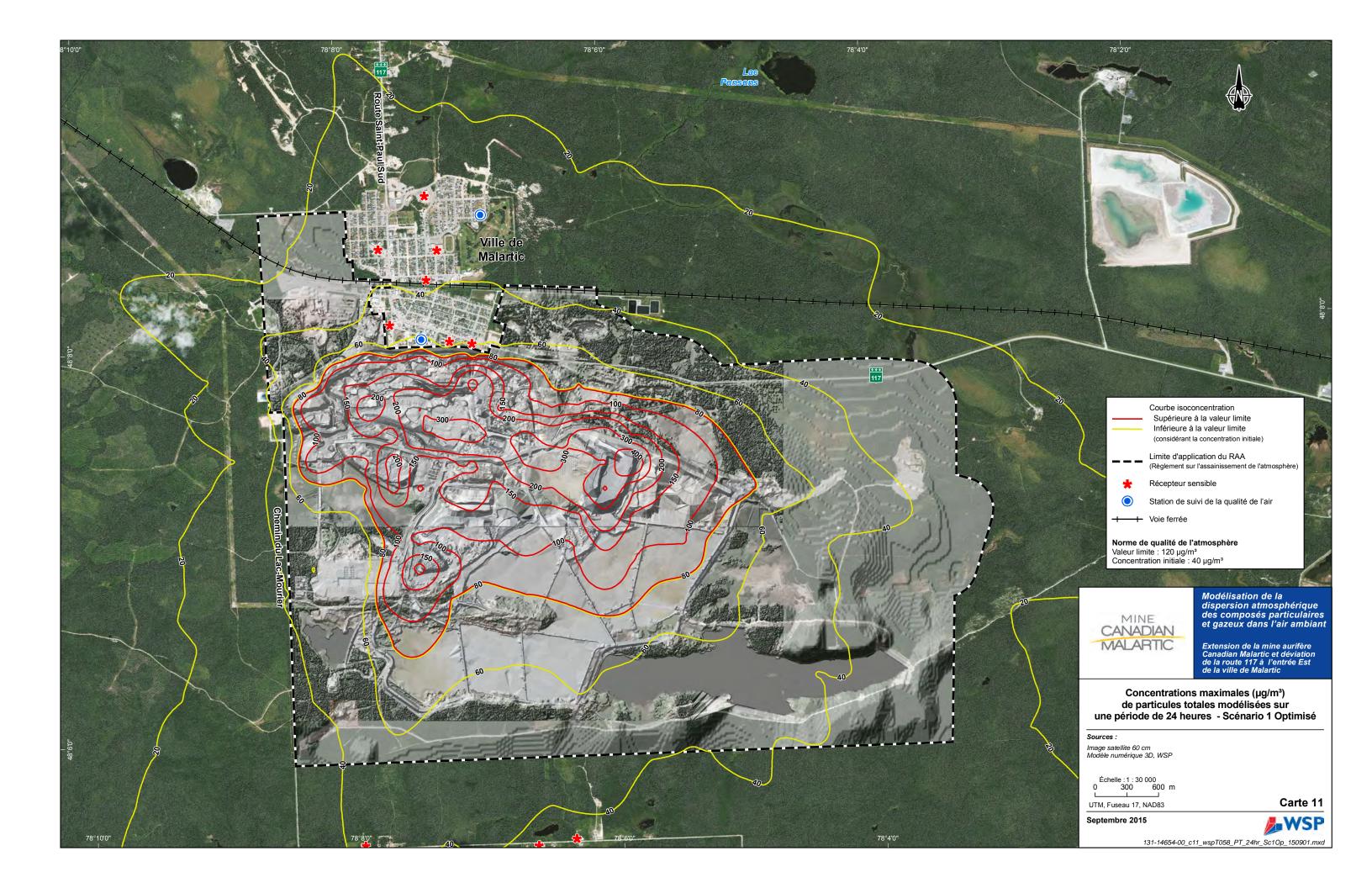


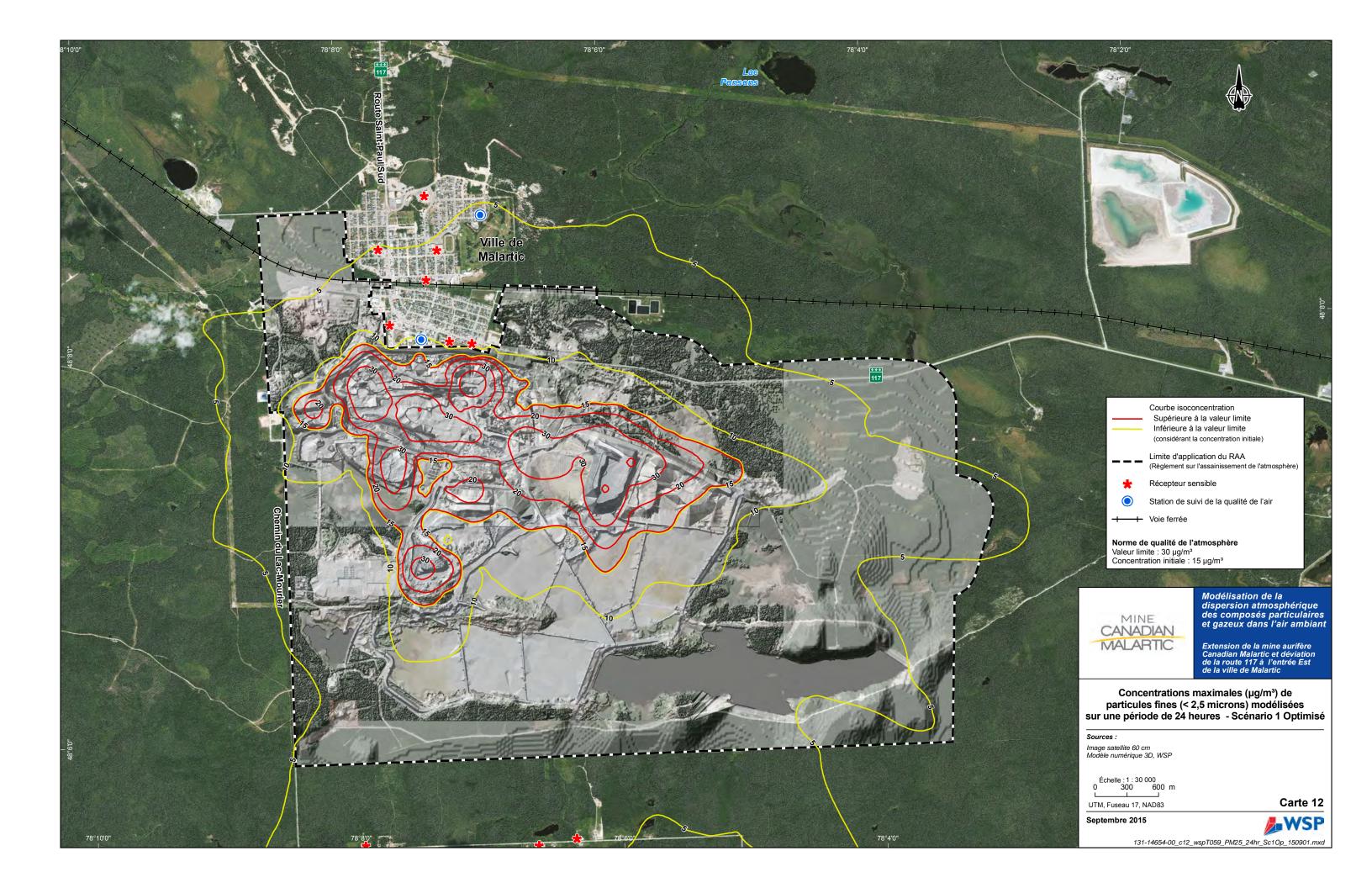


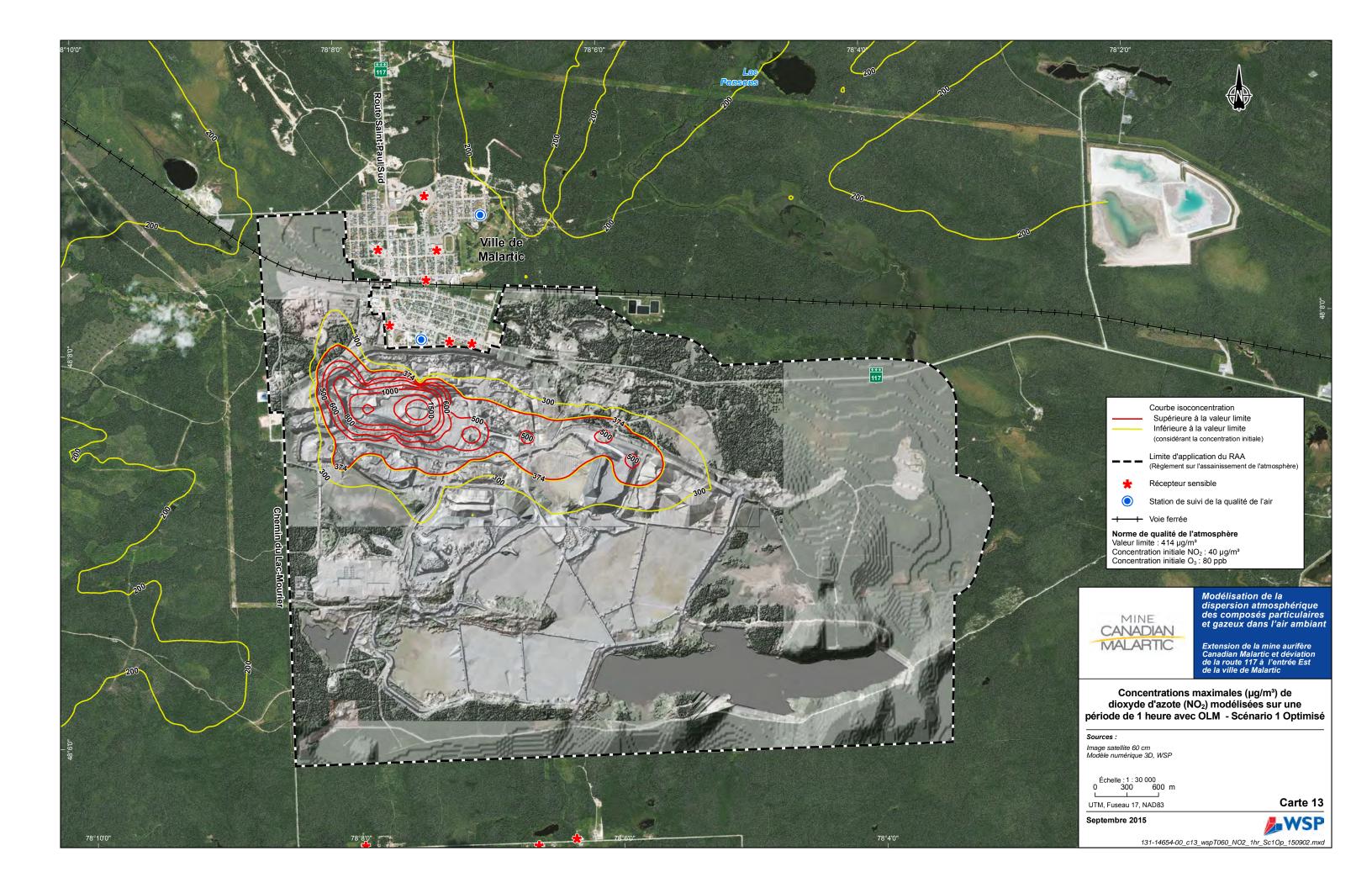


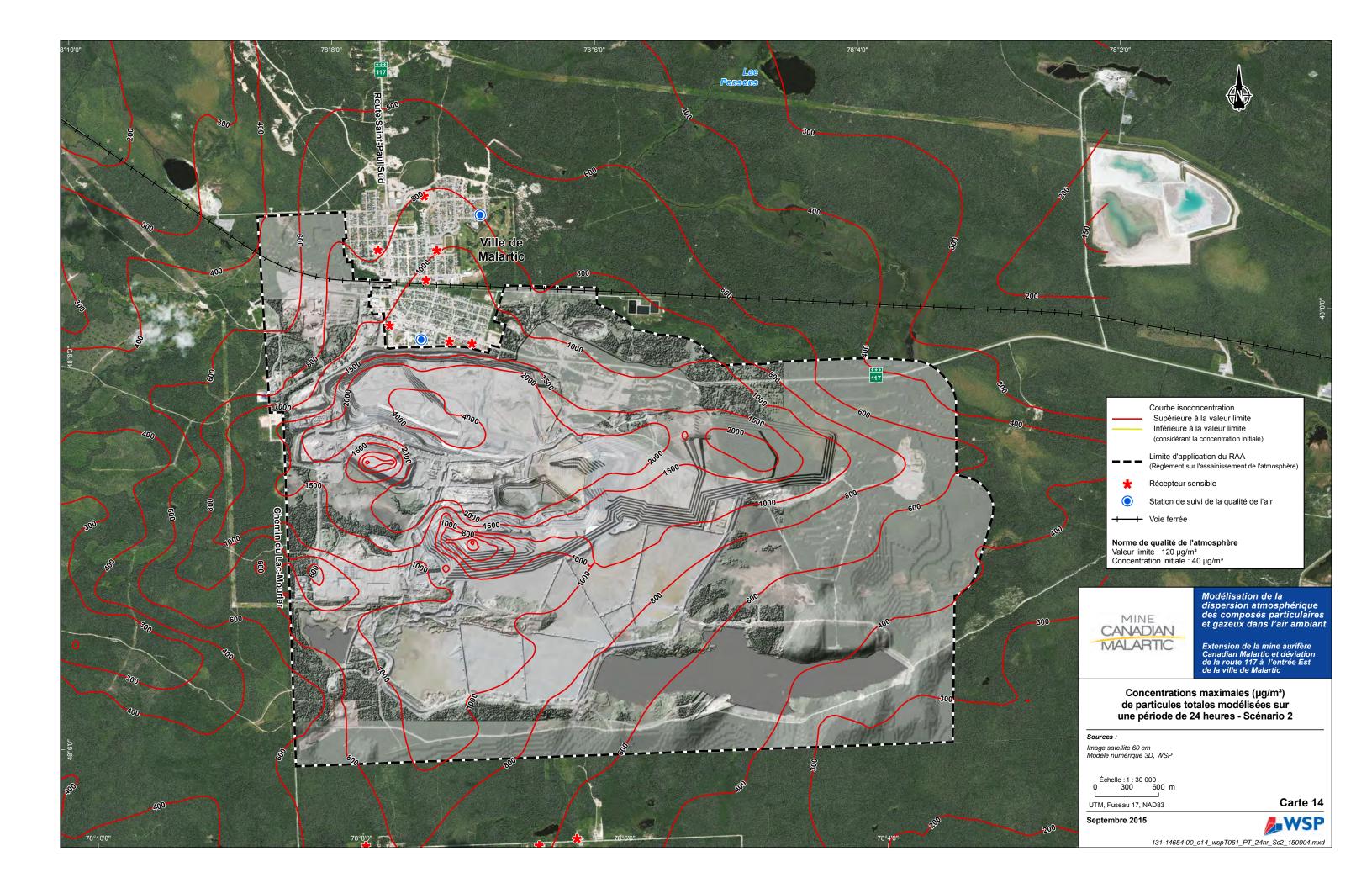


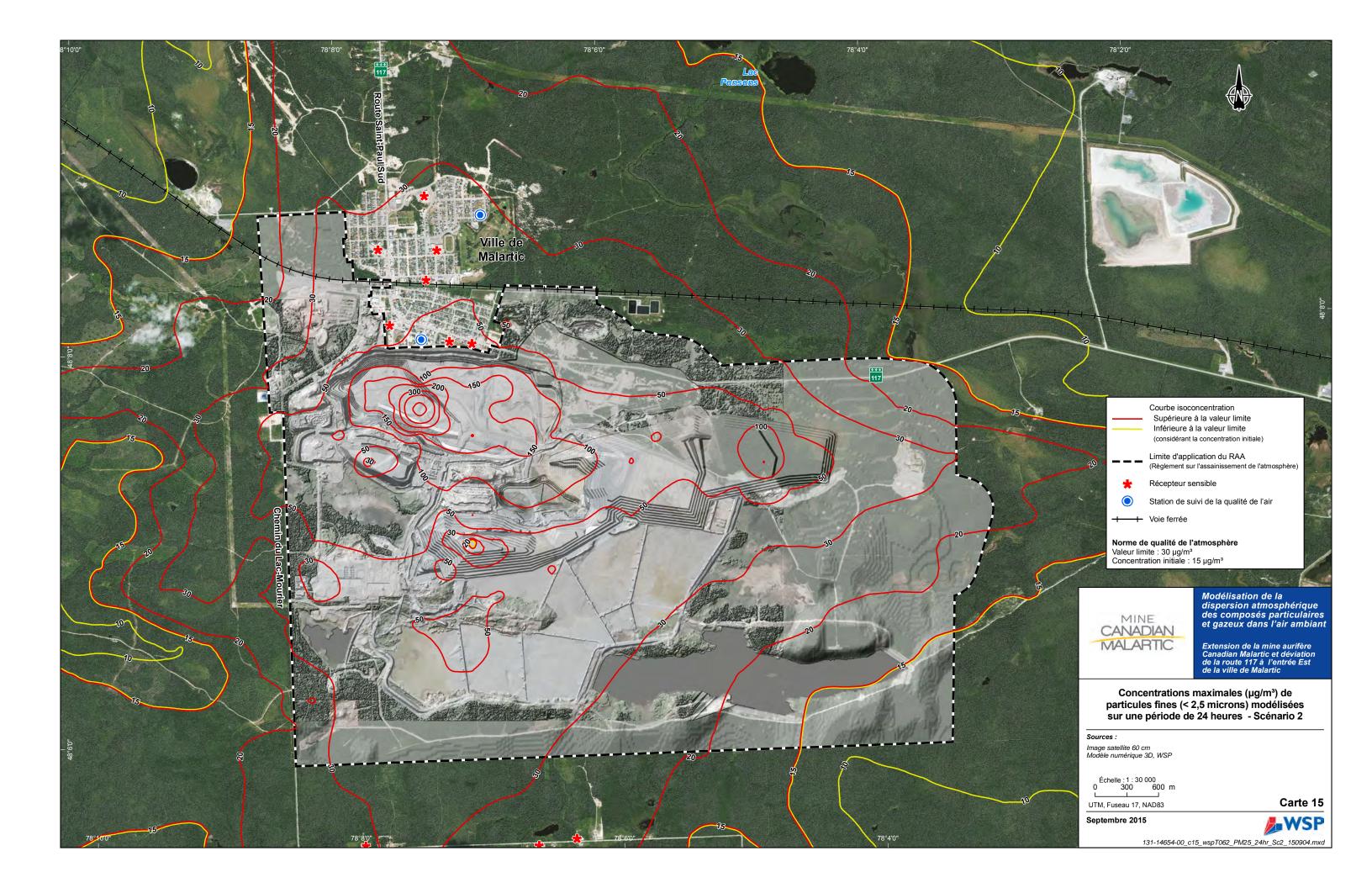


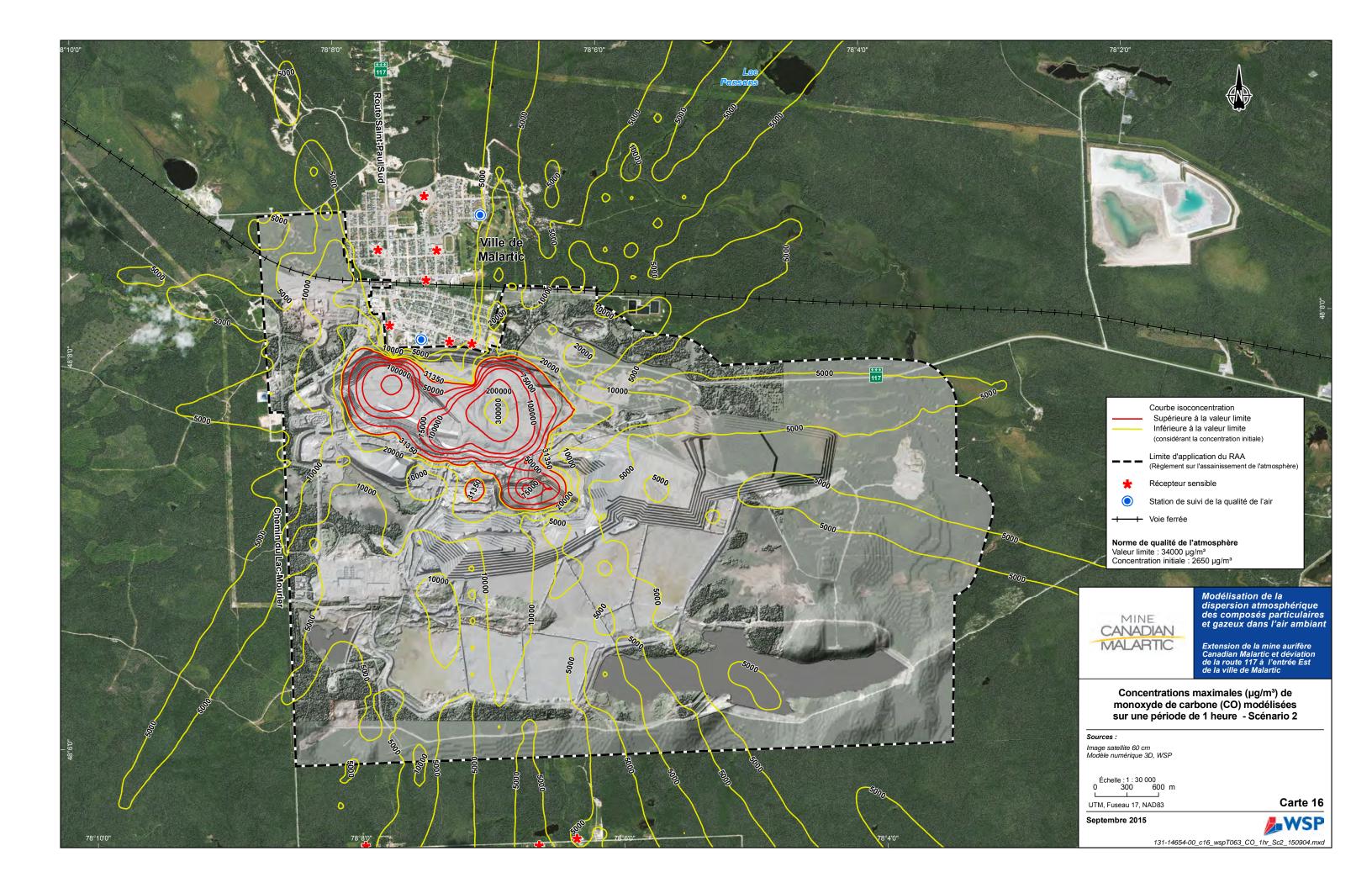


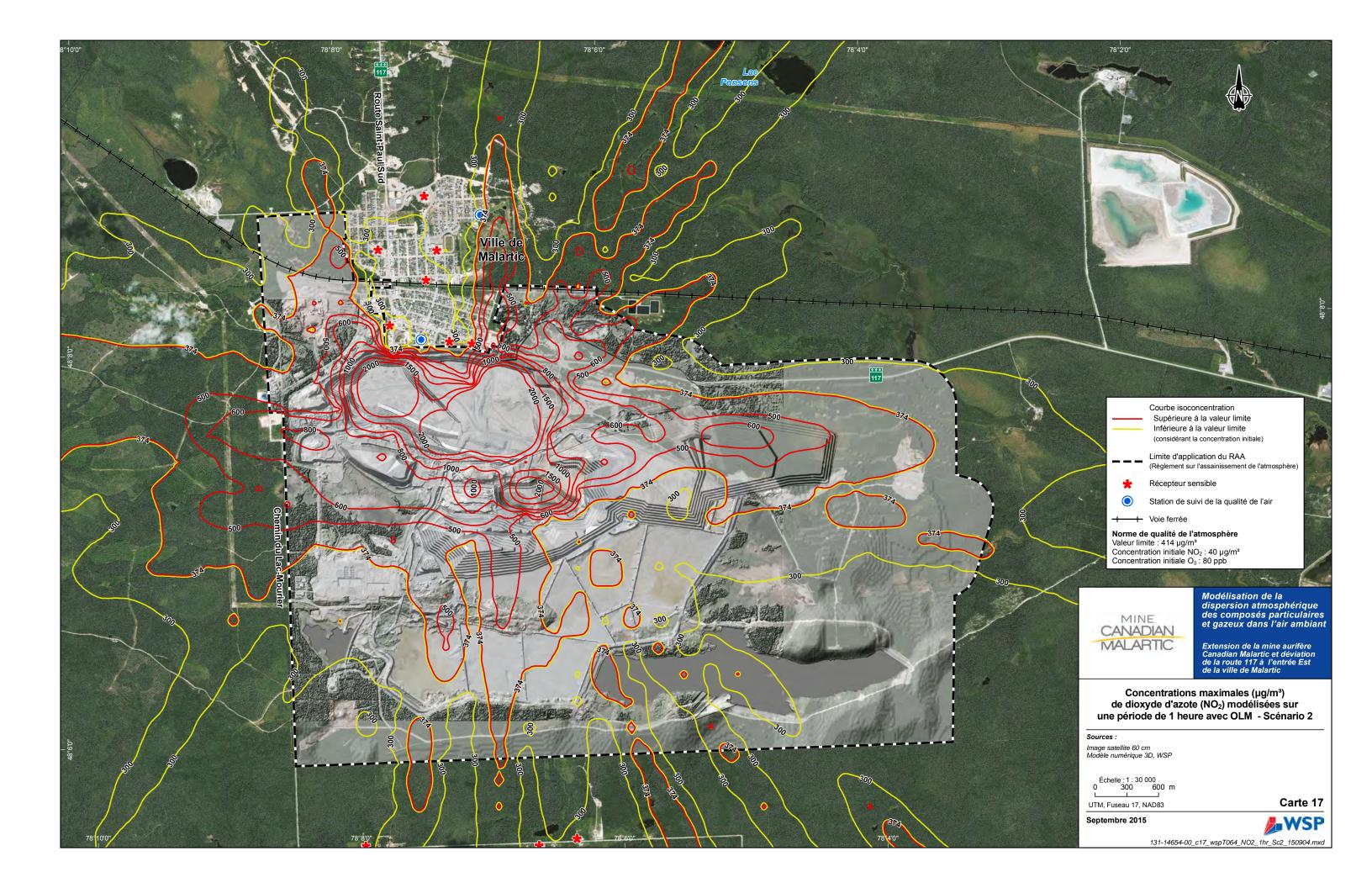


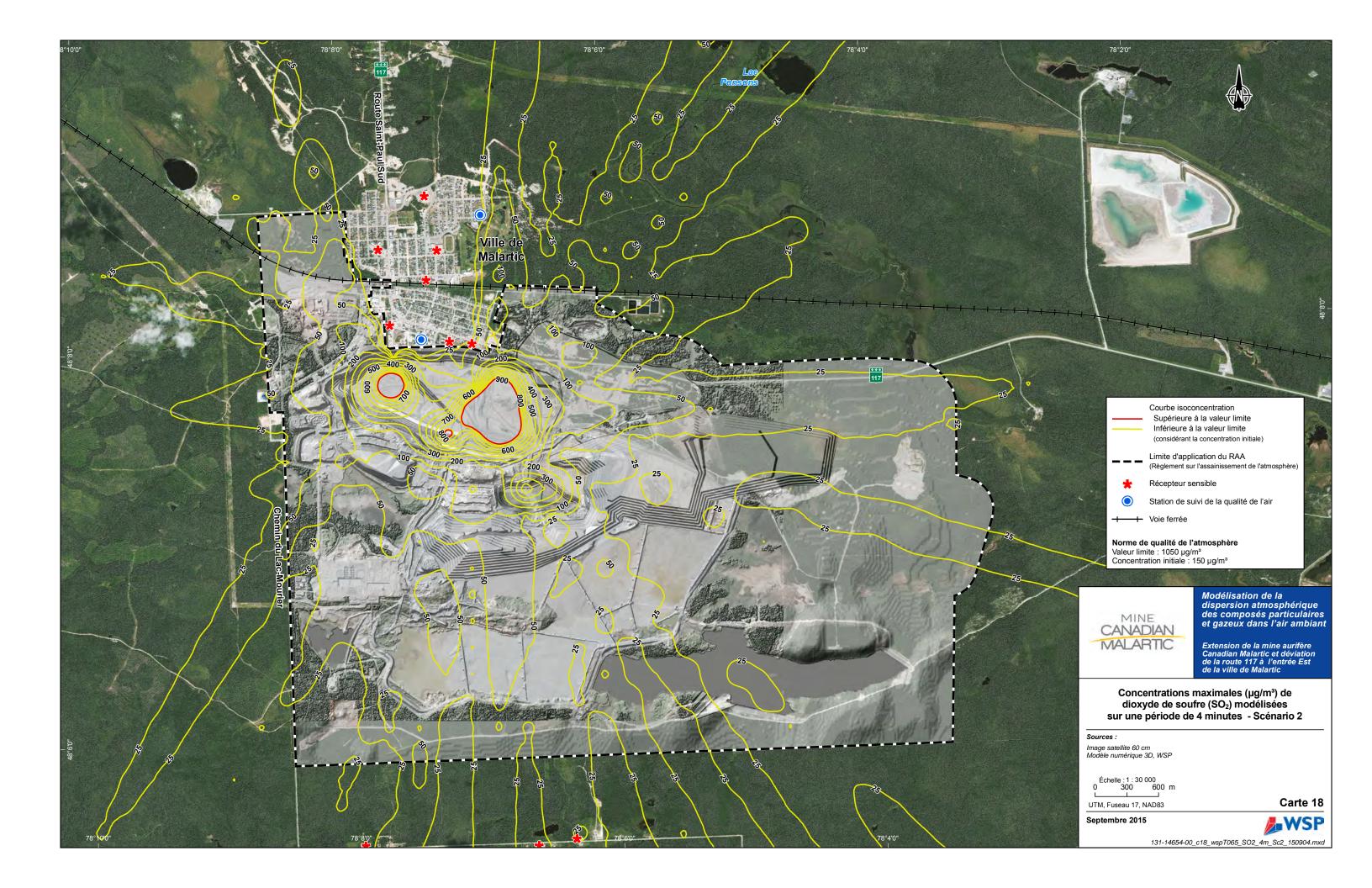


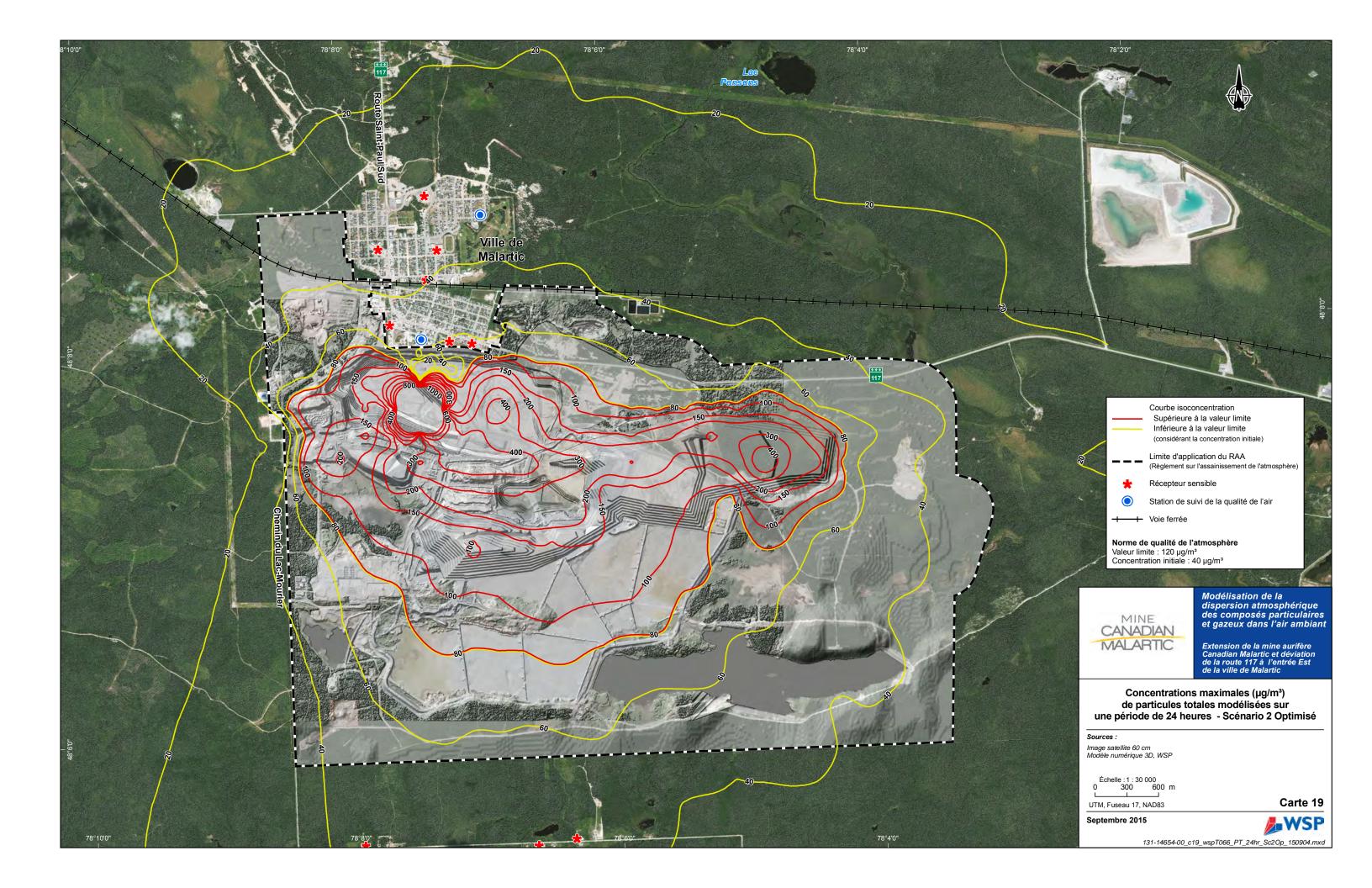


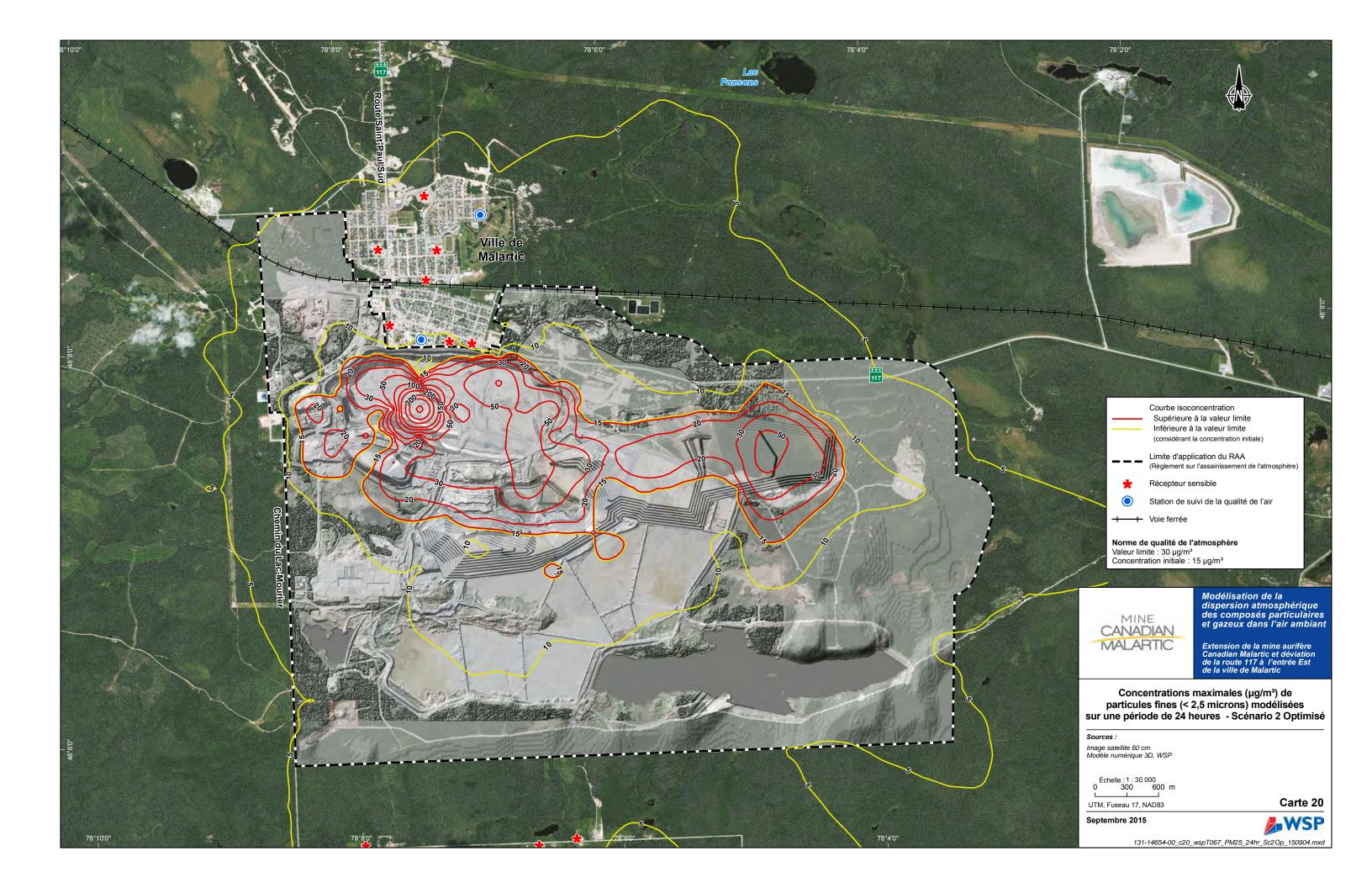


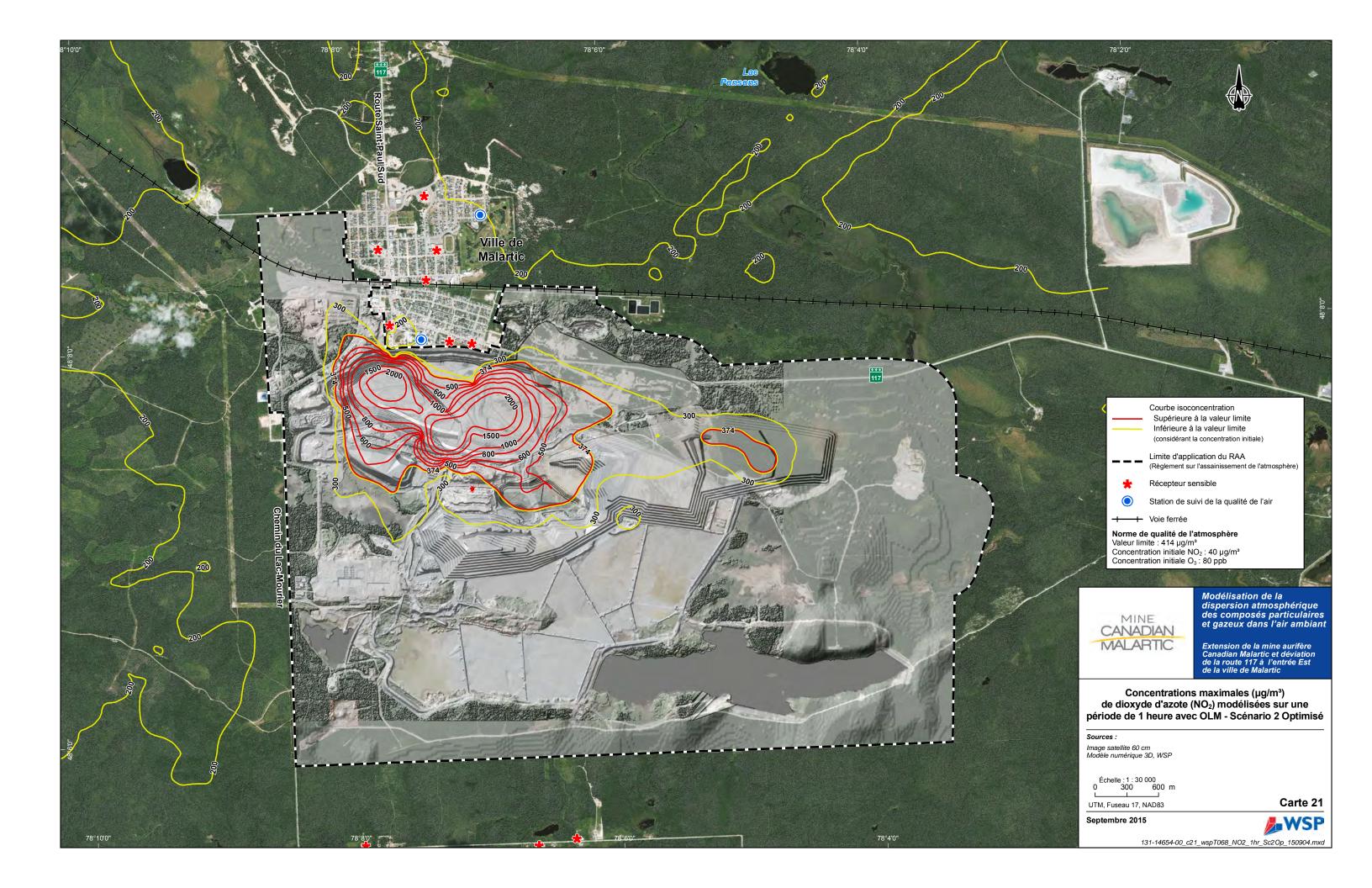


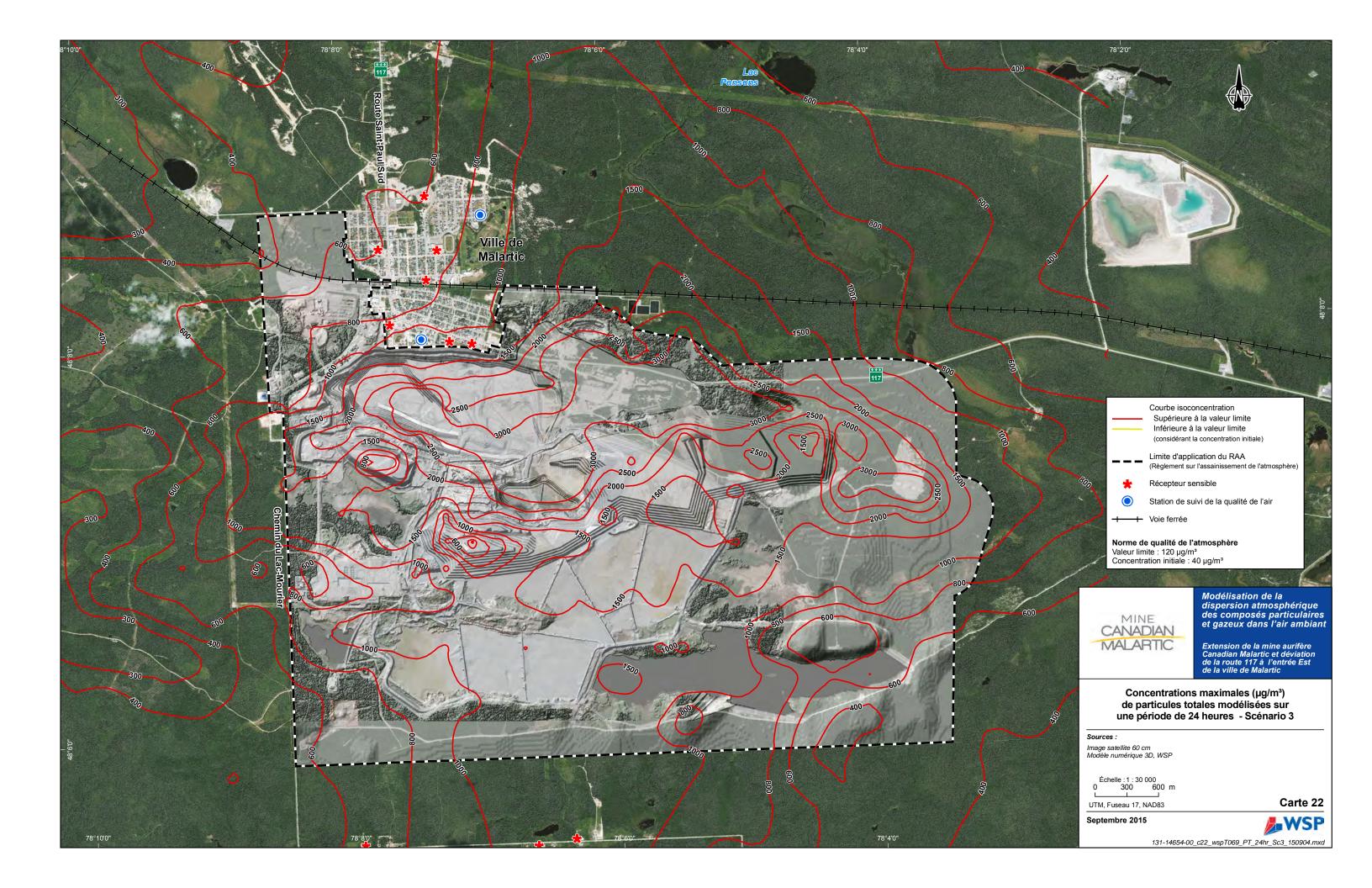


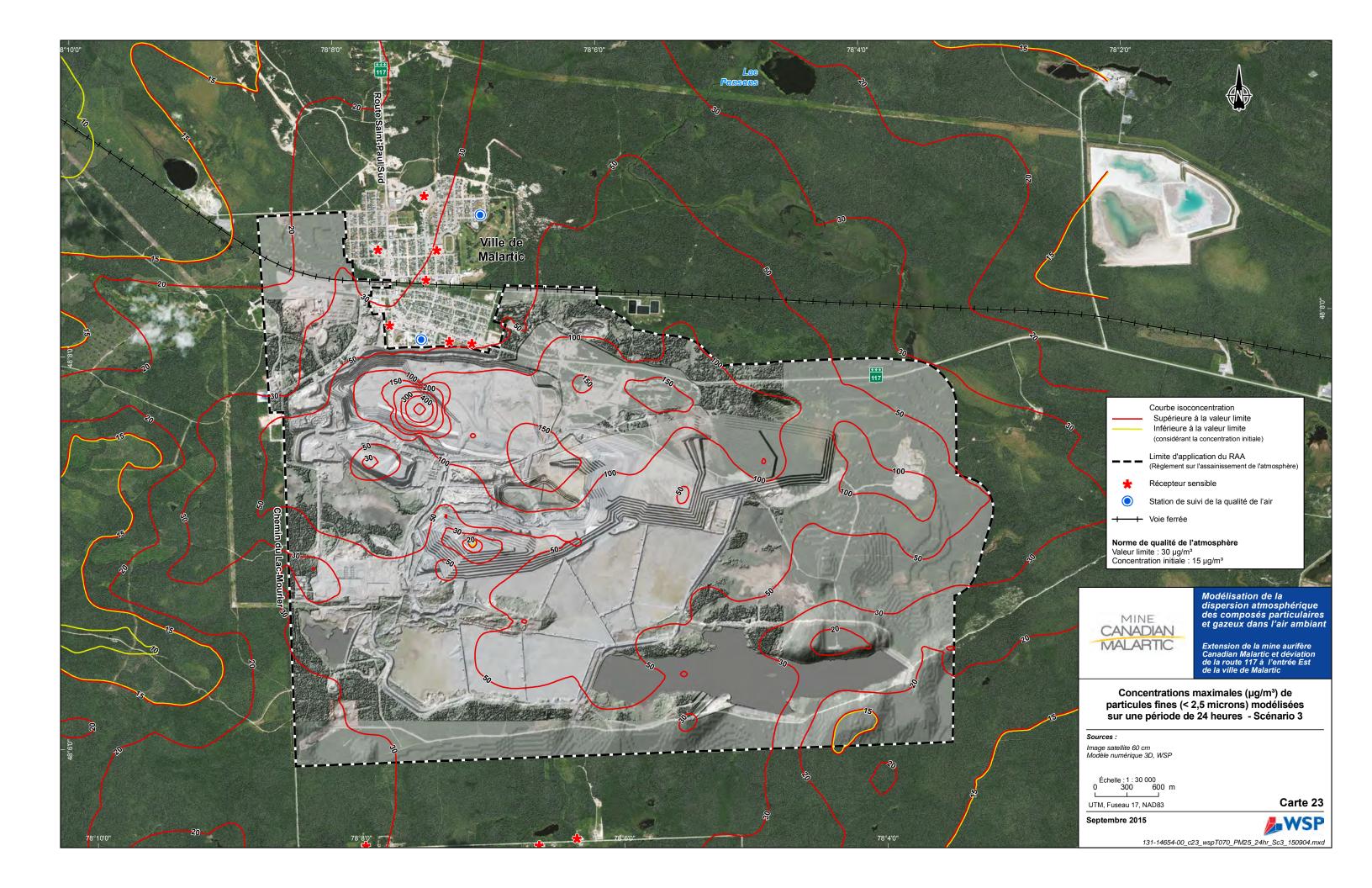


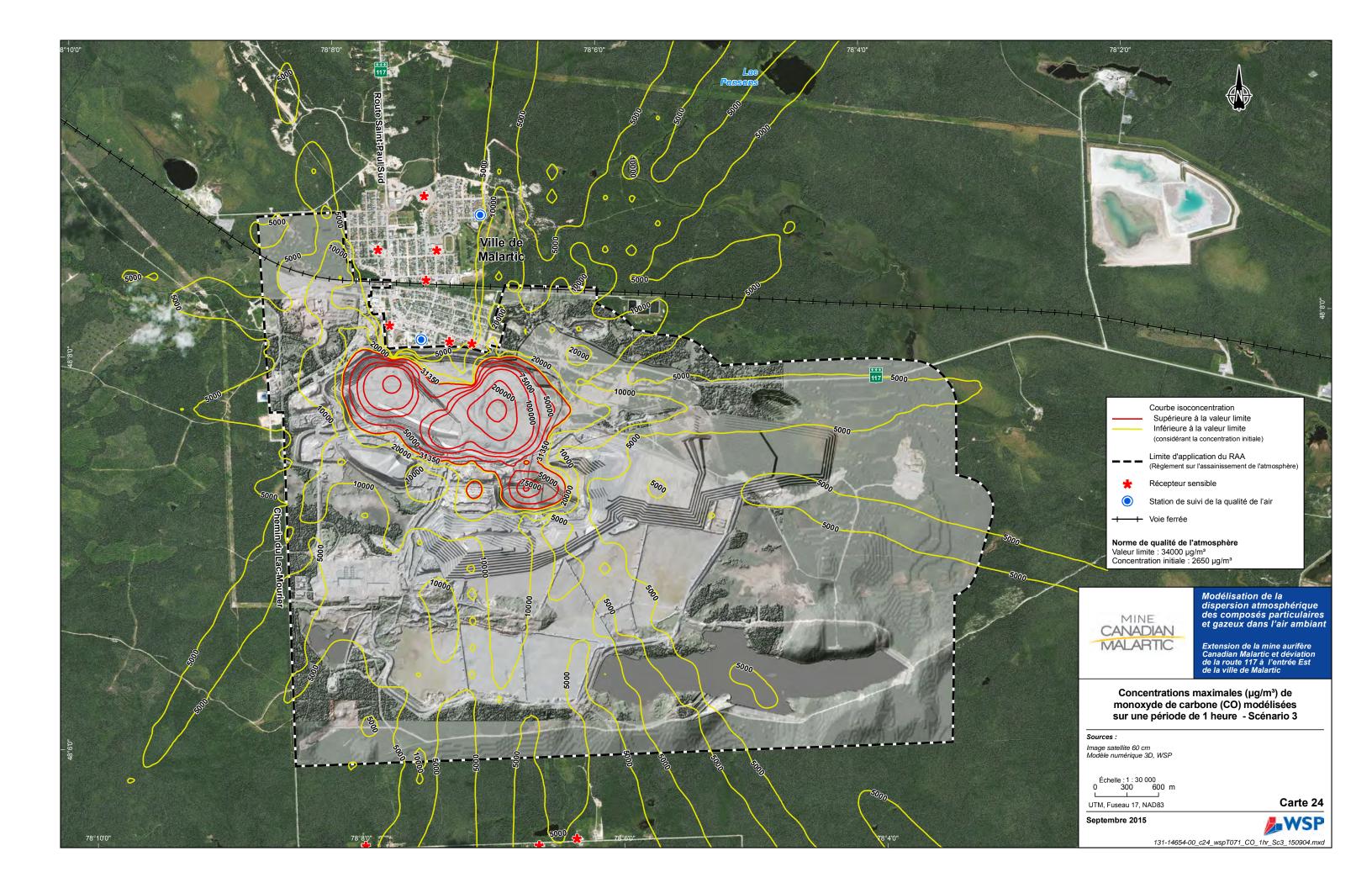


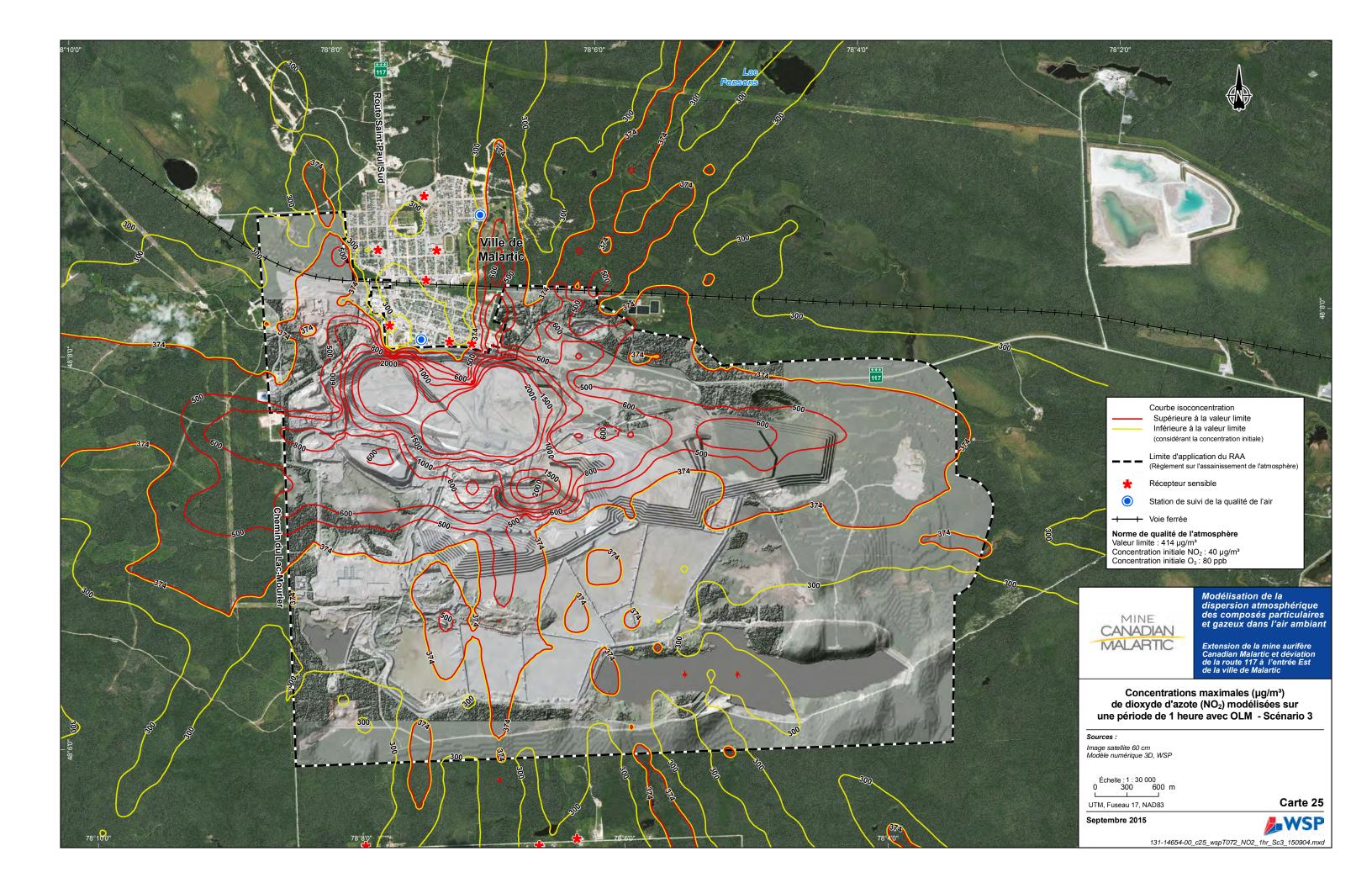


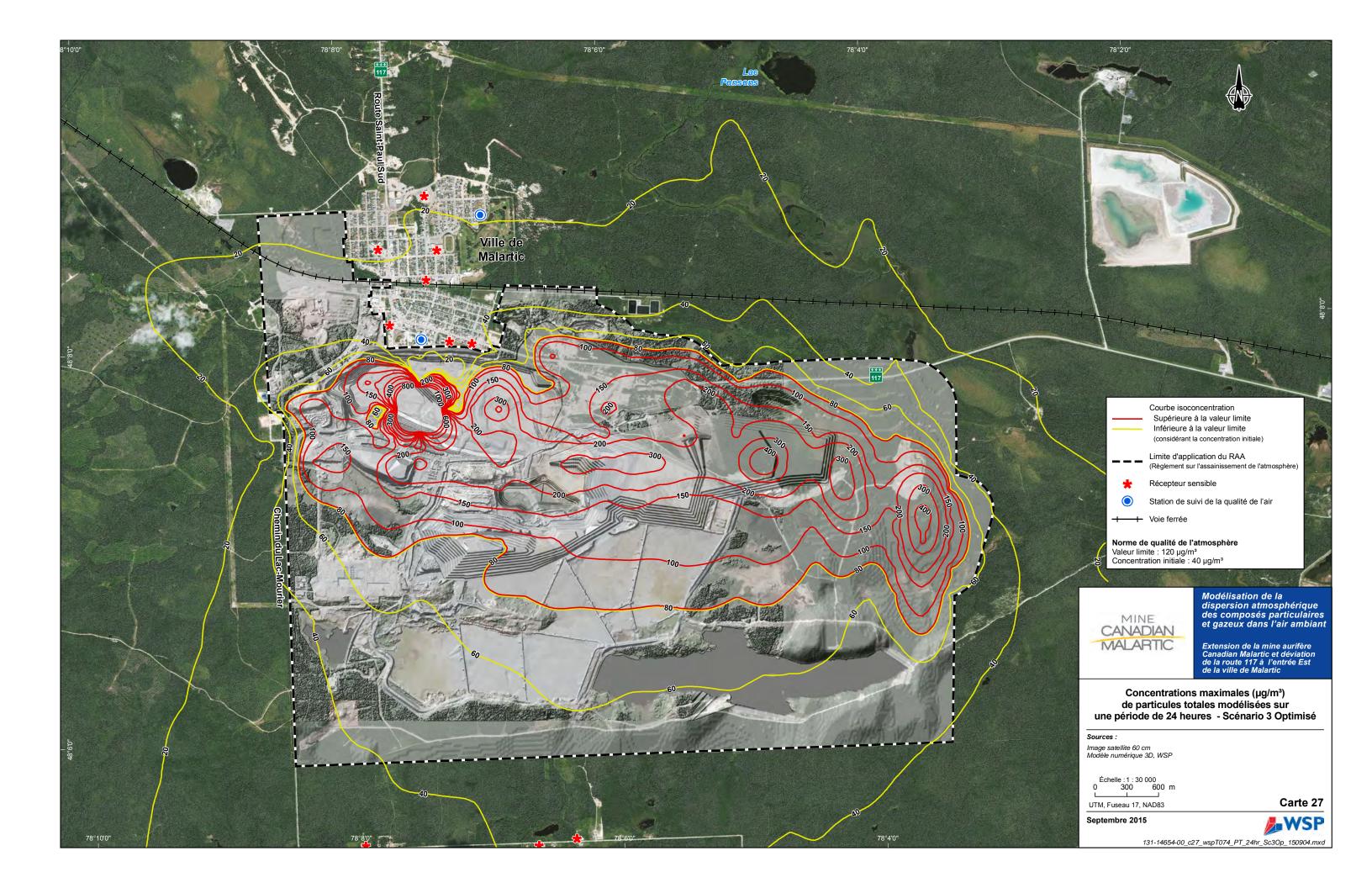


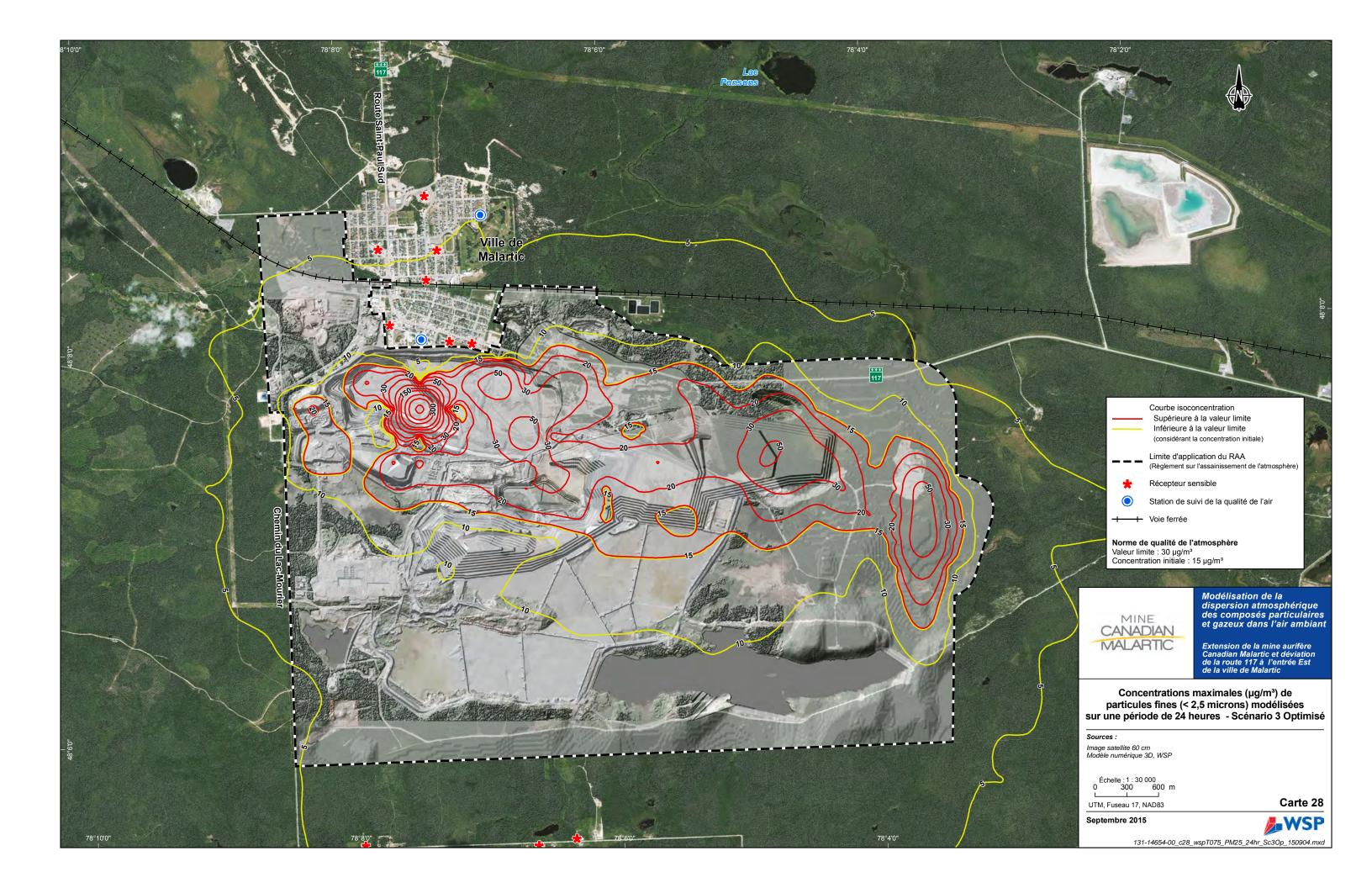


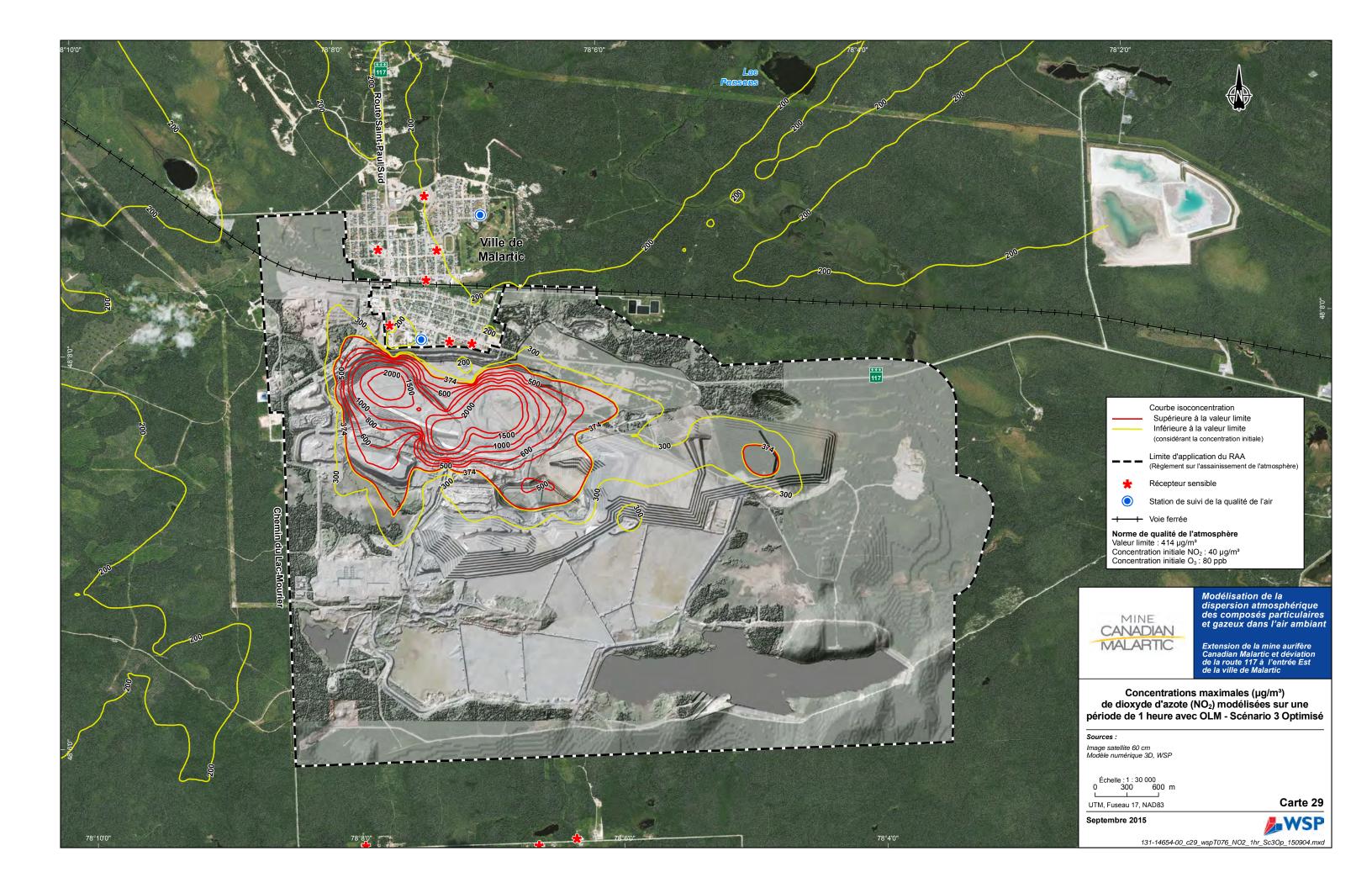












Annexe C

EXEMPLES DE CALCULS

LISTE DES TABLEAUX

Tableau C1:	Facteurs de conversion	C-3
Tableau C2:	Source fugitive - Forage - DRILL1 - Scénario 1	C-3
Tableau C3:	Source fugitive - Sautage - S1_42_1 - Scénario 1	C-4
Tableau C4 :	Source fugitive - Activité de chargement/déchargement - LOAD1 - Scénario 1	C-5
Tableau C5:	Source volumique - Activité de routage - Segment A - Scénario 1	C-6
Tableau C6:	Source ponctuelle - Gaz d'échappement du routage - Caterpillar 793F - Scénario 1	C-7
Tableau C7:	Source surfacique - Pile de stockage - LGO1 - Scénario 1	C-8
Tableau C8:	Source fugitive - Activité de boutage - BULL1 - Scénario 1	C-9
Tableau C9 :	1CONCAS - Dépoussiéreur collecteur humide - concasseur giratoire)-10

Tableau C1: Facteurs de conversion

Paramètres				
Item	Unité	Variable	Valeur	
Conversion j - h	h/j	h	24	
Conversion m - km	m/km	Ckm	1000	
Conversion kg - Mg	kg/Mg	Ckg	1000	
Conversion kg - g	g/kg	Cg	1000	
Conversion short ton - Mg (tm)	short tons/Mg	CMg	1.10	
Conversion ktm - Mg	Mg/ktm	Cktm	1000	
Conversion h - s	s/h	Cs	3600	

Tableau C2: Source fugitive - Forage - DRILL1 - Scénario 1

A - Matières particulaires totales (PM _{tot})								
Item	Unité	Variable	Valeur	Références				
Facteur d'émission (par forage)	kg/forage	Е	0,59	AP-42; Tableau 11.9-4				
Nb. forage par jour	forage/jour	ntr	10	Description des opérations				
Durée de forage par jour	heure/jour	t	12	Description des opérations				
Nb. Zone de forage	-	nZone	1	Description des opérations				
Atténuation	%	Att	0 %	[1]				
Rétention de la fosse	%	PitR	0 %	[2] - Non considéré dans cette étude				
Taux d'émission, sans atténuation	g/s	ER _{PMtot-sa}	1,297E-01	E x ntr x Cg / (t x Cs x nZone)				
Taux d'émission	g/s	ER _{PMtot}	1,297E-01	ER _{PMtot-sa} x (1 - Att) x (1 - PitR)				
B - Matières particulaires 10 μm (PM10)	B - Matières particulaires 10 μm (PM10)							
Facteur d'échelle	-	F ₁	0.9	Hypothèse				
Taux d'émission	g/s	ER _{PM2.5}	1,168E-01	ER _{PMtot-sa} x F ₁				
C - Matières particulaires 2,5 µm (PM2,5)								
Facteur d'échelle	-	F ₂	0.5	Hypothèse				
Taux d'émission	g/s	ER _{PM2.5}	6,487E-02	ER _{PMtot-sa} x F ₂				

^[1] National Pollutant Inventory. Emission Estimation Technique Manual for Mining, version 3.0; Section 5.3 tableau 4. Juin 2011

^[2] Le facteur utilisé est une fonction de l'élévation de la source et celui-ci est conservateur, car il est toujours en dessous de la valeur présentée dans [1] (soit 50 %).

Tableau C3 : Source fugitive - Sautage - S1_42_1 - Scénario 1

A - Matières particulaires totales (PM	l _{tot})			
Item	Unité	Variable	Valeur	Références
Facteur d'émission (par explosion)	kg/blast	Е	35,48658	AP-42 Tableau 11.9-2
Aire horizontale sautée par charge	m²/blast	S	2963,2	Courriel Osisko 2014-03-27
Nb. de sautages par banc	blast/banc	nex	1	Description des opérations carrière
Temps d'opération hebdomadaire	h/j	t	1	Facteur (1h de sautage / jour)
Nb. de banc de sautage par jour de sautage	banc/j	nbc	1	Description des opérations carrière
Conversion h - s	s/h	Cs	3600	Facteur de conversion
Conversion kg - g	g/kg	Cg	1000	Facteur de conversion
Taux d'émission total	g/s	TE _{PMtot}	9,857E+00	E x nex x nbc x Cg / (t x Cs)
B - Matières particulaires 10 μm (PM	10)			
Item	Unité	Variable	Valeur	Références
Facteur d'échelle	-	sf	0,52	AP-42 Tableau 11.9-2
Taux d'émission total	g/s	TE _{PM2.5}	5,126E+00	TE _{PMtot} × sf
C - Matières particulaires 2.5 µm (PN	2.5)	•		
Item	Unité	Variable	Valeur	Références
Facteur d'échelle	-	sf	0,03	AP-42 Tableau 11.9-2
Taux d'émission total	g/s	TE _{PM2.5}	2,957E-01	TE _{PMtot} × sf
D - Monoxyde de carbone (CO), Oxyd	des d'azote (NOx) et dioxyde	de soufre (SO ₂)	
Item	Unité	Variable	Valeur	Références
Emission Factor CO (ANFO)	kg/tonne	Eca	34,0	
Emission Factor NO _x (ANFO)	kg/tonne	Ena	8,0	
Emission Factor SO ₂ (ANFO)	kg/tonne	Esa	0,06	National Pollutant Inventory, January 2012
Emission Factor CO (Emulsion)	kg/tonne	Ece	17,0	1
Emission Factor NO _x (Emulsion)	kg/tonne	Ene	0,2	
Emission Factor SO ₂ (Emulsion)	kg/tonne	Ese	0,06	Hypothèse (égal à l'ANFO)
Volume sauté par banc	tonne	V	137961	Courriel Osisko 2014-03-27
Facteur explosif	kg/tonne	r	0,31	Courriel Osisko 2014-03-27
Quantité d'explosif par sautage	tonne/banc	EQb	43	V * r / 1000
Ratio ANFO dans le mélange d'explosifs	%	Ra	30 %	Courriel Osisko 2014-03-27
Ratio Emulsion dans le mélange d'explosifs	%	Re	70 %	Courriel Osisko 2014-03-27
Émission totale de CO	kg	TCO	945,17	TCO = EQb * (Eca · Ra + Ece · Re)
Émission totale de NO _x	kg	TNO2	108,63	$TNO_x = EQb * (Ena \cdot Ra + Ene \cdot Re)$
	kg	TSO2	2,57	$TSO_2 = EQb * (Esa \cdot Ra + Ese \cdot Re)$
Émission totale de SO ₂	Ny Ny		i .	1
Émission totale de SO ₂ Taux d'émission CO	g/s pour 1h	СО	2,625E+02	Émission totale CO moyennée une heure
_		CO NOx	2,625E+02 3,018E+01	Émission totale CO moyennée une heure Émission totale NO _x moyennée une heure

Tableau C4 : Source fugitive - Activité de chargement/déchargement - LOAD1 - Scénario 1

A - Matières particulaires totales (PM _{tot})						
Item	Unité	Variable	Valeur	Références		
Facteur d'émission	kg/Mg	Е	0,000553	AP 42, sect. 13.2.4.3		
k	-	k	0,74	AP 42, sect. 13.2.4.3		
U (vitesse moyenne du vent)	m/s	U	3,57	Station Val d'Or A		
% d'humidité matière chargée	%	М	5,4	US-EPA, AP-42, section 13.2.4, tbl.1		
Tonnage annuel chargé au concasseur	ktm	Т	1075,00	Scénario 1		
Temps d'opération annuel	h	t	4380	an × h / j		
Nb. jour de travail prévu par an	j	an	365	Janvier à décembre - 12h/jour		
Conversion j - h	h/j	h/j	12	facteur		
Conversion ktm - Mg	Mg/ktm	CMg	1000	facteur		
Conversion h - s	s/h	Cs	3600	facteur		
Conversion kg - g	g/kg	Cg	1000	facteur		
Taux d'émission	g/s	TE _{PMtot}	3,770E-02	$E \times T \times CMg \times Cg / (t \times Cs)$		
B - Matières particulaires 10 μm (PM ₁₀)						
Item	Unité	Variable	Valeur	Références		
Facteur d'émission	kg/Mg	Е	0,000262	AP 42, sect. 13.2.4.3		
k (< 2,5 µm)	-	k	0,35	AP 42, sect. 13.2.4.3		
U (vitesse moyenne du vent)	m/s	U	3,57	Station Val d'Or A		
% d'humidité matière chargée	%	М	5,4	AP 42, Tableau 13.2.4.1		
Tonnage annuel chargé à la mine	ktm	Т	1075,00	Scénario 1		
Temps d'opération annuel	h	t	4380	an × h / j		
Nb. jour de travail prévu par an	j	an	365	·		
Conversion j - h	h/j	h/j	12	facteur		
Conversion ktm - Mg	Mg/ktm	CMg	1000	facteur		
Conversion h - s	s/h	Cs	3600	facteur		
Conversion kg - g	g/kg	Cg	1000	facteur		
Taux d'émission	g/s	TE _{PM2.5}	1,783E-02	$E \times T \times CMg \times Cg / (t \times Cs)$		
C - Matières particulaires 2,5 µm (PM _{2,5})						
Item	Unité	Variable	Valeur	Références		
Facteur d'émission	kg/Mg	Е	0,000040	AP 42, sect. 13.2.4.3		
k (< 2,5 μm)	-	k	0,053	AP 42, sect. 13.2.4.3		
U (vitesse moyenne du vent)	m/s	U	3,57	Station Val d'Or A		
% d'humidité matière chargée	%	М	5,4	AP 42, Tableau 13.2.4.1		
Tonnage annuel chargé à la mine	ktm	Т	1075,00	Scénario 1		
Temps d'opération annuel	h	t	4380	an × h / j		
Nb. jour de travail prévu par an	j	an	365	,		
Conversion j - h	h/j	h/j	12	facteur		
Conversion ktm - Mg	Mg/ktm	CMg	1000	facteur		
Conversion h - s	s/h	Cs	3600	facteur		
Conversion kg - g	g/kg	Cg	1000	facteur		
Taux d'émission	g/s	TE _{PM2.5}	2,700E-03	E × T × CMg × Cg / (t × Cs)		

Tableau C5 : Source volumique - Activité de routage - Segment A - Scénario 1

Tableau 05: Source volumique - Activité de routage - Segment A - Scenario 1										
Item	Unité	Variable	Valeur	Référence						
Facteur d'émission	lb/VMT	EF	24,782	AP-42, sect. 13.2.2, équ. 1a; EF = $k(s/12)^a(W/3)^b$						
k (PM30)	lb/VMT	k	4,90	AP-42, sect. 13.2.2, tableau 2						
a (PM30)	-	а	0,70	AP-42, sect. 13.2.2, tableau 2						
b (PM30)	-	b	0,45	AP-42, sect. 13.2.2, tableau 2						
Contenu en silt de la route	%	S	8,30	-						
Poids moyen par segments	tons	W	195,20	Moyenne des poids moyens des camions par segment.						
Nb. déplacement par jour	-	nv	375,00	-						
Longueur de la surface d'émission	m	L	645,50	Intrant client						
Largeur de la route	m	1	30,00	Intrant client						
Hauteur de la source d'émission (véhicule)	m	h	5,40	-						
Véhicule - kilomètre parcouru	VKT	А	242,06	nv x L / Ckm						
Temps d'opération par jour par segment	h	t	24,00	Intrant client						
Atténuation	%	М	86	WRAP (Arrosage eau + limite vitesse 40 km/h)						
Conversion j - h	h/j	h/j	24,00	Facteur						
Conversion m - km	m/km	Ckm	1000,00	Facteur						
Conversion kg - Mg	kg/Mg	Ckg	1000,00	Facteur						
Conversion VMT - VKT	g/VKT/(lb/VMT)	CVKT	281,90	Facteur, AP-42, sect. 13.2.2						
Conversion short ton - Mg (tm)	short tons/Mg	CMg	1,10231	Facteur						
Conversion h - s	s/h	Cs	3600,00	Facteur						
Taux d'émission PM _{tot}	g/s	TE _{PMtot}	1,957E+01	EF × CVKT × A / (t × Cs)						
Taux d'émission atténué PM _{tot}	g/s	TE* _{PMtot}	2,740E+00	TE _{PMtot} × (100 - M) / 100						

Tableau C6 : Source ponctuelle - Gaz d'échappement du routage - Caterpillar 793F - Scénario 1

Mobile source emission factor (Diesel) - PM - TCK1 (IHC F-5070)								
Item Unité Variable Valeur Référence								
Facteur d'émission ajusté PM ₁₀	g/hp-hr	EF _{adj-PM10}	0,186	[1], eq. 2, $EF_{adj-PM10} = (EF_{ss} \times TAF \times DF) - S_{PMadj}$				
Zero-hour, steady-state emission factor	g/hp-hr	<i>EF</i> _{ss}	0,1316	[1], Table A4				
Facteur d'ajustement transitoire	-	TAF	1,23	[1], Table A5				
Facteur de détérioration	-	DF	1,473	[1], eq. 4, $DF = 1 + A \times age_{fact}$				
Constante	-	Α	0,473	[1], Table A6				
Fraction de vie médiane utilisée	-	age _{fact}	1,000	[1], eq. 4', $age_{fact} = h_{cumul} \times load_{fact} / vie_{med} (tronqué à 1)$				
Heures cumulatives	h	h _{cumul}	183084	activity × age				
Activité	h/an	activity	8760	Intrant du client				
Age du véhicule	an	age	21	Intrant du cliant				
Facteur de chargement	-	load _{fact}	0,59	[4]				
Vie médiane	h	vie _{med}	8000	engine database				
Facteur d'ajustement (sulfure content)	g/hp-hr	S_{PMadj}	0,0525	[1], eq. 5, $S_{PMadj} = BSFC \times 453.6 \times 7.0 \times soxcnv \times 0.01 \times (soxbas - soxdsl)$				
Brake Specific Fuel Consumption	lb/hp-hr	BSFC	0,371	$BSFC_{ss} \times BSFC_{TAF}$				
BSFC _{ss}	lb/hp-hr	BSFC _{ss}	0,367	[1], Table A4				
BSFC _{TAF}	-	BSFC _{TAF}	1,01	[1], Table A5				
soxcnv [2]	-	soxcnv	0,02247	[2], grams PM sulfur/grams fuel sulfur consumed				
soxbas	%	soxbas	0,2	default certification fuel sulfur weight percent				
soxdsl [3]	%	soxdsl	0,0015	[3] episodic fuel sulfur weight percent (specified by user), sinon Table 2				
Facteur de conversion PM ₁₀ -PM _{2.5}	-	F _{conv}	0,97	[1], p.25				
Nombre de hp du véhicule	hp	veh _{hp}	2478	Documentation technique				
Conversion heure-seconde	-	C _{h-s}	3600	facteur de conversion				
Taux d'émission PM ₁₀	g/s	TE _{PM10}	7,55E-02	$EF_{adj-PM10} \times veh_{hp} / C_{h-s}$				
Taux d'émission PM _{2.5}	g/s	TE _{PM2.5}	7,32E-02	$TE_{PM10} \times F_{conv}$				
[1] Exhaust and Cranko 009d, July 2010	ase emissior	factors for No	nroad engine	modeling - Compression-Ignition, US-EPA, Report No. NR-				
technology type. So	technology type. Soxcnv is equal to 0.02247 for the Base, T0, T1, T2, T3, T3B, T4A, and T4B technology types. For Tie 4 engines meeting stringent PM standards below 0.1 g/hp-hr, soxcnv is equal to 0.30. This applies to the T4 and T4N							
[3] Voir dans [1], page 7. Fuel sulfur levels affect PM emissions. NONROAD users can adjust for local (episodic) fuel sulful levels. In the absence of local information, suggested nationwide average fuel properties are provided in Table 2.								

Median life, annual activity and load factor values for nonroad engine emissions modeling, US-EPA, Report No. NR-005c, April 2004

[4]

Tableau C7 : Source surfacique - Pile de stockage - LGO1 - Scénario 1

Item	Unité	Variable	Valeur	Référence
Facteur de conversion : lb/acre> kg/m2	-	C ₁	1,12E-04	-
Facteur aérodynamique PM _{tot}	-	J _{PMtot}	1	Guide pour les carrières et sablières. INRP, section 8.9. (http://www.ec.gc.ca/inrp-npri/default.asp?lang=Fr&n=A9C1EE34-1#s8_9)
Facteur aérodynamique PM _{tot}	-	J _{PM10}	0,5	Guide pour les carrières et sablières. INRP, section 8.9. (http://www.ec.gc.ca/inrp-npri/default.asp?lang=Fr&n=A9C1EE34-1#s8_9)
Facteur aérodynamique PM _{2.5}	-	J _{PM2.5}	0,2	Guide pour les carrières et sablières. INRP, section 8.9. (http://www.ec.gc.ca/inrp-npri/default.asp?lang=Fr&n=A9C1EE34-1#s8_9)
Teneur moyenne en silt	%	s	3,9	AP-42 Table 13.2.4-1
Nombre moyen de jours par année avec au moins 0.254 mm de précipitation	-	Р	0	Environnement Canada
Pourcentage par année de vent supérieur à 19.3 km/h	%	I	100	Environnement Canada
Atténuation	%	А	0	Arrosage des piles
Facteur d'émission PM _{tot} (par année)	kg/m²	FE _{PMtot}	1,87E+00	$FE_{PMtot} = 1.2E^{-4} \times J_{PMtot} \times 1.7 \times (s / 1.5) \times 365 \times (365 - P) / 235 \times (I / 15)$
Facteur d'émission PM ₁₀ (par année)	kg/m ²	FE _{PM10}	9,35E-01	$FE_{PMtot} = 1.2E^{-4} \times J_{PM10} \times 1.7 \times (s / 1.5) \times 365 \times (365 - P) / 235 \times (I / 15)$
Facteur d'émission PM _{2.5} (par année)	kg/m²	FE _{PM2.5}	3,74E-01	$FE_{PM2.5} = 1.2E^{-4} \times J_{PM2.5} \times 1.7 \times (s / 1.5) \times 365 \times (365 - P) / 235 \times (l / 15)$
Taux d'émission PM _{tot}	g/s.m ²	TE _{PMtot}	5,93E-05	TE _{PMtot} = FE _{PMtot} × 1000 / (365 × 24 × 3600)
Taux d'émission PM ₁₀	g/s.m ²	TE _{PM10}	2,97E-05	TE _{PM10} = FE _{PM10} × 1000 / (365 × 24 × 3600)
Taux d'émission PM _{2.5}	g/s.m ²	TE _{PM2.5}	1,19E-05	TE _{PM2.5} = FE _{PM2.5} × 1000 / (365 × 24 × 3600)
Taux d'émission atténué PM _{tot}	g/s.m ²	TE* _{PMtot}	5,93E-05	$TE^*_{PMtot} = TE_{PMtot} \times (100 - A) / 100$
Taux d'émission atténué PM ₁₀	g/s.m ²	TE* _{PM10}	2,97E-05	$TE^*_{PM10} = TE_{PM10} \times (100 - A) / 100$
Taux d'émission atténué PM _{2.5}	g/s.m ²	TE* _{PM2.5}	1,19E-05	$TE^*_{PM2.5} = TE_{PM2.5} \times (100 - A) / 100$

Tableau C8 : Source fugitive - Activité de boutage - BULL1 - Scénario 1

A - Matières particulaires totales (PM _{tot})				
Item	Unité	Variable	Valeur	Références
Facteur d'émission	kg/hr	E _{tot}	1,486	AP42 13.9 Western surface coal mine; Table 11.9-2
Teneur moyenne en silt	%	S	3,9	US-EPA, AP-42, section 13.2.4, tbl.1
% d'humidité matière chargée	%	М	5,4	US-EPA, AP-42, section 13.2.4, tbl.1
Atténuation	%	Att	50	Hypothèse d'immobilisation 50 % du temps
Conversion j - h	h/j	h/j	24	facteur
Conversion h - s	s/h	Cs	3600	facteur
Conversion kg - g	g/kg	Cg	1000	facteur
Taux d'émission	g/s	TE _{PMtot}	2,064E-01	E _{tot} × (100 - Att) /100 × Cg / Cs
B - Matières particulaires 15 μm (PM15)	·			
Item	Unité	Variable	Valeur	Références
Facteur d'émission	kg/hr	E ₁₅	0,327	AP42 13.9 Western surface coal mine; Table 11.9-2
Teneur moyenne en silt	%	S	3,9	US-EPA, AP-42, section 13.2.4, tbl.1
% d'humidité matière chargée	%	М	5,4	US-EPA, AP-42, section 13.2.4, tbl.1
Atténuation	%	Att	50	Hypothèse d'immobilisation 50 % du temps
Conversion j - h	h/j	h/j	24	facteur
Conversion h - s	s/h	Cs	3600	facteur
Conversion kg - g	g/kg	Cg	1000	facteur
C - Matières particulaires 10 μm (PM ₁₀)	·			
Facteur d'échelle	-	F ₁	0,75	Hypothèse
Taux d'émission	g/s	ER _{PM10}	3,406E-02	E ₁₅ × F ₁ × (100 - Att) /100 × Cg / Cs
D - Matières particulaires 2,5 µm (PM _{2,5})		•	•	
Facteur d'échelle	-	F ₂	0,105	Hypothèse
Taux d'émission	g/s	ER _{PM2.5}	2,168E-02	TE _{PMtot} × F ₂

 $PM_{2,5}$

Conversion PM₁₀ - PM_{tot}

Taux d'émission calculé

Conversion PM_{2.5} - PM_{tot}

Taux d'émission calculé

1CONCAS - Dépoussiéreur collecteur humide - concasseur giratoire Tableau C9:

 $F_{\text{PM10/PMtot}}$

ER_{PM10}

 $F_{\text{PM2.5/PMtot}}$

ER_{PM2.5}

g/s

g/s

0,842

7,143E-02

0,482

4,089E-02

		Débit des gaz à la sortie						
		35.31	35.31 ft³/m³ facteur					
		60	min/h	facteur				
		21 917	m³/h	À température réelle				
		22 860	Rm³/h	P= 100,9 kPa et T°=25°C = Cond. de référence				
				Température des gaz à la sortie				
		12.7	°C	Article 48 du Dépoussiéreur 603-575-001				
		286	К	conversion				
PM _{tot}								
Nom	Unité	Variable	Valeur	Références				
Tonnages	t/h	Т	3635	demande de CA-Traitement primaire du minerai-tome1				
Débit	m³/h	Q	21 917	Concasseur giratoire -Épurateur 603-575-001 (Ducon Technologies inc.) Annexe D (art 48) du CA_Traitement primaire du minerai-rev1				
Facteur d'émission	kg/t	FE	0.0027	U.S. EPA Fifth Edition, Volume I Chapter 11, section 11.19. 2, Crushed Stone Processing and Pulverized Mineral Processing, tableau 11.19-2-1				
Efficacité du dépoussiéreur	%	Eff	96.89	Calculé à partir de l'efficacité d'un wet scrubber [1] et de la distribution de la taille des particules [2]				
Conversion g - kg	g/kg	C_{g-kg}	1 000	facteur				
Conversion s - h	s/h	C _{s-h}	3 600	facteur				
Taux d'émission	g/s	ER _{PMtot}	8,48E-02	T x FE x C _{g-kg} /C _{s-h} x (1-Eff/100)				
PM ₁₀								

particules [2]

particules [2]

ER_{PMtot} x F_{PM10/PMtot}

ER_{PMtot} x F_{PM2.5/PMtot}

[1] US EPA, AP-42, Appendix 2, Tab. B2.3, Wet scrubber - hi-efficiency								
TH US EFA. AF-42. ADDENUIX 2. Tab. D2.3. WELSCHUDDEL- HI-EHICIERCY	- 1	ALLIC EDA	V D V O	Annondiv 2	Tah	D^{2}	Mot corubbor	hi officionav
		II US EFA.	AF-42.	Abbelluix 2.	Tab.	DZ.J.	. Wet Scrubber	- III-elliclelicv

^[2] US EPA, AP-42, Appendix 2, Tab. B2.2 Category 3

RAA: Règlement sur l'assainissement de l'atmosphère

Calculé à partir de l'efficacité d'un wet scrubber [1] et de la distribution de la taille des

Calculé à partir de l'efficacité d'un wet scrubber [1] et de la distribution de la taille des