Projet de parc éolien communautaire Pierre-De Saurel

6211-24-073

Le 10 février 2014

Monsieur Daniel Dubé Dessau inc. 1455, rue Champlain Trois-Rivières (Québec) G9A 4X5

Objet : Rapport d'étude géotechnique Construction du Parc éolien Pierre-De Saurel MRC de Pierre-De Saurel (Québec) V/Réf. : P-0002046-0-00-075-01 N/Réf. : 075-P-0003539-0-01-101-GE-0001-00

Monsieur,

Nous vous transmettons trois exemplaires ainsi que trois copies sur CD du rapport d'étude géotechnique réalisé par notre firme pour le projet cité en objet.

Espérant nos services techniques et professionnels à votre entière satisfaction, nous vous remercions de nous avoir permis de participer à la réalisation de votre projet.

Veuillez accepter, Monsieur, l'expression de nos sentiments les meilleurs.

Ormin anenau ()

Olivier Arsenault, ing. Chargé de projet – Géotechnique

OA/nr

p. j. Rapport technique (3 exemplaires et 3 CD)

1430, boulevard Lemire Drummondville (Québec) Canada J2C 5A4

Parc éolien Pierre-De Saurel S.E.C.

Construction de douze éoliennes Parc éolien Pierre-De Saurel Yamaska, Saint-Robert et Saint-Aimé (Québec)

Rapport d'étude géotechnique

Février 2014 N/Réf. : 075-P-0003539-0-01-101-GE-0001-00

Parc éolien Pierre-De Saurel S.E.C.

Construction de douze éoliennes Parc éolien Pierre-De Saurel Yamaska, Saint-Robert et Saint-Aimé (Québec)

Rapport d'étude géotechnique

Préparé par :

Olivier Arsenault, ing., O.I.Q. 119279

Chargé de projet – Géotechnique

Sections 5 et 6.2 vérifiées et approuvées par :

Jacques Paré, ing., M.Sc., Ò.I.Q. 36428 Chargé de projet – Géotechnique

Vérifié et approuvé par :

> François Saint-Pierre, ing., Ph.D., O.I.Q. 137123 Chargé de projet – Géotechnique

TABLE DES MATIÈRES

1	DESCRIPTION DU PROJET ET DU SITE			
	1.1 1.2 1.3 1.4	Description du projet Description du site Étude antérieure Géologie régionale	2 2 3 3	
2	MÉTI	HODE DE RECONNAISSANCE	4	
	2.1	 Travaux en chantier	4 4 5 5 5 6 6	
3	Z.Z RÉSI	ULTATS DES TRAVAUX	0	
	3.1 3.2 3.3 3.4 3.5	Stratigraphie générale Matériaux de fondation (chemins existants) Remblais Sols naturels Socle rocheux	8 10 11 11 16	
4	EAU	SOUTERRAINE	17	
5	ANA	LYSE DYNAMIQUE DES SOLS	18	
	5.1 5.2 5.3 5.4	Méthodologie	. 18 . 18 . 18 . 22 . 22 . 23 . 24	
6	СОМ	MENTAIRES ET RECOMMANDATIONS	. 26	
	6.1 6.2	Résumé des conditions du site Paramètres sismiques 6.2.1 Évaluation du potentiel de liquéfaction 6.2.2 Coefficient de fondation 6.2.3 Accélération spectrale	26 27 27 35 35	
	6.3	Fondations – généralités	. 36 36	

075-P-0003539-0-01-101-GE-0001-00

TABLE DES MATIÈRES

	6.3.2	Excavation et contrôle des eaux souterraines	36	
6.4	Éolienr	nes reposant sur des fondations superficielles		
	6.4.1	État limite de tenue en service (ÉLTS) lié au tassement	37	
6.5	Éolienr	nes reposant sur des fondations profondes (pieux)		
	6.5.1	Résistance géotechnique axiale	38	
	6.5.2	Résistance géotechnique latérale et effet de groupe	40	
	6.5.3	Ancrages au roc	41	
6.6	Réutilis	sation des déblais		
6.7	6.7 Ponceaux			
	6.7.1	Réaction géotechnique à l'ÉLUT (tassement)	43	
6.8	Poste o	de sectionnement		
6.9	Plates-formes pour les grues de montage et chemins d'accès			
	6.9.1	Surveillance lors de la construction des aires de levage et des chemins d'accès	45	
	6.9.2	Validation finale des aires de levage et des chemins d'accès	45	

Tableaux

Tableau 1 :	Programme d'essais en laboratoire	7
Tableau 2 :	Résumé de la stratigraphie – Emplacements des éoliennes	8
Tableau 3 :	Résumé de la stratigraphie – Chemins existants	9
Tableau 4 :	Résumé de la stratigraphie – Chemin projeté (chemin Salvas)	9
Tableau 5 :	Résumé de la stratigraphie – Poste de sectionnement projeté	.10
Tableau 6 :	Analyses granulométriques des matériaux de fondation	.10
Tableau 7 :	Caractéristiques des sols naturels	.13
Tableau 7 :	Caractéristiques des sols naturels (suite)	.14
Tableau 7 :	Caractéristiques des sols naturels (suite)	.15
Tableau 8 :	Niveaux des eaux souterraines	.17
Tableau 9 :	Propriétés dynamiques des sols et du roc	.20
Tableau 10 :	Accélérations spectrales	.23
Tableau 11 :	Désagrégations et accélérations spectrales	.24
Tableau 12 :	Accélérogrammes de calcul	.24
Tableau 13 :	Sols liquéfiables et sols non liquéfiables sus-jacents	.34
Tableau 14 :	Résistance géotechnique axiale ultime d'un pieu isolé - Paramètres	.39
Tableau 15 :	Résistance géotechnique latérale – Paramètres géotechniques	.40
Tableau 16 :	Facteur de réduction	.41
Tableau 17 :	Paramètres de conception des ancrages au roc	.42
Tableau 18 :	Paramètres géotechniques pour le calcul de la capacité des hélices d'un pieu vissé	.44

075-P-0003539-0-01-101-GE-0001-00

TABLE DES MATIÈRES

Figures

Figure 1 :	Localisation approximative du site à l'étude	2
Figure 2 :	Vitesse des ondes de cisaillement utilisées pour les calculs	19
Figure 3 :	Courbes de dégradation du module de cisaillement	21
Figure 4 :	Courbes d'amortissement	21
Figure 5 :	Accélérations spectrales	23
Figure 6 :	Ajustement linéaire des signaux au spectre visé – Magnitude 7	25
Figure 7 :	Accélérations maximales moyennes	28
Figure 8 :	CSR à PS-02-13 et CRR	29
Figure 9 :	CSR à PS-11-13 et CRR	30
Figure 10 :	SCPT-01-13 – 0-10 m	31
Figure 11 :	SCPT-02-13 – 0-10 m	32
Figure 12 :	SCPT-11-13 – 0-10 m	
Figure 13 :	Spectres d'accélération en surface	35
Figure 14 :	Schéma de la méthode du cône inversé	42
Figure 15 :	Schéma montrant le chevauchement des cônes	43

Annexes

Annexe 1	Portée de l'étude
Annexe 2	Notes explicatives sur les rapports de sondage
	Résultats des essais DCP
	Résultats des profils scissométriques
Annexe 3	Essais de laboratoire
Annexe 4	Résultats des sondages au piézocône et des essais de redémarrage
Annexe 5	Accélérogrammes
Annexe 6	Extraits pertinents du devis spécial 110 du MTQ
Annexe 7	Photographies
Annexe 8	Croquis de localisation des forages

075-P-0003539-0-01-101-GE-0001-00

Propriété et confidentialité

« Ce document d'ingénierie est la propriété de LVM et est protégé par la loi. Ce rapport est destiné exclusivement aux fins qui y sont mentionnées. Toute reproduction ou adaptation, partielle ou totale, est strictement prohibée sans avoir préalablement obtenu l'autorisation écrite de LVM et de son Client.

Si des essais ont été effectués, les résultats de ces essais ne sont valides que pour l'échantillon décrit dans le présent rapport.

Les sous-traitants de LVM qui auraient réalisé des travaux au chantier ou en laboratoire sont dûment qualifiés selon la procédure relative à l'approvisionnement de notre manuel qualité. Pour toute information complémentaire ou de plus amples renseignements, veuillez communiquer avec votre chargé de projet. »

REGISTRE DES RÉVISIONS ET ÉMISSIONS				
No de révision	Date	Description de la modification et/ou de l'émission		
00	2014-02-10	Rapport final		
0C	2014-01-15	Rapport final (pour commentaires) – Parc éolien Pierre-De Saurel S.E.C.		
0B	2013-09-05	Rapport préliminaire (pour commentaires) – Parc éolien Pierre-De Saurel S.E.C.		
0A	2013-08-20	Rapport préliminaire (pour commentaires) - Dessau		

INTRODUCTION

Les services professionnels de LVM inc. ont été retenus par Parc éolien Pierre-De Saurel S.E.C., afin d'effectuer une étude géotechnique relativement à la construction de douze éoliennes sur le site projeté pour le parc éolien Pierre-De Saurel.

Cette étude a pour but de déterminer la nature et les propriétés des matériaux à l'emplacement des fondations projetées des éoliennes et des routes du futur parc éolien et de formuler des recommandations applicables d'ordre géotechnique nécessaires pour la conception des fondations des éoliennes, du poste de sectionnement, des ponceaux, des chemins d'accès et des plates-formes pour les grues.

Ce rapport contient une description du projet, du site et de la géologie générale, des explications sur la méthode de reconnaissance utilisée sur le terrain et en laboratoire, une description de la nature et des propriétés des matériaux rencontrés, des informations relativement aux conditions d'eau souterraine et des recommandations d'ordre géotechnique applicables.

La portée du rapport est précisée à l'annexe 1. Celle-ci s'avère importante pour une bonne compréhension des informations contenues dans le rapport et doit être considérée comme faisant partie intégrante de celui-ci. L'annexe du rapport contient également les rapports de forages, les résultats d'essais effectués en chantier et en laboratoire, les accélérogrammes utilisés pour l'analyse dynamique, des extraits pertinents du devis spécial 110 du ministère des Transports du Québec (MTQ), des photographies prises dans le cadre du mandat ainsi que des croquis de localisation des forages.

1 DESCRIPTION DU PROJET ET DU SITE

1.1 DESCRIPTION DU PROJET

La société en commandite Parc éolien Pierre-De Saurel projette de construire un parc éolien dans le secteur de Yamaska. Le projet consiste à construire douze éoliennes et un poste de sectionnement. Il est également projeté de construire des chemins d'accès et des plates-formes pour positionner les grues.

Pour les fins de la rédaction du présent document, nous avons considéré que le niveau du terrain fini correspondrait au niveau moyen du terrain actuel.

Selon les renseignements obtenus, des éoliennes de type REPOWER MM92 d'une hauteur de 100 m sont envisagées pour ce projet. Ces éoliennes reposeront sur un radier de forme hexagonal de 18 m de gabarit enfoui à une profondeur d'environ 3,6 m sous le niveau du terrain. Ce radier sera appuyé sur des pieux battus d'un diamètre de 600 mm. Des pieux forés au roc pourraient être envisagés.

1.2 DESCRIPTION DU SITE

Le site à l'étude est localisé sur le territoire des municipalités de Yamaska, Saint-Robert et Saint-Aimé, province de Québec. La figure 1 présente la localisation approximative du site.

075-P-0003539-0-01-101-GE-0001-00

Le site à l'étude est constitué de terres agricoles présentant une légère pente vers l'est. L'accès aux différents sites projetés pour la construction des éoliennes se fait par un réseau de chemins de ferme et de rangs à faible circulation. L'élévation des emplacements d'éoliennes varie entre 17,7 m et 22,2 m par rapport au niveau de la mer. Quelques fossés de drainage d'une profondeur de 1,0 m à 2,5 m sont situés à proximité des emplacements des éoliennes projetées.

Les coordonnées géographiques du secteur visé par les travaux sont les suivantes :

- Latitude 45° 58' Nord;
- Longitude 72° 55' Ouest.

1.3 ÉTUDE ANTÉRIEURE

Une étude géotechnique d'avant-projet a été effectuée en 2010 par Labo S.M. inc. Dans le cadre de cette étude, un forage géotechnique avec échantillonnage des sols et du roc a été réalisé, ainsi que deux sondages au roc sans échantillonnage et un levé sismique MASW. Le rapport du forage TF-01-10 est présenté à l'annexe 2.

La stratigraphie reconnue au droit du forage TF-01-10 (identifié SM-01-10 sur les plans de localisation de l'annexe 8) débute par un dépôt à prédominance silteuse contenant des proportions variables d'argile et de sable, d'une épaisseur de 4,8 m. Ensuite, un épais dépôt d'argile silteuse de plasticité élevée et de consistance ferme devenant raide à partir de 20 m a été observé jusqu'à une profondeur variant de 28 m à 33 m. À la base du dépôt argileux, les sols sont constitués de sable silteux de compacité moyenne observé jusqu'au roc, intercepté à une profondeur de 37,5 m. Le socle rocheux débute par un calcaire fracturé, suivi par un shale argileux de qualité moyenne présent à partir de 39,9 m.

1.4 GÉOLOGIE RÉGIONALE

La géologie régionale du secteur à l'étude a été tirée des documents suivants :

- « Carte de compilation de la géologie du Quaternaire, 31H/15 » produite par le Gouvernement du Québec, ministère de l'Énergie et des Ressources, Service de la Géoinformation, composante du DV-84-10, échelle 1 : 50 000, publiée en 1984;
- « Carte des gîtes minéraux des Appalaches, région des Basses-Terres du St-Laurent et Estrie-Beauce » produite par le Gouvernement du Québec, ministère de l'Énergie et des Ressources, Service de la Géoinformation, DV-87-19 carte 2060; échelle 1 : 250 000, publiée en 1989.

Les dépôts meubles présents en surface, dans le secteur à l'étude, seraient constitués de sédiments alluvionnaires anciens et d'argiles marines (unités Aan et Mar de la légende de la carte).

La formation rocheuse du secteur à l'étude fait partie de la Formation de Bécancour, dans la Province géologique des Basses-Terres du Saint-Laurent. Cette masse rocheuse, constituée de shale rouge et de grès vert, aurait été mise en place à l'Ordovicien supérieur.

2 MÉTHODE DE RECONNAISSANCE

2.1 TRAVAUX EN CHANTIER

Les travaux de reconnaissance en chantier ont été effectués principalement entre le 23 mai et le 20 juin 2013. Ils ont consisté en la réalisation de trente-deux forages géotechniques, de six profils scissométriques, de onze essais de pénétration dynamique au cône, de trois sondages au piézocône sismique et de trente-et-un essais DCP (pénétromètre dynamique à cône). Du 11 au 29 novembre 2013, des profils scissométriques additionnels ont été réalisés aux emplacements des plates-formes de levage projetées.

2.1.1 Forages pour les éoliennes (PS-01-13 à PS-12-13)

Les forages pour les éoliennes, identifiés PS-01-13 à PS-12-13 selon le numéro de l'éolienne et l'année où le forage a été réalisé, ont été effectués au moyen d'une foreuse montée sur un chenillard.

Les forages PS-02-13 et PS-11-13 ont atteint une profondeur de 41 m sous la surface du terrain actuel. Des tubages de calibre NW ont été utilisés pour l'avancement de ces forages. Des profils scissométriques, permettant la mesure de la résistance au cisaillement des sols argileux en condition non drainée, ont été effectués à l'aide d'un scissomètre de chantier Nilcon (ASTM D-2573) dans ces deux forages. Des mesures de la résistance au cisaillement du sol dans son état remanié ont également été effectuées. Dans ces forages, le roc a été échantillonné en continu à l'aide d'un carottier à double parois de calibre NQ3 (diamètre du trou de 75,7 mm, diamètre de la carotte de 44,5 mm). La mesure de l'indice de qualité du roc (RQD) a été effectuée par le technicien de chantier et validée en laboratoire par un ingénieur géologue. Un essai de pénétration dynamique au cône a été réalisé au forage PS-11-13. Cet essai est réalisé conformément à la norme ASTM D-3441 et permet la mesure de l'indice « N_c ». Les résultats de cet essai fournissent un profil de densité relative des sols traversés et permettent de déterminer la profondeur du refus à l'enfoncement.

Les dix autres forages ont atteint une profondeur d'échantillonnage de 4 m et ont été avancés par rotation d'une tarière évidée. Dans les sols de nature cohérente, des échantillons intacts ont parfois été prélevés à l'aide de tubes Shelby à paroi mince de 70 mm de diamètre intérieur. Ces forages ont été poursuivis par un essai de pénétration dynamique au cône.

Un tube d'observation perforé dans sa partie inférieure a été installé dans le trou de chaque forage afin de mesurer le niveau des eaux souterraines.

2.1.2 Forages pour les chemins d'accès et le ponceau (TF-01-13 à TF-19-13)

Les forages pour les chemins d'accès, identifiés TF-01-13 à TF-19-13, ont, pour la plupart, été effectués à l'aide d'une foreuse montée sur une remorque et ont atteint une profondeur de 1,8 m. Un nouveau ponceau sera requis à proximité du forage PS-02-13. Les recommandations pour ce nouveau ponceau ont été élaborées à partir des résultats de ce même forage.

2.1.3 Forage pour le poste de sectionnement (TF-20-13)

Le forage TF-20-13 a été réalisé à l'emplacement du poste de sectionnement projeté avec une foreuse montée sur un chenillard, et ce, jusqu'à une profondeur de 8 m. Un profil scissométrique a également été effectué dans ce forage.

2.1.4 Essais DCP et profils scissométriques pour les plates-formes et pour les chemins d'accès

Trente-et-un essais au pénétromètre manuel (DCP) ont été réalisés aux emplacements des éoliennes (12 essais) et le long des chemins existants et projetés (19 essais). En complément, entre deux et cinq profils scissométriques d'une profondeur de 1,5 m ont été effectués à l'emplacement de chacune des douze plates-formes de levage projetées, pour un total de cinquante profils scissométriques. La numérotation de ces profils débute par le numéro de l'éolienne située à proximité de la plate-forme, et cette numérotation est complétée par une lettre de A à E. Par exemple, le profil PS-01-A correspond au profil réalisé près du coin nord-ouest de la plate-forme de levage de l'éolienne PS-01. Ces profils scissométriques ont été effectués à l'aide d'un scissomètre Nilcon monté sur un bâti portatif. La résistance au cisaillement non drainée des sols a été déterminée à des profondeurs de 0,5 m, 1,0 m et 1,5 m. Aux emplacements des plates-formes PS-03, PS-07 et PS-09, des sols à prédominance sableuse ont été interceptés par endroits en surface du terrain. Ces sols ont été excavés pour permettre la réalisation du profil dans les sols à prédominance silteuse sous-jacents.

L'annexe 2 présente les résultats de ces essais, les résultats de calculs de modules résilients et de CBR associés aux essais DCP. Cette annexe inclut un croquis expliquant la numérotation des profils scissométriques.

2.1.5 Sondages au piézocône sismique

Les sondages SCPT-01-13, SCPT-02-13 et SCPT-11-13 ont été effectués à proximité des forages SM-01-10, PS-02-13 et PS-11-13, respectivement.

Ces sondages ont été réalisés jusqu'au refus à la pénétration dans les sols denses sous-jacents au dépôt argileux. Ils ont atteint des profondeurs variant de 31 m à 37 m.

Les travaux ont été effectués avec une foreuse sur chenilles équipée d'un bâti de poussée approprié, ainsi qu'un appareil de marque Hogentogler d'une capacité de dix tonnes qui a été foncé à une vitesse de 120 cm/min. La résistance en pointe (q_c), la pression interstitielle à la base du cône (μ), le frottement latéral (f_s) et l'inclinaison de la sonde ont été mesurés à tous les 1 cm d'enfoncement, alors que la vitesse de propagation de l'onde de cisaillement Vs a été mesurée à tous les 1 m d'enfoncement.

Trois mesures de frottement après dissipation des pressions interstitielles ont été effectuées à différents niveaux dans le dépôt d'argile dans chacun des sondages, pour un total de neuf essais.

Les résultats des sondages au piézocône sont présentés à l'annexe 4.

2.1.6 Arpentage

La localisation des forages a été effectuée par le personnel de LVM avec une précision de quelques mètres, à partir des coordonnées obtenues en interrogeant le site Internet géomatique du projet (version du 7 mai 2013). Un piquet ou une marque de peinture au sol a été laissé à l'endroit de chaque forage. Par la suite, un levé d'arpentage a été effectué afin d'obtenir les coordonnées géodésiques des forages SM-01-10, TF-20-13 et PS-01-13 à PS-12-13 avec une précision de l'ordre de quelques centimètres.

2.1.7 Supervision

Tous les travaux en chantier ont été exécutés sous la supervision de techniciens expérimentés en géotechnique. Ces derniers se sont chargés de la description visuelle des unités stratigraphiques, du prélèvement d'échantillons représentatifs des unités traversées et du relevé des niveaux d'eau.

2.2 TRAVAUX DE LABORATOIRE

Les échantillons prélevés sur le terrain ont été acheminés à notre laboratoire où ils ont fait l'objet d'une identification visuelle en vue de tracer les profils stratigraphiques ponctuels présentés dans les rapports de forage inclus à l'annexe 2. Pour faciliter la compréhension de la stratigraphie du terrain, une note explicative incluant la terminologie utilisée pour la description des sols est également insérée à l'annexe 2. Afin de confirmer certaines propriétés physiques des sols, les analyses indiquées au tableau 1 ont été réalisées sur des échantillons représentatifs choisis par le géotechnicien. Les résultats de ces essais en laboratoire sont joints à l'annexe 3.

Tableau 1 : Programme d'essais en laboratoire

ESSAI	NORME	NOMBRE D'ESSAIS
Analyse granulométrique par tamisage, incluant le retenu au tamis 5 mm	LC 21-040	5
Analyse granulométrique par tamisage, sans le retenu au tamis 5 mm	LC 21-040	8
Analyse granulométrique par sédimentométrie	BNQ 2501-025	9
Analyse granulométrique par lavage au tamis 80 µm	LC 21-040	9
Teneur en eau naturelle (w)	BNQ 2501-170	65
Limite de liquidité au pénétromètre à cône (3 points) et limite de plasticité	BNQ 2501-092	16
Limite de liquidité au pénétromètre à cône (1 point) et limite de plasticité	BNQ 2501-092	5
Extraction (tube), description visuelle et entreposage	ASTM D 2488	6
Résistance au cisaillement au pénétromètre à cône	BNQ 2501-110	3
Consolidation oedométrique	ASTM D2435	1
Résistance à la compression uniaxiale et poids volumique des échantillons de roc	ASTM D7012	2

Tous les échantillons de roc ont été minutieusement examinés par un ingénieur géologue expérimenté pour déterminer la nature pétrographique de la roche, identifier la présence de joints ouverts remplis de sol ainsi que pour valider les valeurs de l'indice RQD et de pourcentage de récupération pour chacune des courses forées.

Les photographies des échantillons de roc récupérés dans les forages sont présentées à l'annexe 7.

Tous les échantillons prélevés dans les forages qui n'ont pas été soumis à des essais de laboratoire sont conservés pour une durée de six mois à compter de la date de fin des travaux de chantier. Par la suite, ils sont détruits à moins qu'entre-temps un avis écrit, quant à leur destination, nous soit transmis.

3 RÉSULTATS DES TRAVAUX

Les informations recueillies lors des investigations et des analyses sur le terrain et en laboratoire sont synthétisées dans les paragraphes suivants.

3.1 STRATIGRAPHIE GÉNÉRALE

Les résultats des essais de laboratoire effectués sur les remblais et les sols naturels sont présentés sous forme graphique à l'annexe 3. La stratigraphie reconnue à chacun des emplacements sondés est résumée aux tableaux 2 à 5.

FORAGE	PROFONDEUR (ÉLÉVATIONS) DES UNITÉS STRATIGRAPHIQUES INTERCEPTÉES (m)				
No	Sols naturels à prédominance silteuse	Argile silteuse	Sol sablo-silteux dense	Socle rocheux **	
PS-01-13	0,00 à > 4,42	> 4,42 à 31,85	31,85 à > 32,62 *	> 32,62	
	(18,09 à < 13,67)	(< 13,67 à -13,76)	(-13,76 à > -14,53)	(< -14,53)	
PS-02-13	0,00 à 5,87	5,87 à 32,16	32,16 à 38,35	38,35 à 41,44	
	(17,65 à 11,78)	(11,78 à -14,51)	(-14,51 à -20,70)	(-20,70 à -23,79)	
PS-03-13	0,00 à > 4,36	> 4,36 à 36,00	36,00 à > 36,45 *	> 36,45	
	(19,03 à < 14,66)	(< 14,66 à -16,97)	(-16,97 à < -17,42)	(< -17,42)	
PS-04-13	0,00 à > 4,27	> 4,27 à 24,85	24,85 à > 28,87 *	> 28,87	
	(21,73 à < 17,46)	(< 17,46 à -3,12)	(-3,12 à < -7,14)	(< -7,14)	
PS-05-13	0,00 à > 4,37	> 4,37 à 22,60	22,60 à > 29,24 *	> 28,87	
	(19,14 à < 14,77)	(< 14,77 à -3,46)	(-3,46 à < -10,10)	(< -10,10)	
PS-06-13	0,00 à > 4,37	> 4,37 à 29,60	29,60 à > 31,34 *	> 31,34	
	(19,13 à < 14,76)	(< 14,76 à -10,47)	(-10,47 à < -12,21)	(< -12,21)	
PS-07-13	0,00 à 3,66	3,66 à 35,36	35,36 à > 36,50 *	> 36,50	
	(20,76 à 17,10)	(17,10 à -14,60)	(-14,60 à < -15,74)	(< -15,74)	
PS-08-13	0,00 à > 4,27	> 4,27 à 29,57	29,57 à > 31,62 *	> 31,62	
	(20,37 à < 16,10)	(<16,10 à -9,20)	(-9,20 à < -11,25)	(< -11,25)	
PS-09-13	0,00 à 4,20	4,20 à 28,35	28,35 à > 30,71 *	> 30,71	
	(20,82 à 16,62)	(16,62 à -7,53)	(-7,53 à < -9,89)	(< -9,89)	
PS-10-13	0,00 à > 4,27	> 4,27 à 32,92	32,92 à > 35,28 *	> 35,28	
	(21,37 à < 17,10)	(< 17,10 à -11,55)	(-11,55 à < -13,91)	(< -13,91)	
PS-11-13	0,00 à 3,74	3,74 à 29,90	29,90 à 38,02	38,02 – 40,93	
	(22,16 à 18,42)	(18,42 à -7,74)	(-7,74 à -15,86)	(-15,86 à -18,77)	
PS-12-13	0,00 à > 4,27	> 4,27 à 26,21	26,21 à > 30,76 *	> 30,76	
	(22,03 à < 17,76)	(< 17,76 à -4,18)	(-4,18 à < -8,73)	(< -8,73)	
SM-01-10	0,00 à 4,82	4,82 à 33,22	33,22 à 37,50	37,50 à 40,84	
	(18,66 à 13,84)	(13,84 à -14,56)	(-14,56 à -18,84)	(-18,84 à -22,18)	

Tableau 2 : Résumé de la stratigraphie - Emplacements des éoliennes

* Profondeur estimée sur la base des indices de pénétration au cône

** Les refus de pénétration au cône sont généralement obtenus plusieurs mètres au-dessus du roc

075-P-0003539-0-01-101-GE-0001-00

EMPLACEMENT	FORAGE N ^o	PROFONDEUR DES UNITÉS STRATIGRAPHIQUES INTERCEPTÉES (m)		
		Matériaux de fondation	Remblais	Sols naturels
	TF-01-13 *	0,00 - 0,41	0,41 – 2,75	2,75 – 3,89 : sols de type CL 3,89 – 6,10 : sols de type CH
σ	TF-16-13	0,00 – 0,15	0,15 – 0,46	0,46 – 1,83 : sols de type CL
Brouillan	TF -02-13 *	0,00 - 0,41		0,41 – 3,13 : sols de type CL 3,13 – 6,10 : sols de type CH
iin des E	TF -03-13	0,00 – 0,35 et 0,55 – 0,71	0,35 – 0,55	0,71 – 1,83 : sols de type CL
Chem	TF -17-13	0,00 - 0,10		0,10 – 1,22 : sols de type SM 1,22 – 1,83 : sols de type CL
	TF -18-13	0,00 – 0,10	0,10 – 0,61	0,61 – 1,83 : sols de type SM
	TF -19-13	0,00 – 0,10	0,10 – 0,30	0,30 – 1,83 : sols de type SM
ant	TF -04-13	0,00 - 0,10	0,10 - 0,41	0,41 – 1,83 : sols de type CL
Rang lierse	TF -05-13	0,00 - 0,18	0,18 – 0,61	0,61 – 1,83 : sols de type CL
- <u>-</u>	TF -06-13		0,00 - 0,52	0,52 – 1,83 : sols de type CL
	TF -07-13 *	0,00 – 0,41		0,41 – 4,50 : sols de type CL 4,50 – 5,21 : sols de type CL ou ML 5,21 – 6,71 : sols de type CH ou CL
n Joyal	TF -08-13	0,00 – 0,35		0,35 – 1,83 : sols de type CL ou CH
Jemi	TF -09-13	0,00 - 0,40		0,40 – 1,83 : sols de type CL
ō	TF -10-13	0,00 – 0,35	0,35 – 0,50	0,50 – 1,83 : sols de type CH
	TF -11-13	0,00 - 0,20	0,20 – 0,30	0,30 – 0,91 : sols de type SM 0,91 – 1,83 : sols de type CL
	TF -12-13	0,00 - 0,76		0,76 – 1,22 : sols de type ML 1,22 – 1,83 : sols de type CL

Tableau 3 : Résumé de la stratigraphie - Chemins existants

* Ponceau existant à proximité

Tableau 4 : Résumé de la stratigraphie – Chemin projeté (chemin Salvas)

FORAGE	PROFONDEUR DES UNITÉS STRATIGRAPHIQUES INTERCEPTÉES (m)				
No	Remblais	Sols naturels à prédominance sableuse	Sols naturels silto- sableux	Sols naturels silto- argileux	
TF -13-13		0,00 – 0,61		0,61 – 1,83	
TF -14-13			0,00 – 1,83		
TF -15-13				0,00 – 1,83	

075-P-0003539-0-01-101-GE-0001-00

FORAGE N ^o	PROFONDEUR (ÉLÉVATIONS) DES UNITÉS STRATIGRAPHIQUES INTERCEPTÉES (m)			
	Sols naturels à prédominance silteuse	Argile silteuse		
TF-20-13	0,00 – 6,79 (17,36 – 10,57)	6,79 – 8,85 (10,57 – 8,51)		

3.2 MATÉRIAUX DE FONDATION (CHEMINS EXISTANTS)

Les matériaux de fondation interceptés en surface des chemins existants peuvent être divisés en deux types : une pierre tout-venant de couleur gris-noir et une pierre concassée de calibre apparent 0-20 mm de couleur grise constituée de résidus miniers légèrement magnétiques.

La pierre tout-venant a été observée sur le chemin des Brouillard, le rang Thiersant et une portion du chemin Joyal, et ce, sur une épaisseur variant généralement de 100 mm à 410 mm. D'après les résultats des trois analyses granulométriques effectuées sur des échantillons représentatifs de cette pierre, les pourcentages de gravier (> 5 mm) varient de 24 % à 45 % et les pourcentages de particules fines (< 80 µm) sont compris entre 12 % et 24 %.

La pierre concassée de calibre apparent 0-20 mm a été interceptée sur deux tronçons du chemin Joyal, sur des épaisseurs comprises entre 220 mm et 380 mm. Les résultats des deux analyses granulométriques effectuées sur des échantillons représentatifs de cette pierre indiquent que les pourcentages de gravier (> 5 mm) sont de 38 % et 48 % et les pourcentages de particules fines (< 80 µm) sont de 7 % et 12 %.

De façon générale, à l'emplacement des chaussées gravelées existantes, on retrouve une valeur CBR plus élevée dans la partie supérieure investiguée. Ce CBR plus élevé correspond généralement à la structure de chaussée en place.

Les résultats des analyses granulométriques effectuées sur ces matériaux sont présentés à l'annexe 3 et au tableau 6 suivant.

FORAGE	ÉCHANTILLON	PROFONDEUR (m)	GRAVIER > 5 mm (%)	SABLE < 5 mm et > 80 μm (%)	SILT ET ARGILE < 80 µm (%)
TF-02-13	CF-1A	0,00 - 0,41	42,5	38,0	19,5
TF-04-13	CF-1A	0,00 - 0,10	24,4	51,9	23,7
TF-07-13	CF-1A	0,00 - 0,25	47,5	45,6	6,9
TF-10-13	CF-1A	0,00 - 0,35	45,2	42,9	11,9
TF-12-13	CF-1A	0,00 - 0,38	37,8	50,7	11,5

Tableau 6 : Analyses granulométriques des matériaux de fondation

075-P-0003539-0-01-101-GE-0001-00

3.3 REMBLAIS

Des remblais ont été interceptés à certains endroits sous les matériaux de fondation décrits précédemment. De façon générale, ils sont constitués de sable avec un peu de silt ou de silt sableux. Au droit du forage TF-01-13 localisé à proximité d'un ponceau, l'épaisseur des remblais est de 2,3 m, alors que dans les autres forages, elle varie de 100 mm à 520 mm.

3.4 SOLS NATURELS

Les sols naturels ont été interceptés directement en surface du terrain dans les forages effectués aux emplacements des éoliennes, du poste de sectionnement et du chemin Salvas, tandis que dans les forages localisés dans les chemins existants, ils se situent à une profondeur variant généralement de 0,3 m à 0,7 m. Les résultats des essais de laboratoire effectués sur les échantillons de sols naturels sont présentés à l'annexe 3 et au tableau 7.

Aux emplacements des éoliennes et du poste de sectionnement, les sols naturels peuvent avoir été remaniés et contenir des matières organiques jusqu'à une profondeur d'environ 0,6 m, et ce, en raison des activités agricoles ayant cours à ces endroits.

Dans certains forages situés près de la rivière Yamaska, dans le secteur du chemin des Brouillard et du rang du Bord-de-l'Eau (PS-07-13, TF-11-13, TF-13-13, TF-17-13, TF-18-13 et TF-19-13), le dépôt naturel débute par des sols à prédominance sablo-silteux (sols de types SM et ML). L'épaisseur de ce dépôt n'excède pas 2 m.

Sous ces sols naturels sablo-silteux ou bien directement sous les remblais ou encore directement à partir de la surface, des sols naturels constitués d'un dépôt à prédominance silteuse sont rencontrés. Ce dépôt se décrit comme étant un silt argileux à un silt sableux avec un peu d'argile (sols de type CL). L'épaisseur de ce dernier varie entre 4 m à 6 m.

De façon générale, les sols naturels en place présentent une rigidité (CBR) très faible dès le début de l'essai DCP à partir de la surface des sols en place.

Par la suite, une épaisse couche d'argile silteuse (sols de type CH) est présent sous le dépôt à prédominance silteuse, et ce, jusqu'à une profondeur d'environ de 30 m

Enfin, un dépôt sablo-silteux dense est observé entre le socle rocheux et l'épaisse couche argilo-silteuse.

Les teneurs en eau naturelle du dépôt à prédominance silteuse varient généralement de 20 % à 50 %, tandis que celles de l'argile silteuse se situent plutôt entre 65 % et 80 %. Vingt-et-un échantillons jugés représentatifs de ces unités stratigraphiques ont été soumis à des essais de détermination des limites de consistance (Atterberg) et de teneur en eau naturelle. La plasticité des sols à prédominance silteuse est faible à moyenne, alors que l'argile silteuse présente une plasticité élevée. Les indices de liquidité mesurés varient de 0,7 à 1,7, ce qui indique que ces sols se comporteront comme un liquide visqueux advenant l'affaissement de leur structure sous une forte sollicitation lorsque cet indice est supérieur à 1, et de façon plastique lorsqu'il est inférieur à 1.

La résistance au cisaillement a été mesurée à l'intérieur des sols de types CL et CH au droit de six forages, et dans les sols à prédominance silteuse (sols de type CL) au droit des cinquante profils scissométriques destinés aux plates-formes de levage projetées. Dans le dépôt à prédominance silteuse, la résistance au cisaillement du sol varie significativement, probablement en raison des proportions variables de sable de cet horizon. Des lits de silt et de sable ont d'ailleurs été observés au sein de cette unité. La résistance au cisaillement du sol intact (non corrigée) mesurée de ce dépôt varie généralement de 80 kPa à 130 kPa à une profondeur de 0,5 m, et diminue à des valeurs de 16 kPa à 56 kPa à une profondeur de 1,5 m. Les résultats obtenus à la plate-forme PS-02 sont plus élevées que ces intervalles de valeurs, alors que ceux obtenus aux plates-formes PS-04 et PS-09 sont plus faibles que ces intervalles. Dans le dépôt d'argile silteuse situé sous les sols à prédominance silteuse, la résistance au cisaillement du sol intact (non corrigée) mesurée en surface de ce dépôt varie de 19 kPa à 30 kPa selon les endroits, et augmente régulièrement en profondeur pour franchir les 50 kPa à une profondeur de l'ordre de 22 m. Les valeurs de résistance au cisaillement, non corrigées, des sols remaniés ont atteint, en chantier, des valeurs variant généralement entre 1 kPa et 6 kPa.

Des essais de résistance au cisaillement à l'aide du pénétromètre à cône ont été réalisés en laboratoire sur trois échantillons de sols intacts prélevés à une profondeur de 4 m dans un silt et argile ou dans l'argile silteuse. Les valeurs de résistance obtenues sur les échantillons intacts sont comprises entre 16 kPa et 21 kPa, alors que celles des échantillons remaniés correspondant sont de 1 kPa dans les trois cas. Les résistances obtenues en chantier et en laboratoire indiquent que ce dépôt est de consistance molle à ferme en surface, et que le dépôt silto-argileux présente une très forte sensibilité au remaniement.

Afin d'obtenir des valeurs de la pression de préconsolidation (σ 'p), un essai de consolidation oedométrique a été effectué en laboratoire. Selon les résultats de cet essai, la pression de préconsolidation de l'échantillon PS-07-13 TM-6 est de 50 kPa et l'indice de recompression (C_r) est de 0,02. Ainsi, le dépôt argileux en place est surconsolidé. En effet, l'écart de surconsolidation ($\Delta\sigma$) estimé est d'environ 20 kPa.

Le dépôt granulaire intercepté sous l'argile silteuse à partir d'une profondeur de l'ordre de 30 m est composé, en proportions comparables, de silt et de sable, d'une compacité qualifiée de dense d'après les valeurs de l'indice « N » variant généralement de 35 à 38.

075-P-0003539-0-01-101-GE-0001-00

Tableau 7 : Caractéristiques des sols naturels

PROVENANCE FORAGE Nº ÉCHANTILLON Nº PROFONDEUR (M)	TF-01-13 CF-9 5,49 – 6,10	TF-02-13 CF-2 0,61 – 1,22	TF-02-13 CF-3 1,22 - 1,83	TF-02-13 CF-8 4,72 – 5,33	TF-03-13 CF-2B 0,71 – 1,22	TF-04-13 CF-3 1,22 – 1,83	TF-07-13 CF-7 3,81 – 4,42	TF-08-13 CF-1B 0,35 - 0,61	TF-10-13 CF-3 1,22 - 1,83	TF-11-13 CF-1C 0,30 - 0,61	TF-11-13 CF-3 1,22 - 1,83	TF-12-13 CF-3 1,22 - 1,83
COMPOSANTES GRANULOMÉTRIQUES (%) Gravier Sable Silt Argile	 	0,0 16,3 55,4 28,3	 	 	0,0 29,3 44,6 26,1	0,0 19,7 49,6 30,7	 	0,0 3,4 54,2 42,4	 	0,0 64,5 26,9 8,6	0,0 10,4 50,4 39,2	
TENEUR EN EAU w (%)	77,8		32,1	79,4	20,8	34,2	32,8		40,8		52,8	34,2
LIMITES D'ATTERBERG Limite de liquidité (W _L) (%) Limite de plasticité (W _P) (%) Indice de plasticité (I _P) (%) Indice de liquidité (I _L)	62 23 40 1,4	 	30 15 15 1,2	57 23 34 1,7	43 14 29 0,2	 	26 16 11 1,6	 	52 17 35 0,7	 	47 15 32 1,2	34 13 21 1,0
CLASSIFICATION UNIFIEE	СН		CL	СН	CL		CL		СН	SM ou SC	CL	CL
FIGURES Nº	5	3	4	5	3 et 4	3	4	3	4	2	3 et 4	4

075-P-0003539-0-01-101-GE-0001-00

Tableau 7 : Caractéristiques des sols naturels (suite)

PROVENANCE FORAGE Nº ÉCHANTILLON Nº PROFONDEUR (M)	TF-14-13 CF-3 1,22 - 1,83	TF-15-13 CF-3 1,22 - 1,83	TF-19-13 CF-2B 0,30 - 0,61	TF-20-13 CF-4 2,28 - 2,89	TF-20-13 CF-6 3,81 - 4,42	TF-20-13 CF-9 6,10 - 6,71	TF-20-13 CF-10 6,86 - 7,47	PS-02-13 CF-8 5,18 - 5,79	PS-02-13 CF-9 5,94 - 6,55	PS-02-13 CF-22 33,38 - 33,99	PS-03-13 TM-6 3,66 - 4,37	PS-04-13 CF-2 0,61 - 1,22
COMPOSANTES GRANULOMÉTRIQUES (%) Gravier Sable Silt Argile	0,0 42,4 48 - 57 1 - 10	 	0,0 73,1 26,9 0,0	 	 	 	 	 		0,5 68,1 31,4 0,0	 	0,0 24,6 53,2 22,2
TENEUR EN EAU w (%)	26,3	45,7		47,5	29,2	57,9	63,6	23,0	51,4	15,0	49,8	
LIMITES D'ATTERBERG Limite de liquidité (W _L) (%) Limite de plasticité (W _P) (%) Indice de plasticité (I _P) (%) Indice de liquidité (I _L)	27 N.P.* N.P.* N.P.*	51 17 33 0,9	 	53 22 31 0,8	25 17 9 1,4	46 17 30 1,4	69 25 44 0,9	20 N.P.* N.P.* N.P.*	42 16 25 1,4	 	 	
CLASSIFICATION UNIFIÉE	ML	СН	SM	СН	CL	CL	CH	ML	CL	SM		
RÉSISTANCE AU CISAILLEMENT (kPa) Cu Cur Cu/Cur											21 0,9 23	
FIGURES Nº	2	4	2	4	4	4	5		4	2		3

* Non plastique

075-P-0003539-0-01-101-GE-0001-00

Tableau 7 : Caractéristiques des sols naturels (suite)	
--	--

PROVENANCE FORAGE Nº ÉCHANTILLON Nº PROFONDEUR (M)	PS-07-13 CF-2 0,61 - 1,22	PS-07-13 TM-6 3,66 - 4,37	PS-09-13 TM-6B 4,20 - 4,36	PS-11-13 CF-6 3,81 - 4,42	PS-11-13 CF-7 4,57 - 5,18	PS-11-13 CF-11 7,62 - 8,23	PS-11-13 CF-15 13,56 - 14,17	PS-11-13 CF-18 18,13 – 18,74	PS-11-13 CF-22 25,76 - 26,37	PS-11-13 CF-24 31,85 - 32,46	PS-11-13 CF-25 36,42 - 37,01
COMPOSANTES GRANULOMÉTRIQUES (%) Gravier Sable Silt Argile	0,0 86,0 14,0 0,0	 	 	0,0 0,8 25,5 73,7	 	 	 	 	 	0,0 42,3 41,8 15,9	0,0 92,5 7,5 0,0
TENEUR EN EAU w (%)		63,7	75,1		77,1	74,5	67,2	66,1	66,7		
LIMITES D'ATTERBERG Limite de liquidité (W _L) (%) Limite de plasticité (W _P) (%) Indice de plasticité (I _P) (%) Indice de liquidité (I _L)	 	 	 	 	57 20 37 1,5	61 21 40 1,3	62 20 41 1,1	69 22 47 0,9	71 24 47 0,9	 	
CLASSIFICATION UNIFIÉE	SM				СН	СН	CH	СН	СН		SP-SM
RÉSISTANCE AU CISAILLEMENT (kPa) Cu Cur Cu/Cur	 	16 0,7 23	18 0,6 30	 	 						
$\begin{array}{c} \text{CONSOLIDATION} \\ \text{OEDOMÉTRIQUE} \\ \sigma_{\nu 0}^{' p} & (\text{kPa}) \\ \sigma_{\nu 0}^{' 0} & (\text{kPa}) \\ \Delta \sigma (\text{kPa}) \\ C_r \\ C_c \end{array}$	 	50 28 22 0,02 0,97	 	 	 		 		 		
FIGURES Nº	2			3	5	5	5	5	5	3	2

075-P-0003539-0-01-101-GE-0001-00

3.5 SOCLE ROCHEUX

Le socle rocheux a été atteint dans les forages PS-02-13 et PS-11-13, à des profondeurs respectives de 38,4 m et 38,0 m (élévations -20,7 m et -15,9 m). Au droit du forage PS-02-13, le roc est constitué d'une alternance de shale rouge et de grès gris-vert, tandis qu'une alternance de siltstone gris-noir et de calcaire gris a été observée dans le forage PS-11-13. Une discontinuité remplie de silt avec un peu d'argile a été observée dans le roc au droit du forage PS-02-13, entre 39,9 m et 40,1 m.

L'indice de qualité du roc (RQD) est une appréciation indirecte du nombre de fractures et du degré d'altération du roc. Pour la partie supérieure de la roche sédimentaire récupérée dans le forage PS-02-13, la valeur mesurée de l'indice RQD est de 51 %, indiquant un roc de qualité moyenne. Toutefois, au-delà de cette couche de roc de qualité moyenne (environ 1,0 m de profondeur sous la surface du roc), les valeurs mesurées de l'indice RQD sont de 60 % et 93 %, caractérisant un roc de qualité moyenne à excellente. D'autre part, le roc échantillonné au forage PS-11-13 présente des valeurs de l'indice RQD de plus de 60 %, caractérisant un roc de qualité moyen à l'annexe 2 pour une description détaillée de ce socle rocheux.

Rappelons que dans le cadre de l'étude de 2010, le roc intercepté au forage SM-01-10 débute par un calcaire gris fracturé (indice RQD de 35 %) intercepté entre 37,5 m et 39,9 m (élévations -18,8 m à -21,2 m), suivi d'un shale rouge moyennement fracturé (indice RQD de 62 %).

Deux éprouvettes de roc ont été soumises à des mesures de résistance à la compression uniaxiale et de détermination du poids volumique. Ces essais ont donné des valeurs de résistance en compression variant de 37 MPa à 40 MPa et un poids volumique de 2 645 kN/m³.

4 EAU SOUTERRAINE

Un relevé du niveau des eaux souterraines à l'intérieur des tubes d'observation a été effectué le 28 juin 2013, soit une semaine après l'achèvement des forages. Les résultats sont présentés au tableau 8.

FORAGE Nº	NIVEAU DES EAUX SOUTERRAINES (28/06/2013)					
	PROFONDEUR (m)	ÉLÉVATION (m)				
PS-01-13	0,28	17,81				
PS-02-13	1,30	16,35				
PS-03-13	0,89	18,14				
PS-04-13	0,99	20,74				
PS-05-13	1,14	18,00				
PS-06-13	0,64	18,49				
PS-07-13	0,15	20,61				
PS-08-13	0,40	19,97				
PS-09-13	0,88	19,94				
PS-10-13	0,22	21,15				
PS-11-13	1,02	21,14				
PS-12-13	0,89	21,14				
TF-20-13	1,24	16,12				

Tableau 8 : Niveaux des eaux souterraines

Ces niveaux d'eau sont considérés stabilisés. Le 28 juin 2013, le niveau des eaux souterraines se situait donc à une profondeur variant de 0,2 m à 1,3 m.

Par ailleurs, le niveau des eaux souterraines est susceptible de fluctuer suivant les saisons, l'importance des précipitations locales et les modifications des conditions hydrogéologiques du secteur.

5 ANALYSE DYNAMIQUE DES SOLS

5.1 MÉTHODOLOGIE

L'analyse dynamique des sols a été effectuée suivant la méthode linéaire équivalente unidimensionnelle (1D) selon les étapes suivantes :

- Définition d'un profil stratigraphique et des conditions d'eau souterraine;
- Définition des propriétés dynamiques des sols;
- Calcul de l'aléa sismique au roc et sélection de magnitudes et d'accélérogrammes de mouvements sismiques;
- Calculs dynamiques 1-D et évaluation du potentiel de liquéfaction des sols.

5.2 STRATIGRAPHIE ET EAU SOUTERRAINE

Les profils stratigraphiques des forages PS-02-13 et PS-11-13 et les résultats des sondages au piézocône SCPT-02-13 et SCPT-11-13 effectués à proximité des forages précédents ont été utilisés pour l'analyse. Ces profils correspondent aux valeurs de résistance au cisaillement minimum et maximum mesurées dans le dépôt argileux. Les données des autres forages effectués aux emplacements des éoliennes, incluant le sondage au piézocône SCPT-01-13 et le forage TF-01-10 de Labo SM^{*} ont également été considérées.

Nous avons par ailleurs supposé que le niveau de l'eau souterraine a une profondeur moyenne de 1,50 m.

5.3 PROPRIÉTÉS DYNAMIQUES DES SOLS

L'analyse dynamique nécessite la détermination des propriétés dynamiques suivantes des sols :

- Gmax : module de cisaillement maximum initial;
- Profil G/Gmax : courbe de dégradation du module de cisaillement en fonction de la déformation du sol;
- Amortissement : courbe d'accroissement de l'amortissement en fonction de la déformation du sol.

Le module de cisaillement Gmax est fonction de la masse volumique p du sol et de la vitesse de propagation des ondes de cisaillement Vs. La masse volumique a été estimée à partir des données du rapport du laboratoire SM et de corrélations tirées de la littérature basées sur la nature et la compacité des sols, alors que les vitesses Vs ont été mesurées dans les sondages au piézocône. Les profils de Vs utilisés pour les calculs sont présentés à la figure 2 suivante.

^{*} Labo SM inc., Rapport final, Étude géotechnique d'avant-projet, Parc communautaire éolien Yamaska (Québec) présenté à la MRC de Pierre-De Saurel, Réf. : F101254-001, Avril 2010.

075-P-0003539-0-01-101-GE-0001-00

Les propriétés dynamiques présentées au tableau 9 et aux figures 3 et 4 ont été utilisées pour les sols et pour le roc.

MATERIALI	COURBE DE DEGRADATION	COURBE D'ACCROISSEMENT	PROFONDEUR DES MATERIAUX (m)		
	DU MODULE DE CISAILLEMENT	DE L'AMORTISSEMENT	PS-02-13	PS-11-13	
Silt avec un peu d'argile à silt et argile et des proportions variables de sable	Soil PI = 30, OCR 1- 15 Vucetic & Dobry, JGE 1/91	Soil PI = 30, OCR = 1 – 8 Vucetic & Dobry, JGE 1/91	0,00 – 5,11	0,00 – 3,74	
Sable ou silt lâche	Sand, Lower bound Seed & Idriss 1970	Sand, Upper bound Seed & Idriss 1970	5,11 – 5,87	-	
Argile sensible	Commission géologique du Canada [†]	Commission géologique du Canada	5,87 – 32,16	3,74 – 29,90	
Sable ou silt dense	Sand, Upper bound Seed & Idriss 1970	Sand Lower bound Seed & Idriss 1970	32,16 – 38,35	29,90 - 38,02	
Roc	Schnabel 1973	Schnabel 1973	>38,35	>38,02	

Tableau 9 : Propriétés	dynamiques	des sols et du roc	

† Communication personnelle, 2013

⁰⁷⁵⁻P-0003539-0-01-101-GE-0001-00

LVM

- ▲ Soil PI=30 G/Gmax -Soil with PI=30, OCR=1-15 (Vucetic & Dobry, JGE 1/91) ■ Sand Lower G/Gmax -
- Sand Lower G/Gmax -SAND, Lower Bound (Seed & Idriss 1970)
 Sand Upper G/Gmax -SAND, Lipper Bound
- Sand Opper G/Gmax -SAND, Upper Bound (Seed & Idriss 1970)
 Bock G/Gmax -
- Rock G/Gmax -ROCK (Schnabel 1973)
 Arg sens EC Moduli values for Argiles sensibles Est Canada

Figure 4 : Courbes d'amortissement

- ▲ Soil PI=30 Damping -Soil with PI=30, OCR=1-8 (Vucetic & Dobry, JGE 1/91)
- Sand upper Damping for SAND, Upper Bound (Seed & Idriss 1970)
- Sand lower Damping for SAND, Lower Bound (Seed & Idriss 1970)
- Rock Damping for ROCK (Schnabel 1973)
- Arg sens EC Damping values for Argiles sensibles Est Canada

075-P-0003539-0-01-101-GE-0001-00 RAPPORT D'ÉTUDE GÉOTECHNIQUE PARC ÉOLIEN PIERRE-DE SAUREL - YAMASKA, SAINT-ROBERT ET SAINT-AIMÉ (QUÉBEC)

5.4 ALÉA SISMIQUE, MAGNITUDE ET ACCÉLÉROGRAMMES

5.4.1 Spectres d'accélération

Le calcul de l'aléa sismique est basé sur un spectre d'accélération à probabilité de dépassement uniforme (UHS) calculé par la Commission géologique du Canada[‡]. Nous avons utilisé le modèle « robuste ». Il correspond à une période de retour de 2 % en 50 ans pour un sol de classe C (sol ferme) avec amortissement de 5 %.

Les calculs dynamiques étant faits à partir du spectre d'accélération au roc, les données de la Commission géologique doivent être ajustées pour le roc. Les ajustements ont été effectués en utilisant les facteurs du Code national du bâtiment 2005. Les résultats sont présentés au tableau 10 ainsi qu'à la figure 5 ci-après.

[‡] http://seismescanada.rncan.gc.ca/hazard/interpolator/index_f.php

Tableau 10 : Accélérations spectrales

	ACCELERATION SPECTRALE (g) SELON LA PERIODE							
CLASSE DE SUL	PGA	Sa (0,2)	Sa (0,5)	Sa (1,0)	Sa (2,0)			
С	0,405	0,647	0,315	0,129	0,044			
A (Facteurs CNB 2005)	0,307	0,491	0,158	0,065	0,022			

5.4.2 Magnitude

La magnitude retenue dans les calculs a été obtenue à partir des désagrégations fournies par la Commission géologique du Canada pour le site étudié pour une probabilité de 2 % en 50 ans. Les données principales sont résumées au tableau 11. Considérant que la période fondamentale du dépôt est de l'ordre de 0,85 s, nous avons utilisé dans les calculs une magnitude moyenne M_{bLg} de 6,94 environ, ce qui correspond à une magnitude M_w de 6,90.

075-P-0003539-0-01-101-GE-0001-00 RAPPORT D'ÉTUDE GÉOTECHNIQUE PARC ÉOLIEN PIERRE-DE SAUREL - YAMASKA, SAINT-ROBERT ET SAINT-AIMÉ (QUÉBEC)

LVM

Tableau 11 : Désa	grégations	et accélérations	spectrales
-------------------	------------	------------------	------------

MODÈLE ROBUSTE					
Sa (T) (g)	0,405	0,647	0,315	0,129	0,044
Modèle R (régional)					
Sa (T)	0,453	0,606	0,301	0,123	0,040
Magnitude moyenne (1)	5,94	6,35	6,71	6,85	6,85
Magnitude modale (1)	5,625	6,375	6,625	6,875	6,875
Distance moyenne (km)	24	36	56	68	79
Distance modale (km)	10	30	30	30	30
Modèle H (historique)					
Sa (T)	0,245	0,376	0,208	0,099	0,027
Magnitude moyenne (1)	5,63	6,19	6,78	6,94	6,92
Magnitude modale (1)	4,875	5,875	6,375	7,375	7,375
Distance moyenne (km)	31	63	120	131	161
Distance modale (km)	10	30	30	250	250

⁽¹⁾ Magnitudes M_{bLg}

5.4.3 Accélérogrammes

Sept accélérogrammes synthétiques ont été utilisés pour simuler un mouvement sismique au niveau du roc. Ils ont été tirés d'une banque d'accélogrammes générés par Atkinson, 2009[§] (www. Seismotoolbox.ca). Ils correspondent à un séisme de magnitude 7.

Les accélérogrammes utilisés sont indiqués au tableau 12 et présentés à l'annexe 5.

MAGNITUDE Mw	SIGNAL Nº	SOURCE	SITE
7	1	Atkinson East 7a2	1
	2	Atkinson East 7a2	2
	3	Atkinson East 7a2	3
	4	Atkinson East 7a2	8
	5	Atkinson East 7a2	10
	6	Atkinson East 7a2	13
	7	Atkinson East 7a2	40

Tableau 12 : Accélérogrammes de calcul

Les spectres des accélérogrammes ont été ajustés linéairement (Linear Scaling) au spectre d'accélération au roc pour une probabilité de 2 % en 50 ans selon la méthode préconisée par Atkinson, 2009, tel que montré à la figure 6. L'ajustement a été effectué pour l'écart 0,2 à $2,0 T_{o}$, la valeur T_{o} étant la période fondamentale de vibration du dépôt de sols.

075-P-0003539-0-01-101-GE-0001-00

[§] Atkinson G.M., Earthquake Time Histories Compatible with the 2005 NBCC Uniform Harard Spectrum, Canadian Journal of Civil Engineering. Revised Feb. 25, 2009.

LVM

Figure 6 : Ajustement linéaire des signaux au spectre visé - Magnitude 7

La résistance cyclique des sols pulvérulents (sable, silt) (CRR) a été estimée à partir de relations empiriques ^{**} basées sur l'indice $(N_1)_{60}$ de pénétration standard obtenu à partir des indices N mesurés sur le terrain et à partir des résistances à la pénétration q_{C1N} obtenues des sondages au piézocône.

La résistance cyclique du dépôt d'argile sensible a, pour sa part, été estimée à partir d'une relation empirique basée sur la résistance au cisaillement non drainé $(C_u)^{\dagger\dagger}$ du matériau.

Il est à noter que les calculs ont été effectués en champ libre, c'est-à-dire qu'ils ne tiennent pas compte de la présence de la structure.

Les résultats sont présentés à la section 6.2.

^{**} Youd, Idriss & al, Liquefaction Resistance of soils, Summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, Journal of geotechnical and geoenvironnemental engineering, October 2001.

tt Idriss I.M., Boulanger R. W. Soil liquefaction during earthquakes, chapter 6, EERI, MNO-12, 2008

6 COMMENTAIRES ET RECOMMANDATIONS

6.1 RÉSUMÉ DES CONDITIONS DU SITE

Les sondages effectués ont démontré que la stratigraphie du site est relativement homogène. Les sols naturels ont été interceptés directement en surface du terrain dans les forages effectués aux emplacements des éoliennes, du poste de sectionnement et du chemin Salvas, alors que dans les forages localisés dans les chemins existants, ils se situent à une profondeur variant généralement entre 0,3 m et 0,7 m.

Dans certains forages, le dépôt naturel débute par des sols à prédominance sablo-silteux (sols de types SM et ML). L'épaisseur de ce dépôt n'excède pas 2 m.

Sous ces sols naturels sablo-silteux ou bien directement sous les remblais ou encore directement à partir de la surface, des sols naturels constitués d'un dépôt à prédominance silteuse, de 4 m à 6 m d'épaisseur, sont rencontrés.

Par la suite, une épaisse couche d'argile silteuse est présente jusqu'à une profondeur d'environ de 30 m.

Enfin, un dépôt sablo-silteux dense est observé entre le socle rocheux et l'épaisse couche argilo-silteuse.

La consistance des sols à prédominance silteuse et de l'argile silteuse est qualifiée de molle à ferme en surface et ces sols présentent une très forte sensibilité au remaniement. L'argile silteuse est suivie d'un dépôt granulaire dense observé jusqu'au socle rocheux.

Le socle rocheux a été atteint dans les forages PS-02-13 et PS-11-13, à des profondeurs respectives de 38,4 m et 38,0 m (élévations -20,7 m et -15,9 m). Au droit du forage PS-02-13, le roc est constitué d'une alternance de shale rouge et de grès gris-vert, tandis qu'une alternance de siltstone gris-noir et de calcaire gris a été observée dans le forage PS-11-13. Une strate de remplissage de silt avec un peu d'argile a été observée dans le roc au droit du forage PS-02-13, entre 39,9 m et 40,1 m.

Des indices RQD supérieurs à 60 % ont été obtenus à partir de 1 m sous la surface du roc récupéré dans le forage PS-02-13, et dès la surface du roc au forage PS-11-13.

Rappelons que dans le cadre de l'étude de 2010, le roc intercepté au forage SM-01-10 débute par un calcaire gris fracturé (indice RQD de 35 %) intercepté entre 37,5 m et 39,9 m (élévations -18,8 m à -21,2 m), suivi d'un shale rouge moyennement fracturé (indice RQD de 62 %).

075-P-0003539-0-01-101-GE-0001-00

6.2 PARAMÈTRES SISMIQUES

6.2.1 Évaluation du potentiel de liquéfaction

En fonction de l'abaque de *Bray et Sancio (2004)*^{‡‡}, certains échantillons de sols à prédominance silteuse sont considérés susceptibles à la liquéfaction en cas d'événement sismique. Pour ce qui est du dépôt d'argile silteuse, les indices de plasticité obtenus sur les échantillons provenant de ce dépôt sont supérieurs à 20, ce qui indique que l'argile silteuse n'est pas susceptible à la liquéfaction sur la base de cet abaque. Celle-ci ne tient cependant pas compte de la sensibilité de l'argile.

Le potentiel de liquéfaction des sols a également été évalué à partir des résultats des analyses dynamiques. Les accélérations maximales moyennes obtenues en fonction de la profondeur sont présentées à la figure 7, alors que les profils CRR vs CSR sont présentés aux figures 8 et 9.

075-P-0003539-0-01-101-GE-0001-00

^{‡‡} Bray, J.D., Sancio, R.B., Riemer, M.F. et Durgunoglu, T. (2004). Liquefaction susceptibility of fine-grained soils. In Proceedings of the 11th International Conference on Soil Dynamics and Earthquake Engineering and 3rd International Conference on Earthquake Geotechnicel Engineering, Berkeley, CA, janvier 2004, p.655-662.

Figure 7 : Accélérations maximales moyennes

075-P-0003539-0-01-101-GE-0001-00

075-P-0003539-0-01-101-GE-0001-00

Figure 9 : CSR à PS-11-13 et CRR

Tel que montré sur les figures 8 et 9, le dépôt d'argile sensible rencontré à partir de 3,0 m à 6,0 m de profondeur environ, de même que les couches de sable ou de silt denses présentes sous ce dépôt ne présentent pas de risque de liquéfaction.

Une partie des sols rencontrés entre 1,2 m et 6,0 m de profondeur environ, soit au-dessus du dépôt d'argile sensible, peut cependant présenter un risque. La nature de ces matériaux est variable et ils contiennent des couches de sable ou de silt lâches qui peuvent subir de la liquéfaction. Ces couches sont plus facilement identifiables dans les sondages au piézocône que dans les forages, et elles sont présentes dans les trois sondages au piézocône effectués, soit SCPT-01-13, SCPT-02-13 et SCPT-11-13. Les figures 10 à 12 suivantes permettent de bien les visualiser.

Figure 10 : SCPT-01-13 - 0-10 m

075-P-0003539-0-01-101-GE-0001-0C

Figure 11 : SCPT-02-13 - 0-10 m

075-P-0003539-0-01-101-GE-0001-0C

Figure 12 : SCPT-11-13 - 0-10 m

075-P-0003539-0-01-101-GE-0001-0C

RAPPORT D'ÉTUDE GÉOTECHNIQUE PARC ÉOLIEN PIERRE-DE SAUREL - YAMASKA, SAINT-ROBERT ET SAINT-AIMÉ (QUÉBEC)

Les profondeurs approximatives de sols non liquéfiables situés au-dessus des sols potentiellement liquéfiables et les profondeurs approximatives des sols potentiellement liquéfiables sont présentés au tableau suivant.

SITE	Profondeur Approximative des sols Non Liquéfiables (m)	PROFONDEUR APPROXIMATIVE DES SOLS POTENTIELLEMENT LIQUÉFIABLES (m)
PS-01		2,80 - 3,80
PS-02	0,00 – 3,60	5,00 - 6,00
PS-03		
PS-04	0,00 - 1,20	1,20 - 3,66
PS-05	0,00 – 1,37	1,37 – 4,50
PS-06	0,00 – 2,20	2,20 - 4,50
PS-07	0,00 – 1,37	1,37 – 3,66
PS-08	0,00 – 1,37	1,37 – 4,50
PS-09	0,00 – 1,35	1,37 – 4,20
PS-10	0,00 – 2,98	2,98 - 4,50
PS-11	0,00 – 2,20	2,80 - 3,60
PS-12	0,00 – 1,37	1,37 – 2,98

Tableau 13 : Sols liquéfiables et sols non liquéfiables sus-jacents

Dans le cadre du dimensionnement des pieux, il est nécessaire de considérer que, les sols pouvant se liquéfier ne mobilisent pas de résistance latérale ni de capacité en frottement. Par contre, il faut considérer le frottement négatif des pieux jusqu'à la base de la couche potentiellement liquéfiable. Notons aussi que la faible profondeur des fossés présents à proximité de certaines éoliennes limite fortement les risques de déplacement latéral des sols advenant une liquéfaction.

Le frottement négatif mentionné précédemment peut être estimé comme suit :

 $0,25 \sigma'_{v}$ σ_n = σ'n = $\gamma_t H - \gamma_w H_w$ = 18 kN/m³ γt = 9,8 kN/m³ γw Н profondeur considérée (m) = Hw = 1,50 m

On devra tenir compte du frottement négatif dans la conception des pieux.

Si le frottement négatif est trop élevé pour la capacité des pieux, on peut l'éliminer en excavant les sols liquéfiables jusqu'au dépôt d'argile sensible et en les remplaçant par un remblai de sable compacté par couches de moins de 300 mm d'épaisseur à environ 90 % du Proctor modifié. Une couche de béton maigre devra être placée au préalable sur l'argile sensible pour la protéger contre le remaniement et le compactage devra être adapté pour éviter le remaniement de l'argile.

075-P-0003539-0-01-101-GE-0001-0C

6.2.2 Coefficient de fondation

Le Code national du bâtiment – Canada 2005 (CNB 2005) détermine des catégories d'emplacement en fonction de la réponse sismique.

La moyenne des vitesses des ondes de cisaillement mesurées sur les premiers 30 m de profondeur sous les radiers projetés dans des sondages au piézocône varie de 132 m/s à 147 m/s, ce qui correspond à une catégorie d'emplacement E, mis à part le potentiel de liquéfaction discuté précédemment.

6.2.3 Accélération spectrale

La figure 13 ci-après présente le spectre d'accélération moyen obtenu lors de l'analyse dynamique et applicable à l'ensemble des sites en surface du terrain. Le spectre correspondant à une catégorie d'emplacement E est également présenté sur la figure. L'un ou l'autre de ces deux spectres peut être utilisé pour la conception.

Figure 13 : Spectres d'accélération en surface

075-P-0003539-0-01-101-GE-0001-0C

6.3 FONDATIONS – GÉNÉRALITÉS

6.3.1 Protection contre les effets du gel

Les fondations ou les têtes de pieux devront se situer à une profondeur minimale de 1,6 m de la surface finale du terrain de façon à les protéger efficacement contre les soulèvements dus au gel. Toutefois, aux endroits déneigés en permanence, cette profondeur d'enfouissement minimale doit être augmentée à 1,9 m. La mise en place d'un isolant thermique rigide disposé à l'horizontal pourra être considérée afin de réduire la profondeur d'excavation.

6.3.2 Excavation et contrôle des eaux souterraines

L'excavation devra être effectuée de sorte que tous les sols en fond de tranchées soient intacts, non remaniés et bien drainés. L'utilisation d'un godet lisse (sans dent) est souhaitable lors des travaux d'excavation. Le remaniement des matériaux en place devra être maintenu au strict minimum, de façon à assurer la validité des contraintes admissibles mentionnées dans le présent rapport et pour minimiser les déformations ultérieures des sols de fondation. Une fois les travaux d'excavation complétés, il est recommandé de mettre immédiatement en place un tapis de béton maigre pour assurer l'intégrité du dépôt en condition non remaniée. L'épaisseur minimale du béton de protection devrait être de 75 mm.

Au moment des travaux de forage, la nappe phréatique a été interceptée à une profondeur variant de 0,2 m à 1,3 m. Compte tenu de la faible perméabilité des sols, les infiltrations d'eau anticipées sont mineures. Celles-ci, le cas échéant, de même que toutes les eaux de précipitation et de ruissellement, devront être évacuées de façon à ce que le fond des fouilles soit bien drainé.

Les pentes d'excavation temporaires non supportées demeurent en tout temps sous la responsabilité de l'entrepreneur. Celui-ci doit s'assurer que les excavations soient profilées de façon sécuritaire. L'entrepreneur doit excaver les talus suivant une inclinaison permettant leur stabilité tout au long des travaux de chantier. Pour les fins d'analyses techniques et économiques par le concepteur, les pentes d'excavation temporaires doivent être inclinées à au plus 1,3 H : 1,0 V.

Il est important de garder une distance au moins égale à la profondeur de l'excavation entre le sommet du talus et la base des piles de matériaux entreposés au chantier. Cette condition doit être respectée en tout temps à moins que des études particulières ne soient effectuées pour chaque cas spécifique. Il en est de même lorsque des structures sont situées à proximité des excavations.

Une inspection par un ingénieur géotechnicien, ou son représentant, est recommandée au moment des travaux. Celui-ci s'assurera que les pentes d'excavation sont stables et sécuritaires.

6.4 ÉOLIENNES REPOSANT SUR DES FONDATIONS SUPERFICIELLES

6.4.1 État limite de tenue en service (ÉLTS) lié au tassement

La pression de tassement aux états limites de tenue en service a été estimée à l'aide du logiciel de simulation de contraintes et de tassements SOL-DESIGN, version 5.0 (octobre 2009).

Les calculs dans ce logiciel sont basés sur les modèles usuels de mécanique des sols. La répartition des contraintes repose sur la théorie de l'élasticité, alors que l'estimation des tassements est basée sur un modèle pseudo-élastique dans les sols pulvérulents et sur un modèle de consolidation unidimensionnelle dans les sols cohérents.

Le dépôt argileux situé au niveau des fondations projetées présente un trop faible écart de surconsolidation pour envisager des fondations superficielles pour les éoliennes projetées.

6.5 ÉOLIENNES REPOSANT SUR DES FONDATIONS PROFONDES (PIEUX)

Compte tenu des conditions du sous-sol, divers types de pieux peuvent être envisagés. Des pieux battus d'un diamètre de 600 mm ont été retenus par le concepteur. Selon les charges à mobiliser par les pieux, ceux-ci pourraient trouver leur appui dans une couche suffisamment épaisse de sol dense ou dans le roc.

Pour mobiliser une résistance géotechnique axiale suffisante, les pieux doivent être battus jusqu'à l'obtention d'une capacité de support suffisante. Les critères de battage au refus doivent être établis en utilisant l'analyse par l'équation des ondes (Wave-Equation Analysis).

Dans le cas de pieux tubulaires en acier, il est recommandé de soustraire 1,5 mm sur l'épaisseur de la paroi si les tubes ne sont pas remplis de béton et 1,0 mm si les pieux sont remplis de béton.

La rigidité des pieux tubulaires peut être augmentée en les remplissant de béton après le battage.

À la suite de l'obtention de la capacité de support désirée, il est recommandé de procéder à un rebattage de tous les pieux afin de s'assurer que ceux-ci n'aient pas subi un phénomène de relaxation par lequel les pieux s'enfoncent de nouveau quelques jours après l'obtention de la capacité de support recherchée.

Lors de la conception des pieux, un coefficient de tenue de 0,6 peut être appliqué si des essais de chargement (ASTM D-1143 « Piles Under Static Axial Compressive Load ») sont effectués au chantier pour la capacité axiale en compression. Alternativement, l'utilisation d'un analyseur de battage de pieu pourrait être prévue pour un minimum de 10 % des pieux envisagés. Dans ce cas, le coefficient de tenue est de 0,4.

De plus, il est fortement recommandé de prévoir l'exécution d'essais de chargement au début du chantier, afin d'établir le critère de refus en fonction de la capacité portante demandée, et de procéder à d'autres essais durant et à la fin du chantier.

6.5.1 Résistance géotechnique axiale

Les pieux devront être conçus par un entrepreneur spécialisé et être en mesure de supporter tous les types de charges (statiques et dynamiques, latérales, compression, tension).

Les pieux mobiliseront leur capacité en partie en pointe et en partie en frottement dans les sols.

Pour le calcul de la résistance géotechnique en compression développée par un pieu isolé, nous recommandons l'utilisation de la méthode décrite à la section 18.2.1 du « Manuel canadien d'ingénierie des fondations » (MCIF, 4e édition, 2006) et présentée ci-après.

Selon cette méthode, la résistance géotechnique en compression R_u d'un pieu isolé peut être estimée en faisant la somme des résistances en friction le long du fût (q_s) et en y ajoutant la résistance en pointe (q_t), où le pieu de longueur L, de diamètre d et de section de pointe A_t est divisé en sections de longueur Δz .

$$R_{u} = \underbrace{\left(\sum_{z=0}^{L} C \cdot q_{s} \cdot \Delta z\right)}_{\text{Résistance en friction}} + \underbrace{A_{t} \cdot q_{t}}_{\text{Résistance en pointe}} - W_{P}$$

Où : C = Circonférence du pieu

 q_s = résistance en frottement moyenne dans le dépôt d'argile silteuse et $q_s = \beta \cdot \sigma'_v$ dans les sols granulaires denses Δz = Épaisseur de la couche

 A_t = Aire de la pointe du pieu

$$q_t = N_t \cdot \sigma'_t$$

et

 W_P = Poids du pieu (acier et béton)

Sur la base des essais de redémarrage effectués dans les sondages au piézocône, la résistance en frottement moyenne (q_s) dans l'argile sensible est d'au moins 31 kPa sur l'épaisseur du dépôt. Nous vous référons à l'annexe 4 pour les valeurs mesurées en fonction de la profondeur.

Les paramètres β et N_t sont des paramètres sans dimension dont la valeur dépend du type de sol considéré (voir les tableaux 18.1 et 18.2 à la section 18.2.1 du Manuel).

Une composante en friction mobilisée au sein des sols potentiellement liquéfiables ne doit pas être considérée dans les calculs.

Le tableau 14 résume les éléments à considérer dans le calcul de la résistance géotechnique axiale ultime d'un pieu battu.

075-P-0003539-0-01-101-GE-0001-0C

PARAMÈTRE	VALEURS RECOMMANDÉES POUR LES PIEUX BATTUS
eta (sols granulaires denses)	1,0
Nt (sols granulaires denses)	110
	Paramètres généraux
Poids volumique humide du dépôt d'argile silteuse	γ = 16,0 kN/m ³
Poids volumique déjaugé du dépôt d'argile silteuse	γ ' = 6,0 kN/m³
Poids volumique humide des sols granulaires denses	γ = 21,0 kN/m³
Poids volumique déjaugé des sols granulaires denses	γ' = 11,0 kN/m³

Tableau 14 : Résistance géotechnique axiale ultime d'un pieu isolé - Paramètres

Il est aussi à noter que les profondeurs atteintes lors de la réalisation des forages ne correspondent pas nécessairement au refus des pieux. Ceux-ci peuvent trouver leur appui à plus grande profondeur selon les charges à mobiliser.

Pour calculer la résistance à l'arrachement de pieux battus, le « Manuel canadien d'ingénierie des fondations, 2006 » recommande d'utiliser 75 % de la résistance mobilisée en friction le long du fût du pieu. De ce fait, l'équation suivante peut être utilisée :

 $R_{ARRACHEMENT} = 0.75 * (\sum C q_s \Delta z + W_p)$

où : *C* = Circonférence du pieu, m

 q_s = Résistance en friction, kPa

 σ'_{v} = Contrainte effective verticale à la profondeur z (kPa)

 Δz = Épaisseur de la couche de sol, m

 W_P = Poids du pieu (acier et béton), kN

Si les pieux sont remplis de béton, il faut inclure le poids de ce dernier (W_p). Pour calculer le poids du béton, nous recommandons d'utiliser un poids volumique déjaugé (γ') de 14 kN/m³.

L'équation précédente pour le calcul de la résistance géotechnique ultime à l'arrachement ne considère aucun facteur de sécurité.

075-P-0003539-0-01-101-GE-0001-0C

La résistance géotechnique à l'arrachement pour un groupe de pieux est le moindre de ces deux valeurs :

La somme de la résistance géotechnique à l'arrachement de chacun des pieux;

ou

La somme de la résistance à l'arrachement pouvant être mobilisée au périmètre du groupe de pieux plus le poids effectif du sol et des pieux inclus dans ce périmètre.

Enfin, les valeurs de résistance axiale ultime doivent être pondérées en appliquant un coefficient de tenue ϕ . Dans le cas où aucun essai statique n'est prévu, un coefficient de 0,4 doit être considéré en compression et de 0,3 pour l'arrachement. Si des essais dynamiques ou de chargement sont prévus lors de l'installation, un coefficient de tenu de 0,5 en compression peut être admissible.

6.5.2 Résistance géotechnique latérale et effet de groupe

Pour la détermination de la résistance géotechnique latérale des pieux, l'utilisation de la méthode de *Broms* est recommandée dans les sols non liquéfiables, laquelle est détaillée dans les annexes 1 et 2 du devis spécial 110 préparé par le Service de la géotechnique et de la géologie du MTQ (voir annexe 6 du présent rapport). Les paramètres géotechniques des sols en place, utilisés dans le calcul de la résistance géotechnique latérale pondérée, sont indiqués au tableau 15.

On pourra se référer également à la section 18.4.1 et aux figures 18.9 et 18.10 du Manuel canadien d'ingénierie des fondations (4^e édition, 2006).

PARAMÈTRE GÉOTECHNIQUE	DÉPÔT D'ARGILE SILTEUSE	DÉPÔT GRANULAIRE DENSE
Type de sol	Cohérent	Pulvérulent
Coefficient de réaction horizontale n _h (N/m ³)		7 700 x 10 ³
Coefficient de réaction horizontale K _h	67 Cu/ b ⁽¹⁾ , où Cu est la résistance au cisaillement non drainé et b est le diamètre du pieu	
Coefficient de poussée passive K_{ρ}		3,8
Poids volumique déjaugé, γ' (kN/m³)	5,8	12
⁽¹⁾ MTQ, devis spécial 110, annexe 2		

Tableau 15 : Résistance géotechnique latérale – Paramètres géotechniques

Un facteur de réduction de la résistance doit être appliqué pour un groupe de pieux pour tenir compte de l'espacement entre les pieux. Ce facteur est indiqué au tableau 16.

075-P-0003539-0-01-101-GE-0001-0C

LVM

Tableau 16 : Facteur de réduction

ESPACEMENT DES PIEUX	FACTEUR DE RÉDUCTION POUR UN GROUPE DE PIEUX DANS UN SOL COHÉRENT
8b	1,0
6b	0,65
4b	0,5
3b	0,4
Note : b = diamètre des pie	eux

Advenant que la résistance géotechnique latérale évaluée soit insuffisante, le recours à des pieux inclinés ou à des ancrages au roc pourrait être requis. Dans ce cas, le Service de la géotechnique et de la géologie du MTQ recommande que la capacité latérale des pieux inclinés soit ajustée en fonction de leur inclinaison par rapport à la verticale et de l'orientation de la charge. Le concepteur pourra se référer au tableau 3 des annexes 1 et 2 du devis spécial 110 reproduites à l'annexe 6 du présent rapport.

6.5.3 Ancrages au roc

Dans l'éventualité où des ancrages au roc étaient requis, les calculs de ces ancrages pourront être faits en suivant les recommandations émises dans cette section du rapport.

Le calcul de la charge ultime que peut prendre un ancrage dans le roc est basé sur la vérification des différents modes de rupture. Les modes à prendre en compte sont les suivants :

- Tensions dans la tige d'acier;
- Adhérence entre la tige d'acier et le coulis;
- Adhérence entre le roc et le coulis;
- Rupture de la masse rocheuse.

Dans ce rapport, nous traitons les deux derniers cas. Les deux premiers cas doivent être traités selon les propriétés des matériaux fournies par le manufacturier.

La résistance maximale doit être calculée pour chacun de ces modes de rupture et la résistance la plus défavorable est retenue comme étant la résistance à appliquer. Le calcul de la charge ultime lors d'une rupture dans la masse rocheuse se fait généralement par la

075-P-0003539-0-01-101-GE-0001-0C

Prakash, S. and Saran D., "Behavior of Laterally Loaded Piles in Cohesive Soil." Proceedings 3rd Asian Regional Conference on Soil Mechanics and Foundation Engineering, Haifa (Israel), 1967, pp. 235-238.

méthode du poids d'un cône inversé (voir figure 14) ayant un angle au sommet β de 27 degrés, le sommet étant pris au milieu de la longueur utile de l'ancrage.

Dans le cadre du projet, les ancrages peuvent être dimensionnés en utilisant les paramètres indiqués au tableau 17.

Tableau 17	':F	Paramètres	de	conception	des	ancrages au roo	;
------------	-----	------------	----	------------	-----	-----------------	---

PARAMÈTRES	VALEURS
Angle au sommet du cône (β)	27°
Poids volumique du roc (γ)	26,5 kN/m ³
Poids volumique déjaugé du roc (γ')	16,5 kN/m ³
Angle de friction dans le roc (ϕ)	27°
Résistance à la compression uniaxiale roc (fc)	37 MPa*

 Valeur maximale à considérer pour l'estimation de l'adhérence roc-coulis dans le cas où la résistance à la compression simple du coulis est supérieure à celle du roc.

Le calcul de l'adhésion roc-coulis est en fonction du type de coulis utilisé et de la nature du roc (voir note au bas du tableau 17). Par exemple, pour un coulis expansif d'une résistance en compression d'au moins 30 MPa à 28 jours, la contrainte d'adhérence au contact roc-coulis ultime ne pourra pas dépasser 0,8 MPa, et ce, sur la longueur utile de l'ancrage. Un coefficient de tenue de 0,6 doit être appliqué si des essais statiques sont effectués sur ces ancrages. Dans le cas contraire, il est recommandé que le coefficient de tenue utilisé soit d'au plus 0,4. Il est aussi important de mentionner que la contrainte d'adhérence est en fonction du type de tirant utilisé et doit respecter les recommandations du manufacturier et les codes pertinents.

Lorsque les efforts doivent être repris par plus d'un ancrage, le danger de chevauchement des cônes d'influence (voir figure 15) doit être vérifié et un facteur de réduction doit être appliqué dès que l'espacement des tirants d'ancrage passe à moins de deux fois le rayon du cercle de base du cône d'influence.

075-P-0003539-0-01-101-GE-0001-0C RAPPORT D'ÉTUDE GÉOTECHNIQUE PARC ÉOLIEN PIERRE-DE SAUREL - YAMASKA, SAINT-ROBERT ET SAINT-AIMÉ (QUÉBEC)

Figure 15 : Schéma montrant le chevauchement des cônes

Les vérifications de la capacité des ancrages, en fonction des contraintes d'adhérence admissibles, doivent dans tous les cas ignorer la portion fracturée de la surface du roc. Ceci permet de tenir compte de la fracturation plus prononcée de la surface du roc. Des valeurs RQD supérieures à 60 % doivent être obtenues sur la longueur établie par le concepteur.

6.6 RÉUTILISATION DES DÉBLAIS

Les sols excavés contiendront des proportions importantes de silt et d'argile. Ils ne pourront pas être réutilisés pour le remblayage des radiers, ni pour la construction des chemins ou des aires de levage des grues. Ils devront donc être expédiés hors site et gérés selon la réglementation en vigueur.

6.7 PONCEAUX

6.7.1 Réaction géotechnique à l'ÉLUT (tassement)

La réaction géotechnique à l'ÉLUT a été estimée à l'aide du logiciel de simulation de contraintes et de tassements SOL-DESIGN, version 5.0 (octobre 2009).

Les calculs dans ce logiciel sont basés sur les modèles usuels de mécanique des sols. La répartition des contraintes repose sur la théorie de l'élasticité, alors que l'estimation des tassements est basée sur un modèle pseudo-élastique dans les sols pulvérulents et sur un modèle de consolidation unidimensionnelle dans les sols cohérents.

La réaction géotechnique à l'ÉLUT est de 65 kPa pour des tassements maximaux de 25 mm et de 80 kPa pour des tassements maximaux de 50 mm.

Nous entendons par réaction géotechnique nette la contrainte (ponceau et remblais) pouvant être ajoutée à la contrainte initiale en place au niveau de la fondation.

Nos calculs ont été effectués en tenant compte d'une charge non inclinée, non excentrique et avec la géométrie donnée (diamètre de 1 500 mm à 2 400 mm, longueur de 7 m à 10 m). Les paramètres de résistance géotechnique, indiqués ci-dessus, considèrent que le ponceau reposera à une profondeur de 4,0 m à 5,5 m.

6.8 POSTE DE SECTIONNEMENT

Le concepteur envisage de faire reposer le poste de sectionnement sur des pieux vissés.

Les pieux vissés sont installés par un système hydraulique qui peut être adapté sur divers types de machines (foreuse sur camion, rétrocaveuse, mini-chargeuse, mini-pelle et pelle hydraulique, véhicule tout-terrain). La capacité totale du pieu (R) est égale à la capacité portante du sol appliquée aux différentes plaques hélicoïdales et, dans certains cas, à la friction le long de la tige du pieu, soit :

$$\mathsf{R} = \mathsf{Q}_{\mathsf{t}} + \mathsf{Q}_{\mathsf{f}}$$

où : Qt est la capacité totale du pieu composé de plusieurs hélices

et

Q_f est la résistance en friction le long de la tige du pieu

L'évaluation de ces composantes est décrite aux sections 18.2.1.4(1) et (2) du Manuel canadien d'ingénierie des fondations (2006). Le tableau 18 indique les paramètres géotechniques à considérer pour le calcul de Q_t. Le concepteur devra considérer qu'au droit du forage TF-20-13 réalisé à l'emplacement du poste de sectionnement projeté, des sols potentiellement liquéfiables en cas d'événement sismique sont présents jusqu'à une profondeur de 5,5 m. Rappelons que les sols subissant de la liquéfaction n'auront pas de résistance latérale ni de capacité en frottement et ils imposeront du frottement négatif sur les pieux jusqu'à la base de la couche liquéfiée.

Tableau 18 : Paramètres géotechniques pour le calcul de la capacité des hélices d'un pieu vissé

SOL (ÉLÉVATIONS)	γ	Su	Nc	NQ	Nγ
Silt et argile (11,9 m – 10,6 m)	16,5	33	5,1	1,0	0
Argile silteuse (à partir de 10,6 m)	16,0	30	5,1	1,0	0

La relation entre la charge admissible et le couple appliqué lors de l'installation a été développée sur la base d'essais d'arrachement sur des pieux hélicoïdaux. Cette dernière est décrite à l'aide de l'équation empirique suivante :

 $Q_u = K_t \times T$

Où : Q_u est la capacité ultime du pieu vissé

Kt est le facteur empirique de couple

et

T est le couple d'installation moyen

075-P-0003539-0-01-101-GE-0001-0C

Les valeurs de K_t et de T dépendent de la géométrie du pieu et sont données à la section 18.2.1.4(3) du Manuel canadien d'ingénierie des fondations (2006).

6.9 PLATES-FORMES POUR LES GRUES DE MONTAGE ET CHEMINS D'ACCÈS

La conception des plates-formes et des chemins d'accès est à la charge de l'entrepreneur. Ces conceptions devront être approuvées par un ingénieur. L'entrepreneur devra également démontrer que ces conceptions optimisent le volume de matériaux requis de façon à limiter l'empreinte environnementale du projet. Les matériaux proposés devront pouvoir être retirés facilement à la fin de la construction et, idéalement, ils devront pouvoir être recyclés.

6.9.1 Surveillance lors de la construction des aires de levage et des chemins d'accès

Lors des travaux de construction, une surveillance est recommandée pour s'assurer d'un contrôle qualitatif des matériaux et de leur mise en place adéquate et aussi pour s'assurer que les conditions de sols effectivement rencontrées sur le site des travaux soient similaires aux données recueillies dans le présent rapport géotechnique.

6.9.2 Validation finale des aires de levage et des chemins d'accès

Il est enfin recommandé que les aires de levage et les chemins d'accès soient validés préalablement à la circulation pour construction d'éoliennes ou suite à un changement important soupçonné de la capacité de support de la chaussée (exemple : lors du dégel, lors de fortes pluies), et ce, selon une méthode conforme aux exigences de l'usage.

Annexe 1 Portée de l'étude

PORTÉE DE L'ÉTUDE GÉOTECHNIQUE

1.0 Caractéristiques des sols et du roc

Les caractéristiques des sols et du roc décrites dans ce rapport proviennent de forages et/ou de sondages effectués à une période donnée et correspondent à la nature du terrain aux seuls endroits où ces mêmes forages et sondages ont été effectués. Ces caractéristiques peuvent varier de façon importante entre les points de forage et de sondage.

Les formations de sol et de roc présentent une variabilité naturelle. Les limites entre les différentes formations présentées sur les rapports doivent donc être considérées comme des transitions entre les formations plutôt que comme des frontières fixes. La précision de ces limites dépend du type et du nombre de sondages, de la méthode de sondage, de la fréquence et de la méthode d'échantillonnage.

Les descriptions des échantillons prélevés ont été faites selon les méthodes d'identification et de classification reconnues et utilisées en géotechnique. Elles peuvent impliquer le recours au jugement et à l'interprétation du personnel ayant réalisé l'examen des matériaux. Celles-ci peuvent être présumées justes et correctes suivant la pratique courante dans le domaine de la géotechnique. Finalement, si des essais ont été effectués, les résultats de ces essais ne sont valides que pour l'échantillon décrit dans le présent rapport.

Les propriétés des sols et du roc peuvent être modifiées de façon importante à la suite d'activités de construction, telles que l'excavation, le dynamitage, le battage de pieux ou le drainage, effectuées sur le site ou sur un site adjacent. Elles peuvent également être modifiées indirectement par l'exposition des sols ou du roc au gel ou aux intempéries.

2.0 Eau souterraine

Les conditions d'eau souterraine présentées dans ce rapport s'appliquent uniquement au site étudié. La précision et la représentation de ces conditions doivent être interprétées en fonction du type d'instrumentation mis en place et de la période, de la durée et du nombre d'observations effectuées. Ces conditions peuvent varier selon les précipitations, les saisons et éventuellement les marées. Elles peuvent également varier à la suite d'activités de construction ou de modifications d'éléments physiques sur le site ou dans le voisinage. La problématique de l'ocre ferreuse et ses effets n'est pas couverte par le présent rapport.

3.0 Utilisation du rapport

Les commentaires et recommandations donnés dans ce rapport s'adressent principalement à l'équipe de conception du projet. Pour déterminer toutes les conditions souterraines pouvant affecter les coûts et les techniques de construction, le choix des équipements ainsi que la planification des opérations, le nombre de forages ou de sondages nécessaire pourrait être supérieur au nombre de forages ou sondages effectué pour les besoins de la conception. Les entrepreneurs présentant une soumission ou effectuant les travaux doivent effectuer leur propre interprétation des résultats des forages et des sondages et au besoin leur propre investigation pour déterminer comment les conditions en place peuvent influencer leurs travaux ou leur méthode de travail.

Toute modification de la conception, de la position et de l'élévation des ouvrages devra être communiquée rapidement à LVM de façon à ce que la validité des recommandations présentées puisse être vérifiée. Des travaux complémentaires de terrain ou de laboratoire pourraient éventuellement s'avérer nécessaires.

Le rapport ne doit pas être reproduit, sinon entier, sans l'autorisation de LVM.

4.0 Suivi du projet

L'interprétation des résultats de chantier et de laboratoire et les recommandations présentées dans ce rapport s'appliquent uniquement au site étudié et aux informations disponibles sur le projet au moment de la rédaction du rapport.

Les informations disponibles sur les conditions de terrain et sur l'eau souterraine augmentent au fur et à mesure de l'avancement des travaux de construction. Les conditions de terrain ayant été interprétées et corrélées entre les points de forage et de sondage, LVM devrait avoir la possibilité de vérifier ces conditions de terrain par des visites de chantier effectuées au fur et à mesure de l'avancement des travaux, afin de confirmer les informations obtenues des forages et sondages. S'il nous est impossible de faire de telles vérifications, LVM n'assurera aucune responsabilité concernant l'interprétation géotechnique que des tiers feront des recommandations de ce rapport, particulièrement si la conception est modifiée ou que des conditions de terrain différentes à celles décrites dans ce rapport sont rencontrées. L'identification de tels changements requiert de l'expérience et doit être effectuée par un ingénieur géotechnicien expérimenté.

5.0 Environnement

Les informations contenues dans ce rapport ne couvrent pas les aspects environnementaux des conditions de terrain, ces aspects ne faisant pas partie du mandat d'étude.

Annexe 2 Notes explicatives sur les rapports de sondage Rapports de forages Résultats des essais DCP Résultats des profils scissométriques

Notes explicatives sur les rapports de sondage

NOTE EXPLICATIVE SUR LES RAPPORTS DE SONDAGE

Les rapports de sondage qui font suite à cette note synthétisent les données de chantier et de laboratoire sur les propriétés géotechniques des sols, de la roche et de l'eau souterraine recueillies à chaque sondage. Cette note a pour but d'expliquer les différents symboles et abréviations utilisés dans les rapports de sondage. **STRATIGRAPHIE** SYMBOLES Élévation/Profondeur : Dans cette colonne sont inscrites les élévations TERRE VÉGÉTALE SABLE CAILLOUX des contacts géologiques rattachées au niveau de référence mentionné à l'en-tête du rapport de sondage et établies à partir de la surface du REMBLAI BLOC SILT terrain mesuré au moment de la réalisation du sondage. Les profondeurs sont également indiquées. GRAVIER ARGILE ROC **Description des sols** Chaque formation géologique est décrite selon et du roc : la terminologique d'usage présentée ci-dessous. NIVEAU D'EAU Dans cette colonne est indiquée l'élévation du niveau de l'eau souterraine Classification **Dimension des particules** mesurée à la date indiquée. Un schéma présentant le type et la profondeur d'installation est aussi présenté dans cette colonne. Argile Plus petite que 0,002 mm Silt et argile (non différentiés) plus petite que 0,08 mm **ÉCHANTILLONS** Sable de 0.08 à 5 mm Type et numéro : Chaque échantillon est étiqueté conformément au Gravier de 5 à 80 mm Caillou de 80 à 300 mm numéro de cette colonne et la notation donnée réfère au type d'échantillon décrit à l'en-tête du rapport de Bloc plus grande que 300 mm sondage. Sous-échantillon : Lorsqu'un échantillon inclut un changement de **Terminologie descriptive Proportions** matière stratigraphique, il est parfois requis de le « Traces » 1 à 10 % séparer et de créer des sous-échantillons. Cette « Un peu » 10 à 20 % colonne permet l'identification de ces derniers et Adjectif (ex. : sableux, silteux) 20 à 35 % permet l'association des mesures in situ et en « Et » (ex. : sable et gravier) 35 à 50 % laboratoire à ces sous-échantillons. État : La position, la longueur et l'état de chaque échantillon Indice « N » de l'essai de sont montrés dans cette colonne. Le symbole illustre pénétration standard, l'état de l'échantillon suivant la légende donnée à ASTM D-1586 l'en-tête du rapport de sondage. (coups par 300 mm de Calibre : Dans cette colonne est indiqué le calibre de l'échantillonneur. Compacité des sols granulaires pénétration) Très lâche 0à4 N et Nb L'indice de pénétration standard « N » donné dans cette section est montré dans la colonne coups/150 mm : Lâche 4 à 10 Moyenne ou compacte 10 à 30 correspondante. Cet indice est obtenu de l'essai de Dense 30 à 50 pénétration standard et correspond au nombre de coups d'un marteau de 63,5 kilogrammes tombant en Très dense plus de 50 chute libre de 0,76 mètre nécessaire pour enfoncer les 300 derniers millimètres du carottier fendu normalisé <u>Résistance au cisaillement non</u> drainé (kPa) (ASTM D-1586). Le résultat du nombre de coups Consistance des sols cohérents obtenu par 150 mm est indiqué dans la colonne Nb coups/150 mm. Pour un carottier de 610 mm de Moins de 12 Très molle longueur, l'indice N est obtenu en additionnant le Molle 12 à 25 nombre de coups nécessaire pour enfoncer les 2^e et 3^e Moyenne ou ferme 25 à 50 courses de 150 mm d'enfoncement. Raide 50 à 100 Très raide 100 à 200 RQD : L'indice de qualité de la roche (RQD) est défini comme Dure plus de 200 étant le rapport de la longueur totale de tous les fragments de carottes de 100 millimètres ou plus à la L'indice RQD est longueur totale de la course. Plasticité des sols cohérents Limite de liquidité présenté en pourcentage. Faible Inférieure à 30 % **FSSAIS** entre 30 et 50 % Movenne Élevée supérieure à 50 % Résultats : Dans cette section, les résultats d'essais effectués sur le chantier et au laboratoire sont indiqués à la profondeur correspondante. La définition des Sensibilité des sols cohérents St=(Cu/Cur) symboles rattachés à chaque essai est présentée à l'en-tête du rapport de sondage. Les résultats des Faible S_t < 2 essais qui n'apparaissent pas sur le rapport sont Moyenne 2à4 présentés en note à la fin du rapport de sondage. Par Forte 4à8 contre, une abréviation indiquant le type d'analyse Très forte 8 à 16 réalisée est présentée vis-à-vis l'échantillon analysé. Argile sensible $S_t > 16$ Ce graphique montre la résistance au cisaillement non Graphique : RQD (%) Classification du roc drainé des sols cohérents mesurée en chantier ou en Très mauvaise qualité < 25 laboratoire (NQ 2501-200). Il est également utilisé pour les essais de pénétration dynamique (NQ 2501-145). 25 à 50 Mauvaise qualité Qualité moyenne 50 à 75 De plus, ce graphique sert à la représentation des Bonne qualité 75 à 90 résultats de la teneur en eau et des limites d'Atterberg. Excellente qualité 90 à 100

Rapports de forages

25 10h	Γ				Clie	nt :											RAPPOR	RT D	EF	OR	AGE	:
é le : 2013-07-				VM		I	Parc	éolie	n P s.	ier e.c	re-	de-	Saur	el			Dossier n°: Sondage n°:	P-	0003	539-0 P	-01-10 ⁻ S-01-13	1 3
Imprime		Proje	l at: Da	rc áolien Pierre-de-Sau	urel - Étude	nón	techni	<u>ano</u>								Co	Date:	No	d	5094	3-06-1	5 ~~~~
VM_FR.sty-	E	Endr	roit: Ya	imaska, Québec		get	neciini	que								MT Gé	M Nad83 Fusear odésique	18 E	st n	348	954,0 (X 1 8,09 (Z)))
rage_L	É	tat	des éc	chantillons					2 10	_	Ex	ame	ns orda	anole	entid	Pro	s sur les sols:	m Pr	oi. de		32,62 n	<u>n</u>
og_Fo		17	$\overline{\mathbb{Z}}$ int	tact Remanié		Perd	u 🗌	С	arotte				o.go	As	pect	visue	: Inexistant(I); Dissén	niné(D); Ir	nbibé(IN	A)		
NILogl	Т	ype	e d'éch	antillon	Abréviati	ons								Jucui,	1107	Gotan	icity, Ecgereter, moye		croista		12	-
le_LVI	с	F	Carotti	ier fendu	L Limites	s de c	onsistance	e	м.о.	Mat	ière c	organi	que (%)				🗴 Niveau	d'eau				
X:ISt)	T	M	Tube à	à paroi mince	W _L Limite	de liq de pla	uidité (%)	Ň	K PV	Perr	méab 1s vol	ilité (c	cm/s) ie (kN/m³)				N Pénétra N Pénétra	tion stand: tion dvn ()	ard (Nb	coups/3	00mm)	
	c	R	Tube c	carottier	I _P Indice	de pla	asticité (%)	A	Abs	orptic	on (l/m	nin. m)				σ' _P Pression	n de préco	nsolida	tion (kPa)	
S.L.	Т	A	À la tai	rière	I _L Indice	de liq	uidité		U	Con	npres	sion u	iniaxiale (N	MPa)			TAS Taux d'a	igressivilé	des so	S	.9.	
	T	U	Tube ti	an ransparent	AG Analys	e grai	au (%) nulométriq	ue	AC	Ana	lyse o	chimiq	le du roc (lue	70)			Résistance a	u cisailler	nent	haritet	ooratoit	
	P	w	Carotti	er LVM	S Sédime	entom	étrie		PL	Pres	ssion	limite	, essai pre	ssiom	étriqu	ue (kl	Pa) C_u Intact (k	Pa)			l	
	S	G	Sol gel	le	VBS Valeur	a rent au Bl	oncement eu du sol		Е _м Е,	Mod	iule p lule d	ressic e réad	ometrique i ction du ro	(MPa) c (MP	a)		C _{ur} Remani	е (кра)	12		1	
					PDT Poids of	des tig	jes		SPo	Pote	entiel	de sé	grégation	(mm²/	H ℃)							1
	ja	E		STRATIGRAPHI	E	T	Ê		1	ÉC	CHA	NTI	LLONS	1	-			ESS.	AIS			_
	EUR	EUR	Е- <u></u> Е	DESCRIPTION D	ES	ES	E AU (нo	Ŧ		ш	NOL	Omr	8	Exa: org	nens ano.		TE	NEUR EN Wp L	W	LIMITES (% WL)
	FOND	FOND	ATIO	SOLS ET DU RO	oc	BOL	U D'E	PEE	IS-É(TAT	LIBH	ÉRAT	0s/15	ou R		[RÉSULTATS	20	40	60 80	100 120	
	PRO	PROI	PRO			SΥM	VEAI	ZS	sou	Ч.	CA	CUP	coup	"N.	eur	iuel		RÉSIS		AU CISAII	LEMENT (k	Pa)
			18.09				Ī					ä	qN		P	Vis		20	40	60 80	100 120	,
ľ			0,00	Sols naturels : silt argile	eux avec	1.1	88		A													
	1-		0,25	Présence de matières or	ganiques.	1	₩ X	CF-1	в	X	в	74	1-1 3-4	4							5 g 1	
	2-			Silt argileux avec des tra sable, brun.	ces de	1.1	8 8 8		_	\square												
: 46	3-	-				11	Š <u>ě</u> Š															İ
ale = 1		-1	16,87			1.1	8 <u>7</u> 8%	CF-2	A	XI	В	82	1-2 2-2	4						1 - 1 - 1	1 - + + + + + + + + + + + + + + + + + +	T
e vertic	4		1,22	Silt et argile avec des tra sable, gris-beige à gris. F	ces de Présence	11			В	\square												
Échell	5	-		de lits de silt.		11				\backslash					2							
	6					VII		CF-3		X	В	82	1-0 0-0	0			W = 54.0		12	0		
	7	-2																			****	
	8					VIII																
						VII		TM-4				0			1							
	9					1/																4
	10	-3				11				$\overline{\langle}$									1-1-1			
	11-							CF-5		X	в	16	1-0 0-0	0								
	12		14,35			///			4	/ \												
	13		3,74	Silt argileux avec un peu gris, saturé.	de sable,	1.												1.1				
		-4		3 , 2		1.1		TM-6				100										
	14-	8	13,67	Poursuite du forage par u	in essai		XIX											i				
	15		4,42	de pénétration dynamique	e au cône													1				
	16-	_		(pas d'échantillonnage). L argileux probable.	Dépôt																	
	17-	5		an addin films. It have													$N_c = 1$	ſ				
60	-						1										N _c =PDT					
14.03.2	Re	ema	rques:																			
5 R.1 (12														
9-Ge-6(Ту	pe	de fora	ge: Tarière				Éc	quipe	emer	nt de	e for	age: D- :	50		1						
	Pre	épa	ré par:	SP. Gravel, tech.			Vérifié	par: C	D. Ar	sen	ault	, ing	I. DY	<u>4.</u>			2013-07-25	Page:	1	de	5	

Échelle verticale = 1 : 46

		1			Client	t :											RAPPOF	RT I	DE	E F	0	R/	40	λE	
/n-2107 : al au				VM		F	Parc é	olier	n Pi s.e	ierı e.c	re-(de-	Saure	el			Dossier n°: Sondage n°: Date:	F	°-00	003	539 2(-0-0 PS 013)1-' -01 -06	101 -13 -13	
- Lensuy- Impu	Pro En	oje Idra	t: Pai	rc éolien Pierre-de-Saurel - I maska, Québec	Étude ç	géo	technic	lne								Coo MTI Géo	rdonnées (m): M Nad83 Fuseau odésique	N 8 Éléva	ord Est tion		509 34	9432 4895 1 {	27,0 54,0 8,0 9	(Y) (X) (Z)	
ide_L VI	Т	_								É		NITI				Prof	. du roc:	m F	Prof.	. de	fin:	3	32,6	2 m	
1		E	F	STRATIGRAPHIE			Ê.			E		%	E		Eva	mane			TENE		NEAL	J ET L'	IMITE	S (%)	
		FONDEUF	ATION - I	DESCRIPTION DES SOLS ET DU ROC		IBOLES	U D'EAU DATE	PE ET MÉRO	JS-ÉCH.	ТАТ	LIBRE	ÉRATION	ps/150m	ou RQD	org	ano.	RÉSULTATS		20	wp - 40	60	v v ∋ 80	NL 	120	
		PRO	ÉLÉV, PR			SYA	NIVEA	Υ Ί	sol		S	RÉCUF	Nb cou	"N"	Odeur	Visuel		RÉ	SIST/ OU F	ANCE	AU CI RATIO	ISAILL ON DY	.EME	NT (kP IQUE	۶¢
iŀ	+			Dépôt argileux probable.									-			8	N _c = 1	•	20	40	60	80	100	120	
°	19	6															N _c = 3	0	++++			, <u> </u> , .			•
	20-																N _c = 5	•							
	22-																N _c = 1	•	İ						
	23	7															$N_c = 1$	Ì				• • • • •			-
	24																$N_c = 1$ $N_c = 1$	Į							
1	25																N _c = 1	•							
	26	8															N _c = 1	•	-++-	44					-
	27																N _c = 1	•							
	29-																N _c = 2	•							
	30-	9							2								N _c = 2		***	- - -	1			+	-
	31-																$N_c = 3$ $N_c = 3$								
	32																N _c = 3	•							
3	33	10															N _c = 3	•							
3	54-	2															N _c = 3	Þ							
3	16	11															N _c = 3	•							
3	17-																N _c = 4	•							
3	8																$N_c = 3$			1,			1.		
з	19	12															$N_c = 5$	•	••++-					<u>.</u>	
4	0																N _c = 4	•						1	
4	.1.																N _c = 5	•							
	3	13															N _c = 5	۰.	•		<u>.</u>			+-	
4	4.																N _C = 6	•							
	Re	ma	rques:									I		I	L	1			<u>. 111</u>	<u>, 111</u>	<u>, t și</u>		<u></u>		
-	Гур	oe	de fora	age: Tarière				Éc	quipe	eme	nt d	e foi	rage: D-	50			2010 07 17			~					
Ľ	Pré	épa	iré par:	: SP. Gravel, tech.			Vérifié	e par: (D. A	rser	naul	t, in	g. (7)	+.	_		2013-07-17	Page	3:	2		ae		כ 	

17 12h					Client	t :											RAPPOR	TD	E FO	OR/	GE
né le : 2013-07-				VM		F	Parc é	olien	Pi s.e	ierı ə.c	re-o	de-	Saure	el			Dossier n°: Sondage n°: Date:	P-0	0035	39-0-0 PS- 2013-	1-101 01-13 06-13
Imprir	P	roje	t: Par	c éolien Pierre-de-Saurel - É	tude g	géo	technic	que								Coo	ordonnées (m):	Nord	4 £	509432	7,0 (Y)
FR sly-	E	ndr	oil: Vor	maaka Québaa												MTI	M Nad83 Fuseau	8 Es	t	34895	4,0 (X)
TVM		nan		naska, Quebec												Pro	f. du roc:	m Pro	f. de fi	n: 3	2,62 m
orage_		Γ_		STRATIGRAPHIE			~			ÉC	CHA	NTI	LLONS					ESSA	NS		
lLog_F	q - RL	n - HL	E			ŝ	() ()		ł.			% N0	E		Exar	nens		TEN	IEUR EN Wp	EAU ET LI W V	MITES (%) /L
SoTIWA	NDE	NDEL	NOI	DESCRIPTION DES SOLS ET DU ROC		OLE	D'EA ATE	e et éro	-ÉCH	AT	BRE	RATIC	150	u Ro	org	ano.	RÉSULTATS	20	.⊢ 40 €	0 80	┥ 100 120
Style_L	ROFO	ROFO	EVAT PROF			YMB	EAU / D	TΥΡ	sno	ÉT	CAL	SUPÉ	sdno	N" o	5	e	heoderato	RÉSIS		UCISAILL	EMENT (kPa)
X:16	a	Ē	Ê			S	NIN		S			RÉC	Nb c	I	Ode	Visu		00	PÉNÈTR	ATION DY	NAMIQUE
				Dépôt argileux prohable													N _c = 5	20	40 0		
S.L	45-			Dopot digiloux probablo.													N _c = 7	•			
	46-	-14															N _c = 6	•			
	47-																N _c = 6	•			
	48-																N - 7		1		
	49	-15																			
	50-	-															$N_c = 8$				
	51																N _c = 7				
	52-																N _c = 8				
	53-	-16															N _C = 8				<u>.</u>
	54																N _c = 8	D			
																	N _c = 8	•			
019	55	-17								6							N _c = 10	•			
= 1 : 46	56	-															N _c = 9	•			
verticale	57-																N _c = 10	•			
Échelle	58-																N _C = 11	•			
	59	-18															N _c = 10	•			
	60-																N _c = 11	•			
	61-																N _c = 11	•	ľ		
	62	-19															N _c = 12				
	63-																N _c = 12				
	64																N _c = 13		1		
	65-	00									1						N _c = 13				
	66	-20															N. = 13				
	67-																No = 14				
	68-																N = 13			1	
	69	-21															N = 14				
	70-																				
60	71-																				
94.03.2(R	ema	arques:																		
6 R.1 (4						50							
19-Ge-6	T	/pe	de fora	ge: Tarière			114.10	E	quip	eme	ent d		rage: D-	·50			2012-07 17	Page:	2	da	5
3	P	répa	aré par:	SP. Gravel, tech.			Verifi	e par: (J. A	rsei	naul	ι, in	g. (7)	+-			2013-07-17	raye:	3	ue	5

Γ				Client :												RAPPOR	TD	E	FC	DR	A	ЗE
			VM		Pa	rc é	olier	ηΡ s.e	ieri e.c	re-(de-	Saure	el.			Dossier n°: Sondage n°: Date:	P-1	0003	353	9-0- PS 201	-01- 5-01 3-0(101 -13 5-13
F	roje	et: Par	rc éolien Pierre-de-Saurel - E	Étude gé	ote	chnic	que								Coc	ordonnées (m):	Nor	ď	5	0943	327,0	0 (Y)
E	ndr	oit: Yar	maska, Québec												MTI Géo	M Nad83 Fuseau odésique É	8 E: lévatio	st in	. C.	3489)54,0 1 8,0	0 (X) 9 (Z)
┝	1	[É	СНА	NTI				Pro	f. du roc:	ESS	AIS	e tir	1:	32,6	52 m
ia -	E	E	STRATIGRAFTILE		-	Ê					%	E		Exar	nens		ТЕ	NEUR	EN E	AU ET	LIMIT	ES (%)
ONDEUF	ONDEUF	F m	DESCRIPTION DES SOLS ET DU ROC			D'EAU	e et Iéro	s-ÉCH.	'AT	IBRE	RATION	s/150m	u RQD	org	ano.	RÉSULTATS	2	v 0 40	Vp 	W 	WL 	0 120
POF	ROF	ÉVAT		VAL			TYP	sous	Ē	CAL	cupé	dno:	0N.	, r	lel		RÉSI	STANC	E AU	CISAI	LLEM	ENT (kPr
₽		ÉL			"	NIN					RÉ	qN	-	po	Visı		2	U PENE 0 40	ETRA) 6(TION 0 0 80)YNAN 10(11QUE
┝	-		Dépôt argileux probable.		+-	_			-							N _c = 14	•				-	++++
72	-22															N _o = 16	•				• • • • •	
73	ŕ																					
74																$N_c = 10$ $N_a = 15$			1			
75	-23												¢			N _c = 17		1	1	•••••		<u></u>
76																N _c = 17	•					
77	-															N _c = 18	•					
78	-24															N _c = 18	•		 			
19																N _c = 18	•			1 r.		
81]															N _c = 20	•			1		
82	-25															N _c = 19	•	•		Ì		
83																N _c = 20	•). 				
84	ļ															N _c = 21		•				
85	-			0												N _c = 19	•	•				
86	-26															N _c = 21						i i
87																N _c = 21) a.			1	
88	-							1100								N _c = 21						
89	-27															$N_{c} = 22$						
90	ł															N_ = 24						
91																$N_{c} = 24$						
92	-28															N _o = 25		•	++	+++++		++++++
93				-												N _c = 26		•				
94																N _c = 24		•				
95	-29															N _c = 25		•	• • • •			
96																N _c = 27		•				
97																N _c = 28		•				
R	ema	arques:	ge: Tarière			1	É	auin	eme	ent d	e fo	rage: D-	50									
P	répa	aré par:	SP. Gravel, tech.		١	/érifié	é par: (о. А	rser	naul	t, in	ig. A	μ.			2013-07-17	Page:	4	4	de		5
- T							•					U	- V .		4				- (1)			

17 12h					Client :											RAPPOR	TD)E I	FOI	RA	GE
mé le : 2013-07-				VM		Parc	éoliei	n P s.	ier e.c	re-(de-	Saure	ł			Dossier n°: Sondage n°: Date:	P-	0003	3539- 1 20	0-01 PS-0 13-0	-101 11-13 16-13
Imprin	P	roje	et: Par	rc éolien Pierre-de-Saurel - É	Étude gé	otechi	nique							1	Coc	ordonnées (m):	No	rd	509	4327	,0 (Y)
FR.sty-	E	ndr	oit: Var	maaka Québec											MTI	M Nad83 Fuseau	8 E	st	34	8954	,0 (X) ng (7)
TVM_	с.	lui.	Jii. Tan	lidska, wuebee										1	Pro	f. du roc: r	n Pr	rof. de	ə fin:	32	,62 m
Forage	pi	E		STRATIGRAPHIE		Ê		1	É	CHA	NTI	LLONS		T			ESS	AIS			
oglog	EUR -	EUR -	E ÷ E		S.			<u>+</u>			% NOI	mm0	ap	Exam	nens ano.		Т	ENEUR E W	EN EAU I Vp W	ET LIMI WL	TES (%)
TIMAT	IQNO:	DND:	PH	SOLS ET DU ROC			PE E	S-ÉC	TAT	LIBR	ÉRAT	os/15	ou R	H		RÉSULTATS	2	20 40	60	80 10	0 120
C.IStyle	PROF	PROF	PRC		NAS	VEAL		sou	чШ	CA	ÉCUP	fnoo	:z	leur	laus		RÉSI	ISTANCI	E AU CIS	AILLEN	MENT (kPa) AMIQUE
*			Ē			Ī					В	qN		õ	Ś		2	20 40	60	80 10	00 120
į	-	-	+ +	Dépôt argileux probable.		\uparrow		\square						\square		N_ = 29			++++++++++++++++++++++++++++++++++++++		
"	99															11 _C 20					
	100-	-														N _c = 28					
	101															N _C = 28		•			
	102-	-31														N _c = 29		•			
	103]							(Alterna						N _c = 29		•			
	100															N _c = 31		•		1	
	104		-13,76 31.85	Dépôt granulaire probable.												N _c = 31		•			
	105	-32														N _c = 39		•			
	106	-														N _o = 42					
	107		-14,53 32,62	Refus sur sols granulaires très		-										N _c = Refus					
	108	-33		denses à une profondeur de 32 m.	:,62																
9	109																				
e=1:4	110																				
vertical	111																			E	
Echelle	112	-34															-•+				
	442																				
	114	25																			
	115	.35															2				
	116-																				
1	117																	1			
	118	-36			E)												+	•••••			,
	119																		3		
	120																				
	121																				
		-37	1												ĺ						
	22		í																c		
	123-																				
5002	124																				
04.03.	Re	ma	iques.																		
66 H.1	Tv	00	de fora	ice: Tarière			É	auin	eme	ent d	le fo	rage: D-	50								
- 20-60-	Pr	éna	aré nar:	SP. Gravel, tech.		Vér	ifié par:	0. A	rsei	naul	t, in	ig. (1	m.			2013-07-17	Page:	5	5 c	de	5

ш

-25 10h	Γ				Clie	nt :											RAPPOF	TC)E	FC	R	AC	λE
2013-07						1	Parce	éolie	n P	ier	re-	de	Saur	el			Dossier n°:	P	-000	353	9-0-	01-	101
imé le :		-							s.	e.c							Sondage n°: Date:			;	PS 201:	5-02 3-06	-13 -05
ty- Impr	Р	roje	et: Pa	rc éolien Pierre-de-Sau	ırel - Étude	géo	techni	que								Co	ordonnées (m):	No	ord	5	0944	44,5	5 (Y)
M_FR.S	E	ndr	oit: Ya	maska, Québec												MT Gé	M Nad83 Fuseau odésique É	8 ^E lévati	:st on		3495 1	91,8 7,65	3 (X) 5 (Z)
age_LV	É	tat	don ór	hantillons							Ev		Do ora	nok	ontid	Pro	f. du roc: 38,35	m P	rof. d	e fir	:	41,4	4 m
.og_For		7		act Remanié		Perd		С	arotte	e		ame	ns orga	As	pect	visue	I: Inexistant(I); Dissémi	né(D);	Imbibé	(IM)	/D)		
Wit ogt	Т	ype	d'éch	antillon	Abréviati	ons								Jueur	III.CA	Istan	te(i), Legele(L), Moyer	ne(w),	reisis	lante	<u>(</u> F)		
tyle_L1	C	F	Carotti	er fendu	L Limites	s de ci	onsistance	•	M.O.	Mat	ière d	organi	que (%)				V Niveau d	eau		0		0	
X:IS	P	S	Tube à	piston fixe	W _p Limite	de nq de pla	usticité (%)	1	PV	Poic	ds vo	lumiq	ue (kN/m³)				N Penetrati N _c Pénétrali	on stand on dyn.	(Nb co	ups/3	100mn	iumm) 1) •	
	C	R	Tube c À la tau	arottier	I _P Indice	de pla	sticité (%)	1	A	Abs	orptio	on (l/n	nin. m) Inicuíalo (l				σ' _P Pression	de préc	onsolid	fation	(kPa)	١	
S.L	м	A	À la ma	ain	W Teneu	r en e	au (%)		RQD	India	ce de	e quali	ité du roc (%)			TAS Taux dag	ressivit	e des s	SOIS	d.	one	
	TI	U	Tube tr	ansparent	AG Analys	e grar	nulométriq	ue	AC	Ana	lyse	chimic	lue .	•			Résistance au	cisaille	ment	Chant	e. S	plan	
	S	w G	Sol gel	é	R Refus	entom à l'enf	étrie oncement		P _L E _M	Pres	ssion Iule p	limite pressio	, essai pre ométrique	(MPa)	étriqu	ie (kł	² a) C _U Intact (kP C _{UB} Remanié	a) (kPa)		A			
					VBS Valeur	au Bl	eu du sol		Е,	Mod	lule c	le réa	ction du ro	c (MP	a)					Δ			
				STRATIGRAPHI	PDT Poids o	des tig	es		SPo	Pole	entiel	de sé	grégation	(mm²/	H ℃)			EGO					
	R - pi	H- H	E				E)					% 7	E	Π	Exar	nens		<u></u> т	ENEUR	EN E/	U ET I		S (%)
	NDEU	IDEU	-NO E	DESCRIPTION D	DES	DLES	TEAL	E 2	ÉCH.	н	쀭	ATION	150m	ROD	org	ano.			v	ν _₽ ├──	₩ ⊕	wl —	
	OFO	OFO	VATI ROF.	SOLS ET DU RO	JC	MBC		ΥΡΕ UMÉ	I-SN0	ÉТА	ALIE	IPÉR/	./sdn	o.		_	RÉSULTATS	2	0 40	60	80	100	120
	ВЯ	РВ	ÉLÉ			sγ	NIVE	ΗZ	SC		0	RÉCU	lb co	N	Ddeu	/isue		RÉSI	STANC	E AU (CISAIL	LEMEN YNAMI	NT (kPa) QUE
			17,65	Solo poturolo i silt et er		673							z		0	-		2	0 40	60	80	100	120
	1		0,00	des traces de sable, brur	n-gris		82	CE-1	2	\mathbb{V}	в	41	1-2	5									
				devenant gris et saturé à 2,1 m.	i partir de		013-0	011		\wedge		71	3-5										
	2					11	Ĕ5								8								
= 1 : 46	3	-1				VII	16,3	CF-2		X	в	100	6-6 8-9	14				·	; ; ; ; ; ; ; ;				
rticale	4					11				\square													
helle ve	5					11				$\overline{\langle}$													
Ę	6					11		CF-3		X	в	100	2-1 2-3	3									
		-2																4					
	7					///				$\overline{\backslash}$													
	8					1/1		CF-4		X	в	100	1-1 0-0	1									
	9									\square									1.				
	10	3																				++++	
	11-							CF-5		XI	в	100	0-0 1-0	1		1	W = 46.2		0	Ď			
			14,06	011		///				/ \													
	12-		3,59	peu de sable, gris, saturé	ces a un	1.				\bigvee													
	13	4				11	XX=XX	CF-6		XI	в	100	1-0 0-0	0			W = 36.3		•	÷÷	•••••		
	14					1.			ł	/ \									1				
	15					1A				\bigvee													
	16-					1/		CF-7		XI	в	100	1-0 0-0	0									1
		5	12,54	Silt appleur aven den tran					ľ	<u> </u>								1	1i		• • • • •		
。	1/1		5,11	d'argile (ML), gris, saturé.	es	/		CF-8		\mathbf{X}	в	66	2-1 3-2	4			L				1		
.03.200	Re	ma	rques:	CF-8 : échantillon non plas	tique.	A 5451			/	<u> </u>					(للللو			1111	11211
H.1 04																							-
Ge-66	Ту	pe o	de fora	ge: Tubage NW/NQ par	rotation			Éc	uipe	emer	nt de	e for	age: D- :	50									
-60-03-	Pré	épa	ré par:	M. Desmarais, tech.			Vérifié	par: C). Ar	sen	auli	t, ing	g. 0	Ą.			2013-07-25 F	Page:	1		de	6	

Échelle verticale = 1 : 46

7-17 12h	1				Client :		vaux sources									RAPPORT	D	EF	OF	AC	λE
nmé le : 2013-0						Parc	éolie	n P s.	ier e.c	re-	de-	Saur	el			Dossier n°: Sondage n°: Date:	P-1	0003	539-0 P 201	-01-1 S-02 3-06	101 -13 -05
sty- Imp	Ρ	roje	et: Pa	rc éolien Pierre-de-Saurel - É	tude gé	otechn	ique								Coc	ordonnées (m):	Nor	d et	5094	444,5	; (Y)
VM_FR.	Е	ndr	oit: Ya	maska, Québec											Géo	vi Nados Fuseau 8 odésique Élé	vatio	n 	<u></u>	17,65	i (Z)
orage_L		-		STRATIGRAPHIE					É	CHA	NTIL	LONS	i.		Pro	. du roc: 38,35 m	ESS	AIS	tin:	41,44	<u>4 m</u>
gLog_F	EUR - p	:UR - n	E ' c		ų			÷			% NO	шш	9	Exam	nens		TE	NEUR E Wj	N EAU EI		S (%)
TAMIT	FONDE	FONDE	ATION DF r	SOLS ET DU ROC	EOI E	DATE	PE ET MÉRC	S-ÉC	TAT	LIBRE	ÉRATI	os/150	ou RG			RÉSULTATS	2) 40	60 8) 100	120
X:\Styte	PRO	PRO	ÉLÉV		NAS		₽ ₽	sol	- E	CA	RÉCUP	noo q	"N.	deur	isuel		RÉSIS	STANCE J PÉNÉT	AU CISA	LLEMEN	NT (kPa) IQUE
			-	Cilt ophlaux avea des trasss		Z					-	ž		0	5		20	0 40	60 8) 100	120
S.L	19-		11,78	d'argile (ML), gris, saturé.	/	// 	CF-8		Х	в	66	2-1 3-2	4			L W = 23.0			-		i. i
	20-	6	5,87	Argile silteuse, grise, salurée.	1	7			$\overline{7}$								• • • •	•••		•••••	+
	21-	•				1	CF-9		X	в	100	1-0 0-1	0			L W = 51.4			Ð		
	22-					A										$W_{L} = 42$ $W_{P} = 16$ $C_{U} = 29 \text{ kPa}$					
	23	-7					CF-10		\mathbb{N}	в	100	1-0 0-0	0				•		¦ 	.	
	24	-0							\square										ł		
	25															C _u = 30 kPa C _{uR} = 2 kPa	2				
	26					1	CF-11		X	в		1-0 0-0	0								
	27	0																			
	28															C _u = 30 kPa		A		· .	
	29					1															
	30	9				1												• • • • • •	******	+ + + + + + + + + + + + + + + + + + +	+++++•
verticale	31-					}	CF-12		Å	в	100	0-0	0			W = 69.4 C., = 35 kPa	2		O		
ECUGIO	32				V											C _{UR} = 2 kPa					
	33-	10				1															+++++++++++++++++++++++++++++++++++++++
	34					1													1		
	35								\bigtriangledown			1.0				С _U = 35 kРа		•			
	36-	11					CF-13		Å	в	100	0-0	0				.				
	37																				
	38-															C _u = 38 kPa C _{ur} = 2 kPa	2	•	1 3 1		
	39	10																			
	40	12							\bigvee			1-0									
	41						CF-14		Å	в	100	0-0	0			C _u = 40 kPa				6 - F	
	42-																				
ł	43-	13				1											• • • • •			******	·i·
	44															C _u = 41 kPa 4	2				
	Re	ma	rques:-	CF-8 : échantillon non plastique.	<u> </u>	1		L f	~1							and the second sec	- 10 L	1997			<u>, a 1781</u>
							2			10.12		_									
$\left \right $	Typ	pe (de foraç	ge: Tubage NW/NQ par rotati	on	Várifi	É par: d	quipe	emer	nt de	e fora	age: D-	50 \			2013-07-17 Pa	ue.	2	de	6	
L	rre	əpa	ie par:	w. Desmarais, tech.		verifi	e par: (J. AI	sen	auit	, ing	. 01	4,		1	2013-07-17 Pa	ye:	2	ue	0	<u>1</u>

7-17 12h	1				Client :		200 100									RAPPOR	ΓΙ	DE	E F	:01	RA	G	iE
nmé le : 2013-0						Parc	: éoliei	n Pi s.e	ier e.c	re-	de-	Saur	el			Dossier n°: Sondage n°: Date:	F	°-0(003	539- 20	0-0 PS- 13-	1-1 02- 06-	01 •13 •05
sty- Impi	Ρ	roje	et: Par	rc éolien Pierre-de-Saurel - Ét	ude gé	otech	nique								Coc	ordonnées (m):	N	ord Est		509	444	4,5	(Y) (X)
VM_FR.	E	ndr	oit: Yar	naska, Québec											Géo	odésique Élé	evat	tion		6	17	,65	(Z)
rage_L				STRATIGRAPHIE			1		É	СНА		LLONS			Pro	r. du roc: 38,35 m	ES	SA	. ae IS	lin:	4	1,44	+ m
plog_Fc	uR - p	UR - m	E			E E					% N0	Ë		Exa	mens			TENE	EUR E Wi	N EAU	ET LIN W	AITES	5 (%)
TVMITO	ONDE	ONDE	TION F m	DESCRIPTION DES SOLS ET DU ROC	BOLF	D'EA	JAIE DE ET	s-ÉCF	ГАТ	IBRE	ERATIC	s/150	u RO	org	ano.	RÉSULTATS		20	40	60	80 1	H 100	120
C:IStyle_	PROF	PROF	LÉVA PRO		MAS	VEAU		sou	ίIJ	CAL	ÉCUPÉ	coup	"N"	leur	suel		RÉ	SIST	ANCE	AU CIS			IT (kPa QUE
Ŷ			Ē			Z					н	qN		ð	Vis			20	40	60	80 1	100	120
S.L.	45-			Argile silteuse, grise, saturée.		1	CE-15		\bigvee	в		1-0	0			C _{UR} = 2 kPa				o			
	46	-14				1			\triangle			0-0				W = 63.3							
	47-					1										0							
	48-															С ₀ = 42 кРа							
	49	-15																					+++++
	50								\bigvee		100	1-0											
	51-						GF-16		\wedge	В	100	0-0				C _u = 44 kPa C _{ur} = 5 kPa	\triangle		4				
	52					1																	
	53	-16				2												1					
	54-	-				1										C _u = 47 kPa							
	55																						
46	56	-17																• - + • •	••••				····
cale = 1	57					1				2						-		. •		1			
elle vertio	58-					1										C _U = 45 kPa C _{UR} = 3 kPa	Ê						
Eche	59-	-18																			++-+	<u> </u>	
	60																	19					
	61-					1	CF-17		Х	в	100	1-0 0-0	0			W = 62.7 C _U = 54 kPa				≜©́			
	62							Ĺ															
	63-	19															1		+ - + -	*****			****
	64					1				5						C., = 57 kPa					4		
	65					1										C _{UR} = 6 kPa							
	66	20																• • • •	•••••	 			
	6/1															C _U = 57 kPa				▲		i.	
	68										2												
	69	21				1																	
	70-					1	CF-18		XI	в	100	1-0 0-0	0			C _u = 57 kPa				A			
6002.60	71 Re	ema	rques:-	CF-8 : échantillon non plastique.		1	1	/														115	
5																							
00-20-6	Ту	pe	de foraç	ge: Tubage NW/NQ par rotatio	on		Éc	quipe	eme	nt d	e for	age: D-	50		1								
	Pre	épa	ré par:	M. Desmarais, tech.		Vér	ifié par: (D. Ar	sen	aul	t, ing	g. Ø	Δ.			2013-07-17 P	age	:	3	d	е	6	2

Pro En	ojet: Par droit: Yar	c éolien Pierre-de-Saurel - Étue naska, Québec	de géo	otechnio	que							C N G	Coo //TN Géo Prof	ordonnées (m): M Nad83 Fuseau 8 odésique Éle f. du roc: 38,35 m	۲ 3 éva	Nor Es atio Pre	rd st on of.	de	5 e fii	09 34 n:	444 959 17 4	4,5 11,8 7 ,6 5	5 (` 3 (. 5 (. 14
-	F	STRATIGRAPHIE		-			É	СНА	ANTI	LONS	1	1.			E	SS	AIS	S		<u></u>			
-Hn	- HO - H	DECODIDITION DEC	ŝ	N (T		Ŧ			% NO	E	le	Exame	ens			ΤE	NEU	JR E W	N E	AU I W	ET LI V	MITE	ES (
	TION	SOLS ET DU ROC	BOLE	D'E	NÉRC	S-ÉC	TAT	IBRE	ERATI	s/150	u RG	l		RÉSULTATS		20	0	40	6		80	- 100	(1)
	PROF ÉVA PRC		SYM	VEAU	1¥ N	sou	Ψ	CAI	CUPE	coup	"N.	eur	Inel	63365 TALE 10	R	ÉSIS	STAP	NCE				EME	INT
	Ę			Ī					, H	qN		B	Vis			20	0 4	40	6	0	80	100	1
-		Argile silteuse, grise, saturée.					X									1	l	+			++	+-	1
2	22														Ì	• • •	4+4			++++		+++	+
3															1								
4														C _U = 61 kPa					1	•			
5	23																		ļ.,				
ŝ.																	•						
-																							
3																							
9-2	24														-	+	-+-		+ - 1				
ŀ																							
					CF-19		X	в	100	0-0 0-0	PDT			W = 64.2					: (Э			
1							\square	6															
2-2	25															1	1		•••				T
3-								i E H															
4																1							
5-2	:6															• • •				+			
3							5																
7-																							
3-																			l I				
-2	7															+++		1	• • •	***		• • • •	
Ţ								1												a.L.)			
-																							
ŀ.							$\overline{\langle}$																
					CF-20		Å	в	100	0-0	PDT												
1							<u>/ \</u>																
-2	9														• •			+		.			-
-																							
			VII							0.02													

				ent :											RAPPOR	Т	D	EI	FC)R	A	GI	Ξ
				F	Parc é	éolier	n Pi s.e	eri e.c.	re-(de-	Saure	el			Dossier n°: Sondage n°: Date:		P-0	1003	353	9-0 P 201	-01 S-0 3-0	-10 2-1 6-0	1 3 5
F	Proj	et: Pai	rc éolien Pierre-de-Saurel - Étud	le géo	technie	que								Coo	rdonnées (m):	N	Nor	d.	5	094	444, 501	5 (Y)
1	End	roit: Yaı	naska, Québec											Géc	M Nad83 Fuseau désique É	8 léva	ation	n		349.	17,6	6 () 5 ()	<) Z)
	1	Г	STRATIGRAPHIE		T			ÉC	CHA	NTIL	LONS			Prot	f. du roc: 38,35	n Ef	Pro	of. de	e fir	1:	41,	44	m
B - Di		E			(L) L					% N	Ę		Exar	nens	·····	Τ	TEM	NEUR V	EN E Nd	AU ET		res (%)
NDEI	ONDEL	F. H	DESCRIPTION DES SOLS ET DU ROC	SOLES	D'EA	E ET IÉRO	S-ÉCH	TAT	IBRE	RATIO	s/150r	u RQI	orga	ano.	RÉSULTATS		20	40) 6	<u> </u>) 10	0 1:	20
PROF	PROF	ÉVA' PRO		SYME	VEAU / D	A NUN	sous	Ψ	CAL	CUPÉ	coup	0N	eur	anel		R	ÉSIS		E AU	CISA			(kPa)
		Ш,Щ			Ĩ					Ŕ	qN		P	Vis			20	40) 6	0 80) 10	0 12	20
F	-		Argile silteuse, grise, saturée.								N. Ma					1	•		+-+-+-				. + + •
9	9.											8								1			
10	0				1	CF-21		\bigvee	в	100	1-0	2			W = 56.1				O				
10	1-							\square			20												
10	2-31																						
10	3-																4						
10	4				1																		
10	5-32	-14,51			1												****		• • • •		+++++		
10	6-	32,16	Sable silteux, gris, saturé.																				
10	7-																						
10	B-33																						
10	9-1																						
11	0					05.00		\bigvee			20-21				10		•		r.C.	1			
11	1					GF-22		\wedge	в	66	17-13	30			AG W = 15.0		0						
11	2-34																			1 . 			
11	3-																						
11	4																						
11	-35	17.57															•		· - +	++++			•
11	5	35,22	Silt sableux avec des traces à un																			l	
11	7-		fragments de roc.	a / .																4		1	
11	3-36																• • • •						
111																							
12	2							$\overline{\langle}$			101.0											1	
12						CF-23		X	в	66	16-17 18-12	35							1				
12:	-37							· \									+++-			****	++++	++-+	+++
12	3																		84.) 740				
124	-			6																	4		
F	l lem	arques:	- CF-8 : échantillon non plastique.	<u> </u>								<u> </u>					uil					4 <u> </u>	
T	уре	e de fora	ge: Tubage NW/NQ par rotation	1	2000	É	quipe	eme	ent d	e for	rage: D-	-50		T						•		6	
F	rép	aré par:	M. Desmarais, tech.		Vérifi	é par: (0. Ar	rser	naul	t, ing	g. <i>O</i>	A	•		2013-07-17	Pag	e:		<u>ز</u>	de		6	

-17 12h					Client :											RAPPOF	RT I	DE	F	OR	AC	λE
imé le : 2013-0				VM		Parc	éolier	n Pi s.e	eri e.c	re-	de-	Saure	əl			Dossier n°: Sondage n°: Date:	P	-00	035	39-0 P 201	-01- S-02 3-06	101 ?-13 5-05
v- İmpn	Р	roje	et: Pa	rc éolien Pierre-de-Saurel - É	tude gé	otechn	ique								Coc	rdonnées (m):	N	ord		5094	144,5	5 (Y)
A_FR.st	E	ndr	oit: Yaı	maska, Québec											MTI Géo	M Nad83 Fuseau désique	i 8 Élévat	Est ion		349	591,8 1 7,6 5	3 (X) 5 (Z)
ge_LVA		r –	r				1		4		_				Pro	. du roc: 38,35	m F	Prof.	de f	in:	41,4	4 m
ig_Fora	id .	E	5	STRATIGRAPHIE		Ē	-		E		NII %		T	_			ES		S IR FN	FAUET	LIMITE	FS (%)
AlLogLe	DEUF	DEUF	I-NO	DESCRIPTION DES	C L		E S	CH.	F	RE	VIION	50mr	ROD	org	nens ano.				Wp H	- W	WL	
yie_LVI	OFON	OFON	VATIC ROF.	SOLS ET DU ROC	Carr		ΥΡΕ UMÉ	I-SUO	ÉTA	ALIB	ıPÉR/	1/sdn	no "		_	RÉSULTATS		20	40	60 80	100	120
XISt	E	PR	ÉLÉ		20	NIVE	FZ	SC		0	RÉCL	lb co	N	Ddeu	/isue		RÉ	SISTA	NCE A	U CISAI	LLEME DYNAM	NT (kPa
				Silt sableux avec des traces à u	n 😵							z			-		-	20	40	60 80	100	120
S.L	125-		-20 70	peu de gravier, rosé. Présence	de																1	
	126-		38,35	Roc : alternance de shale rouge	1				T													
	127-		0	Lits de calcite dans le grès. Lita	ge V											11= 37 2MPa						
	128-	-39		aux contacts lithologiques. Une	Ĭ Į	1	CR-24			NQ	80		51			PV= 2645kN/m ³				•••••		
	129			un peu d'argile de 39,9 à 40,1 n	1. 以	1												÷.		i		
	130-	-			1	1.				NO	100		60								2	
	131	-40			-		GR-20			NG	100		00						; 			
	132				1				-													
	133				1				and the second second													
	134				N'I		CR-26			NQ	100		93									
	135	-41			シー																++	
46	136		-23,79	P	<u> </u>					1												
ale = 1	137		41,44	41,44 m.	Je																6	
lle vertic	138	-42																				
Éche	190																			-		
	140																					
		-																				
	141-	-43													8							
	142																				r.	
	143-																					
	144	-44															••••					
	145-																					
	146																					
	147-	45																				
	148-	-45																				
	149-																		6			
е 6	150-																					
4.03.20C	Re	ema	Irques:	- CF-8 : échantillon non plastique.						1						en <u>Par</u> , c'h						
-66 R.1 04	Tv	ne -	de fore	ge: Tubage NW/NO par rotati	on		Éc	Juine	me	nt de	e for	age: D- 4	50									
0-09-Ge	Pre	épa	uré par:	M. Desmarais, tech.		Vérif	é par: C). Ar	sen	ault	, ing	g. 0	A	•		2013-07-17	Page		6	de	6	3

17 12h	6					Clie	ent:											RAPPO	RT C	E F	OR/	AGE
imé le : 2013-07-				VI			F	Parc	éolie	n P s.	ier e.c	re-	de-	Saure	el			Dossier n°: Sondage n°: Date:	р.	00035	39-0-0 PS- 2013-)1-101 -03-13 -06-04
_LVM_FR sty- Impr	P	roje indr	et: Pa oit: Ya	rc éolien Pie maska, Quél	erre-de-Sau bec	rel - Étude	e géo	techni	que								Coc MT Géo Pro	ordonnées (m): M Nad83 Fusea odésique f. du roc:	No u 8 E Élévatio m Pr	rd st on rof. de f	509452 35004 19 iin: 3	29,1 (Y) 46,3 (X) 9,03 (Z) 46,45 m
Forage_	É	lat	des éc	hantillons								Exa	ame	ns orga	nole	eptic	lue	s sur les sols:			\ \	
gLog	P	/	/ Int	act 🖂	Remanié		Perdu	1 🗌	C:	arotte	,			C	As Ddeur:	Inex	istan	te(I); Légère(L); Moy	nine(D); i enne(M);	Persistan) te(P)	
NMLO	Т	ype	d'éch	antillon		Abréviati	ons											_				
Style_L	C T	F	Carotti Tube à	er fendu naroj mince		L Limite	s de co de liqu	onsistance jidité (%)		м.о. к	Mati	ière c méab	ilité (c	que (%) m/s)				N Niveau N Pénétra	d'eau ution stanc	ard (Nb c	oups/300	mm)
X	P	s	Tube à	piston fixe		W _P Limite	de pla	slicité (%)		PV	Poid	is vol	umiqu	ie (kN/m³)				N _c Pénétra	tion dyn.	Nb coups	s/300mm)	•
	C	R	Tube c	arottier		I _P Indice	de pla	sticité (%)		A	Abs	orptic	on (l/m	in. m) niavialo (N				σ' _P Pressio	n de préce	onsolidati	on (kPa)	
S.L	M	A	À la ma	ain		W Teneu	ir en ea	au (%)		RQD	India	ce de	quali	é du roc (%)			TAS TAUX U	agressivite	005 5015	, ,	ole
	T	υ	Tube tr	ansparent		AG Analys	se grar	ulométriq	ue	AC	Ana	lyse o	chimiq	ue		-		Résistance a	u cisaille	ment ර	aritie 300t	5
	P	W G	Carotti Sol gel	er LVM é		S Sédim R Refus	entom à l'enfi	étrie oncement		Р _L Е.,	Pres	ssion Iule p	limite, ressio	essai pre métrique (ssiom (MPa)	étrigu	ie (kF	a) C _u Intact (F C _{un} Remani	(Pa) é (kPa)	A		
			eer ger			VBS Valeur	au Ble	eu du sol		E,	Mod	lule d	e réac	tion du ro	c (MP	a)		- UH				
			r			PDT Poids	des tig	es I		SPo	Pote	entiel	de sé	grégation	(mm²/l	H ℃)		[
	- pi	Ę		STRA	ATIGRAPHI	E	1	Ē			EC	CHA			1				ESS	AIS	FALLETIN	
	EUR	EUR	L-NE	DES	CRIPTION D	ES	SE	AU	<u>ا</u> و ا	H		ш	NOL	0mu	B	Exar orga	nens ano.		1	Wp	W W	Mines (%) /L
	FOND	FOND	ATIO DF	SO	LS ET DU RO	oc	BOL	U D'E	PE E Mér	IS-É(TAT	LIBF	ÉRA1	os/15	ou R			RÉSULTATS	2	0 40	60 80	100 120
	PROI	PROI	₽R(SYM	VEAI	₽N	sou	Ψ	CA	CUP	cont	"N"	eur	iuel		RÉSI		U CISAILL	EMENT (kPa)
			ч ш 10.02					z					2	qN		ро	Vis		2	0 40 0	60 80	100 120
			0,00	Sols organ	iques : terre	végétale.	67			Α									ji i		+ • • •	++++
	1-		0,15	des traces a	els : silt argile à un peu de s	able, brun	1.1		CF-1	в	X	В	66	1-2 2-3	4			N _c = 2	•			
	2			à brun-gris,	humide.		11				Д							N _c = 8	D	'		
46							VI		05.0		\vee	Б	100	2-2				N - 5				
e = -	3	-1					1.	8-38	01-2		Λ	U	100	2-2				N _c =5		++++++		••••••
vertical	4		17,66				1.	33.0										N _C = 6	•			
chelle	5		1,37	Silt et argile sable, gris,	e avec des tra saturé.	ces de		E Second									}	N _C = 6	•			1.
·ω	6-						11	18,14	CF-3		X	в	100	1-0 0-0	0			W = 52.3	•	0		
	7	-2					VI	ei.			\square							N _c = 1 N =PDT	1:		*****	•+++•
							VII													1	1	
	8-						1.1		CF-4		\mathbb{V}	в	100	1-0	0			N _c = 1	Î			
	9						1/2		2770 DI		\wedge			0-0	1.111			N _c = 1	•			
	10	-3					VI						8					N _c = 2	•		• • • • • • •	
	11						VA		CE-5		\vee	в	100	1-0				N = 1				·
							VA		01 0		\wedge	U		0-0				N _C = 1				
	12-						.//											N _c = 2	1			
	13	-4							TM-6									C _u = 21 kPa	e e	I · · · •	• • • • • • • • • •	
	14		14.66				VA											$C_{UR} = 1 \text{ kPa}$ $N_C = 2$	•			
	15		4,37	Poursuite du	u forage par u	in essai												W = 49.8 N _c = 1				
				(pas d'échar	ntillonnage). [Dépôt												N _c = 2				
	16-	5		argileux prol	bable.													N _c = 2	.			
	17-																	N _c = 2	•		E.	
5008																		2				
04.03.	гте	1118	iques:																			
6 R.1			1000						<u> </u>			. p. e		<u>200</u> 4								
9-Ge-6	Ту	pe	de fora	ge: Tarière					Ed	quipe	eme	nt d	e for	age: D-	50							
00	Pr	épa	ré par:	M. Desmara	ais, tech.			Vérifié	par: (D. Ai	rsen	aul	t, ing	g. C	14	•		2013-07-17	Page:	1	de	5

-17 12h	Γ				Client	t :											RAPPOF	RT D	EF	OF	A	GE
те́ le : 2013-07				VM		P	Parc é	olier	n P s.e	ier e.c	re-(de-	Saure	əl			Dossier n°: Sondage n°: Date:	P-(0003	539-0 P 201	-01- S-03 3-06	·101 3-13 5-04
Imprir	P	roje	et: Pa	rc éolien Pierre-de-Saurel - É	i Étude g	géot	technic	que								Coc	ordonnées (m):	Nor	d	5094	529,	1 (Y)
M_FR.sty-	E	ndr	roit: Ya ı	maska, Québec												MT Géo	M Nad83 Fuseau désique	8 E s Élévatio	st n	350	046,3 1 9,0 3	3 (X) 3 (Z)
age_LV			[STRATICDADUIE						É		NTI				Pro	f. du roc: T	m Pro	of. de	fin:	36,4	45 m
og_Fora	iq -	E - 2	F	STRATIGRAPHIE		-	E)			E		%	E		Eva			TE	NEUR EI	N EAU ET	LIMIT	ES (%)
T VMILogLi	ONDEUF	ONDEUF	F m	DESCRIPTION DES SOLS ET DU ROC		SOLES	D'EAU	e et Iéro	s-ÉCH.	AT	IBRE	RATION	s/150m	u RQD	org	ano.	BÉSULTATS	20	₩¢ -) 40	> W 60 8	WL 	0 120
Style_	ROF	PROF	ÉVA			SYME	/EAU	TYP	sous	Ϋ́	CAL	cupé	dnoc	oN.	ar	nel		RÉSIS	TANCE	AU CISA	LLEME	ENT (kPa
×	[. ⊡				NIN					RÉ	qN		PO	Vis		20) 40	60 8	DYNAN D 100	11QUE
Ļ				Dépôt argileux probable.													N _c = 1					
S	19-																N _c = 1	•				
	20	-6															N _c = 3	•				
	21-																N _c = 1					
	22	-7															$N_c = 4$					
	24-																$N_c = 6$	•				
	25		3														N _c = 4	•			1	
	26	8															N _c = 2	<u> </u>		,		
	27-																N _c = 3	Ð				
	28-																N _c = 2	•				
: 46	29	9															N _c = 3	•			• • • • • •	
ticale = 1	30																N _c = 3			t i i		
chelle ver	31-																N _c = 3					
Ш	33	10															$N_c = 3$	•		•••	·	
	34																N _c = 3	Ð	1			
1	35-															1	N _c = 5	•		1		
	36	11															N _c = 3	•		 		
	37																N _c = 4	•				
	38-																N _c = 4	•				
	39	12															$N_c = 5$	•		• • • • • • • • • • • • • •		
	40																$N_c = 5$					
	42																N _c = 6	•				
	43	13															N _c = 5	•				•••••
60	44																N _c = 6	•				
04.03.20	Re	ma	arques:																			
-66 R.1 (Tv	ne	de fors	ne: Tarière				Éo	uine	me	nt de	a for	age: D- 4	50								
0-09-Ge	Pr	épa	aré par:	M. Desmarais, tech.			Vérifié	par: C). Ar	sen	ault	, inc	g. Ø	A			2013-07-17	Page:	2	de	:	5
ш		100				1										1		g		-20082	6	

-17 12h	Γ				Clien	t :											RAPPOR	TC	DE	F	OR	A	GE
né le : 2013-07-				VM		P	Parc é	eolier	n Pi s.e	ierı e.c	re-e	de-	Saure	el			Dossier n°: Sondage n°: Date:	Ρ	-000	353	39-0 P: 201	-01- 5-0: 3-0(-101 3-13 6-04
- Imprii	P	roj	et: Par	rc éolien Pierre-de-Saurel - É	tude g	géo	technic	que								Coo	rdonnées (m):	No	ord	5	i094	529,	1 (Y)
VM_FR sty	E	nd	roit: Yar	naska, Québec												MTI Géc	M Nad83 Fuseau désique É	8 E lévati	Est ion	1. 1	3500)46,: 1 9,0	3 (X) 3 (Z)
age_L1			1	STRATIGRAPHIE						É	СНА	NTI	LLONS			Prof	. du roc: r	ES:	SAIS	te ti	n:	36,4	45 m
.09_F0	H - pi	н- н	E				(m) (% N	Ē		Exan	nens		1	ENEUR	R EN E	AU ET	LIMIT	FES (%)
T VMILOGI	ONDEU	ONDEU	.TION -	DESCRIPTION DES SOLS ET DU ROC		BOLES	J D'EAL DATE	PE ET MÉRO	S-ÉCH.	ТАТ	LIBRE	ÉRATIO	s/150m	ou RQD	orga	ano.	RÉSULTATS		20 4	0 6	0 80	10(0 120
CIStyle_	PROF	PROF	PRC			SΥM	VEAL	ΝΠ	sou	Ę	CA	ECUP	coup	N	eur	suel		RÉS		CE AL			ENT (kPa
~			Ē				z					R	q		ð	Vis			20 4	0 6	0 80	10(0 120
S.L.	45			Dépôt argileux probable.													N _c = 7	•					
0,	46	-14							8								N _c = 7	•					
	47																N _c = 7	•	1				
	48																N _c = 6	•					
	49	-15					r J	8									N _c = 7	•					• • • • • • •
	50						9										N _c = 8	•					
	51																N _c = 8						-
	52	-16															N _c = 7						
	53																$N_c = 8$						
	55																$N_c = 0$ $N_c = 10$					-	
46	56	-17															N _c = 9	•	••••				
ale = 1 :	57-																N _c = 10	•					
elle vertio	58																N _c = 9	•) X			
Êct	59	-18															N _C = 10		<u>.</u>				, + • • • •
	60-																N _c = 10	•					
	61-									ĺ							N _c = 11	•	1				
	62	-19															N _c = 11	•	•••••	••••	 -		
	63-	1															N _c = 12						
	64-	-															N _c = 11						
	65	-20															N _c = 13						1) + + + + + + + + + + + + + + + + + + +
	67																$N_{c} = 13$						
	68																N _c = 12				1		
	69	-21															N _c = 13		••••••	••••			++-
	70																N _c = 14	•					
60	71-																N _c = 15	•					
4.03.20	Re	ema	arques:																				
66 R.1 0	Ŧ		do (c					ć-	ule		nt de		200 D	50									
-99-Ge-	Ty P	/pe	de lora	ge: lariere			Várifiá	Eq		inei 		in:	age: D-:	Δ.		8	2013-07-17	900		3	de		5
d	Pr	epa	are par:	w. Desmarais, tech.			verme	pai. C	, Af	sen	auit	., inț	y. U					aye.		0	ue		5
r-17 12h		1			Client :	:											RAPPOR	T DI	EF	OR	AGE		
------------------	--------	--------	---------------	-----------------------------------	----------	----	----------------	-----------------	-----------	------------	--------	--------	-------------	----------	-------	--------	---------------------------------------	---------	------------------	--------------------	---		
nmé le : 2013-07		L		VM		P	arc é	eolier	י P s.	ier e.c	re-(de-	Saur	el			Dossier n º: Sondage n º: Date:	P-0	0035	39-0- PS 201	-01-101 S-03-13 3-06-04		
ity- Imp	Pi	roje	et: Par	c éolien Pierre-de-Saurel - É	tude gé	ot	echnic	que								Coc	ordonnées (m):	Norc		50945	529,1 (Y)		
IM_FR:	E	ndro	oit: Yan	naska, Québec												Géo	M Nad83 Fuseau a odésique Él	évation		1	19,03 (X)		
hage_L1				STRATIGRAPHIE						É	СНА	NTI	LLONS			Pro	f. du roc: n	ESSA	IS	in:	36,45 m		
tog_Fc	JR - p	JR - m	E				(ш) П					% N0	E		Exa	mens		TEN	EUR EN Wp	EAU ET	LIMITES (%) WL		
e_LVMILo	FONDE	FONDE	ATION OF m	DESCRIPTION DES SOLS ET DU ROC			U D'EA DATE	'PE ET IMÉRO	JS-ÉCF	ÉTAT	VLIBRE	ÉRATIC	ps/150	ou RQ	org	ano.	RÉSULTATS	20	40	0 80	 100 120		
X:ISIyI	PRO	PRC	ÉLÉV Pr		2	5	NIVEA	Ϋ́Γ	SOI		C/	RÉCUI	Nb cou	"." "	Odeur	Visuel		RÉSIST	ANCE A PÉNÉTF	U CISAIL	LEMENT (kPa DYNAMIQUE		
Ŀ	_			Dépôt argileux probable.		+								+	-	-		20	40	60 80	100 120		
S.	72	-22															N _c = 13						
	73-																N _c = 15	•					
	74																N _c = 15	•	•				
	75	23															N _C = 18	0					
	76-																N _c = 16	•					
	77-																N _c = 17	•					
	78-	24															N _c = 15	•					
	79-																N _c = 17	•					
	80-																N _c = 19	•		I			
	81-																N _c = 18	•					
46	82-	25															N _c = 20	•	****	*****	******		
ale = 1 :	83																N _c = 19	•					
elle vertio	84-																N _c = 21	•					
Éche	85	26															N _c = 22	•		÷÷	+++++++++++++++++++++++++++++++++++++++		
	86-																N _c = 23						
	87-						ŝ										N _c = 22	•					
	88-	27															N _c = 21	•					
	89																N _c = 23	•					
	90																N _c = 25	•					
	91-	28															N _c = 20	•					
	92	20															N _c = 26	•					
	93-																N _c = 25	•					
	94																N _c = 26	•					
	95	29															N _C = 28		~+-++	• • • • • • •	· · · · · · · · · · · · · · · · · · ·		
	96-						3										$N_{c} = 27$ $N_{c} = 28$		1				
3.2009	Re	mai	raues:																				
a-66 R.1 04.00	Tvr)e r	de foran	ie: Tarière				Éa	uipe	emei	nt de	e for	age: D-	50									
EQ-09-Ge	Pré	pa	ré par:	M. Desmarais, tech.		12	Vérifié	par: O	. Ar	sen	ault	, inç	g. <i>O</i>	η.			2013-07-17 P	age:	4	de	5		

-17 12h					Client :											RAPPOR	T DI	E F	OR	AGE
ımé le : 2013-07		L		VM		Parc	éoliei	n P s.	ier e.c	re-(:.	de-	Saure	el			Dossier n°: Sondage n°: Date:	P-0	0035	39-0-0 PS 2013	01-101 -03-13 -06-04
ty- Impr	Ρ	roje	et: Pa	rc éolien Pierre-de-Saurel - É	lude gé	otechi	nique							0	Coc	ordonnées (m):	Nord	9 E	3500	29,1 (Y)
/M_FR.s	E	ndr	oit: Ya ı	maska, Québec										C	Géo	vi Nad83 Fuseau a odésique Él	évatior	1	1	9,03 (Z)
irage_LN				STRATIGRAPHIE		1			É	СНА	NTI	LLONS		ŀ	Prof	. du roc: n	ESSA	t. de fi NS	n: 3	36,45 m
llog_Fc	IR - pi	JR - m	E			l l l l					% N	Ē	0	Exam	iens		TEN	EUR EN I Wp	EAU ET L	IMITES (%)
ο ΤΜΝΓΟ	FONDE	FONDE	ATION DF m	DESCRIPTION DES SOLS ET DU ROC			PE ET MÉRO	JS-ÉCH	TAT	LIBRE	ÉRATIC	ps/1501	ou RQ	orga	no.	RÉSULTATS	20	40 E	0 80	
X:IStyle	РВО	PRO	ÉLÉV. PR		IN O		Ì È ₽	sol		CA	RÉCUF	p cou	"N"	deur	isuel		RÉSIST	PÉNÉTRA	J CISAILI	LEMENT (kPa YNAMIQUE
						2	_					z		0	>	N = 26	20	40 e	0 80	100 120
S.L	99			Depot argiteux probable.												N _C = 20			• • • • • • •	•••
	100-	•														N = 30				
	101-															$N_{c} = 30$ $N_{c} = 30$		•		
	102-	-31														N _c = 32		•	• • • • • • •	· · · · · - ·
	103-	•0 20														N _c = 33		•	4	
	104-								5							N _c = 34		•		
	105-	-32														N _c = 34		•		
	106															N _c = 34		•		
	107-															N _c = 34		•		
	108	-33														N _c = 32		••••••	• • • • • • •	
1:46	109															N _c = 34		•		
erticale =	110															$N_c = 37$				
Échelle v	112	-34														$N_c = 30$				
	113															N _c = 39		•		
	114															N _c = 37		•		
	115	35														N _c = 40		•		· · · · · · · · · · · · · · · · · · ·
	116															N _c = 41		•		
	117-															N _c = 43				
	118	36	-16,97 36,00	Dépôt granulaire probable.		-					8					N _c = 45	•		+1	
	119		-17,42			_										N _c = 99 N _c = Refus				•
	120		36,45	profondeur de 36,45 m.												°			1	- 10
	121-	37																		· · · · · · · · · · · · · · · · · · ·
	122-																			
	124							2											1	
03.2009	Re	ma	arques:			L														
5 R.1 04.																				
09-Ge-66	Ту	pe	de fora	ge: Tarière			Éc	quipe	eme	nt de	e for	age: D- {	50		2	2012 07 17	logo:			F
Ğ	Pre	epa	ire par:	M. Desmarais, tech.		veri	ne par: (J. AI	rsen	ault	i, ing	1. Ch	A ·			2013-07-17 F	aye:	5	de	э

17 12h					Clie	nt :											RAPPOR	ΓC	DE	FO	RA	GE
2013-07-						F	Parc é	eolie	n P	ier	re-	de-	Saure	el			Dossier n°: Sondage n°:	P	-000	3539)-0-01 PS-(1-101 04-13
nimé le :									3.	0.0							Date:			2	013-0)5-29
sty- imp	Ρ	roje	et: Pa	rc éolien Pierre-de-Sau	rel - Étude	géo	technio	que								Cod	ordonnées (m):	No	ord Est	50 3	90912	2,5 (Y)
LVM_FR.	E	ndr	oit: Ya ı	maska, Québec												Gé	ndésique Éle f. du roc: n	évati 1 P	on rof. d	e fin:	21,	73 (Z) 3,87 m
orage	É	tat	des éc	hantillons							Exa	amei	ns orga	nole	eptic	lue	s sur les sols:	((D))				
	P	/	// Int	act Remanié		Perdu	L	C	arotte	9			c	As) deur:	Inex	istan	te(l); Légère(L), Moyenn	e(D); e(M);	Persis	lante(f	2)	
TIMAT	Т	ype	d'éch	antillon	Abréviatio	ons							(01)					200				
Style_	C T	F M	Carottie Tube à	er fendu paroi mince	W ₁ Limites	de liqu	uidité (%)		м.о. К	Mat Peri	néab	ilité (c	que (%) :m/s)				 N Pénétration 	au n stan	dard (N	lb couj	ps/300m	ım)
×	P	s	Tube à	piston fixe	W _P Limite	de pla	sticité (%)		PV	Poic	ds vol	umiqu	ie (kN/m³)				N _c Pénétration	n dyn.	(Nb co	ups/30)0mm)	•
Ŀ	C T	R A	Tube c À la tar	arottier ière	I _P Indice	de pla de liqu	isticité (%) uidité		A U	Abs Con	orplic npres	on (I/m sion u	in. m) niaxiale (N	(Pa)			o' _P Pression d TAS Taux d'agr	e prec essivit	é des s	sols	(кРа)	
Ś	м	A	À la ma	ain	W Teneu	r en ea	au (%)		RQD	Indi	ce de	qualit	té du roc (*	%)			Péristanas au o	icaille	mont	10	ac	10
	P	u w	Tube tr Carottie	ransparent er LVM	AG Analys S Sédim	e grar enlom	nulométriq étrie	ue	AC Pi	Ana Pres	lyse o ssion	chimiq limite,	ue , essai pre	ssiom	étriqu	ie (kF	a) C ₁₁ Intact (kPa)	ment	Chat	300	
	S	G	Sol gel	é	R Refus	à l'enf	oncement		EM	Mod	lule p	ressio	métrique (MPa)			C _{UR} Remanié (F	(Pa)				
					VBS Valeur	au Ble des tio	eu du sol Ies		E, SP.	Mod	lule d	e réac de sé	ction du ro orégation	c (MP) (mm²/l	a) H°C)							
		-	-	STRATIGRAPH	E	200 tig			0.0	É	CHA	NTI	LLONS		,			ESS	SAIS			
	q - Rl	n-R	E			0	E D					% N	Ē	0	Exar	nens		т			UETLIM WWL	ITES (%)
	NDEL	NDEL	NOI	DESCRIPTION D SOLS ET DU R	DES	OLES	D'EA ATE	ÉRO	ÉCH	AT	BRE	RATIO	/150r	I ROI	org	ano.			20 40	i ⊢	⊖ 80 1	 00 120
	ROFO	ROFO	ÉVAT PROF		ā ā	SYMB	EAU / D	ΠΥΡΙ	sous	ÊT	CALI	CUPÉF	sdno:	N of	ar	lel	RESULTATS	RÉS	ISTANC	E AU C	ISAILLE!	MENT (kPa
		1	Ē				Ň					ЯÉ	Nb o	-	po	Visi			20 40	ETRATI) 60	80 1 ¹	AMIQUE 00 120
			21,73 0,00	Sols naturels remaniés	s : silt	1				$\overline{)}$									 			
	1-			gris. Présence de matièr	de sable, es	1		CF-1		X	в	66	2-3 4-5	7			N _c = 4	•	. 			
	2-	-	21,12	organiques (terre et radi	celles). aniés : sill	1.				()							N _c = 7	•				
46	3		0,01	sableux et argileux, gris-	brun,	1.		CF-2		\mathbb{N}	в	66	4-5	9			N _c = 9					
ale = 1		-1		de 2,3 m. Présence de li	a partir ts de					$ \rangle$			4.4				S		1 + + + +			
e vertica	4			sable.		1	55 13 13 13 13 13 13 13 13 13 13 13 13 13										N _C = 8					
Échelle	5	-				1	E S S			∇							N _c = 8					
	6	.2				4	20,74	CF-3		X	В	100	0-0	1			N _c = 1	•			i	
	7-	-				1/	e.										N _c = 1	•				
	8-					1				\mathbb{N}	_		1-0				N _c = 1	•				
	9					1		CF-4		Å	в	90	2.1	2			W = 26.8	•	•			
	10	-3															$N_c = 6$	•	¦		-++	
	44					1		CE.5		\bigvee	в	57	1-0	0			N = 3					
	11	-	19.07			//		06-0		\wedge	D	57	0-1	Ŭ			N _c = 5	[4
	12		3,66	Silt et argile avec des tra	ces de	11											N _c = 2	Î				
	13-	-4		sable, gris, sature.		1/		CF-6		X	В		1-0 0-0	0			$N_c = 2$	•	• • • • •	©:		• • • • • • • •
	14		17,46	Poursuite du forage par i	un essai	11	×										$N_c = 2$	•				
	15			de pénétration dynamiqu	e au cône Dépôt												N _c = 2	•				
	16			argileux probable.	Depor												N _c = 2					
	17	-5															N _c = 1					
60																						
4.03.20	Re	ema	arques:																			
5 R.1 0																						
-Ge-66	Ту	/pe	de fora	ge: Tarière				É	quip	eme	nt d	e for	age: D-	50		1						
8	Pr	épa	aré par:	M. Desmarais, tech.			Vérifié	par: (0. A	rser	naul	t, ing	g. C	Tr	•	Ň,	2013-07-17 P	age:	1	1	de	4

-17 12h	1				Clien	t :											RAPPOR	T	DE	F	O	٩۶	G	Ε
mé le : 2013-07				VM		F	Parc é	éolier	י P s.e	ier e.c	re-	de-	Saure	əl			Dossier n°: Sondage n°: Date:	P	- 00	03	539- I 20	0-0 28-(13-(1-1(04- 05-(01 13 29
Indml -	P	roje	et: Pa	rc éolien Pierre-de-Saurel - E	Étude g	géo	technic	que								Coc	ordonnées (m):	N	ord		509	091:	2,5 ((Y)
A_FR.sty	E	ndr	oit: Ya	maska, Québec												MTI Géo	M Nad83 Fuseau désique É	8 évat	Est ion		34	7806 21	6,4 (, 73 ((X) (Z)
ge_LVI								1		<u> </u>						Pro	f. du roc: n	n F	Prof.	de	fin:	28	3,87	m
ig_Fora	- pi	E	=	STRATIGRAPHIE			Ē			E		N 11		1				ES			I FAU E		UTES	(%)
MILOGLO	NDEUF	NDEUF	NOI - NOI	DESCRIPTION DES		OLES	D'EAU ATE	EL	ÉCH.	٨T	BRE	ATION	150mr	RQD	org	ano.			20	Wp -	W 	WI	-1	120
Siyle_L	ROFO	ROFO	EVAT PROF			YMB	D/	TYPE	ous	ÉT,	CALI	UPÉF	sdno	N" ou	1	el	RESULTATS	RÉ	SISTA	NCE			MEN	
X	٩	•	ĒLI			s	NIN		S			RÉC	Nb c	:	Ode	Visu			OU PI	ÉNÉTI	RATIO	1 DYN		UE
i		-		Dépôt argileux probable.		_								-	-	-	N _c = 2		20					20
ň	19	4															N _c = 2	•						
	20-	-6															N _c = 4	•	k			••••		
	21-																N _c = 2	•						
	22		1999 - 1999 -														N _c = 3	Þ						
	23	-7															N _c = 3	•	+++			++-+	-++++	
	24																N _c = 3	•						
	25																N _c = 4	•		1				
	26	-8															N _c = 4	•		++++				
	27-	-															N _c = 3	•						
	28-																N _c = 4	•						
ç	29	-9															N _c = 4	•					+++	;
	30-																N _c = 6							
	31-																N _c = 5							
	32	-10			0												$N_c = 4$						· · · · ·	
	33																$N_c = 0$							
	35										5						$N_c = 5$							
	36																$N_c = 6$	•					1	
	37-	11															N _c = 6	•						
	38-																N _c = 6	•						
	39																N _c = 7							
	40-	-12															N _c = 7	•	+ - + -					
	41-														ŝ		N _c = 8							
	42-																N _c = 7		i.					
	43	13															N _c = 8	•						• • • •
	44-																N _c = 8	•						
	Re	ma	rques:																					
	Ту	pe	de fora	ge: Tarière				Éq	uipe	eme	nt d	e for	age: D-	50										-
L	Pr	épa	ré par:	M. Desmarais, tech.			Vérifié	par: C). Ar	sen	aul	t, ing	g. Ø	H.	•		2013-07-17 F	age	:	2	d	Э	4	

66 R.1 04.03.2009 C

17 12h		1			Client	t :		_									RAPPOR	TD	EF	OF	AG	iΕ
mé le : 2013-07				VM		P	Parc é	olier	י P s.o	ier e.c	re-(de-	Saure	el			Dossier n°: Sondage n°: Date:	P-0	003	539-0 P 201	-01-1 S-04- 3-05-	01 -13 -29
- Impri	P	roje	et: Pa	rc éolien Pierre-de-Saurel - É	tude g	géot	technic	que								Coc	ordonnées (m):	Nord	ł	5090	912,5	(Y)
FH st)	E	ndr	oit: Yaı	maska, Québec												MTI Géo	M Nad83 Fuseau	8 Es	t 1	347	306,4 21,73	(X)
6_LVM																Pro	f. du roc:	m Pro	f. de	fin:	28,87	7 m
t_Forag	- pi	Ē		STRATIGRAPHIE		_	Ê			É	CHA	NTI		1				ESSA	AIS			
fogtog	DEUR	DEUR	L V E	DESCRIPTION DES		S	EAU (μg	н		Æ	NOIL	20mm	ap	Exa org	mens ano.		TEN	IEUR EN Wp H	W W		5 (%)
e_LVM	FON	FON	ATIO OF	SOLS ET DU ROC		MBOL	U D'I	/PE E JMÉR	US-É	ÉTAT	ALIBF	PÉRA'	ps/1	OU B		Γ	RÉSULTATS	20	40	60 8) 100	120
X ISIY	ЪЩ	РВС	ÉLÉV			SYI	IVE#	ΈŻ	So		Ü	RÉCU	b cot	.N.,	deur	isuel		RÉSIS ⁻ OU	PÉNÉTI	AU CISA RATION	LLEMEN DYNAMI(IT (kPa QUE
12				Dán âl availatus avababla			~						z		0	>		20	40	60 8	100	120
S.L.	45-	8		Depot arglieux probable.													N _c = 10	•				1
	46	-14															N _c = 9	•	•••••	••••••	••••	
	47-																N _c = 8	•			i.	
	48-	8															N _c = 9	•				
	49	15															N _c = 9	•				
	50-																N _c = 10	•			1	
	51-	8															N _c = 11	•				
	52																N _c = 10	•				
	53-	-16															N _c = 10	•				++++++
	54																N _c = 11	•				
	55																N _c = 14					
46	56	17															N _c = 13	0			•••	
ale = 1 :	57-																N _c = 13					1
e vertica	58																N. = 12					
Échel	59	10															N = 13					
	60	10															N - 14					
																	N - 16					
	011																					
	62-	19															N _c = 13					
	63																N _c = 15					
	64																N _c = 15	••;				
	65	20															N _c = 18	•				
	66-																N _c = 16	•				
	67																N _c = 16	•				
	68-											3					N _c = 19	••				
	69-	21															N _c = 16	•••••			• • • • • •	
	70-																N _c = 22	•				
600	71																N _c = 21				8	
04.03.2(Re	ma	rques:																			
66 R.1	т			no. Terline				ŕ.	- مار		ما ما -	100		-0								
-09-Ge-	I yr	be (de lora	ye: lariere			Vérifié	Eq		inei see	ault	in-	age: D-5	ω 4.			2013-07-17	Dade.	3	de	4	
â	r-16	sha	ie par:	w. Desmarais, tech.			venne	par. U	A AI	sell	auit	, mę	. <i>.</i> .	· · ·	_		2010-07-17	aye.	3	ue	4	,

-17 12h	Γ				Client :											RAPPOR	TD	EF	OR	AGE
rmé le : 2013-07				VM		Parc	éolier	n P s.e	ier e.c	re-(de-	Saur	el			Dossier n°: Sondage n°: Date:	P-0	0035	39-0- PS 201:	01-101 5-04-13 3-05-29
ty- Impr	P	roje	et: Pa	rc éolien Pierre-de-Saurel - Ét	ude gé	otechni	que								Cod	ordonnées (m):	Nor	4	50909	12,5 (Y)
M_FR.s	E	ndı	roit: Ya	maska, Québec											MT Géo	M Nad83 Fuseau 8 odésique Él	} Es évatior	า	3478	1,73 (Z)
age_LV		1					1		É	сни	NTI				Pro	f.duroc: n	Pro	of. de t	in:	28,87 m
.og_For	H-p	ш-н	E	STRATIGRAFILE		Ē					%	E		Exar	nens		TEN	IEUR EN	EAU ET	LIMITES (%)
TVMILOGL	ONDEU	ONDEU	.TION - DF m	DESCRIPTION DES SOLS ET DU ROC	BOLES	J D'EAU DATE	PE ET MÉRO	S-ÉCH.	ТАТ	LIBRE	ERATION	s/150m	ou RQD	org	ano.	RÉSULTATS	20	₩p 	W 60 80	WL
(IStyle	PROF	PROF	LÉVA PRC		MAS	VEAL	l¥ IN	sou	Ψ	CAI	ÉCUPI	coup	"N"	eur	laus		RÉSIS	TANCE A		LEMENT (kPa)
~						Ī					H	å		P	Vis	(*	20	40	60 80	100 120
S.L.	72	-22		Dépôt argileux probable.												N _c = 20				
	73-															N _c = 21	•			
	74-															N _c = 19	•			
	75-	-02														N _c = 25	C			
	76-	25														N _c = 24				
	77-															N _c = 24				
	78														8	N _c = 23	•			
	79	-24														N _c = 22	٥			
	80-															N _c = 26	•	•		
1	81-		-3,12													N _c = 26	•	•		
46	82-	-25	24,05	Depot granulaire probable.										ŝ		N _c = 36		•	++++++	
ale = 1 :	83-	-														N _c = 45	- 1	•		
elle vertic	84-															N _c = 43		•		
Éche	85	-26														N _c = 79		-++	-	
	86-															N _c = 102				
	88-						9									$N_{c} = 90$				
	89	-27														N _c = 71			•	••••
	90															N _c = 70			. •	
	91-															N _c = 77				
	92	28														N _c = 73				
	93															N _c = 82			•	
	94-															N _c = 87				÷
	95	29	-7,14 28,87	Refus sur sols très denses à une												N _c = Refus			• • • • • • • •	
	96-			protondeur de 28,87 m.																
	97-																			
.03.2009	Re	ema	arques:			I														
5 R.1 04							*													
9-Ge-66	Ту	pe	de fora	ge: Tarière			Éq	luipe	mei	nt de	e for	age: D- :	50							
2 2 2	Pre	épa	tré par:	M. Desmarais, tech.		Vérifié	par: C). Ar	sen	ault	, ing	g. O	×+.			2013-07-17 P	age:	4	de	4

17 12h	1				Clie	ent :											RAPPOF	RT D	DE F	-OR	AGE
imé le : 2013-07.				VM		F	Parc (éoliei	n P s.	ier e.c	re-	de-	Saure	el			Dossier n°: Sondage n°: Date:	P.	0003	539-0- PS 201:	01-101 6-05-13 3-06-03
LVM_FR sty- impr	P E	Proje Indr	et: Pa	rc éolien Pierre-de-Sau maska, Québec	ırel - Étude	e géo	otechni	que								Coo MT Géo Pro	ordonnées (m): M Nad83 Fuseau odésique E f. du roc:	No 8 E Élévati m P	ord St on rof. de	50931 3485 1 e fin:	35,1 (Y) 511,0 (X) 9,14 (Z) 29,24 m
Forage	É	tat	des éc	hantillons							Exa	ame	ns orga	nole	eptic		s sur les sols:	iné(D):	mbibé()		
cogt og	Ľ	//		act Remanié		Perdu	u 🔄		arotie)			C	deur:	Inex	istan	te(I); Légère(L); Moyer	nne(M);	Persista	ante(P)	
WA7-	C	ype F	Carotti	antillon er fendu	L Limite	ons s de co	onsistance		м.о.	Mat	ière c	organi	que (%)				Niveau d	'eau			
X:IStyle	Т	м	Tube à	paroi mince	W _L Limite	de liqu	uidité (%)		ĸ	Peri	méab	ilité (c	cm/s)				N Pénétrat	ion stand	dard (Nb) coups/30	00mm)
	C	R	Tube a Tube c	arotlier	IP Indice	de pla	isticité (%)	, 	A	Abs	orptic	on (l/m	1e (KN/M*) 1in. m)				ο' _P Pression	de préc	onsolida	ation (kPa))
S.L.	T/	A	À la tai À la m	ière	I _L Indice	de liqu	uidité		U BOD	Con	npres	sion u	iniaxiale (N	MPa)			TAS Taux d'a	gressivit	é des so	ols	.40
	TI	U	Tube tr	ansparent	AG Analys	se grar	nulométriq	ue	AC	Ana	lyse (chimic	lne Ine	,			Résistance au	ı cisaille	ment	chanilet Jat	orator
	P1 S(W G	Carotti Sol gel	er LVM é	S Sédim	entom à l'enf	étrie oncement		P _L E _M	Pres Mod	ssion Iule p	limite ressio	, essai pre ométrique (ssiom MPa)	étriqu	ie (kf	Pa) C _u Intact (kf C _{un} Remanié	Pa) (kPa)			
			5		VBS Valeur	r au Ble	eu du sol		E,	Mod	lule d	le réa	ction du ro	c (MPa	a)		UN				
				STRATIGRAPH	PDT Poids	des tig	les		SPo	Pote	CHA	de se	LLONS	(mm-/)	H °C)			ESS	AIS		
	IR - pi	- H	ε		-		Ē		Ι.			% N	Ę		Exar	nens		Т		N EAU ET I	LIMITES (%)
	NDEL	NDEL	NOI T	DESCRIPTION D SOLS ET DU R	DES DC	OLES	D'EA	ÉRO	ÉCH	AT	BRE	ATIO	/150n	I RQI	org	ano.			ا 0 40	60 80	
	ROFC	ROFC	ÉVAT PROF			YMB	EAU / D	NUM	soos	É	CALI	CUPÉI	sdno	N" 0	'n	le	RESULTATS	RÉS	STANCE	AU CISAIL	LEMENT (kPa
	ш		Ē			0	NN					RÉ	Nb d		pode	Visu		2	U PENE 10 40	60 80	100 120
			0,00	Sols naturels : silt argil	eux avec	14				1										- - - 	
	1			humide.	-brun,	1.1.	1	CF-1		X	в	33	2-1 3-4	4			N _C = 2	2			
	2	ł				1/				$\left(\right)$							N _c = 6	٠			
1:46	3	-1				1.		CF-2		X	в	66	4-6 6-5	12			N _c = 9	•			
ticale =	4-	-	17 77			VI				\square							N _c = 9	•			
helle ve	5		1,37	Silt avec un peu d'argile	à argileux	1.	85 8										N _c = 9	•			
Ę	6			saturé.		if.	₿ E E	CF-3		V	в	49	1-1 1-1	2			N _c = 2	•			
	7-	-2				1	18,00			\square							N _c = 1			•••••	
	8					1.											N = 1				
		-				1		CF-4		X	в	100	1-0 0-0	0			W = 37.7		⊙		6
	9	2				./.				\square							N _c = 1	Ī			
	10-	-				1.				$\overline{\langle}$							N _c = 1	Ĩ			
	11					1.		CF-5	3	Å	В	100	0-0	0			N _c = 1	1			
	12					1.											N _c = 2	•			ł.
	13	-4				1:		TM-6				100					N _c = 2	•		l	• • • • • • • • • • •
	14		14,77			1											N _c = 4				
	15		4,37	Poursuite du forage par i de pénétration dynamiqu	un essai e au cône												N _c = 5	•			
	16			(pas d'échantillonnage). argileux probable.	Dépôt					3							N _c = 4	•		[1
	17-	-5				9										1000	N _c = 3	•			
600					- (P(32)																
04.03.2	Re	ema	arques:																		
66 R.1	-	85 (Dener						ŕ			mt -1	a t-		50							
09-Ge-t	Ty	/pe	de fora	ge: Tarière			VARIA	E		eme	nt d		age: D-!	50 A		1	2013-07-17	Page	1	do	Λ
ġ 🛛	r'r	ebs	ue par:	w. Desmarais, tech.			venne	par. (J. A	sen	aul	ч, III	y. 7			1	2010-07-17	aye.	1	ue	-

7-17 12h	Γ				Clien	t :											RAPPOR	T C	DE	FO	RA	GE
né le : 2013-0		-		VM		P	Parc é	eolier	n P s.	ier e.c	re-	de-	Saure	el			Dossier n°: Sondage n°: Date:	P	-000	3539- 20	0-0 PS-0	1-101 05-13 06-03
inqmi -	P	Proj	et: Pa	rc éolien Pierre-de-Saurel - É	tude g	géo	technic	que								Coc	ordonnées (m):	No	ord	509	313	5,1 (Y)
VM_FR.sty-	E	Ind	roit: Ya	maska, Québec	2	-										MTI Géo	M Nad83 Fuseau 8 Ddésique Élé	E évati	ist on	34	851 19 ,	1,0 (X) , 14 (Z)
rage_L	-	Τ		STRATIGRAPHIE		_				É	СНА	NTI				Pro	t. du roc: m	FSS	AIS	e fin:),24 m
Log_Fo	R - pi		Ε				(E)			-		% \	E		Exar	nens		Т Т	ENEUR	EN EAU	ET LIN	NITES (%)
T VMLog	FONDEU	FONDEL	ATION -	DESCRIPTION DES SOLS ET DU ROC		BOLES	J D'EAI DATE	PE ET MÉRO	IS-ÉCH.	TAT	LIBRE	ÉRATIOI	os/150m	ou RQD	orga	ano.	RÉSULTATS		20 40	wp w € 60	80 1	- - 00_120
X:\Style	PRO	PRO	PR		ľ	SYM	VEAI	ΝU	sou	Ē	CA	ÉCUP	conb	"N"	leur	suel		RÉS		E AU CIS		MENT (kPa
			чш				Z					R	g		õ	Vis		2	20 40	60	B0 1	00 120
S.L.		-		Dépôt argileux probable.													N _c = 1					1
.,	1 9	Le															N _c = 2				1	
	20-																N _c = 3	•				
	21-																$N_c = 2$ $N_c = 3$		1			
	23	-7															$N_c = 3$	•			, ++	
	24	-															N _c = 2	•				
	25-																N _c = 3	•				
	26-	-8															N _C = 4	•				
	27																$N_c = 4$		i La			
	29	-															$N_c = 4$	•				1
e = 1 : 46	30-	-9															N _c = 4	•		····	• • • • •	
ile vertica	31																N _c = 5	•	1	ł		
Éche	32-	10															N _c = 5	•				
	33-																N _c = 5	•				
	35																$N_c = 6$	•			x	
	36	-11															N _c = 4	•				
	37-																N _c = 6	•				i. I
	38-																N _c = 6	•				
	39	-12															N _c = 7	•	• • • • • •			
	40-																N _c = 7	•		. 1		1
	41-																N _c = 8	•				
	43-	13															$N_c = 0$ $N_c = 7$		• • • • •			
8	44-																N _c = 9	•		2		
04.03.20	Re	ema	arques:			l	I			l		l	I	l.							<u> </u>	
Ge-66 R.1	Ту	ре	de fora	ge: Tarière				Équ	uipe	mer	nt de	fora	age: D-5	0								
	Pré	épa	ıré par:	M. Desmarais, tech.			Vérifié	par: O	. Ar	sena	ault,	ing	g. <i>O</i> Y	Α .		1	2013-07-17 Pa	ige:	2	de)	4

-17 12h	[Client :											RAPPOF	TD	EF	OR	AGE
rimé le : 2013-07				VM	F	Parc e	éolier	n P s.e	ier e.c	re-(de-	Saure	el			Dossier n°: Sondage n°: Date:	P-(0035	39-0- PS 2013	01-101 3-05-13 3-06-03
ty- Impi	Р	roje	t: Par	rc éolien Pierre-de-Saurel - Ét	ude géo	techni	que								Cod	ordonnées (m):	Nor	d	50931	35,1 (Y)
M_FR.s	E	ndr	oit: Yar	naska, Québec											MT Géo	M Nad83 Fuseau odésique É	8 Es Iévatio	n	3485 1	9,14 (Z)
ige_LVI						1	r		ŕ.	0114					Pro	f. du roc:	m Pro	of. de f	in:	29,24 m
og_Fora	- pi	E	F	STRATIGRAPHIE		Ē			E		N11 %		T				ESS		FALLET	
TVMILogLo	ONDEUF	ONDEUF	TION - I	DESCRIPTION DES SOLS ET DU ROC	SOLES	D'EAU	NÉRO	S-ÉCH.	LAT	IBRE	RATION	s/150mr	u RQD	org:	nens ano.	RÉSULTATS	20	Wp 	60 80	WL
Style	PROF	PROF	-ÉVA PRO		SYME	/EAU	T YF	sous	Ē	CAL	CUPÉ	dnoo	N" 0	- In	lel	antan ik	RÉSIS	TANCE A	UCISAIL	LEMENT (kPa)
×			É			Ń					ВÉ	qN		po	Visi		20	PENETF	ATION D	YNAMIQUE
ï.	45			Dépôt argileux probable.												N _c = 10			<u>+</u>	
S	46	-14														N _c = 9				·····
	47-															N _c = 10	•		•	
	48-															N _c = 8	•			
	49	-15														N _c = 10	•			••••
	50															N _c = 9	•			
	51															N _c = 10	•			1.5
	52	16				-						5				N _c = 11	•			
	53-															N _c = 10	•		r.	
	54															N _c = 11	•			
	55-														24	N _C = 13	•			
= 1 : 46	56-	17														N _c = 11	•			
erticale =	57-															N _c = 14	•			
Échelle v	58-															N _c = 11	•			
	59	18										i				N _c = 13				·
	60-															N _c = 14	•	1		
	61-															N _c = 12	•			
	62	19														N _C = 14	•	••••••	• I	
	63-															N _c = 13	•			
	641															N _c = 14	•			
	65	20					3									N _c = 16				
	67-															N _c = 15				
	68															N _C = 15				
	69	21														$N_{c} = 14$				
	70-															N _c = 17				
6	71															N _c = 17				
4.03.20(Re	mai	rques:	97 sense	I I							1		L		4				
56 R.1 0	-						<u>~</u>				,									
-09-Ge-{	Typ	be c	ie forag	je: Tarière		VArifiA	Eq	uipe	mer	nt de	tor	age: D-5	50 A			2013-07-17	200.	3	de	
ģ	r-re	:pat	e par:	ivi. Desmarais, tech.		venne	μαι. Ο	. Ar	sen	ault	, mg	y. 0	· ·			2013-07-17	aye:	ა	ue	4

17 12h		1			lient :					2,000						RAPPOR	T DE F	OR	AGE
té le : 2013-07.				VM	3	Parc e	éolier	n Pi s.e	ier e.c	re-	de-	Saure	el			Dossier n°: Sondage n°: Date:	P-0003	539-0- PS 2013	01-101 -05-13 -06-03
Imprin	Pr	oie	t: Par	rc éolien Pierre-de-Saurel - Étu	de géo	otechni	que								Coc	ordonnées (m):	Nord	50931	35,1 (Y)
-H sty-	-		- 11. 17-	lia Quifbaa	Ū		•								MTI	M Nad83 Fuseau	B Est	3485	11,0 (X)
LVM_F	Er	naro	DIT: Yar	naska, Quebec										l.	Pro	f. du roc: n	evation 1 Prof. de	fin:	9,14 (Z) 29,24 m
orage_]	_		STRATIGRAPHIE					É	CHA	NTI	LLONS					ESSAIS		
ltog_F	g-RL	JR - n	E		S			<u></u>			% NC	E	۵	Exan	nens		TENEUR E	NEAUETL pW	LIMITES (%) WL
στιμητ	ONDE	ONDE	NUIN DF m	DESCRIPTION DES SOLS ET DU ROC	BOLE	J D'EA DATE	PE ET MÉRO	S-ÉCF	TAT	LIBRE	ÉRATIC	os/150	ou RQ	orga	ano.	RÉSULTATS	20 40	60 80	
X IStyle	PROF	PROF	ÉLÉVA PRC		SYN		₽₹₹	sou	ι «Ш	CA	RÉCUP	p coul	"N"	deur	isuel		RÉSISTANCE OU PÉNÉ	AU CISAIL	LEMENT (kPa) YNAMIQUE
			1			Z					-	z		0	>		20 40	60 80	100 120
S.L.	72-			Dépôt argileux probable.												N _c = 15	•		
	73-	-22														N _c = 18	•		
	74		-3,46			-										N _c = 17	•	1	
	75-		22,60	Dépöt granulaire probable.												N _c = 40	•		
	76	-23														N _c = 35	•	• • •	
	77															N _c = 32	•	1	
1	78-															N _c = 30	•		
	79	24														N _c = 34	•	*******	
	80-															N _c = 38			
	81-															N _c = 34	•	1	
46	82	25														N _c = 34	· · · · · · · · · •	+	
ale = 1 : 4	83-															N _c = 33	•		
elle vertic	84-											3				N _c = 34			
Éche	85	26														N _c = 35		-++++-++ 	
	87															$N_{c} = 32$			
	88-		ť.													N _c = 31	•		
	89	27														N _c = 36			
	90												8			N _c = 31	•		
	91															N _c = 36	•		
	92	28														N _c = 35	•	• • • • • • • • • • • • • • • • • • •	
	93	A														N _c = 34	•		
	94	8														N _c = 36	•		1
	95	29	10.10													N _c = 40	·····•.	++ 	
	96		-10,10 29,24	Refus sur sols très denses à une profondeur de 29.24 m		-										N _c = Refus			
	97																		
04.03.2005	Re	ema	arques:	0		1				1			J			L <u>.</u>	1:::::::		
66 R.1	-		do fra	aa: Tarlàra			ć	nuie	omo	ant d	o fo	rane [,] D	50						
0-09-Ge-	Pre	pe épa	ue iora tré par:	M. Desmarais, tech.		Vérifi	é par: (чир Э. А	rsei	naul	t, in	g. Ø	A			2013-07-17 F	Page: 4	de	4

17 12h	Γ				Clie	ent :											RAPPOR	RT D	DE F	ORA	GE
013-07-						I	Parc	éolie	n P	lier	re-	de	Saure	el			Dossier n°:	P	00035	539-0-0	1-101
ré le : 2		-							S.	e.c							Sondage n°:			PS-	06-13 06-03
lingral	F	Proje	et: Pa	rc éolien Pierre-de-Sau	ırel - Étude	e géo	otechni	ique								Co	ordonnées (m):	No	rd	509333	2,0 (Y)
FR.sty	F	Indi	roit: Va	maska Québec												MT	M Nad83 Fuseau	18 E	st	34955	3,3 (X)
WA7-				maska, Guebee												Pro	f. du roc:	m P	rof. de	fin: 3	,13 (∠) 1,34 m
Forage	É	tat	des éc	hantillons							Ex	ame	ns orga	nole	eptio	que	s sur les sols:	iná(D): ∣	mbibá(IM	n	
ogl og_	Ľ	//		act Remanié		Perd	u	C	arotte	e			С)deur:	inex	istan	te(I); Légère(L); Moye	nne(M);	Persistar	nte(P)	
TWWIT	T	ype 5	d'éch	antillon	Abréviati	ons	onciclana	<u>_</u>	NO	Mai	iàro	vaani	aug /9/)				Nivosu /	*000			
Style	т	M	Tube à	i paroi mince	W _L Limite	de liq	uidité (%)	c	K	Peri	méab	ilité (c	cm/s)				N Pénélrat	ion stand	lard (Nb d	coups/300r	nm)
×	P	S	Tube à	i piston fixe	W _P Limite	de pla	usticité (%	») •)	PV	Poic	ds vo	lumiqu	ue (kN/m³)				N _c Pénétrat	tion dyn. de préci	(Nb coup	s/300mm)	•
Ţ.	Т	A	À la tai	rière	IL Indice	de liq	uidité	2)	U	Con	npres	sion L	iniaxiale (N	/IPa)			TAS Taux d'a	gressivit	é des sols	600 (KFA) 6	
S	M	IA LI	À la ma Tube ti	ain ransparent	W Teneu	r en ea se orar	au (%) aulométric	nue	ROD	Indii Ana	ce de	quali	lé du roc (' we	%)			Résistance at	ı cisaille	ment	artilet notal	one of
	P	w	Carotti	er LVM	S Sédim	entom	étrie		PL	Pres	ssion	limite	, essai pre	ssiom	nétriqu	Je (kF	^p a) C_u I ntact (kl	Pa)		6° 3°	
	S	G	Sol gel	é	R Refus VBS Valeur	à l'enf	oncemen eu du sol	l	Е _м Е,	Mod Mod	lule p lule d	ressio le réa	ométrique (ction du roi	(MPa) c (MP	a)		C _{un} Remanié	é (kPa)	L		
			· · · · · · · · · · · · · · · · · · ·		PDT Poids	des tig	les		SPo	Pote	entiel	de sé	grégation	(mm²/	Ή°C)						
	- pi	Ē		STRATIGRAPHI	E	T	Ê		1	É		NTI	LLONS	-	_			ESS	AIS		
	DEUR	DEUR	ь z Е	DESCRIPTION D	DES	ES	EAU (L 9	н.		ш	NOI	0mm	B	Exar org	nens ano.			NEUR EN Wp	EAU ET LIN W WI	NITES (%) L
	FOND	FONE	ATIO OF	SOLS ET DU RO	oc	ABOL	U D'I	'PE E IMÉR	JS-É(TAT	TIBF	ÉRAT	ps/15	OU R			RÉSULTATS	2	0 40	60 80 1	00 120
	PRO	PRO	PR			SYN	IVEA	È ₽	sol		C	ÉCUP	noo	"N"	deur	suel		RÉSI	STANCE A U PÉNÉTR	U CISAILLE	MENT (kPa) AMIQUE
			19,13				Z					æ	NP		ŏ	Vi		2	0 40	60 80 1	00 120
			0,00	Sols naturels : silt argite des traces de sable, brut	eux avec n-gris,	1				\mathbb{N}			1-1								
	1-		10.50	humide.		11		CF-1		M	В	57	3-3	4			N _c = 2	Ĩ			
	2-		0,61	Silt et argile avec des tra	ices de	11	88										N _c = 5	•	*		
= 1 : 46	3-	-1		sable, gris-brun a gris, sa	ature.	1.1	≈ ; ° ≈	CF-2		X	в	74	3-5 4-4	9			N _c = 9	•			*****
rticale :	4-					1/	E E			\square							N _c = 9	•		i. I	
helle ve	5					VI	8,49			\square							N _c = 9	•			
ŭ	6-	-					₩ e	CF-3		X	в	100	1-1 0-0	1			W = 49.9		۲		
	7-	-2	16 92			11				\square							N _c = 1 N _z =PDT	••••	÷•••••		
			2,21	Silt avec un peu d'argile	à argileux	:/				$\overline{}$											
	0			gris-brun à gris, saturé.	юшх,	./.		CF-4		X	в	82	0-1 0-0	1			$N_c = 2$	Ī			
	9									\square							N _c = 1	Î		1.1.1	i
	10	-3				12									8		N _c = 2				
	11	ci.	8			1.		CF-5		X	в	100	1-0 0-0	0			N _c = 1	•	\odot		
	12					1.											W = 36.4 N _c = 1	•			
	13	-4				1		TM-6				96					N _c = 2	•	•••••	•••••••	
	14-		14 76														W = 63.7	•			
	15		4,37	Poursuite du forage par u de pénétration dynamique	in essaí e au cône					and the second se							$N_c = 2$				
	10			(pas d'échantillonnage). I	Dépôt												N - 7				
	10	-5		argineux probable.													$N_{\rm C} = 7$		• • • • • • • •	<u>.</u>	
	17-																N _c = 2	Ĩ			
03.200	Re	ema	Irques:			L						[1			_			- 181 <u> </u>
R.1 04																					
-Ge-66	Ту	pe	de fora	ge: Tarière				Éc	quipe	emei	nt d	e for	age: D-5	50							
-69-03	Pr	épa	ré par:	M. Desmarais, tech.			Vérifié	é par: (D. A	rsen	auli	l, ing	. Or	۹ .			2013-07-17	Page:	1	de	5

I			CI	ient :		(. If				-J	C	-1			RAPPOF	RT C)E I	FC)R	AG	λE
	_			r	arc e	oner	S.	e.c	re-	ue-	Saure	-			Dossier n°: Sondage n°: Date:	р.	0003	353	9-0- PS 2013	01- -06 1-06	-13 -03
P E	roje ndro	et: Pare	c éolien Pierre-de-Saurel - Étuc naska, Québec	de géo	otechnio	que								Coo MTI Géo Prot	ordonnées (m): M Nad83 Fuseau odésique	No 18 E Élévatio	ord Est on	50 3 e fin	0933 3495 1	32,0 53,3 9,13	(Y) (X) (Z)
			STRATIGRAPHIE					É	CHA	NTI	LLONS					ESS	SAIS	5 111		51,5	
Id - Hr	JR - m	E			E D				[% N	E		Exam	nens		т	ENEUR I	EN E#	AU ET I W	.IMITE	S (%)
J-ONDER	DFONDEL	ATION ROF. m	DESCRIPTION DES SOLS ET DU ROC	MBOLE	AU D'EA	VPE ET UMÉRO	US-ÉCH	ÉTAT	ALIBRE	PÉRATIC	1051/sdr	ou RQ	orga	ino.	RÉSULTATS		20 40	60	80	100	120
Ë	PRC	ÉLÉV PF		SY	NIVE/	ΗŻ	So		U	RÉCU	p col	ŗ.	Ddeur	/isuel		RÉS	ISTANCI U PÉNÉ	E AU (TRAT	CISAIL	LEMEI	NT (kPa IQUE
10000			Día Marallana an Iala								z		0	>	N - 2		20 40	60	80	100	120
19			Depot arglieux probable.												$N_c = 2$ $N_c = 2$						
in-	-6														N = 2		••••		-++++		
1.	-0 -0														$N_c = 3$	•			1		
2-	8														N _c = 3	•		4			
3-	-7														N _c = 2	•		+++			
24	3														N _c = 2	•				1	
25															N _c = 4	•					
:6-															N _c = 3	•					
7-	-8	1													N _c = 4	•					
28-															N _c = 3	p					
29															N _c = 4	•					
0	-9														N _c = 4	•		+	•••••	••••	
11-															N _c = 4	•					
															N _c = 5	•					
3	-10														N _c = 4	•					
4															N _c = 4	•	C ²				
15															N _c = 6	•					
6	-11														N _c = 5	.					
7-															N _c = 6	÷					
18															N _c = 5	•			4		
39								-			8				N _c = 5	•					
.0-	-12														N _c = 7	•					
.1										8					N _c = 6	•					
2															N _c = 6	•					
13-	13														N _c = 7	•	i.	+			
4															N _c = 7	•					
Re	ema	irques:											<u>. </u>			4.1.1212					
Ту	pe	de foraç	ge: Tarière			Éd	quip	eme	ent d	e fo	rage: D-	50		1							
Pr	épa	ré par:	M. Desmarais, tech.		Vérifie	é par: (D. A	rser	naul	t, in	g. C	24	•		2013-07-17	Page:	2	:	de	5	5

-17 12h	6				Clien	t :											RAPPOR	D	EF	-01	RA	GE	Ξ
nmé le : 2013-07				VM		P	Parc é	éolier	ı Pi s.e	ier e.c	re-(de-	Saure	el			Dossier n°: Sondage n°: Date:	P-(0003	539- 20	-0-0 PS-)13-	1-10 ⁻ 06-1: 06-0:	1 3 3
ty- Imp	Ρ	roje	et: Par	rc éolien Pierre-de-Saurel - É	Étude	géo	technic	que								Coc	ordonnées (m):	Nor	d	509	333	2,0 (Y	()
'M_FR.s	E	ndr	roit: Yar	maska, Québec												MTI Géo	M Nad83 Fuseau 8 odésique Élé	vatio	n	34	.955 19	,13 (A	5) 2)
age_LV			1	STRATICRAPHIE						É	СНА	NTI				Pro	f.duroc: m I	Pro	of. de	fin:	3	1,34 n	n
.09_F01	R - pi	H- H	E	omandharnie			(E)					% 1	E		Exar	nens		TEI	NEUR E	N EAU	ET LI	MITES (%	%)
VMILogl	NDEU	NDEU	NO	DESCRIPTION DES SOLS ET DU ROC		OLES	D'EAL	ÉRO	ÉCH.	41	BRE	IATIO	/150m	ROD	org	ano.		20		0 W	w >	L H 100 120	'n
Style_L	ROFO	ROFO	ÉVAT			YMB	EAU I	TYPE	SNOS	ÉŢ	CALI	CUPÉF	sdno	N" ou	Ŀ	e	RESULTATS	RÉSIS			SAILLI	MENT	kPa
X	•	•	ÉL			0	NIV		0,			RÉC	Nb c	:	Ode	Visu		20	PÉNÉ1	60	N DYN 80	AMIQUE	E 0
; . .	45			Dépôt argileux probable.													N _c = 8	Þ	, 1 -		. 	1.61	ÌÌ
S	46-	-14															N _c = 8	•			• • • • •		++
	47-							3									N _c = 8	•					
	48																N _c = 8	•					
	49	15															N _c = 8	0					
	50-	-15															N _c = 10	•					
	51-																N _c = 9	•	L.	1			
	52																N _c = 9						
	53	-16				- S											N _c = 10	•			• • • • •	+++++++	++
	54												5				N _c = 10	•					
	55																No = 12						
ę	56	-17															N = 11		••••				
le = 1 : 4	57-																N = 10	•					
e vertical	58																N = 11						
Échell	50	10															N - 11						
		-18															$N_c = 11$						
	00												61				N _C = 14						
	611																N _c = 15						
	62	19															N _c = 12		•••••	•••••		••••••	
	63-																N _c = 12						1
	64																N _c = 13			1			
	65	20															N _c = 16	•					
	66																N _c = 14	•	a ja li				
	67-																N _c = 14	•					
	68-																N _c = 14	•					-
	69	21															N _c = 15	•	***	•••••		• • • • • •	
	70																N _c = 15	•					
3.2009	71 Re	ma	arques:]				N _c = 17	0					
.1 04.0																							
Ge-66 A	Ту	pe	de foraç	ge: Tarière				Éq	uipe	mer	nt de	for	age: D-5	50									
E0-03-	Pré	épa	iré par:	M. Desmarais, tech.			Vérifié	par: O	. Ar	sen	ault	, ing	g. O	A			2013-07-17 Pa	ge:	3	d	e	5	

421 71:	6				Client	:											RAPPOF	RT D	EF	OR	AGE
nmé le : 2013-07						Ρ	arc é	olier	י P s.	ier e.c	re-	de	-Sauro	el			Dossier n°: Sondage n°: Date:	P-(0035	39-0- PS 201:	01-101 3-06-13 3-06-03
y- Impi	Ρ	roje	et: Pa	rc éolien Pierre-de-Saurel - Él	ude gé	éot	echnic	que								Co	ordonnées (m):	Nor	d	50933	32,0 (Y)
4_FR.st	E	indr	roit: Ya	maska, Québec												MT Gé	M Nad83 Fuseau odésique	8 Es Elévatio	st n	3495 1	i53,3 (X) I 9,13 (Z)
WJ_96																Pro	f. du roc:	m Pro	of. de f	in:	31,34 m
L Forag	Ē	E		STRATIGRAPHIE		_	Ê		Γ	É			LLONS	T	Г			ESS	AIS		
rođroč	EUR	EUR	2 E	DESCRIPTION DES	ŝ	ы	EAU (ьo	H		щ	NOL	0mm	a	Exa org	mens jano.		TEI	VEUREN Wp	W	LIMITES (%) WL
e_LVM	FOND	FON	ATIO OF	SOLS ET DU ROC			U D'I	'PE E IMÉR	JS-É(ETAT	LIBF	ÉRA'	ps/15	ou R		Γ	RÉSULTATS	20	40	60 80	100 120
X:IStyl	РВО	PRO	ÉLÉV PR			SYR	IVEA	Γĭ	SOI	_	5	tÉCUF	o cou	"N."	deur	suel		RÉSIS	TANCE A	U CISAIL	LEMENT (kPa YNAMIQUE
							z					Œ	ž		Ő	vi		20	40	60 80	100 120
S.L.	72	-12		Dépôt argileux probable.													N _c = 16				
	73	22															N = 17				
		-																			
	74	ŀ															N _C = 16				
	75-	-23															N _c = 20	•			
	76-	-															N _c = 19	•			
	77-	-	4 4 $N_{c} = 17$ $N_{c} = 18$ $N_{c} = 19$ $N_{c} = 20$ $N_{c} = 20$														•				
	78-											N _c = 18	•								
	79	-24															N _c = 19	. •		++++++	
	80																N _c = 20	•			
	81-		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														•				
	82	-25															N _c = 19				•••••
: 46	83-																N. = 22				
icale =	84																N = 20				
elle vert	05															5	Nc - 20				
Êct	05	26															N _C = 25				•••••
	86																N _c = 25				
	87-	e -															N _c = 22				
	88	-27															N _c = 23	•			
	89	-															N _c = 25	10			
	90-																N _c = 26) 		
	91																N _c = 28		•		
	92	28															N _c = 31		•	••••••	
	93-																N _c = 28		•		
	94-																N _c = 29				
	95-																N. = 31		•	1	
	30	29															N = 33				
。	97-		-10,47 29,60	Dépôt granulaire probable.													$N_{\rm c} = 33$		•		
03.200	Re	ma	irques:											l							
R.1 04.																					
-Ge-66	Ту	pe	de fora	ge: Tarière				Éq	uipe	emer	nt de	e for	age: D- !	50							
EQ-09	Pre	épa	ré par:	M. Desmarais, tech.		8	Vérifié	par: O). Ar	sen	ault	, ing	g. 6	A.	•		2013-07-17	Page:	4	de	5

7-17 12h	1				Client	:		~									RAPPOR	T	DI	ΕI	FC	DR	A	GE	-
imé le : 2013-0				VM		P	arc é	eolier	n P s.	ier e.c	re-	de-	Saure	el			Dossier n º: Sondage n º: Date:	ł	- -0	00	353	9-0- P 201:	-01· S-0(3-0(-10 5-1 5-0	1 3 3
- Impr	Р	roje	et: Pai	rc éolien Pierre-de-Saurel - É	tude g	éo	technic	que								Coc	ordonnées (m):	N	lorc	ł	5	0933	332,	0 ()	<i>'</i>)
FR.st)	E	ndr	oit: Yaı	maska, Québec												MT	M Nad83 Fuseau	8 léva	Es	t 1		3495	553, 1 9.1	3 () 3 (7	.) 1
₩A1_9																Pro	f. du roc:	n I	Pro	f. d	e fir	1:	31,	34 r	n
L Forag	id -	E		STRATIGRAPHIE		_	Ê			É	CHA	NTI	LLONS		1			ES	SA	IS					
roglog	DEUR	DEUR	L E	DESCRIPTION DES		ES	EAU (на	н		₩.	LION	0mm	a	Exa org	mens ano.			TEN	EUR V	EN E. Vp	AU ET W	WL	ES (°	3)
e_LVM	FONE	FOND	ATIO OF	SOLS ET DU ROC		ABOL	U D'I	'PE E IMÉR	JS-É(TAT	ILIBF	ρÉRΑ	ps/15	ou R			RÉSULTATS		20	40	60	0 80	10) 12	٥
X:ISIyi	PRO	PRO	PR			SYN	IVEA	Εĭ	SOI		5	tÉCUF	COU	"N"	deur	suel		RÉ	SIST OU	PÉNÉ	E AU	CISAII		ENT (kPa) E
							z					Ē	, T		Ō	i>			20	40	60	80	100	12	٥
S.L.		-		Dépôt granulaire probable.													N _c = 52				•	<u></u>			
	99			E													N _c = 77					•			
	100-																N _C = 99						•		
	101-																N _c = 91			ł			•		
	102	-31															N _c = 97			• • • •			0		+ + c ·
N E L L L N P P N																									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																									
1	105-	-32																						ļ.,	
	106																					1			
	107																								
	107-															8									
	108	-33																							
1 : 46	109																								-
icale =	110																					ä			
elle vert	111	24																				1			
Êch	112	34																							
	113																								
	114																								-
	115	35																•							
	116																								
	117																								
		-																2							
	118	36																•			1	++	+		
	119							ŝ.																	
	120							3												i i					
	121	37																							
	122																								
	123																								
_	124																								
03.200	Re	ma	irques:																199	11		1111			1.3
R.1 04.																									
Ge-66	Ту	pe	de foraç	ge: Tarière				Éq	uipe	mer	nt de	e for	age: D-5	50											
EQ-03	Pre	épa	ré par:	M. Desmarais, tech.			Vérifié	par: O	. Ar	sen	ault	, ing	g.	Α.			2013-07-17 F	age	:	5		de		5	

-31 09h	Γ				Clie	nt :											RAPPO	RT D	EF	OR/	AGE
2013-07							Parc	éolie	n P	Pier	re-	de	-Saur	el			Dossier n°:	P-	00035	39-0-0	01-101
mé le :		-							S.	.e.c							Sondage n°: Date:			PS 2013	-07-13 -06-04
y- limpn	P	Proje	et: Pa	rc éolien Pierre-de-Sau	irel - Étude	géo	otechni	que								Co	ordonnées (m):	Nor	ď	509342	28,7 (Y)
M_FR.st	E	Endi	roit: Ya	maska, Québec												MT Gé	M Nad83 Fusea odésique	J 8 E: Élévatic	st n	35006 21	67,7 (X) 0 ,76 (Z)
IN 7 - a Bi	ŕ			1							.					Pro	f. du roc:	m Pr	of. de f	in: 3	86,50 m
og_Fora			aes ea	act Remanié		Perd		C C	arotti	ē	EX	ame	ens orga	As	pect	visue	S SUF IES SOIS: I: Inexistant(I); Dissér	niné(D); Ir	nbibé(IM)	
WLogL	Т	ype	d'éch	antillon	Abréviati	ons			arotte				(Jdeur:	Inex	istan	te(I); Legere(L); Moye	enne(M); H	ersistan	le(P)	
tyle_LV	с	F	Carotti	er fendu	L Limites	s de c	onsistanc	е	м.о	. Mat	ière d	organi	que (%)				Y Niveau	d'eau			
X-IS	P	M S	Tube à	a paroi mince a piston fixe	W _L Limite W _P Limite	de liq de pla	uidité (%) asticité (%	.)	K PV	Pen Poid	méab ds vo	luniqu	cm/s) ue (kN/m³)				N Pénétra N _c Pénétra	tion standi tion dyn. (l	ard (Nb c Nb coups	oups/300 s/300mm)	imm) •
J	C T	R	Tube c À la ta	arottier	I _P Indice	de pla de lia	asticité (% uidité	.)	A U	Abs	orptio	on (I/n sion i	nin. m) uniaxiale (N	(Pa)			σ' _P Pressio TAS Taux d'a	n de préco	nsolidati des sols	on (kPa)	
S.	м	A	À la m	ain	W Teneu	r en e	au (%)		RQD) Indi	ce de	quali	ilé du roc (%)			Désistence a			Net .	a lollo
	TI P'	u w	Tube ti Carotti	ransparent er LVM	AG Analys S Sédime	e grai entom	nulométric iétrie	lne	AC PL	Ana Pres	lyse ssion	chimic limite	que , essai pre	ssiom	étriqu	ie (kf	Pa) C _u Inlact (k	u cisaillen Pa)	nent ර්		
	S	G	Sol gel	é	R Refus	à l'enf	ioncement	t	EM	Mod	dule p	oressio	ométrique ((MPa)	-)		C _{un} Remani	é (kPa)	Δ		
					PDT Poids of	des tig	jes	1 196	⊏, SP _o	Pote	entiel	de sé	égrégation	c (MP. (mm²/	a) H ℃)						
	- pi	ε		STRATIGRAPHI	E		Ê		1	É			LLONS	r	1			ESS	AIS		
	EUR.	DEUR	Е 2 Е	DESCRIPTION D	ES	ES	E AU (F 8	н		ш	6 NOL	0mm	a	Exar orga	nens ano.		TE	VEUR EN Wp		MITES (%) VL —I
	FOND	FON	ATIO OF	SOLS ET DU RO	oc	ABOL	U D'E	/PE E JMÉR	US-É(ÉTAT	VLIBF	-ÉRA1	ps/15	ou R			RÉSULTATS	20	40	50 80	100 120
	PRC	PRO	ÉLÉV			SYI	IVEA	Fž	SO		0	RÉCUI	o cou	"N	deur	isuel		RÉSIS	TANCE A PÉNÉTR	J CISAILLI ATION DY	EMENT (kPa) NAMIQUE
			20,76	Colo organizura				ļ				-	z		0	>		20	40 (50 80	100 120
	1	ŀ	0,00 20,61	Sols organiques Sols naturels : sable sill	teux,		X	CF-1	<u>A</u>	\mathbb{N}	в	66	1-3	8			N- = 3			1	
	2		20,15	brun-gris, humide.			898		В		-		5-5								
46	2		0,61	Sable avec un peu de sil gris, saturé.	t, brun à		28 28	05.0		\mathbb{N}		74	8-8	15			N _c = 10				
le = 1 :	3	-1					88 8 8	66-2		\square	Б	/4	7-9	15			N _c = 13 AG			• • • • • • •	
e vertica	4		19,39 1.37	Silt et argile avec des tra	ces de	177	e.										N _c = 16				
Échell	5-			sable, gris, saturé. Prése lits de sable.	nce de					$\overline{\nabla}$	3						N _c = 5	•			
	6	-2						CF-3		X	в	100	1-0 0-0	0		3	N _c =PDT			4	
	7-	3															N _c = 1	•			
	8					VII		CE-4		\mathbb{V}	в	100	1-0	0			N _c =PDT			•	
	9							0. 1		\wedge		100	0-0				W = 64.3 N _c = 1	•	1.		
	10	-3															N _c =PDT	· · • • • • • •	++++++++++++++++++++++++++++++++++++++	· · · · · · · · ·	
	11							CF-5		X	в	100	0-0 0-1	PDT			N _c =PDT			1	
	12-		17,10	Aroile et silt, oris, saturé,		$\langle \rangle$											N _c =PDT				
	13	-4	0,00					TM-6				96					0 401 0	(T-1-10) -		o	
	14-		16.39														$C_{UR} = 16 \text{ kPa}$ $C_{UR} = 1 \text{ kPa}$ $N_c = PDT$				
	15		4,37	Poursuite du forage par u de pénétration dynamique	n essai au cône		XX1_1XX			//////							W = 63.7 o'p= 50 N = PDT			1	
	16			(pas d'échantillonnage). E	Dépôt												$N_c = 1$				
	17	5		argineux probable.																	
8	1																N _c =PD1				
4.03.20	Re	ema	rques:		1	L				1											
6 R.1 C																					
2-09-57	Ту	pe (de fora	ge: Tarière				Éc	quipe	emei	nt de	e for	age: D-5	50			1				
ž L	Pré	épa	ré par:	M. Desmarais, tech.			Vérifié	par: C). Ai	rsen	ault	t, ing	1. O	A.	•		2013-07-31	Page:	1	de	5

Échelle verticale = 1 : 46

7.17 12h	Γ				Client	t :											RAPPOR	TD	EF	FOF	A	GE
umé le : 2013-07				VM		P	arc é	eolier	n P s.e	ier e.c	re-o	de-	Saur	el			Dossier n°: Sondage n°: Date:	Ρ-	0003	539-0 F 201	-01- S-07 3-06	-101 7-13 6-04
ty- Imp	Р	roje	et: Pa	rc éolien Pierre-de-Saurel - É	tude ç	géol	lechnic	que								Coc	ordonnées (m):	No	rd	5093	428,7	7 (Y)
M_FR.s	E	ndr	oit: Ya	maska, Québec												MT Géo	M Nad83 Fuseau odésique É	8 ⊏ Elévatio	si n	350	20,70	6 (Z)
age_LV		1	1	STRATIC PADUIE						É		NTI				Pro	f. du roc:	m Pr	of. de	fin:	36,5	50 m
og_Fon	iq - R	E	E	STRATIGRAPHIE			(E			E		%	ELONS	T	Exa	mens		E S S	NEUR E	N EAU E	LIMIT	ES (%)
WILOGL	NDEU	NDEUI	NO E	DESCRIPTION DES		OLES	O'EAU	ET BO	ÉCH.	F	BRE	ATION	150m	ROD	org	ano.			w 	• • •		
tyte_LV	ROFOI	ROFOI	VATI ROF.	SOLS ET DU ROC		YMBC	D/D	TYPE	-sno	ÉTA	CALIE	UPÉR	/sdnc	l" ou	1	-	RÉSULTATS	2	0 40		<u> </u>) 120
SI:X	ä	Ē	ÉLÉ			ŝ	NIVE		Ś			RÉC	Nb cc	f	Oder	Visu		O		RATION		IQUE
Ŀ	-	-		Dépôt argileux probable.		-					-	_		-			N _c = 2	2	40	60 8	5 100	120
ŝ	19	-															N _c = 2	•				
	20-	-6															N _c = 2	•	•••••	••••••••••••••••••••••••••••••••••••••	****	
	21-																N _c = 1	•				, f
	22-																N _c = 2					
	23-	7												2			N _c = 5	• •	 			
	24	-															N. = 5				к. К.	İ
	25																N = 4					
	20																N - 2					
	07	-8																[†††	*****			+++++•
	2/	-															$N_c = 2$			Развети 1997 г.		
	28-																$N_c = 2$	Ī				
: 46	29	-9															N _c = 2			• • • • • • •	- • • • •	+++++++
icale = 1	30																N _c = 3					
elle vert	31-																N _c = 3			t.		1
Éch	32																N _c = 3					
	33	-10															N _c = 3	•				
	34														6		N _c = 3	•	C.			
	35																N _c = 4	•				
	36	-11			8												N _c = 4	•		· · · · ·		
-	37-																N _c = 3	•				
	38-																N _c = 4	•				
	39																$N_c = 4$	•				
	40-	-12				5											N _c = 5	•				
	41																N _c = 5	•		- 31		
	42-										3	8					N _c = 5	•				
	43	13															N _c = 5	•				
	44																N _c = 5	•				
3.2009	Re	ma	rques:																	ЦШ		
3.1 04.0			87																			
Ge-66	Ту	pe	de fora	ge: Tarière				Éq	uipe	emer	nt de	e for	age: D- :	50								
EQ-09-	Pr	épa	ré par:	M. Desmarais, tech.			Vérifié	par: O	. Ar	sen	ault	, ing	g. O	7 4 .			2013-07-17	Page:	2	de	Ę	5

-17 12h	Γ				Clien	t :											RAPPOR	TD	EF	FOF	AC	λE
nmé le : 2013-07				VM		F	Parc é	éolier	n P s.	ier e.c	re-	de-	Saure	el			Dossier n°: Sondage n°: Date:	P-	0003	539-0 P 201	-01- S-07 3-06	101 '-13 5-04
ty- Imp	Р	roje	et: Pa	rc éolien Pierre-de-Saurel - É	tude	géo	technic	que								Cod	ordonnées (m):	No	rd	5093	428,7	7 (Y)
A_FR.si	E	ndı	roit: Ya	maska, Québec												MT Géo	M Nad83 Fuseau odésique É	8 ⊨ Elévatio	st on	350	067,7 20,76	7 (X) 5 (Z)
ge_LVI			1	Halber												Pro	f. du roc:	m Pr	of. de	fin:	36,5	50 m
g_Fora	Ē	Ę		STRATIGRAPHIE	- 1		Ē			E		NTI 8	LLONS	T				ESS	AIS			
uloglo	DEUR	DEUR	N. E	DESCRIPTION DES		ES	EAU	μõ	Ĥ		١	NOIL	20mn	ap	Exai	mens ano.			W			:5 (%)
łe_L VN	DFON	DFON	ATIC NOF.	SOLS ET DU ROC		MBO	'd UN	VPE I UMÉF	US-É	ÉTAI	ALIBI	PÉRA	l/sdi	ou F		Γ	RÉSULTATS	2	0 40	60 8	0 100	120
X:\St	PR(PR(ÉLÉV			SΥ	AIVE/	ΗŻ	so		O	RÉCU	p cot	.N.	deur	isuel		RÉSI	STANCE U PÉNÉI	AU CISA	ILLEME DYNAM	NT (kPa) IQUE
							2					-	z		0	>		2	0 40	60 8	J 100	120
S.L.	45	22		Dépôt argileux probable.													N _c = 6	•				
	46-	-14															N _c = 6	•				• • • • • •
	47-																N _c = 6	•				
	48-																N _c = 6	•				
	49						0										N _c = 6					
	$ \begin{array}{c} 50\\ 51\\ 51\\ 52\\ -16\\ 53\\ -16\\ 53\\ -16\\ 53\\ -16\\ 53\\ -16\\ 53\\ -16\\ -16\\ -16\\ -16\\ -16\\ -16\\ -16\\ -16$																					
	$ \begin{array}{c} 50 \\ 51 \\ 52 \\ -16 \\ 53 \\ \end{array} $																					
	$ \begin{array}{c} $																					
	$ \begin{array}{c} $																					
	52 -16 53 - 54 - 55 -															Ê.						
	$ \begin{array}{c} -16 \\ 53 \\ 54 \\ 55 \\ 56 \\ -17 \\ 66 \\ -17 \\ 17 \\ \end{array} $																					
- 1 : 46																						
erticale =	57-	-17 N _c = 9 N _c = 9 N _c = 9																				
chelle ve	58																N _c = 8	P				
ų	59	18															N _c = 9					
	60-																N _c = 11	•				
	61																N _c = 11	•				
	62																N _c = 11	•				
	63	19															N _c = 11	•				
	64																N = 12					
	-	20															N _C = 13					+++++
	66-																N _c = 14			ĸ		
	67-																N _c = 12	•				
	68																N _c = 12	•				
	69	21															N _c = 14			+++++		+++++
	70-																N _c = 14	•				
5003	71-																N _c = 14					
04.03.	Re	ma	rques:																			
66 R.1	Tur		do fora	ac: Tariàra				Éc	uine	me	at da	for	200 · D 1	:0								
-03-Ge	ı yı	100	ré par	M Desmarais tech			Várifiá	Dar: O	uipe	een	n de	inc		1			2013-07-17)ace.	o	de	F	
2 L	1.16	pd	ie hai.	w. Desmalais, lecil.			venne	pai. U	. Ar	3011	ault	, 110	4. CF	· · ·				aye.	3	ue	5	

Γ				Client :											RAPPORT	D	EI	FO	R	AG	λE
			VM	F	Parce	éolier	n P s.	ier e.c	re-	de-	Saure	el			Dossier n°: Sondage n°: Date:	P-0	003	3539 2	9-0- PS 2013	01-1 3-07 3-06	101 -13 -04
	Pro Enc	jet: Pai Iroit: Yai	rc éolien Pierre-de-Saurel - É maska, Québec	itude géo	techni	que								Coc MTI Géc	ordonnées (m): M Nad83 Fuseau 8 odésique Élé	Nord Es vatior	d it n	50 3	1934 3500 2	28,7 67,7 0,76	(Y) ' (X) ; (Z)
	Τ.	_	STRATIGRAPHIE					É	СНА	NTI	LLONS			Pro	r. du roc: m	ESS/	AIS	e fin:		36,5	<u>u m</u>
		E			E D					% N	E		Exan	nens		TEN	IEUR I	EN EA	UETI		S (%)
DEONDEL		ATION ROF m	DESCRIPTION DES SOLS ET DU ROC	MBOLE	AU D'EA	VPE ET UMÉRO	US-ÉCH	ÉTAT	ALIBRE	PÉRATIO	ıps/150r	ou RQI	orga	ano.	RÉSULTATS	20	40	60	⊕ 80	100	120
Dad		É LÉ L		SYI	4IVE/	μĘ	So		U	RÉCU	p cor	.N.	deur	isuel		RÉSIST	TANCE PÉNÉ	E AU C	ISAIL	LEMEN	NT (kP: IQUE
	_				-	1					z		0	>		20	40	60	80	100	120
7	2 2	2	Depot argileux probable.												N _c = 14	•					
7	3														N _c = 15	•					
7	4														N _c = 15	•					
7	5-														N _c = 17	•					
7	-23	3													N _c = 17	•				•••••	
7	7-														N _c = 16	•		l,			
7	34														N _c = 15	•					-
7	-24	1								4					N _c = 18	•					
80	, ,														N _c = 17	•					
8															N _c = 18						
82	2-25	5													N _c = 20						i
83	-							8							N _c = 18	•					
84	ŀ														N _c = 20						
85	-														N _c = 21	•					
86	-26														N _c = 22		• • • • •				
87	ŀ														N _c = 20					Ì	
88	ļ														N _c = 20	•	1				
89	-27														N _o = 21	•	!	••••			
90															N _c = 23						
91	ł														No = 22						
92	-28														No = 23						
9.2															N = 23						
94															N_ = 24						
95															N = 26						
90	-29														N = 27		• • + - •				
97	-														N _c = 24	•					
R	em	arques:							1			1		L							
T	/pe	de foraç	ge: Tarière			Éq	luipe	emei	nt de	e for	age: D- {	50									
Ρ	rép	aré par:	M. Desmarais, tech.		Vérifié	par: C). Ar	sen	ault	, ing	, <i>O</i>	Α.		1	2013-07-17 Pa	ge:	4		de	5	_

121 72h	Γ				Client	:											RAPPOF	TD	EF	OR	AGE
rimé le : 2013-07				VM		Ρ	arc é	olier	ו P s.	ier e.c	re-	de-	Saure	el			Dossier n°: Sondage n°: Date:	P-1	0035	39-0- PS 2013	01-101 6-07-13 8-06-04
ty- Imp	P	Proje	et: Pa	rc éolien Pierre-de-Saurel - É	tude g	éot	echnic	que								Coc	ordonnées (m):	Nor	d	50934	28,7 (Y)
'M_FR's	E	ndr	roit: Ya	maska, Québec												MTI Géo	M Nad83 Fuseau odésique É	8 ⊏s Elévatio	n	3500	20,76 (Z)
age_LV	\vdash	1	1							É		MTI				Pro	f. du roc:	m Pro	of. de l	in:	36,50 m
og_For	iq - R	E L	E	STRATIGRAFHIE		-	E					%	E	Γ	Fxar	mens		TE	NEUR EN	EAU ET !	LIMITES (%)
-VMIL ogL	ONDEU	ONDEU	F m	DESCRIPTION DES SOLS ET DU ROC		OLES	D'EAU	e et Éro	-ÉCH.	AT	IBRE	RATION	s/150m	u RQD	org	ano.	RÉSUI TATS	20	₩p 	w 60 80	WL
Style	PROF(PROF	ÉVA'			SYME	/EAU	NUN	sous	Έ	CAL	cupé	idnoc	oN.	ar	uel	hebbenaro	RÉSIS		U CISAIL	LEMENT (kPa
×		-	Ū,				Ń					ЯĖ	qN		po	Vis		20	PENETF	60 80	100 120
:T:				Dépôt argileux probable.													N _c = 25				
0)	99				ĺ												N _c = 25		•		
	100				3												N _c = 26		•		
	101																N _c = 28		•		
	102	-31															N _c = 30	+	•	++++++++	********
	103	ł															N _c = 31		•		
	104																N _c = 29		•	1	
	105-	-32															N _c = 33	• • • • •	•••••		
	106-	-											4				N _c = 34		•		
	107-																N _c = 29		•		
	108-	-33											N _c = 32		•		••••••••				
1:46	109																N _c = 32		•		
erticale =	110																N _c = 35		•		1
Échelle v	111-	-34															$N_c = 35$				
	113-																$N_c = 38$				
	114		4 N _c = 35 N _c = 38 N _c = 36																•		
	115	-35															N _c = 39				· · · · ·
	116		-14,60	Dápát aropulairo probabla													N _c = 46		•		
	117		35,30	Depot granulaire probable.													N _c = 85				
	118	-36															N _c = 72				
	119						3										N _c = 92	i.		(•
	120		-15,74 36,50	Refus sur sols très denses à une	-	-											N _c = Refus	1			
	121-			profondeur de 36,50 m.																	
	122	-37																			
	123																				
8	124																2019-1-00-10				
04.03.2(Re	ema	irques:																		
-66 R.1	T	ne	do forc					Éa	uine	ma	nt de	for	ado: D /	50							
0-09-Ge	Pr	pe (épa	ue loraç iré par:	M. Desmarais, tech.			Vérifié	par: O). Ar	sen	ault	, inc	aye. D-:	ж.			2013-07-17	Page:	5	de	5
шL	ad 188		and the second s					-recentered date									and a state of the second		122073	-04670	1000

-17 12h	6				Clie	nt:						8					RAPPOR	TD	EF	OR/	AGE
é le : 2013-07				VM		F	Parc	éolie	n P s.	ier e.c	re-	de	Saur	el			Dossier n°: Sondage n°:	P-	0003	539-0-(PS)1-101 -08-13 -05-21
unqml	P	roje	et: Pa	arc éolien Pierre-de-Sau	irel - Étude	qéo	otechni	que							_	Co	ordonnées (m):	No	ď	509268	33,8 (Y)
LVM_FR.sty-	E	ndr	roit: Ya	amaska, Québec				•••								MT Gé	M Nad83 Fuseau odésique É f. du roc:	8 E Iévatio m Pr	st n of. de	34907 20 fin: 3	78,5 (X)),37 (Z)
orage	É	tat	des éc	chantillons							Exa	ame	ns orga	anole	eptic	que	s sur les sols:				
gLog_P	P	//	🗌 In	tact Remanié		Perdi	u 🚺	c	arotte	e				As Ddeur:	pect v Inex	/isue istan	: Inexistant(I); Dissémi te(I); Légère(L); Moyen	né(D); fr ine(M); f	nbibé(IN Persistar	1) nte(P)	
TNWITC	Т	ype	d'éch	antillon	Abréviati	ons							1011				-				
Slyle_	Type d'échantillon Abéréviations Gr Garatier tendu L. Limite de lapatide (%) PB Tube à paton mnce W. Limite de plantide (%) PB Tube à paton mnce W. Limite de plantide (%) PB Tube à paton mnce W. Limite de plantide (%) PB Tube à paton mnce W. Limite de plantide (%) PB Tube à paton mnce W. Limite de plantide (%) PB Tube à paton mnce W. Limite de plantide (%) PB Tube à paton mnce W. Limite de plantide (%) PB Tube à paton mnce M. A hanarke M. A la marke W. Limite de plantide (%) PP Paton kolominum RA A la marke W. Tube temparent A da marke A fantage de plantide (MR) TA A hanarke WC Carotier LIMI A da marke de plantide (MR) SG Solgelé Statual Paton Bruto allo garotier (%) SG Solgelé STRATIGRAPHIE WC Explantide de saturel (%) Module pressiontrique (%) PT Proteinada Profinscantide (%) Profinitide de saturel (%) SG Solgelé STRATIGRAPHIE Explantide de saturel (%) VI B 49 24 7 No O do Go B No<																				
×	P	S	Tube á	à piston fixe	W _P Limite	de pla	sticité (%)	PV	Poid	ds vol	lumiqu	ue (kN/m ³)				N _c Pénétration	on dyn. (Nb coup	s/300mm)	•
Ŀ.	T.	A	À la ta	rière	I _P Indice	de liqu	uidité)	U	Con	npres	sion u	uniaxiale (1	MPa)			TAS Taux d'ag	ressivité	des sol	s	
S	M	A	À la m Tuba t	ain	W Teneu	r en ea	au (%)	110	ROD	Indi Ana	ce de	quali	ité du roc (%)			Résistance au	cisailler	nent	inot of	alone
	PW Carottier LVM S Sédimentométrie PL Pression límite, essai pressiométrique (kPa) Cu Intact (kPa) Intact (kPa) SG Sol gelé S Sédimentométrie R Rétus à l'enfoncement VB VB VB VB Module pressiométrique (MPa) Cu Remanié (kPa) Intact (kPa)																				
	Prw Carotuer LVM S Sedimentometrie Pre Pression limite, essai pressionétrique (kPa) C _u Inlact (kPa) A SG Sol gelé R Refus à l'enfoncement E, Module pressionétrique (MPa) C _u Remanié (kPa) A VBS Valeur au Bleu du sol PDT Poids des tiges SP ₀ Potentiel de ségrégation (mm²/H °C) T T DESCRIPTION DES SOLS ET DU ROC TENEUREN EAU ET LIMITES (%) 20,37 Sols naturels : silt argileux avec des traces de sable, brun à gris-brun, humide. CF-1 B 49 24/t 7 N ₀ = 4 1 19,00 Silt avec un peu d'argile à argileux saturé. CF-2 B 74 3-4/t 8 N ₀ = 6																				
					PDT Poids	des tig	ies		SP ₀	Pote	entiel	de sé	igrégation	(mm²/	u, H ℃)						
	- pi	E		STRATIGRAPHI	E	1	Ê		1	É		NTI	LLONS	1				ESS	AIS	2002	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $															MITES (%) VL —					
	PDT Polds des tiges SP ₀ Polentiel de ségrégation (nm/H °C) Fig. E STRATIGRAPHIE É E Essais I															100 120					
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $															EMENT (kPa) NAMIQUE					
			20,37				z			222		E	ž		0	Ņ		20	40	60 80	100 120
	$\begin{bmatrix} E \\ 2 \\ 3 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $																				
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																				
	2-					1.1	3-06-2			∇							N _c = 6	•			
= 1:46	3	-1				11	× įž	CF-2		X	В	74	3-4 4-2	8			N _C = 6	•			
erticale	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				
chelle v	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				
.u	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				
	$\begin{bmatrix} 1 \\ 2 \\ 3 \\ -1 \\ 4 \\ 5 \\ -1 \\ -2 \\ -3 \\ -1 \\ -1 \\ -2 \\ -3 \\ -1 \\ -1 \\ -2 \\ -3 \\ -1 \\ -1 \\ -2 \\ -3 \\ -1 \\ -1 \\ -2 \\ -3 \\ -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$															**********					
	$\begin{bmatrix} 2 \\ 3 \\ -1 \\ 4 \\ 5 \\ 6 \\ -2 \\ 7 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $															2					
	$\begin{bmatrix} 1 \\ 19,00 \\ 5 \\ 6 \\ -2 \\ 7 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $																				
	9	2	17,39			:/.				\square											
	10	J	2,98	Silt et argile avec des tra sable, gris, saturé.	ces de	1/1			2	$\overline{\langle}$							N _c = 1	Î			
	11-					1/		CF-5		X	В	92	0-1 0-0	1			N _c =PDT W = 41 7		۲		
	12		16,71 3,66	Silt avec un peu d'argile a	à argileux	14				$\left(\right)$							$N_c = 1$	•			
	13	4		et un peu de sable à sab saturé.	leux, gris,	<i>[.]</i>		CF-6		X	в	66	0-0 0-0	PDT			N _c = 1	ø			
	14		16,10	Poursuite du forage par u	in essai	ľ./.				\Box							N _c = 2	•			
	15			de pénétration dynamique	e au cône Dépôt												N _c = 9	•			
	16-			argileux probable.	Берот					i L							N- = 3				
	17	5															N = 2		• • • • • •		
g	"																NC - 2				
1.03.20	Re	ema	rques:		- <u>.</u>	·						1								andra des Solis	- and constrained ad advantage
R.1 0																					
-Ge-66	Ту	pe	de fora	ge: Tarière				Éc	quip	eme	nt d	e for	age: D-	50		1					
E0-03	Pre	épa	ré par:	M. Desmarais, tech.			Vérifié	é par: (D. A	rsen	auli	l, ing	g. S	r			2013-07-17 F	Page:	1	de	5

7-17 12h					Client	:							10				RAPPOR	ΓΙ	D	E	FC	DR	A	G	E
imé le : 2013-0						P	arc é	eolier	י P s.e	ier e.c	re- ·	de-	Saure	el			Dossier n °: Sondage n °: Date:	F	P-0	00	353	39-0 P 201	-01 S-0 3-0	-1()8-*)5-:	01 13 31
y- Impr	Ρ	roj	et: Pa	rc éolien Pierre-de-Saurel - É	tude g	éo	technic	que								Coc	ordonnées (m):	N	lorc	ł	5	092	683	,8 ((Y)
M_FR.st	E	ndi	roit: Yaı	maska, Québec												MTI Géo	M Nad83 Fuseau 8 désique Élé	ėva	Es tior	t 1		349)78 20, :	,5 (37 ((X) (Z)
INT_BE		r				_				ŕ		LITI				Pro	f. du roc: m		Pro	f. de	e fir	<u>ו:</u>	31,	,62	m
og_Fora	iq - F	E	E	STRATIGRAPHIE			<u>٤</u>			E		N II /	E		Eva	mone		ES	TEN	EUR	EN E	AU ET	LIMI	TES	(%)
T VMIL ogL	ONDEU		NTION -	DESCRIPTION DES SOLS ET DU ROC		BOLES	J D'EAU DATE	PE ET MÉRO	S-ÉCH.	ТАТ	LIBRE	ÉRATION	s/150m	ou RQD	org	ano.	RÉSULTATS		20	40	/p 	W ••••••••••••••••••••••••••••••••••••	WL 	0 1	20
X.'IStyle	PROF	PROF	LÉV/			SYM	VEAL	Ν	sou	Ψ	CA	ÉCUP	coup	"N"	leur	suel		RÉ	SIST	ANC	E AU ÉTRA	CISA			í (kPa UE
	8 0		Ψ				Z					В	qN		ŏ	Ϋ́!		3	20	40	6(0 80) 10	00 1	20
S.L.		-		Dépôt argileux probable.				68% 									N _c = 1								
	19	6													0.		N _c = 2	[].							
	20-	-															N _c = 2								
	21-																N _c = 1	t							
	22-	5) 73															N _c = 2	•							
	23-	-7															N _c = 2	•	••••					+	
	24																N _c = 2					1			
	25	-							-								N _c = 3	9							
	26	-8															N _c = 2	•		+					
	27																N _c = 2	•							
	28-																N _c = 3	9							
G	29																N _c = 3	•							
9 = 1 : 4	30	-9															N _c = 4	•		• • • •				***	
vertical	31-							1									N _c = 3	•							
Échelle	32																N _c = 4	•							
	33	-10				8											N _c = 4	•				•••••			
	34-															-	N _c = 3	•		1.					
	35																N _c = 4	•							
	36	-11															N _c = 5	•			 				
	37-																N _c = 5	•		0					
	38																N _c = 5	•	• 1						
	39																N _c = 5	•							
	40-	12															N _c = 5	•		1	• • • • •				
	41																N- = 5	•							
	42-																N. = 6								
	42	13															N = 7								
	44																N = 6				ł				
3.2009	Re	ma	argues:														<u>c</u>								
1 04.05	0																								
3e-66 R.	Ту	pe	de foraç	ge: Tarière				Éq	uipe	mer	nt de	e for	age: D-5	60											
1-60-03-1	Pre	éρε	aré par:	M. Desmarais, tech.			Vérifié	par: O	. Ar	sen	ault	, ing	g. <i>O</i> r	A -			2013-07-17 Pa	ige	:	2		de		5	

Image: Section Pierre-de-Saurel S.e.C. Dossier rr. P-0003339-0 Projet: Pare dollen Pierre de Saurel - Étude géolechnique Sec. Sondage: Traine dollen Pierre de Saurel - Étude géolechnique Projet: Pare dollen Pierre de Saurel - Étude géolechnique Condonades dolle Pierre de Saurel - Étude géolechnique Condonades dolle Pierre de Saurel - Étude géolechnique Condonades dolle Pierre de Saurel - Étude géolechnique Projet: Pare dollen Pierre de Saurel - Étude géolechnique Training and the saurel - Étude géolechnique Condonades dolle Pierre de Saurel - Étude géolechnique Condonades dolle Pierre de Saurel - Étude géolechnique Image: Statistica Antitucon Training and the géolechnique Training and the saurel - Étude géolechnique Condonades dolle Pierre de Saurel - Étude géolechnique Training and the saurel - Etude géolechnique Image: Statistica Antitucon Training and the saurel - Etude géolechnique	-17 12h	1				Client	t :									Í		RAPPOR	ΤD	EF	OF	A	GE
Normal Delet Delet Optimized Function Optimized	9 : 2013-07						P	arc é	eolier	P s.e	ier e.c	re-(de-	Saure	el			Dossier n°: Sondage n°:	P-(0003	539-0 P	-01 S-0	-101 8-13
Projet: Pare éolien Plere de Saurel - Etude géotechnique Coordinatés (m): Nord Sous Fruenus B Est 348 Enducit: Yamaska, Québec MTM NadáS Fusaus B Est 348 Bodolánique Éditado S Fusaus B Est 348 Bodolánique Éditado S Fusaus B Est 348 Bodolánique Éditado S Fusaus B Est 348 Bodolánique Éditado S Fusaus B Est 348 Bodolánique Éditado S Fusaus B Est 348 Bodolánique Estatas Estatas Bodolánique Estatas Estatas Bodolánique Estatas Estatas Bodolánique Estatas Estatas Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica Bodolánica	primé li				• • •													Date:	autor.		201	3-0	5-31
Endtoit: Yamaska, Québec Geodesigue Écodosigue Edeodesigue Edeodesigue Essais 1 1 5TRATIGRAPHIE 0 10	sty- In	Ρ	roje	et: Par	c éolien Pierre-de-Saurel - É	tude g	géol	technic	que								Coc	ordonnées (m): M Nad83 Euseau (Nor Es	d st	5092 349	683, 078.	8 (Y) 5 (X)
Topological matrix STRATIGRAPHIE ECHANTILLONS EXAMINATION OF CONSTRUCTION DESCONFORMATION DESCONFORM	VM_FH	E	ndr	oit: Yar	naska, Québec												Géo	odésique Él	évatio	n 	(i	20,3	7 (Z)
Understand Description DES Stand Stand </td <td>orage_L</td> <td></td> <td>-</td> <td></td> <td>STRATIGRAPHIE</td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td>É</td> <td>СНА</td> <td>NTI</td> <td>LLONS</td> <td></td> <td></td> <td>Pro</td> <td></td> <td>ESS</td> <td>AIS</td> <td>nn:</td> <td>31,</td> <td>62 M</td>	orage_L		-		STRATIGRAPHIE	100					É	СНА	NTI	LLONS			Pro		ESS	AIS	nn:	31,	62 M
Note: Description nees Description nees Note:	jLog_Fc	JR - p	JR - m	E			6	(ш) Л					% N	Ē		Exar	nens		TE	NEUR EI		r limit WL	res (%)
Image: Provide and the second secon	-LVMiLo	FONDE	FONDE	ATION OF m	DESCRIPTION DES SOLS ET DU ROC		BOLE	U D'EA DATE	PE ET MÉRO	JS-ÉCH	TAT	LIBRE	ÉRATIC	ps/150r	ou RQI	org	ano.	RÉSULTATS	20	+0 40	60 8	 0 10	0 120
Total Total <th< td=""><td>X IStyl</td><td>PRO</td><td>PRO</td><td>ÉLÉV</td><td></td><td></td><td>SYA</td><td></td><td>NL T</td><td>SOL</td><td></td><td>CA</td><td>IÉCUF</td><td>o cou</td><td>"N"</td><td>deur</td><td>suel</td><td></td><td>RÉSIS</td><td>TANCE</td><td>AU CISA</td><td>ILLEM DYNAI</td><td>ENT (kPa MIQUE</td></th<>	X IStyl	PRO	PRO	ÉLÉV			SYA		NL T	SOL		CA	IÉCUF	o cou	"N"	deur	suel		RÉSIS	TANCE	AU CISA	ILLEM DYNAI	ENT (kPa MIQUE
Yet 0 Depot argineux probable. No. = 0 No. = 11 0 No. = 11								z					Œ	ž		ŏ	Ż		20	40	60 8	0 10	0 120
No. No. <td>S.L.</td> <td>45-</td> <td></td> <td></td> <td>Dépôt argileux probable.</td> <td></td> <td>N_c = 8</td> <td>•</td> <td></td> <td></td> <td></td> <td></td>	S.L.	45-			Dépôt argileux probable.													N _c = 8	•				
91 - 00000000000000000000000000000000000		46	-14									9						N _c = 8	0				•••••••
1000000000000000000000000000000000000		47-																N _c = 8	•				
Markan Barkan		48-																N _c = 8	•				
Note of the second se		49	-15															N _c = 8			· · · · · ·		
No. No. <td></td> <td>50</td> <td></td> <td>N_c = 9</td> <td>•</td> <td></td> <td></td> <td></td> <td></td>		50																N _c = 9	•				
We for any of the second se		51																N _c = 8	•				
1000000000000000000000000000000000000		52-	-16															N _c = 9	•				
101 1		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																					
95 -77 -7 - <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td>																	•						
gr 0 Nc = 11 0 55 0 Nc = 11 0 56 0 0 0 61 0 0 0 62 19 0 0 64 0 0 0 65 0 0 0 66 0 0 0 67 0 0 0 66 0 0 0 67 0 0 0 77 0 0 0 0 71 0 0 0 0 0 71 0 0 0 0 0 0 71 0 0 0 0 0 0 0 71 0		55																N _c = 11	•				
monosofie monosofie	1:46	56	-17															N _c = 11	•			•••••	1
set s	rticale =	57-																N _c = 11	•				
with set of the set of t	chelle ve	58																N _c = 12	•				
60 0	Ψ	59	18												-			N _c = 11			, 1		
61 19 N _c = 12 N _c = 12 83 N _c = 13 N _c = 13 N _c = 13 84 N _c = 13 N _c = 15 N _c = 16 65 20 N _c = 15 N _c = 15 66 10 <		60																N _c = 13	•				
62 19 Nc = 12 • 64 Nc = 13 • • 65 20 Nc = 15 • 66 Nc = 15 • • 67 Nc = 15 • 68 0 Nc = 15 • 69 21 Nc = 15 • 70 Nc = 15 • • 70 Nc = 16 • • 71 Nc = 16 • • 72 • • • • 70 • • • • • 70 • • • • • 70 • • • • • 70 • • • • • 71 • • • • • • 70 • • • • • • 71 • • • • • • 70 • • • •		61-																N _c = 12	•		T.		
63 0		62	19															N _c = 12	•				
64 N _c = 13 N _c = 15 65 20 N _c = 16 67 N _c = 15 N _c = 15 68 N _c = 15 N _c = 15 69 21 N _c = 15 N _c = 15 70 N _c = 15 N _c = 15 N _c = 15 70 N _c = 16 N _c = 16 N _c = 16 Type de forage: Tarière		63-																N _c = 13	•				
65 -20 .		64																N _c = 13	•				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		65																N _c = 15	•				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		66-	20															N _c = 14	•				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		67																N _c = 15	•				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		68																N _c = 15	•				
70 N _c = 16 71 N _c = 16 Remarques: Type de forage: Tarière Équipement de forage: D-50	1000	69	21			5												N _c = 15	;.e			•••••	
711 Nc = 16 Remarques: Type de forage: Tarière Équipement de forage: D-50		70																N _c = 16	•				
Type de forage: Tarière Équipement de forage: D-50	2009	71		raucos														N _c = 16	•				
Type de forage: Tarière Équipement de forage: D-50	04.03.	пe	шą	ques:																			
	ie-66 R.	Ту	pe d	de foraç	ge: Tarière				Éq	uipe	mer	nt de	for	age: D-5	0								
Préparé par: M. Desmarais, tech. Vérifié par: O. Arsenault, ing. CA. 2013-07-17 Page: 3 de	EQ-09-G	Pré	épa	ré par:	M. Desmarais, tech.			Vérifié	par: O	. Ar	sen	ault	, ing	g. හ	Ą.			2013-07-17 P	age:	3	de		5

12171-		1			Client	:											RAPPOR	TD	EFC	DR/	AGE
10-5102 : 019-01	STATE AND ADDR			VM		P	Parc é	olien	n Pi s.e	ierı e.c	re-	de-	Saure	el			Dossier n°: Sondage n°: Date:	P-0	00353	89-0-0 PS 2013)1-101 -08-13 -05-31
ndim - Y	Pr	oje	t: Pa	rc éolien Pierre-de-Saurel - É	tude g	éo	technic	que								Coc	ordonnées (m):	Nord	5	09268	33,8 (Y)
	Er	ndro	oit: Yaı	maska, Québec												MTI Géo	VI Nad83 Fuseau odésique É	8 Est lévation		3490. 20	0,37 (Z)
and the	Т									É		NTI				Pro	f. du roc: 1	n Prof	l. de fii IS	n: 3	31,62 m
	ā-	E - 2	F	STRATIGRAPHIE	T		Ê			E		%	E	Γ	Fra	mens		TEN	EUR EN E	AU ET L	IMITES (%)
	NDEUF	NDEUF	- NOI	DESCRIPTION DES		OLES	D'EAU ATE	É ET É RO	-ÉCH.	AT	BRE	ATION	/150m	ROD	org	ano.		20	₩p 40 6	W V 0 80	₩L
otyre_L		ROFO	ÉVAT			YMB	EAU	NUM	sous	ÉΤ	CALI	CUPÉF	sdno	N" oL	'n	lel	RESULTATS	RÉSIST	ANCE AL	CISAILL	EMENT (kPa
Ϋ́,	-	٩.	Ę	-		0	NIN		0,			RÉ(Nb c	-	Ode	Vist		20	PÉNÉTRA 40 6	TION DY	NAMIQUE
i -	-	8		Dépôt argileux probable.					_						-						
⁵	72	22															N _c = 17		····	 	••••••
	73																N _c = 16	•			
	74	ŝ															N _c = 17			1	
	75	23															N _c = 18	•			
	76																N _c = 19	•			
	77-																N _c = 19	•			
	78-	2 1															N _c = 19	•			
	79	24															N _c = 19	۰			
	80-																N _c = 18	•			
	81-																N _c = 21	•			
	82	25															N _c = 20		e + + + + + + + +		
2	83																N _c = 21	•			
	84-																N _c = 19	•			
	85																N _c = 25	•			
	86-	26															N _c = 24				
	37-																N _c = 23		1	•	
	38-																N _c = 25				
	39	27															N _c = 27	•		4++++	*******
	1																N _c = 25				
	-1-																N _e = 27	-			
		28															N. = 27				· · · · · · · · · · · · · · · · · · ·
																	N = 28				
																	N = 30				
	4																N - 21				
9	15-	29															$N_{\rm C} = 31$		****	+ • • + • •	
9	96-		0.20														N _c = 29				
9	97-		29,57	Dépôt granulaire probable													N _c = 32			1	
	Re	ma	arques:																		
								<u>.</u>													
F	Ту	pe	de fora	ge: Tarière		Т	14-20	Ec	quipe	eme	nt d	e for	rage: D-	50		1	2012.07.17	Page:	1	de	5
	Pré	epa	re par:	M. Desmarais, tech.		1	veritié	par: C	J. AI	ser	aul	r, in	g. <i>C</i> S	ң.			2013-07-17	-aye:	4	ue	5

Γ				Client :											RAPPOF	RT E)E	F	OR	A	GΕ
			VM		Parc	éolier	ו P s.	ier e.c	re-	de-	Saure	el			Dossier n°: Sondage n°: Date:	Ρ	-00(035	39-0 P 201	-01- S-08 3-05	-101 3-13 5-31
Ī	Proj	et: Pa	rc éolien Pierre-de-Saurel - I	Étude gé	otechni	ique							(Coc	ordonnées (m):	No	ord Est	Ę	5092	583, 178	8 (Y) 5 (X)
	Endi	roit: Ya	maska, Québec											Géo	odésique É	lévati	on	-1 - <i>(</i>)	1	20,3	7 (Z)
			STRATIGRAPHIE			1		É	СНА	NTI	LLONS			Pro		ES:	SAIS	de n S	<u>n:</u>	31,0	52 M
- BI	- HD	Ę		c.			÷			% NC	E	٥	Exam	ens		1	ENEU	IR EN I Wp	EAU ET W		ES (%)
ONDE	ONDE	TION	DESCRIPTION DES SOLS ET DU ROC	EOI F	D'E/	DE ET MÉRO	s-ÉCI	TAT	IBRE	ERATIO	s/150	ou Ro	orga	110.	RÉSULTATS		20 4	40 E	- .	100) 120
PROF	PROF	LÉVA PRO		MAS	VEAL	1× N	sou	ц. iu	CAL	ÉCUPE	conb	"N"	leur	laus		RÉS	SISTAN		U CISAI		ENT (kPa MOUE
		Ē			Ī					H	q		õ	Vis			20 4	40 E	50 80	100	120
	-		Dépôt granulaire probable		And the second s										N _c = 51						
9	9														N _c = 76			,	•		
10	Ъ														N _c = 77				•		
10	1-														N _c = 96		1	1		•	
10	2-31														N _c = 99		****			۰	1
10	3-	44.05													N _c = 97					•	
10-	4	31,62	Refus sur sols très denses à ur	ne	1	1									N _c = Refus						
10	5-32		protondeur de o 1,02 m.														++++	+	·		++++++
10	6-																				
10	7-																		1		1
10	B-																				
109	9				1																
110	2																þ				
11	1																				
112	-34															++			•••••	-	
113	3-																	1			
114	1								8												
115	-35																 				
110							2														
								8													
117																					
118	3-36													1			+ + - -				
119																					
120	4																				
121	-37													2							· · · · ·
122	5													e		4			i.		
123																					
124	Ł																				
R	lema	arques:																			
т	vne	de fora	ae: Tarière			Éc	auio	eme	nt de	e for	age: D-!	50									
P	répa	aré par:	M. Desmarais, tech.		Vérifi	é par: C). A	rsen	ault	, ing	g. 07	<i>t</i> - <i>f</i>			2013-07-17	Page		5	de		5
	655	(*	10/0							12.00	sent)	_								_	

17 12h	,				Clie	ent :											RAPPOF	TD	EF	OR/	AGE
2013-07-				VM		F	Parc	éolie	n P	ier	re-	de	Saure	əl			Dossier n°:	P-0	00035	39-0-0	01-101
imé le :		100							S.	e.c							Sondage n°: Date:			2013	-09-13 -05-31
ty- Impi	Р	roje	et: Pa	rc éolien Pierre-de-Sau	ırel - Étude	e géo	techni	que								Co	ordonnées (m):	Nor	ď	509210	09,0 (Y)
.VM_FR s	E	ndr	oit: Ya	maska, Québec												MT Gé	M Nad83 Fuseau odésique É	8 ⊏: Iévatio	n n	34916 20	0,82 (Z)
orage_L	É	tat	des éc	chantillons							Ex	ame	ns orga	nole	eptio	que	s sur les sols:	11 1 10	Ji. de i	1(1. 3	50,71 m
J Go T	E	1	📿 Int	act Remanié		Perd	u 🗌	C c	arotte	э			c	As deur:	pect v Inex	visue distan	 Inexistant(I); Dissém ite(I); Légère(L); Moyer 	né(D); In ine(M); F	nbibé(IM Persistan) ite(P)	
NMITO	Т	ype	d'éch	antillon	Abréviati	ons	10 - 15 March											3776			
Siyle_L	C TI	F	Carotti Tube à	er fendu a paroi mince	L Limite W, Limite	s de co de ligi	onsistance uidité (%)	2	м.о. к	Mat Peri	ière (méat	organi bilité (i	que (%) cm/s)				Niveau d N Pénétrati	'eau on standa	ard (Nb c	coups/300)mm)
X	P	s	Tube à	piston fixe	W _P Limite	de pla	sticité (%	1	PV	Poid	ds vo	lumiq	ue (kN/m³)				N _c Pénétrati	on dyn. (l	Nb coups	s/300mm)	•
Ŀ	C T	R A	Tube c À la tai	arotlier rière	I _P Indice	de pla de liqu	usticité (%) uidité	1	A U	Abs Con	npres	on (I/n sion i	nin. m) uniaxiale (N	(Pa)			σ' _P Pression TAS Taux d'a	de préco pressivité	nsolidati des sols	on (kPa) s	
S.	м	A	À la ma	ain	W Teneu	r en e	au (%)		RQD	Indi	ce de	qual	té du roc (*	%)			Péristance au	cicaillon	nont	in ^{ot}	and a state of the
	TI Pl	u w	Tube tr Carotti	ransparenl er LVM	AG Analys S Sédim	se grar enlom	nulométriq étrie	ue	AC Pi	Ana Pre:	ilyse ssion	chimic limite	que , essai pre	ssiom	étriqu	ue (ki	Pa) C _{ii} Intact (kF	a)	් A	ian 300	
	S	G	Sol gel	é	R Refus	à l'enf	oncement		EM	Moc	dule p	oressi	ométrique (MPa)			C _{un} Remanié	(kPa)	Δ		
					VBS Valeur PDT Poids	au Bli des tig	eu du sol Ies		E, SPo	Moc Pote	dule c entiel	le réa de sé	ction du roi grégation	c (MP) (mm²/	a) H ℃)						
	Di	E		STRATIGRAPHI	E		2			É	СНА	NTI	LLONS			12 12		ESS	AIS		
	- HUS	- HU	E			s	NU (m		÷			% NO	E	Q	Exar	mens	5	TE	NEUR EN Wp	EAU ET LI W V	MITES (%) VL
	ONDE	ONDE	TION	SOLS ET DU R	OC	SOLE	D'E	NÉRC	s-ÉCI	LAT	IBRE	RATI	s/150	u RG	org		RÉSULTATS	20	40 I		- 100 120
	PROF	PROF	ÉVA			SYME	/EAU	T NUN	sout	μ	CAL	CUPÉ	dnos	N 0	an	nel		RÉSIS	TANCE A	UCISAILL	EMENT (kPa)
			。 一 可				Í					Ré	ЯР Х		PO	Vis		20	40 (60 80	100 120
			0,00	Sols naturels : silt argil	eux avec	1				$\overline{)}$											
	1			humide.	n-gns,	1	1	CF-1		X	в	33	1-2 2-4	4			N _c = 1	•	4		
	2					1.				$\left(\right)$					8		N _c = 4	•			
1:46	3					1		CF-2		IX	в	57	2-3 4-2	7			N _c = 7	•			
icale =	4	-				1	8- <u>9</u>			\square						3	N _c = 8				
elle vert	5-		19,45 1,37	Silt avec un peu d'argile	à argileux		513 513										N = 7				
Éch				et un peu de sable à sab saturé.	leux, gris,	1:1	9,94 n	05.2		\bigvee		22	1-1						Ä	1.	
	61	-2				1.1	el. 1	GE-3		Л	Б	33	0-1				W = 37.7 N _c = 1	Ţ		.	
	7.					1.											N _c =PDT				
	8-					1.		CF-4		V	в	49	1-1	2			N _c = 1	•			
	9					1				\mathbb{N}			1-0				N _c = 2	•	1		
	10-	-3				:/:											N _c = 3	•			
	11							CF-5		X	в	74	2-2 1-1	3			N _c = 3		1		
	12					1.											N _c = 3	•			
	13	-4				1.		TM-6	А			89			3		N _c = 3	•			
	14	1	16,62	Araile silteuse arise sati	urée	1.		TW-0	B			03					W = 75.1			Ģ	
	-		16,46	Poursuite du forage par u	un essai	(1.7.	\$\$\$ <u>1</u> 6\$\$										C _u = 18 kPa C _{uR} = 1 kPa				
	15		.,	de penetration dynamiqu (pas d'échantillonnage). I	e au cone Dépôt												$N_c^c = 1$				
	16	5		argileux probable.			1										N _c = 1	•	·····		
	17-																N _c = 1	•	1		13
03.2005	Re	ema	rques:	· · · · · · · · · · · · · · · · · · ·										1				•			
R.1 04.																					3
Ge-66	Ту	pe	de fora	ge: Tarière				Éc	quipe	eme	nt d	e foi	age: D-	50							
1-60-0	Pre	épa	ré par:	M. Desmarais, tech.			Vérifié	par: (). AI	rsen	naul	t, in	g. <i>OY</i>	+ -			2013-07-17	Page:	1	de	5

Échelle verticale = 1 : 46

7.17 12h	Γ				Client :	100 000	725 5358		1.1		10.0					RAPPOR	Т	DE	EF	OF	۲A	G	Ε
mé le : 2013-0						Parc	éoliei	n P s.	ier e.c	re-	de-	Saure	el			Dossier n°: Sondage n°: Date:		P-0	003	539- F 20	0-0 ⁻ 28-(13-(1-1(09-1 05-(01 13 31
- Impri	P	roj	et: Pa	rc éolien Pierre-de-Saurel - É	tude gé	otechn	ique								Coc	ordonnées (m):	N	lord		5092	2109	Э,О ((Y)
M_FR sty-	E	Indi	roit: Ya ı	maska, Québec											MTI Géo	M Nad83 Fuseau odésique É	8 léva	Est tion		349	916 ⁻ 20 ,	1,3 (, 82 ((X) (Z)
ige_LVi		1							<u> </u>						Pro	f. du roc:	n	Prof	. de	fin:	30),71	m
g_Fora	ia -	E	E	STRATIGRAPHIE		Ē			E		N II %	LLONS	Г			,	ES	TEN	IS		TIN	ITES	(%)
VMILogLe	NDEUF	NDEUF	NOI	DESCRIPTION DES		D'EAU	ERO	ÉCH.	٨T	BRE	ATION	150mr	RQD	orga	nens ino.			20	w _l		WI	+	()
Style_L	ROFO	ROFO	ÉVAT PROF	001011001100	VMR		TYPE	ous	ÉT	CALI	UPÉR	sdno	N" ou	5	el	RESULTATS		20	ANCE		<u></u>		
X:1	۵.	4	ÉLI		ď	NIN I		S			RÉC	Npo	F	Ode	Visu			OUF	ÉNÉT	RATION	I DYN	AMIQ	UE
Ŀ	\vdash	-		Dépôt argileux probable.				-								N _c = 1	+	20	40	60 8	10 1	00 1	20
ŝ	19															N _c = 2	•					1	
	20	-6														N _c = 2				++-++-	• • • •	+++1	
	21	F														N _c = 1	•						
	22															N _c = 2	•						
	23	-7														N _c = 2	•	÷				++++	
	24															N _c = 2	•					1	
	25	-														N _c = 2	•					1	
	26-	-8														N _c = 2	•						
1	27-															N _c = 3	•						
	28															N _c = 2	•						
- 46	29	-9														N _c = 3	•	++				+-+	
cale = 1	30-															N _C = 4	•						
ielle verti	31-															N _C = 3	•		1	E.			
Ēct	32-	-10														N _c = 4	•						
	33-															N _c = 3							
	34															N _c = 4							
	35															N _c = 4							
	36-	-11														N _c = 4		• • • •		e an i a sua			
	30															$N_c = 4$							
	30	6 3														N _C = 5							
	40-	12														N _c = 5							
	41-															N = 5							
	42-	2														N _c = 5			Ĩ				
	43-	13														N ₂ = 5	•						
	44															N _c = 6	•						
33.2009	Re	ema	arques:								~												111
R.1 04.1																							
-Ge-66	Ту	pe	de foraç	ge: Tarière			Éq	luipe	mer	nt de	for	age: D- 5	50										
E C	Pr	épa	iré par:	M. Desmarais, tech.		Vérifi	é par: C). Ar	sen	ault	, ing	g. OV	f.			2013-07-17 F	age	:	2	de		5	

2013-07-17 12h				VM	Clien	t: P	arc é	eolier	ı P	ierı	re-	de-	Saure	el			RAPPOR Dossier n°:	Т D Р-	E F	OR	AC	3E
rimé le : 2									S.	e.c	•						Sondage n°: Date:			201	S-09 3-05	9-13 5-31
LVM_FR sty- Imp	Pro En	ojet Idro	:: Pare	c éolien Pierre-de-Saurel - É naska, Québec	tude ç	géo	lechnic	que								Coc MT Géo Pro	ordonnées (m): M Nad83 Fuseau odésique É f. du roc:	Nor 8 E: Iévatio m Pre	rd st on of. de	5092 349 fin:	109,0 161,3 20,8 2 30,7	D (Y) 3 (X) 2 (Z) 71 m
orage		F		STRATIGRAPHIE			~			ÉC	CHA	NTI	LLONS					ESS	AIS		,-	
3100g_F	- HU	UR - L	ε			s	m) L					% NC	E	٥	Exan	nens		TE	NEUR EN Wp	N EAU ET		ES (%)
IE_L VMILO	DEONDE	DFONDE	ATION	DESCRIPTION DES SOLS ET DU ROC		MBOLE	AU D'EA / DATE	YPE ET UMÉRO	US-ÉCF	ÉTAT	ALIBRE	PÉRATIC	150 rbs/150	' ou RQ	orga	ano.	RÉSULTATS	20	F 0 40	€0 80) 100	120
(ICL:Y	Ĕ	PR	ÉLÉ			SΥ	IIVE	ΗZ	so		O	RÉCU	p col	N	Inapo	isue		RÉSIS	STANCE J PÉNÉT	AU CISAI RATION I	LLEME	NT (kPa IIQUE
							2						z		0	>		21	0 40	60 80	100	120
	45	14		Dépôt argileux probable.													$N_c = 7$ $N_r = 6$, ++++++		
	47																N = 7			8		
	48										(b).						$N_c = 7$ $N_c = 6$	•			ľ.	
	49	15															N _c = 8		+			
	50-																N _c = 8	•	1			
	51																N _c = 8	0				
	52	16															N _C = 8	•	· ·			
	53	10															N _c = 9	•	1			
	54																N _c = 9	•				
	55																N _c = 9	•				
2	56	17															N _c = 8	0	******	+		•••••
	57																N _c = 9	•				N.
	58																N _c = 10	ø				
	591	8															N _c = 10	·•· -		.		
	60-																N _c = 11	•				
	61-																N _c = 11	:•				
	62- -1	9														2	N _c = 10	ie.				
	63-																N _c = 12	•			i i i	. 1
	64																N _c = 11	•				
	35-																N _c = 12	•				
	56	20															N _c = 12	•				
	67-																N _c = 12	•				
	58																N _c = 13	•	·			
	₃₉ -2	1															N _c = 13	•				
	70																N _c = 14	•				
Ŀ	1																N _c = 13	•				
	Rer	nar	ques:					,														
Ļ	Тур	e d	le forag	ge: Tarière		Т	N 1 / 101 /	Éc	luipe	eme	nt d	e for	age: D-5	50		-	0010 07 17	Derri	~	- 1 -		-
	Pré	par	é par:	M. Desmarais, tech.			Vérifié	par: C). Ai	rsen	aul	ι, in	g. <i>O</i>	H -			2013-07-17	Page:	3	de		G

X:ISIYle_LVMILogLog

-17 12h		1			Client	:											RAPPOR	ΓD	EF	OR	AG	λE
nmé le : 2013-07				VM		P	arc é	eolier	י P s.	ier e.c	re-	de-	-Saure	el			Dossier n°: Sondage n°: Date:	P-(003	539-0 P 201	-01-1 S-09- 3-05-	101 -13 -31
sty- Imp	Pr	roje	et: Pa	rc éolien Pierre-de-Saurel - É	tude g	éot	technic	que								Coc	ordonnées (m):	Nor	d	5092	109,0	(Y)
M_FR.s	Er	ndro	oit: Ya	maska, Québec												Géo	M Nad83 Fuseau 8 odésique Élé	vatio	n	349	20,82	(A) : (Z)
rage_LV				STRATIGRAPHIE						É	сна	NTI				Pro	f.duroc: m	Pro	of. de	fin:	30,71	1 m
og_Foi	R - pi	R - m	E	JINANGHALINE		_	E I		<u> </u>			% 7	ELONO	Γ.	Exar	mens		TEN	NEUR EN			S (%)
e_LVMiLogi	FONDEU	FONDEU	ATION - OF m	DESCRIPTION DES SOLS ET DU ROC		ABOLES	U D'EAL	(PE ET JMÉRO	JS-ÉCH.	ÉTAT	VLIBRE	PÉRATIO	ps/150m	ou RQD	org	ano.	RÉSULTATS	20	wp - 	60 80	WL 	120
XIStyl	PRO	PRC	ÉLÉV Pr			SΥN	IIVEA	Γĭ	sol	-	5	RÉCUF	o cou	N	deur	isuel		RÉSIS	TANCE . PÉNÉT	AU CISAI RATION	LLEMEN	IT (kPa QUE
							2						ž		0	>		20	40	60 80) 100	120
S.L.	72	22		Dépôt argileux probable.													N _c = 15	•				
	73																N _c = 14	•				
	74-	8			2												N _c = 15	•		1		
	75	23															N _c = 17	•			, ,,,,,,	
	76-																N _c = 15	•				
	77	8															N _c = 16	•			1	
	78-																N _c = 17	•				
	79-	24															N _c = 17	•				
	80																N _c = 20	•		1		
	81																N _c = 18		1			
	82-	25															N _c = 18					
1:46	83-																N _c = 19	•				
rticale =	84																N _c = 20					
chelle ve	85																N _c = 21	•				
ω	86	26															N _c = 21					
	87-																N _c = 22					
	88-	2															N _c = 23					
	89-	27															N = 25					
	90-																N = 25					
	91-																$N_{c} = 24$					
	92	28			8												N _c = 25	•	·····			··· · · · · ·
	93-		-7,53	Dépôt granulaire probable													N _c = 25	•				
	94																N _c = 43					
	95 2	29															N _c = 61			•		+ + + + >-
	96																N _c = 52		•			
2	97																N _c = 65			•		
4.03.20	Rei	mai	rques:															- <u></u>				
e-bb H.1 u	Tvr)e r	de fora	ge: Tarière				Éo	uipe	eme	nt de	e for	age: D-!	50								
5-60-01	Pré	par	ré par:	M. Desmarais, tech.			Vérifié	par: O). Ar	sen	ault	, ing	g. ON	+ •			2013-07-17 Pa	ge:	4	de	5	

-17 12h	6			Clie	ent :											RAPPO	RT	DI	EF	=0	RA	G	E
amé le : 2013-07				VM	F	Parc e	éolier	י P s.	ier e.c	re-(de-	Saure	el			Dossier n°: Sondage n°: Date:	I	> -0	003	539 2(-0-0' PS-()13-(1-1(09-1 05-:	01 13 31
iy- Imp	Р	roje	et: Par	rc éolien Pierre-de-Saurel - Étude	e géo	technie	que								Coc	ordonnées (m):	N	lord	I	509	2109	Э,O ((Y)
WM_FR.SI	E	ndr	oit: Yaı	maska, Québec												M Nad83 Fusea odésique	u 8 Éléva	Est tion	i I	34 . fin:	19161 20,	1,3 (, 82 (, 71	(X) (Z)
orage_1		_		STRATIGRAPHIE					É	СНА	NTI	LLONS		-	110		ES	SA	IS			<i>i,i</i> 1	
gLog_F	H-HO	UR - L	E		S	<u> </u>					% N0	Ē		Exan	nens			TEN	EUR E W			ITES	(%)
TVMITO		ONDE	TION PF m	DESCRIPTION DES SOLS ET DU ROC	BOLE	J D'EA	PE ET MÉRO	S-ÉCH	TAT	IBRE	ERATIC	s/150	ou RQI	orga	ano.	RÉSULTATS		20	40	60	80 1	1 00 1	20
(IStyle	PROF	PROF	LÉVA PRC		SYM	VEAL	N I	sou	чш	CAI	CUPE	coup	"N	eur	leu		RE	SIST	ANCE	AU CI	SAILLE	MENT	(kPa)
*			Ū			Ī					RÉ	qN		PO	Vis			20	40	60	80 1	00 1	20
ï.		-		Dépôt granulaire probable									ł			N _c = 76				111	•		11
S	99															N _c = 74					•		
	100	-														N _c = 88					•	1	
	101-	-	-9,89 30,71	Refus sur sols très denses à une	+											N _c = Refus							
	102	-31		profondeur de 30,71 m.																 	•••••	++++	-+++
	103																						
l.																					i.		
	104								20														
	105	-32															• •	++++					
	106-																						
	107-						•											1					
	108-	-33																				1	
46	108 -33 109* 110- 111* -34 112*														i								
ale = 1 :	110																	i.					
e vertica	111-																						
Échell	111- -34 112- 113-																						
	113																-						
	114		2 2																				
		35																					
	115-																						
	116																		l				Ì
	117																						
	118_	36							8								:		••••	÷1			
	119																						
	120-																						
	121																						
	122-	37				9 8																	
	123-																						
	124																						
3.2009	Re	ma	rques:																				111
3.1 04.6																							
Ge-66 F	Тур	be c	de foraç	ge: Tarière			Éq	uipe	mer	nt de	e fora	age: D-5	50										
EQ-09-	Pré	épa	ré par:	M. Desmarais, tech.		Vérifié	par: O	. Ar	sen	ault	, ing	1. OX	4-			2013-07-17	Page	:	5	d	е	5	

17 12h	[]		V		Clie	ent :											RAPPOR	T DE	FORAG	iE
2013-07-						I	Parc (éolie	n P	ier	re-	-de-	-Sauro	el			Dossier n°:	P-000)3539-0-01-1 PS-10	01 13
amé le	Ľ								•								Date:		2013-05	-30
ty- Imp	P	roje	et: Pa	irc éolien Pierre-de-Sau	urel - Étude	e géc	otechni	que								Co	ordonnées (m):	Nord	5091587,5	(Y)
LVM_FR.5	E	ndr	oit: Ya	maska, Québec												Mi Gé Pro	M Nad83 Fuseau a odésique Éle of du roc: m	} ⊏si évation n Prof. c	349026,9 21,37 1e fin: 35,21	(X) (Z) ^A m
orage_	É	tat	des ér	chantillons							Ex	ame	ens orga	anole	eptic	que	s sur les sols:	1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	<u>, 16 min - 22,</u>	<u>, , , , , , , , , , , , , , , , , , , </u>
ogLog_	E	\mathbb{Z}	<u> </u>	tact Remanié		Perd	u	C	arotte	е			C	As Odeur:	pect Ine	visue istan	I: Inexistant(I); Dissemine ite(I); Légère(L); Moyenn	é(D); Imbibe ie(M); Persis	i(IM) slanle(P)	
TVMIT		ype	erott	antillon	Abréviati	ons	- mietanci	4	40	Mai	· Lro	aani	(0/)				 Niveau d'e 			
(:ISIyle_	T	TM.	Tube à	er rendu à paroi mince	W _L Limite	s ue e. e de liq	uidité (%)	ž	K	Per	méat	bilité (r	cm/s)				N Pénétration	au n slandard (f	Nb coups/300mm)	
~	P! C	S	Tube à Tube r	i piston fixe	W _P Limite	de pla de pla	asticité (%))	PV A	Poie Abs	ds vo	olumiqu	ue (kN/m³) nin. m)	1000			N _c Pénétration d' _n Pression d	n dyn. (Nb co	oups/300mm)	
3.L.	Т	A	À la tar	rière	IL Indice	de liq	uidité	l	U	Con	mpres	ssion ι	uniaxiale (N	MPa)			TAS Taux d'agre	essivité des	sols	
	M. Ti	A U	A la ma Tube t	ain ransparent	W Teneu AG Analy	ır en ea se grai	au (%) nulométrio	que	RQU AC) Inoi Ana	ice de alyse	e quaii chimic	ité du roc (que	%)			Résistance au c	isaillement	manifel aporatoit	
	PI S	W	Carottir Sol ge	er LVM	S Sédim	entom	iétrie	Basa	P _L	Pres	ssion	i limite	, essai pre	ssiom	iétriqu	ie (kl	² a) C _u Intact (kPa))		
		د	SUI ye.	e	VBS Valeu	r au Bl	leu du sol		Е,	Moc	dule c	de réa	ction du ro	(Miru, c (MP	a)		UR Homano .	(Pa)	Δ	
	\vdash		T	<u>ΑΤΡΑΤΙΩΒ</u> ΔΡΗ	PDT Poids	des tig	jes T	T	SPo	Pote	entiel	de sé	grégation	(mm²/	H ℃)		1	FREAIS		
	R-pi	E E	Ε			Т	Ē	-	Τ			***	ELONG	T	Exa	nens		TENEUR	EN EAU ET LIMITE	ŝ (%)
	NDEU	NDEU	NO E		DES	DLES	D'EAU	ET O	ÉCH.	F	BRE	ATION	150m	RQD	org	ano.			wp w w∟ ├────	
	ROFO	ROFO	:VATI PROF	30L3 L1 D0 IN	50	YMBC	AU E	TYPE	ous-	ÉTA	CALIF	UPÉR	/sdnc	1. OL	1	10	RÉSULTATS			120
	ä	ă	ÉLÉ			Ś	NIVE	-	õ			RÉC	Nb cc	4.	Odet	Visu		RESISTANU OU PÉNI	E AU CISAILLEMEN	Г (kPa) IUE
		μ	21,37 0,00	Sols naturels : silt argil-	eux avec	1/	<u>/ </u>		+		_	$\left \right $	_					20 40) 60 80 100	120
	1	$\{ \mid$		des traces de sable, brui oris-brun, saturé à partir	n-gris à de 0,6 m.	1.	58	CF-1		X	в	41	0-1 2-2	3			N _c = 1	•		
	2	į	1	gine sicht, ester	00 0,2 1	1.1	3-06-2			\square							N _c = 3	9		
46	3		1 /			1	E 20	CF-2		\mathbb{N}	в	92	1-1	3			N_ = 8			
ale = 1	4	1	1 /			1	S1,15			\square			2.1						++ ; ++++++++++++++++++++++++++++++++++	
lle vertic			(/			1	e										N _C = 9			
Éche	2	i	1 /			V				\square			1-0				$N_c = r$			
	6	-2	[]	1		1.		CF-3		Ň	в	100	0-0	0			N _c = 1	•		
	7-	i	1 /			1A		1		Ē							N _c =PDT			
	8		()					CE-4		\mathbb{N}	в	66	1-0				N _c = 1	•		
	9	r	10.00			12				\square			0-0				N _c =PDT			
	10-	-3	2,98	Silt avec un peu d'argile	à argileux	1:1		1		\square							N _c = 3	•		- -
	11-	<i>i</i>		gris-brun, saturé.	leux,	1.		CF-5		X	в	74	1-2 2-2	4			N _c = 3	• •		
	12	1	17,71	Silt et aroile avec des tra	ices de	Vii:		1		$\left(\right)$							W = 27.3 N _c = 3	•		
	13-	-4		sable, gris, saturé. Prése	nce de	11	×	CF-6			в	82	0-1 0-0	1			N _c = 1	•	λ	
	14-		17,10	Deversite du fornao par l	i	1h	× ×	.		\square			Alter and				W = 40.5 N ₀ = 2			
	15		4,21	de pénétration dynamiqu	e au cône												N = 2			
	16			(pas d'échantilionnage). L argileux probable.	Dépôt		1													
	-	5					1										N _C = 1	[• • • • • • • • • • • • • • • • •	
e I	1/1			I			ı										N _c = 1		2	
1.03.200	Re	€ma	rques:			<u> </u>		I				<u> </u>		<u> </u>		1				1.1.1.1. 1
R.1 04																				
-de-bb	Ту	pe c	de forar	ge: Tarière				Éc	quipe	eme	nt d	e for	age: D- !	50		1				
3	Pr∉	épa	ré par:	M. Desmarais, tech.			Vérifié) par: C	A.C	rsen	laul	t, ing	g. 04	t .			2013-07-17 Pa	age: 1	l de 5	

Échelle verticale = 1 : 46

7-17 12h					Client	:											RAPPOR)E	F	OF	R	GE
nmé le : 2013-0						P	arc é	olier	ו P s.e	ier e.c	re-(de-	Saure	el			Dossier n°: Sondage n°: Date:	Ρ	-00()35	39-0 F 201)-01 PS-1 13-0	-101 0-13 05-30
ngmi - Y	Ρ	roje	et: Par	rc éolien Pierre-de-Saurel - É	tude g	éot	echnic	que								Coc	rdonnées (m):	No	ord	!	5091	587	,5 (Y)
LVM_FR stj	E	ndr	oit: Yar	maska, Québec												MTI Géo	M Nad83 Fuseau 8 désique Élé	E vati P	Est on rof (de f	349	028 21,: 35	,9 (X) 37 (Z) 28 m
orage_		[STRATIGRAPHIE			-			É	CHA	NTI	LLONS					ES	SAIS	3			20111
1_golt	д - HU	- HL	E				m) (m					% N	E		Exan	nens		т	ENEU	R EN Wo	EAUE	T LIMI WL	TES (%)
T VMIT O			VTION DF m	DESCRIPTION DES SOLS ET DU ROC		BOLE	J D'EA DATE	PE ET MÉRO	s-ÉCH	ТАТ	LIBRE	ÉRATIO	s/150r	ou ROI	orga	ano.	RÉSULTATS		20 4	- I M	60 8	0 10	0 120
(IStyle	PROF	PROF	PRC			SYM	VEAI	Ν	sou	Ψ	CA	CUP	coup	"N"	eur	lau		RÉS	ISTAN	ICE A			AENT (kPa
^			Ē				Ī					R	qN		PO	Vis			20 4	10 (50 8	0 10	00 120
Ľ.				Dépôt argileux probable.													N _c = 2		1.				
S	19																N _c = 2	•					
	20	-6															N _c = 2	•		• • • •	•••••		
	21-	- 2															N _c = 2	•	a				
	22																N _C = 2						
	23-	-7															N _C = 2					••••	*****
	24																N _c = 3		1				
	26-																$N_c = 3$						
1	27-	-8															N _c = 2	•	++++				
	28																N _c = 3	•					
46	29	4															N _c = 4	•					
cale = 1 :	30-																N _c = 3	•				1	
nelle verti	31															6	N _c = 4	•					
Éci	32	-10	-												8		N _c = 4	•					
	34																$N_{c} = 3$	•					
	35																N _c = 5	•				1	
	36	11															N _c = 4	•					
	37-																N _c = 5	•					
	38-																N _c = 4	¢		8			l
	39	12															N _c = 5	•					+
	40-									23							N _c = 6	•					
	41-																N _c = 6	•					
	42	13															$N_c = 0$	•					•••••
	44																N _c = 6	•					
3.2009	Re	ma	rques:	8 - 1940.		0										1							
-66 R.1 04.0	Tur		de forar	10° Tarière				Éa	uine	mer	nt de	for	ane. n .	50									
-09-Ge	· yk	ina (ré nar:	M Desmarais tech			Vérifié	par O	aipe Ar	son	ault	inc					2013-07-17 Pa	de.		2	de		5
S L	110	·μα	ie pai.				Forme	μαι. Ο	. A	3011	aan	,		1 2				90.			40		-

r.17 12h	Γ				Client	:											RAPPOR)E	FC)R	A	GE
nmé le : 2013-0				VM		P	arc é	éolier	י P s.e	ier e.c	re-	de-	Saure	el			Dossier n°: Sondage n°: Date:	P.	-000	353	9-0 P 201	-01- S-10 3-05	101)-13 5-30
sty- Imp	Ρ	roje	et: Par	rc éolien Pierre-de-Saurel - É	tude g	éot	technic	que								Coc	ordonnées (m):	Nc	rd	5	0915	587,	5 (Y)
M_FR.3	E	ndr	oit: Yar	maska, Québec											ĺ	MT Géo	M Nad83 Fuseau 8 odésique Élé	≥vati	on	1	3490	21,3	9 (A) 7 (Z)
rage_LV	_	Γ		STRATIGRAPHIE		_				É	СНА	NTI				Pro	f. du roc: m	P	of. d	e fir	1:	35,2	28 m
Log_Foi	R - pi	н. Н	E	STRATIGINALITIE	T		(E)					%	E	Γ	Exar	nens		<u>гос</u>	ENEUR	EN E	AU ET	LIMITI	ES (%)
r vinLog	ONDEU	ONDEU	F m	DESCRIPTION DES SOLS ET DU ROC		SOLES	D'EAL	e et Néro	s-ÉCH.	'AT	IBRE	RATIO	s/150m	u RQD	orga	ano.	RÉSULTATS	;	20 40	₩p 	₩ ⊕ 080 C	WL 	120
\Style_</td <td>PROF</td> <td>PROF</td> <td>LÉVA PRO</td> <td></td> <td></td> <td>SYMI</td> <td></td> <td>NUN</td> <td>sou</td> <td>Ē</td> <td>CAL</td> <td>CUPÉ</td> <td>coup</td> <td>0N.</td> <td>eur</td> <td>leu</td> <td></td> <td>RÉS</td> <td>STANC</td> <td>E AU</td> <td>CISAI</td> <td>LEME</td> <td>NT (kPa</td>	PROF	PROF	LÉVA PRO			SYMI		NUN	sou	Ē	CAL	CUPÉ	coup	0N.	eur	leu		RÉS	STANC	E AU	CISAI	LEME	NT (kPa
Ŷ			Ē				z					RÉ	q		РО	Vis		2	0 40) 60) 80	100	120
S.L.	45-			Dépôt argileux probable.													N _c = 7	•			-		
	46	-14															N _c = 6	•					·
	47-																N _c = 7	•					
	48-																N _c = 8	•					
	49	-15															N _c = 7	•					
	50																N _c = 9	•				1	
	51																N _c = 8	D					
	52-	-16															N _c = 8	•					
	53																N _c = 8	•					
	54																N _c = 9	•					
	55-																N _c = 9	•					
= 1 : 46	56	-17															N _c = 9	•					
erticale =	57-					1											N _c = 11	•					
Échelle v	58-																N _c = 10	10					
	59	18															N _C = 10	•	·····		1 - 1	+-	+++++
	60																N _c = 12	•					E.
	61-																N _c = 12	•					
	62	19															N _c = 12	•	+ • • • •				
	63																N _c = 11	•					
	64													ŝ			N _c = 11	•					
	65	20															N _c = 15	•	·				
	66-																N _c = 14	•					
	67-																N _c = 14	:•					
	68																N _c = 14	•					
	69	21															N _c = 13	0					
	70-																N _c = 16	•					
3.2009	71 Re	mai	rques:	76-78-578						1000							N _c = 17	0					
1.1 04.0																							
Ge-66 R	Ту	pe c	de forag	je: Tarière				Éq	uipe	mer	nt de	fora	age: D-5	50									
-60-03	Pré	épai	ré par:	M. Desmarais, tech.			Vérifié	par: O	. Ar	sen	ault	ing	1. OV	4.			2013-07-17 Pa	ge:	3		de	5	5

-17 12h	Γ				Clien	t :											RAPPOR	r de	EF	OR,	AGE
nmé le : 2013-07				VM		F	Parc é	eolier	י P s.e	ier e.c	re-(de-	Saur	el			Dossier n°: Sondage n°: Date:	P-00	0035	39-0- PS 2013	01-101 5-10-13 3-05-30
ty- Impi	F	Proje	et: Par	rc éolien Pierre-de-Saurel - É	tude g	géo	technic	que								Coc	ordonnées (m):	Nord		50915	87,5 (Y)
N_FR.S	E	ndr	roit: Yar	maska, Québec												MT Géo	M Nad83 Fuseau 8 odésique Él	évation		3490 2	28,9 (X) 1 ,37 (Z)
ge_LVI	L	1								<u> </u>						Pro	f. du roc: m	Prof	. de f	in:	35,28 m
g_Fora	īd -	E		STRATIGRAPHIE			٤ ٤			E		NTI %			L						MITES (%)
N'LogLo	DEUR	DEUR	I-NO	DESCRIPTION DES		LES	EAU TE	Шâ	CH.	F	RE	VUIL	50mr	ROD	org	mens ano.			wp H		wL —
vie_LVA	OFON	OFON	ATIC	SOLS ET DU ROC		MBO	AU D'	YPE UMÉI	US-É	ÉTA'	ALIB	PÉRA	1/sdn	I no ,			RÉSULTATS	20	40 0	30 80	100 120
X ISt	H	PR	ÉLÉY			sγ	NIVE	ΗZ	so		S	RÉCU	p col	N	Ddeui	/isue		RÉSISTA OU P	ANCE A	J CISAILI ATION D'	LEMENT (kPa YNAMIQUE
							_						z			~		20	40 6	50 80	100 120
S.L	72	-22		Deput argineux probable.			8										N _c = 15	•	, L		
	73	ł					8		1								N _c = 16	•			
	74																N _c = 15	•			
	75	ŀ															N _c = 15			•	
	76	-23															N ₂ = 17		•••••	•••••	• • • • • • • • • • •
	77.	-															N = 19				
	70	-															N _C = 10				
	78	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $																			
	79	$ \begin{array}{c} $																			
	80- $N_c = 18$ $N_c = 19$ 81- $N_c = 19$ $N_c = 19$ 82-25 $N_c = 19$ $N_c = 19$ 83 $N_c = 19$ \bullet																				
	81-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
ц.	80 - $N_c = 10$ $N_c = 18$ 81 - $N_c = 19$ $N_c = 19$ 82 -25 $N_c = 19$ $N_c = 19$ 83 $N_c = 19$ $N_c = 19$															••••					
= 1 : 46	83-	$N_{c} = 18$ $N_{c} = 19$ $N_{c} = 19$ $N_{c} = 19$ $N_{c} = 19$ $N_{c} = 19$ $N_{c} = 19$ $N_{c} = 19$ $N_{c} = 19$ $N_{c} = 19$														•					
verticate	84-		25 $N_c = 19$ $N_c = 19$ $N_c = 19$ $N_c = 19$ $N_c = 20$														N _c = 20	•			
Échelle	85	-26															N _c = 22	•			
	86																N _c = 23	•			
	87-																N _c = 26			i I I	
	88																N _c = 22	•			
	89	-27															N = 25				
	00																N - 26				
	30	8														5	N _C - 20				
	911	20															N _c = 24			1	
	92-	20															N _c = 26		1		
	93-																N _c = 29	•			1. The second second second second second second second second second second second second second second second
	94																N _c = 27	•	19. T		
	95	-29															N _c = 28				
	96																N _c = 31	•			4
600	97	2															N _c = 28	•			
94.03.2(Re	ema	irques:																		
36 R.1 (<u>*</u>					12								
09-Ge-6	Ту	pe (de foraç	ge: Tarière			MARY	Eq	uipe	mer	nt de	e for	age: D- !	50 24-					,		
ч Ч	Pr	epa	ire par:	M. Desmarais, tech.			verifié	par: O	. Ar	sen	ault	, ing	g. Ø			1	2013-07-17 Pa	age:	4	de	5

Échelle verticate = 1 : 46

-17 12h	Γ				Clien	it :											RAPPOR	DEI	FORAG	E
imé le : 2013-07				V M		F	'arc é	olier	ו P s.	ier e.c	re-(;.	de-	Saure	əl			Dossier n°: Sondage n°: Date:	P-0003	1539-0-01-1 PS-10- 2013-05-	01 13 30
d_FR sty- Impr	P	Proje	et: Par	rc éolien Pierre-de-Saurel - É maska, Québec	iude (géo	technic	ļue								Coc MTI Géo	ordonnées (m): M Nad83 Fuseau 8 odésique Élé	Nord Est evation	5091587,5 349028,9 21,37	(Y) (X) (Z)
IN1_agu		1	T									-				Pro	f. du roc: m	Prof. de	e fin: 35,28	3 m
g_Fora	īd -	E	F	STRATIGRAPHIE			Ê		<u> </u>	E		N11	ELONS E	Ι					EN FAU FT LIMITES	- (%)
'T VMIL og Le	ONDEUF	ONDEUF	TION - r	DESCRIPTION DES SOLS ET DU ROC		BOLES	I D'EAU DATE	JE ET MÉRO	S-ÉCH.	TAT	IBRE	ERATION	s/150m	ou RQD	orga	neris ano.	RÉSULTATS	20 40	p W WL 	120
X:\Style_	PROF	PROF	ÉLÉVA PRC			SYM			sou	Ψ	CAI	RÉCUPI	lb coup	N	Ddeur	/isuel	Badoord/BErtherniteour exects	RÉSISTANCI OU PÉNÉ	AU CISAILLEMEN	T (kPa) XUE
							~						z		0	>		20 40	60 80 100	120
S.L.	99			Dépôt argileux probable.													$N_c = 28$ $N_c = 38$	•	*********	
	100																N _c = 35	•		
	101																N _c = 31	•		
	102	-31															N _c = 31	•		
	103	ŀ															$N_{c} = 32$	•		
	105-	-32															$N_c = 32$ $N_c = 32$			
	106-																N _c = 32	•		
	107-	-											2				N _c = 43	•		
	108-	-33	-11,55 32,92	Dépôt granulaire probable.	1												N _c = 41			
1:46	109																N _c = 61		•	
verticale =	110																$N_c = 76$ $N_c = 98$			
Échelle	112	-34															N _c = 94			
	113																N _c = 98		•	10 July 10
	114-																N _c = 95	1	•	
	115	-35	-13,91														N _c = 99	·• •• •• • • • • • • •	•	
	116		35,28	Refus sur sols très denses à une profondeur de 35,28 m.	e												N _C - Nellas			
	118	-16																		
	119	30																		
	120							8												
	121-	-37																		
	122																			- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
	123																			
2009	124- Re	ma																		
R.1 04.03			4000.																	
Ge-66 F	Ту	pe	de foraç	ge: Tarière				Éq	lnibe	emei	nt de	e for	age: D- {	50						
60-03	Pr	épa	ré par:	M. Desmarais, tech.			Vérifié	par: C). Ar	sen	ault	, inç	g. 04	+ •			2013-07-17 Pa	ige: 5	de 5	

-17 12h	Γ				Clie	ent :											RAPPOR	TC	E F	-OR	AGE		
2013-07				VINI		F	Parc	éolie	n P	lier	re-	de	Saur	el			Dossier n°:	P-	0003	539-0	-01-101		
mé le : .		-							s.	e.c							Sondage n°: Date:			201	S-11-13 3-05-27		
vdul -A	P	Proje	et: Pa	rc éolien Pierre-de-Sau	irel - Étude	e géo	techni	que								Co	ordonnées (m):	No	rd	5091	041,9 (Y)		
.VM_FR.st	E	Indr	roit: Ya	maska, Québec												MT Gé	M Nad83 Fuseau & odésique Éle	évatio	st on of do	348 fin:	907,8 (X) 22,16 (Z)		
orage_l	É	tat	des éc	chantillons							Ex	ame	ns orga	nole	eptie	que	s sur les sols:			un.	40,93 11		
gLog_F	E	/	🛛 Int	act Remanié		Perdu		c	arotte	Э			c	As Ddeur:	pect Inex	visue cistan	I: Inexistant(I); Dissémine te(I); Légère(L), Moyenn	é(D); 1 e(M);	mbibé(II Persista	vi) Inte(P)			
NMIT O	Т	ype	e d'éch	antillon	Abréviatio	ons																	
Style_I	C T	M	Carotti Tube à	er fendu a paroi mince	L Limites W, Limite	s de co de liqu	onsistance uidité (%)	9	М.О. К	. Mat Per	tière d méab	organi oilité (i	que (%) cm/s)				 Niveau d'ea N Pénétration 	au n stanc	ard (Nb	coups/3	00mm)		
:X	P	s	Tube à	a piston fixe	W _P Limite	de pla	slicité (%)	PV	Poie	ds vo	lumiq	ue (kN/m³)				N _c Pénétratior	dyn.	Nb cou	ps/300mr	m) •		
Ŀ.	С Т.	A	À la tai	arottier rière	I _P Indice	de pla de liqu	sticité (% uidité)	A U	Abs Cor	npres	on (I/n ision i	nin. m) uniaxiale (N	/Pa)			o' _P Pression de TAS Taux d'agre	e préce essivite	nsolida des so	tion (kPa Is	1)		
S.	M		À la ma	ain	W Teneu	r en ea	au (%)		RQD	Indi	ce de	qual	lé du roc (%)			Résistance au c	isaille	nent	inet.	raone		
	P	w	Carotti	er LVM	S Sédime	entom	étrie	ne	PL	Pre	ssion	limite	, essai pre	ssiom	nétriqu	Je (kF	Pa) C_u Inlact (kPa))		و ^م مرز ∎ ▲	8° I		
	S	G	Sol gel	é	R Refus	à l'enfo	oncement		E _M	Moc	dule p dule c	ressi le réa	ométrique (ction du ro	(MPa)	a)		C _{un} Remanié (k	(Pa)]		
					PDT Poids of	des tig	es		SP ₀	Pote	entiel	de sé	grégation	(mm²/	u) H ℃)	ē.							
	- pi	Ē		STRATIGRAPHI	E	T	Ê		r	É		NTI	LLONS	T	1			ESS	AIS				
	DEUR	DEUR	2 E	DESCRIPTION D	ES	ES	EAU (۲	Ĥ.		ш	LION	20mm	aD	Exar org	nens ano.		TE	NEUR EI Wp 	VEAUET	LIMITES (%) WL		
	DFON	DFONI	ATIO ROF	SOLS ET DU RO	DC	MBOI	I'D D'	YPE E JMÉF	ùs-É	ÉTAT	ALIBF	PÉRA'	ps/1	OU F			RÉSULTATS	2	0 40	60 80	100 120		
	PRC	PRO	ÉLÉV			SYI	IIVE A	Γž	So		0	RÉCUI	p con	"N	deur	isuel		RÉSI	STANCE J PÉNÉT	AU CISAII	LLEMENT (kPa) DYNAMIQUE		
	_		22,16	Opto and under with available			~						Z		0	>		2	0 40	60 80	100 120		
	1-		0,00	des traces de sable, brui	avec 1 à	1.		CE-1		\mathbb{N}	в	49	1-2	5			N = 3						
		-		gris-brun, saturé à partir	de 1,5 m.	1%		01-1					3-6				N _c = 5	[
g	2					11											N _c = 7						
9 = 1 : 4	3	-1						CF-2		Å	в	66	4-4 5-4	9			N _c = 9	•					
verticale	4-		8			(/)	8°,										N _c = 6	•					
Échelle	5					V.A	333			$\overline{7}$	9. 1						N _c = 7	•					
	6					11	¥ <u>+</u>	CF-3		X	в	82	1-1 0-0	1	- 0		W = 36.8	•	Θ				
	7.	-2	19,95			1	6.2 8			\square							N _c = 2 C _u = 45 kPa N _c = 1	•	···· · A·				
	8		2,21	Silt avec un peu d'argile a et un peu de sable à sab	à argileux leux,	1											N _c = 1	•					
	9			gris-brun à gris, saturé.		1		CF-4		X	В	74	1-0 1-2	1			N_ = 2						
	10	-3				1				<u>/ \</u>							C., = 65 kPa	A					
										\bigvee			2.1				C _{uR} = 5 kPa N _c = 4						
	11					1:1		CF-5		Å	в	41	1-0	2			N _c = 4 W = 23.4	• (2				
	12		18,42 3,74	Argile silteuse (CH), grise	, ,							8					N _c = 4 C _U = 25 kPa	•					
	13	4		saturée.			×	CE-6		\mathbb{V}	в	90	1-0	0			N _c = 2	P					
	14					$\langle A$				$ \land $	_		0-0	3			S N _c = 2	•					
	15					$\langle A$											$N_c = 2$	•	ст.,				
	16					VA.		CF-7		X	в	100	1-0 0-0	0			С ₀ = 19 кРа	• +		+ ©			
	17-	5				$\langle \rangle$				\square							W = 77.1 W ₁ = 57	•					
5003						VIA				\times							W _p = 20 N _c = 2						
04.03.	He	ema	rques:																				
-66 R.1	TV	ne	de fora	de: Tubade NW/NO por	rotation			É	wing	me	nt d	e for	ade. D.	50									
-09-Ge	Pre	he (éus	ré nar:	M. Desmarais tech	rotation	Τ	Vérifié	Dar. C	, Δι), Δι	sen	aul	e ior		t.			2013-07-17 P	ade.	1	dh	6		
S L		spa	μαι.	2001101013, 10011.		_	, or me	. p.a., C				.,	. UF	•	_			-90.			Ŭ		
-17 12h	Γ				Client	:			C. Dedroy								RAPPORT	DE	F	OF	A	GE	:
-----------------	-------	--------	-----------------	--	--------	-------	---------	-----------------	-----------	--------------------	--------	---------	---------------	-------	------	------------------	--	-------------------------	----------------	---	---------------------------	----------------------	---------------
né le : 2013-07				VM		P	arc é	olier	י P s.	ier e.c	re-	de-	Saure	el			Dossier n°: Sondage n°: Date:	P-00	0035	i39-0 P 201	-01 S-1 3-0	-101 1-1: 5-2]	1 3 7
inqmi -	Р	roje	et: Par	rc éolien Pierre-de-Saurel - É	tude g	éot	technic	lne								Cod	ordonnées (m):	Nord		5091	041,	,9 (Y	')
LVM_FR sty	E	ndr	oit: Yar	naska, Québec												MT Géo Pro	M Nad83 Fuseau 8 odésique Élé f du roc: 38.02 m	Est vation Prof	de	348 lin [.]	907, 22,1 40	8 (X 6 (Z 93 n	() () n
orage		E		STRATIGRAPHIE			(É	CHA	NTI	LLONS					ESSAI	S		,		
gLog_F	H- HO	UR - L	E 			s	m) (m					% NC	E	۵	Exa	nens		TENE	UR EN Wp	EAU ET		/ES (%	6)
e_LVMUL0	FONDE	FONDE	ATION	DESCRIPTION DES SOLS ET DU ROC		MBOLE	N D'EA	/PE ET JMÉRO	US-ÉCF	ÉTAT	ALIBRE	PÉRATIC	lps/150	ou RQ	org	ano.	RÉSULTATS	20	40 	60 B) 10	0 120	0
X ISty	РВС	РВС	ÉLÉV PF			۶	AIVE/	ΈŻ	so		Ö	RÉCU	b cot	'n.	deur	'isuel		RÉSIST <i>A</i> OU P	NCE A ÉNÉTF	U CISA	LLEM DYNAI	ENT (k MIQUE	kPa) E
				A 11 11 (OLD)		_	-		_				z		0	>	N = 2	20	40	60 8) 10	0 120	D
S.L	19	-		Argile silleuse (CH), grise, saturée.				CF-8		Х	В	100	1-0 0-0	0			$N_{c} = 2$ $N_{c} = 2$ $C_{U} = 21 \text{ kPa}$ $N_{c} = 2$	•					
	20-	-6															N _c = 3	•	•••••				
	21-							CF-9		X	в	100	1-0 0-0	0			N _c = 3	•					
	22-																C _u = 23 kPa C _{uR} = 1 kPa	•					
	23-	-7						CE-10		\bigvee	в	100	1-0	0			N _c = 3 N _c = 3	•••••		+	• • • •	• • • • •	
	24									\triangle			0-0				N _c = 4	•					
	25					A				\bigtriangledown			1-0				N _c = 3 C _U = 24 kPa		1.1.1				
	26	-8			ľ	A		CF-11		Å	в	100	0-0	0			L W = 74.5	•		10			1
	27																$W_{L} = 61$ $W_{p} = 21$ $N_{c} = 4$						
	28					A											$N_c = 4$ $N_c = 4$ $C = 24 kP_c$						
1 : 46	29	9			V	A											$C_{UR} = 3 \text{ kPa}$ $N_c = 3$	•		+++++++++++++++++++++++++++++++++++++++			4-4-4
ticale =	30-					A		CF-12		X	в	100	1-0 0-0	0			N _c = 5	•					
chelle ver	31-									\square							$N_c = 4$	•					
чŬ	32	-10															$N_c = 5$					 -++-	
	34				V												$N_c = 5$	•			T		
	35					A											N _c = 6	•					
	36	11			V	A		CF-13		X	в	100	1-0 0-0	0			C _U = 29 kPa C _{UR} = 3 kPa	•	,				
	37-				V				ł	<u> </u>							$N_c = 6$	•	1				
	38					A											N _c = 6	•					
	39	12			V	A											C _U = 31 kPa N _c = 6	•	•				
	40-					A		05.14		\bigvee	Б	100	1-0	0			N _c = 7	•		1			-
	41-					A		01-14		\wedge			0-0				N _c = 8	•					
	42					A										8	C _U = 32 kPa C _{UR} = 2 kPa N _c = 6	•				1	
	43	13				1											N _c = 6	•	+ + + + +				
60	44-					1				1							N _c = 7	0					
04.03.2(Re	ma	rques:																				
e-66 R.1	Tv	De i	de forac	e: Tubage NW/NQ par rotati	ion			Éo	uipe	emei	nt de	e for	age: D-5	50									
0-09-Ge	Pre	épa	ré par:	M. Desmarais, tech.	511		Vérifié	par: O	. Ar	sen	ault	t, ing	1. <i>6</i> 1	A .			2013-07-17 Pa	ge:	2	de		6	
ш			16			-			_		_		-								-	-	

-17 12h	1				Client :											RAPPORT	D	EF	OR	AG	ìΕ
le : 2013-07		L				Parc	éolier	n Pi s.e	er e.c	re-	de-	Saure	el			Dossier n°: Sondage n°:	P-	0003	i39-0- Pt	01-1 5-11-	01 -13
brimé	_			•												Date:			2013	3-05-	-27
sty- In	Ρ	roje	t: Par	c éolien Pierre-de-Saurel - E	tude gé	otechni	que								Coc	ordonnées (m): M Nad83 Eusoau 8	No	rd st	50910 3489	41,9 07.8	(Y) (X)
M_FR.	E	ndr	oit: Yar	naska, Québec											Géo	odésique Élé	vatio	n	2	2,16	(Z)
ge_LV	_						- <u> </u>		ŕ	0114					Pro	f. du roc: 38,02 m	Pr	of. de	fin:	40,93	3 m
g_Fora	- pi	Ę	c	STRATIGRAPHIE	· · · · · · · · ·	Ē			E		4N11	E	1	_			E33	NEUR EN			S (%)
ut og Lo	DEUR	DEUR	n - N	DESCRIPTION DES	ES	EAU	۲. C	Ŗ	_	뛽	TION	50mr	gg	org	mens ano.			wp ⊢		WL	- (,
e_LVM	FON	FONI	ATIO OF.	SOLS ET DU ROC	ABOI	'D U	/PE I	US-É	ÉTAT	VLIBI	ÞÉRA	ps/1	OUF			RÉSULTATS	2	0 40	60 80	100	120
X:IStyl	PRC	PRO	ELÉV PR		SVI	IVEA	FZ	S		0	iécui	noo o	N.:	deur	suel		RÉSI	STANCE A	AU CISAIL	LEMEN	NT (kPa) QUE
			Ē			z					Ē	ž		0	Ņ		2	0 40	60 80	100	120
i i	45-			Argile silteuse (CH), grise, saturée.		λ			\bigvee			1-0				C _u = 34 kPa N ₂ = 8	•		10		
	46-	-14					CF-15		Å	в	100	0-0	0			L			 0		
	47-					1		ľ								W = 67.2 $W_{L} = 62$ $W_{L} = 20$					
																$N_{c} = 7$ $N_{c} = 9$		1.1			
	48	38				1										N _c = 7 C _u = 37 kPa					
	49	-15				1										N _c = 8	•				
	50					1	CE-16		\bigvee	в	100	1-0	0			N _c = 8	•			- 1	
	51-					1			$ \land $			0-0				N _c = 9	•				
	52-					2										C _U = 40 kPa N _c = 9	•			1	
	53	-16				A										N ₀ = 8			• • • • • • •		
	-					1										N O					
	54					1										$N_c = 9$ C = 40 kPa					
	55					1	CF-17		V	в	100	1-0 0-0	0			$N_c = 10$	•				
4	56	-17				1			$ \land $							N _c = 10	•				
nicale =	57															N _c = 10	•				
evelle ve	58-															N _c = 10	•				
E C	59	-18														$C_{U} = 41 \text{ kPa}$ N _c = 10					44.
																N - 12					
							CF-18		X	в	100	1-0 0-0	0			N _C - 12		H	- . .		
	61-															W = 66.1 W, = 69	•				
	62	-19														$W_{P} = 22$ N _c = 11	•	+	• •		
	63-					1										C _U = 46 kPa N _c = 12 N _c = 11	•				
	64					A										$N_c = 12$	•				
	65					1										C _U = 46 kPa No = 14					
		20					CF-19		X	В	100	1-0 0-0	0					• • • • • • • •		••••	
	00-							ŀ	\rightarrow						8	$N_c = 12$	Ī				
	67-															N _c = 13		1			
3	68					1										C _U = 48 kPa N _c = 14	•	•			
	69	21	-													N _c = 13	•	• • • • • •			• • • • • •
	70-						CF-20			в	100	1-0	0			N _c = 15	•				1
					V//	1			$\langle \rangle$			0-1									
	Re	ema	rques:																		
	-		1. 1				4				- (- ·		50								
	I y	pe	de toraç	ge: Tubage NW/NQ par rotati	on	14-16	É DOT		me	nt d		aye: D-	00			2013-07-17	ade.	0	de	6	
L	Pre	epa	re par:	M. Desmarais, tech.		veriti	e par: (J. Ar	ser	aul	t, ing	9. O	H.	•		2013-07-17 Pa	ige:	კ	ue		1

Ge-66 B.1 04.03.2009 FOLDS

-17 12h	6				Client	t :											RAPPORT	D	EF	:0	R/	٩G	ìΕ
primé le : 2013-07				VM		P	Parc é	eolier	ח P s.o	ier e.c	re-	de	Saure	el			Dossier n°: Sondage n°: Date:	P-0	003	539 2(-0-0 PS 013)1-1 -11- -05·	01 -13 -27
sty- Im	P	rojet:	Parc	c éolien Pierre-de-Saurel - É	tude g	géo	technic	que							(rdonnées (m): M Nad83 Euseau 8	Norc Est		509 34	9104 4890	1,9)7.8	(Y) (X)
'VM_FR	E	ndroi	t: Yam	aska, Québec											C	Géo	désique Élé	vation	f do	fin	22	2,16	(Z)
Forage_	ī	E		STRATIGRAPHIE			2			É	СНА	NTI	LLONS	_			. 88 100. 88,02 11	ESSA	IS			-0,30	<u> </u>
ogLog_	EUR -	EUR -	E - E	DESCRIPTION DES		ES	AU (m	۲ 0	Ŧ		_ш	% NO	mm	a	Exam	iens no.		TEN	EUR EI WF	N EAU			5 (%)
TIMAT 9	FOND	FOND	ATION OF I	SOLS ET DU ROC		IBOL	U D'E DATE	'PE E' IMÉR(JS-ÉC	TAT	LIBR	ÉRAT	ps/15(ou R(RÉSULTATS	20	40	60	80	100	120
X-ISIM	PRO	PRO	FB			SYA		Υ Π	sol		G	RÉCUP	p cou	N	deur	isuel		RÉSIST OU I	ANCE PÉNÉT	AU CI	SAILL ON DY	EMEN	IT (kPa QUE
				Arcilo sillouso (CH) oriso			2					-	Z		0	>	N - 14	20	40	60	80	100	120
S.L	72	-22		saturée.	ĺ												$N_c = 14$ $C_u = 50 \text{ kPa}$ $N_c = 14$						
	73-	2															N _c = 14		ł	č.			
	74					\square											N _c = 15	•					
	75-				ľ					∇			1-0				C _u = 53 kPa C _{ur} = 8 kPa N _c = 17	△	•			11	
	76-	-23						CF-21		Å	в	100	0-1	0			N _c = 16	•					
	77-																N _c = 16	•					
	78				ĺ	\square											C _U = 55 kPa N _C = 17	•	-	▲			
	79	-24				$\langle \rangle$											N _c = 17	•		++	+++•	+-	
	80-				l	$\langle \rangle$											N _c = 17	•		1			
	81-				ľ	Λ						8					N _c = 19 C _u = 25 kPa	•					8
46	82	25															N _c = 18	•		+ • • • •	+ • • • •	•••••	+
ale = 1 :	83				l												N _c = 19	•					
elle vertic	84				ľ	A											N _c = 20	•			- 27		1
Éche	85	26			ĺ			CF-22	ſ	\bigvee	в	100	0-0	2			N _c = 20	•		e			
	86				l				k	\square							L W = 66.7 W. = 71	•		İ		1	
	87																$W_p = 24$ $N_c = 21$ $N_c = 22$	•					
	88	27															$N_c = 23$	•	1		. 		
	89																N _c = 23	•					
	90-				ľ												N _c = 25	•					
	91-	20				A											N _C = 24	•					
	92	20									8						N _c = 24	•					
	93																N _c = 25	•					
	94							9									N _c = 25	•					
	95	29						CF-23		XI	в	100	0-0 1-1	1			N _c = 32	••••	•				
	96-								Ľ								N _c = 28	•					10.1 K.
3.2009	" Re	maro	ues:		V	1									_		N _C = 34						
8.1 04.05																							
Ge-66 R	Ту	oe de	forage	e: Tubage NW/NQ par rotati	on	-		Éq	uipe	me	nt de	e for	age: D- 5	50									
EQ-09	Pré	éparé	par: I	M. Desmarais, tech.			Vérifié	par: C). Ar	sen	ault	, ing	. 0	A	•		2013-07-17 Pa	ge:	4	c	le	6	

-17 12h	Γ				Client :										RAPPOF		EF	OR	AG	iE
imé le : 2013-07				VM		Parc	éolier	n Pi s.e	ier e.c	re-	de-	Saure	el		Dossier n°: Sondage n°: Date:	P-0	0035	39-0- PS 2013	01-1 5-11- 3-05-	01 13 27
iy- Impr	Р	roje	et: Pa	rc éolien Pierre-de-Saurel - É	tude géo	techni	que							С	oordonnées (m):	Norc	1	50910	41,9	(Y)
M_FR.si	E	ndr	oit: Yaı	maska, Québec										G	ITM Nad83 Fuseau éodésique	. 8 Est ∃lévatior	t 1	3489 2	07,8 2,16	(X) (Z)
age_LV	_	r	r			1	r		É	<u>сн</u> и	MTI			P	rof. du roc: 38,02	m Pro	f. de f	in:	40,93	3 m
Log_For	R - pi	H H	E	Smandharnic		E I					% N	E		Exame	ns	TEN	EUREN	EAU ET	IMITES	š (%)
<i>N</i> MIT og	NDEU	NDEU	- NOI	DESCRIPTION DES SOLS ET DU ROC	OLES	D'EA(ÉRO	ÉCH.	AT	BRE	RATIO	/150m	I RQD	organ	0. 	20	40 U		₩L — 100	120
IStyle_L	ROFC	PROFC	ÉVAT		SYMB	'EAU	ΠΥΡΙ	sous	ÉT	CALI	cuPÉF	sdno:	N., or	-	RESOLIAIS	RÉSIST	ANCE A	U CISAIL	LEMEN	T (kPa)
×	-	-	Ē			ž			2		RÉ	Ŋ		po s		20	PENETR 40 (ATION D 50 80	YNAMIC 100	JUE 120
S.L.	98-	20	-7,74	Sable et silt avec un peu d'argite											N _c = 41		•			
.,	9 9	-30		gris, saturé.											N _c = 56		•			
	100-														N _c = 70			•		
	101-														N _c = 80			•		
	102	-31													N _c = 91		• • - • • •	+-+	•	• • • • •
	103-														N _c = 92				•	
	104														N _c = 93	:			•	
	105	-32					CE 24		\bigvee	Р	10	21-23	37		N _c = 98				•	
	106						01-24		\wedge	D	43	14-11	57		AG, S N _c = Refus					
	107-																			
	108	-33																		
1:46	109																	11.1		
erticale =	110																1			
cchelle ve	111	-34																		
Ξ.	112																			
	113				/									2						
	114		-12,74	0.11	/															
	115	-35	34,90	Sable avec des traces de sill, gri saturé.	S,											•••••			1	++
	116																			
	117-																			
	118	-36															····		• • • • •	+++++
	119																			
	120-						CF-25		\mathbb{N}	в	16	3-3 3-4	6		AG	1				
	121	37					0	4	\square										•••÷	
1	122-																			
	123		5																	
03.2009	Re	ma	rques:		1997															
R.1 04.																				
9-Ge-66	Ту	pe (de foraç	ge: Tubage NW/NQ par rotati	on		Éq	uipe	mer	nt de	e for	age: D-5	50							
ů G	Pre	épa	ré par:	M. Desmarais, tech.		Vérifié	par: C). Ar	sen	ault	, ing	1. OV	7.		2013-07-17	Page:	5	de	6	

-17 12h	Γ				Client	:											RAPPOR	RT	D	E	F	=0)R	Α	G	Е
imé le : 2013-07				VM		P	Parc é	olier	n P s.e	ier e.c	re-	de-	Saure	el			Dossier n°: Sondage n°: Date:		P-	00	03	:53 :	9-0 P: 201	-01 S-1 3-0	-10 1-1 5-2)1 3 27
ly- Impi	Р	roje	et: Pa	rc éolien Pierre-de-Saurel - I	Étude g	éo	technic	que								Coc	ordonnées (m):		No	rd		50	3910	041	,9 (Y)
M_FR s	E	ndr	oit: Yaı	maska, Québec												MTI Géo	M Nad83 Fuseau odésique	i 8 Élév	atic	on			340;	907 2 2 , ⁻	,8 (16 (<u>, Z)</u>
ige_LVI			r			_				÷.	0114	AUTO				Pro	f. du roc: 38,02	m	Pr	of.	de	: fin	1:	40	93	m
og_Fora	id -	E	5	STRATIGRAPHIE			Ê			E		%	E		Eva	mone			<u>за</u> т			N E/	AU ET	LIMI	TES	(%)
NILogLi	DEU	DEUF	NOF	DESCRIPTION DES		LES	TE	RG ET	CH.	F	RE	ATION	150m	ROD	org	ano.					WI I	р 	÷	WL		
yle_LVI	OFO	OFON	VATI ROF.	SOLS ET DU ROC		MBC	AU D / DA	ΓΥΡΕ IUMÉ	I-SNC	ÉTA	ALIB	JPÉR/	./sdn	no "	-	-	RÉSULTATS	-	2	.0 	40	60	80) 10	0 1	20
X ISI	E	H H	ÉLÉ			S	NIVE	- Z	Š			RÉCI	Ab co	N .	Odeu	Visue		1	RESI	STA U PR	NCE ÉNÉ	TRAT	CISAI FION I	DYNA	MIQ	(kPa) JE
			45.00			1		al.	_				-					_	2	0	40	60	80) 10	0 1	20
S.L	125		38,02	Roc : alternance de siltstone		1		CF-26		٦٢	В	0	50 /8cm	R				Ì	•		• • • •	****	* 1 * *	• • • •		••••
	126	ł		(85%) et de calcaire gris-noir (15%). Litage horizontal. Bonne	e	~			1										ł							
	127			adhérence au niveau des conta lithologiques.	acts	X		CB-27			NQ	87		66			U= 39,5MPa								1	
	128	-39			1	N.				and the second							PV= 2044kin/11-		• +		+					
	120				1	N																				
	120	-			I	N		ui à																		
	130-				1																					
	131-	-40			1			00.00		C Alexandre	NO	100		64							····· 			• • • •		
	132-					~		CR-20		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100		04												
	133					~				Street w																
	134		-18,77	Fin du faraga à una profondaur	- -	X																				
	135	-41	40,93	40,93 m.	de																					
= 1 : 46	136-																									
134 135 136 137 138 139 140 141 142 -18.77 40,93 Fin du forage à une profondeur de 40,93 m. 136 137 138 140 141 142																										
chelle v	134 -18,77 -18,77 135 -18,77 136 -41 136 -41 136 -41 136 -41 136 -41 137 -41 138 -42 139 -42 139 -42 139 -42 139 -42 139 -42 140 -43 141 -43 142 -43																									
134 135 135 136 137 136 137 138 142 143 -18,77 40,93 m. Fin du forage à une profondeur de 40,93 m. 136 137 138 140 141 142 143 -18,77 40,93 m.																										
138 -18,77 -× -× 139 40,93 Fin du forage à une profondeur de 40,93 m. -× 136 -1 -× 137 -× 138 -× 139 -× 141 -43 142 -× 143 -×																										
9 135 40,93 m. 136 40,93 m. 137 138 138 42 139 141 141 43 143																										
137 137 138 140 141 142																										
	142-																									
	143	-																								
	144	-44																								
	145																									
	146																							ł		
	147												È												e i	
	148-	-45																	+					••••		
	140																									
	149														ŝ											
5009	150																									
04,03.2	Re	ema	arques:																							
-66 R.1	т	me	da foro	an Tubage NW/NO per reter	tion			Éa	wip	amo	nt d	e for	ade. D.	50												
-09-Ge-	I y Pr	éns	ue iora	M Desmarais tech		Т	Vérifié	par: C	, Δι	ser	naul	t. in	aye. D-:	A.			2013-07-17	Par	je:		6		de		6	
8 I	1.1	-he	no pai.	in boomana, com		1		·				-,	- U	• 1			·····				~				-	

-17 12h	[Cli	ent :							2				RAPPOI	RT	DE	FOF	AGE
2013-07							Parc	éolie	n P	lier	re-	de	Saur	el			Dossier n°:	Ρ	-000	3539-()-01-101
imé le :									S.	e.c							Sondage n°: Date:			P 201	'S-12-13 3-05-30
ty- Impr	P	roje	et: Pa	arc éolien Pierre-de-Sau	ırel - Étud	e géo	otechni	que								Co	ordonnées (m):	No	ord	5090	657,8 (Y)
LVM_FR.S	E	ndr	oit: Ya	ımaska, Québec												MT Gé Pro	M Nad83 Fusea odésique if. du roc:	18 ^t Élévati m P	Est ion Prof. d	348 e fin:	340,5 (X) 22,03 (Z) 30,76 m
Forage	É	tat	des éc	chantillons							Ex	ame	ns orga	anole	eptio	que	s sur les sols:		1		,
oglog_	Ł	//	🕖 Ini	tact Remanié		Perd	u 🗌	c	arotte	Ð			c	AS Ddeur:	Ine>	istan	l: Inexistant(I); Disser te(I); Légère(L); Moye	ninė(D); enne(M);	Persist	IM) tante(P)	
TAM'T	T	ype 5	e d'éch	iantillon	Abréviat	ions	oncietano		40	Mat	iàra (raani	2110 (%)				Viveau	d'0011			
:\Style	Т	M	Tube à	à paroi mince	W _L Limite	e de liq	uidité (%)	e	K	Peri	méab	vilité (c	cm/s)				N Pénétra	tion stan	dard (N	b coups/S	300mm)
^	P: C	SR	Tube à Tube c	à piston fixe	W _P Limite	e de pla	asticité (%	,) .)	PV A	Poic	ds vol	lumiqu on (l/m	ue (kN/m³) nin m)				N _c Pénétra	tion dyn. o de préc	(Nb cou	ups/300m	ım) ● ⇒\
; . .	Т	Α.	À la ta	rière	IL Indice	e de liq	uidité	<i>?)</i>	Ũ	Con	npres	sion u	uniaxiale (N	MPa)			TAS Taux d'a	agressivil	té des s	ols	a)
v)	M	A	À la m Tube li	ain ransparent	W Teneu AG Analy	ur en e se grar	au (%) nulométric	ue	RQD AC	Indie Ana	ce de Ivse i	e quali chimic	té du roc (14e	%)			Résistance a	u cisaille	ement	amet	solatone
	P	w	Carotti	er LVM	S Sédim	nentom	étrie		PL	Pres	ssion	limite	, essai pre	ssiom	étriqu	ie (kF	Pa) C_u Intact (k	Pa)		v 10	9°
	S	G	Sol gel	lé	R Refus VBS Valeu	i à l'enf ir au Bl	oncemen eu du sol	t	Е _м Е,	Mod Mod	dule p dule d	oressio le réad	ométrique i ction du ro	(MPa) c (MP	a)		C _{ur} Remani	é (kPa)		Δ	
			, 		PDT Poids	des lig	jes		SPo	Pote	entiel	de sé	grégation	(mm²/	H ℃)		1	William			
	ja -	Ę	-	STRATIGRAPHI	E	1	Ê	<u> </u>	T	É		NTI %		T				ESS	SAIS		
	DEUR	DEUR	L L	DESCRIPTION	DES	ES	EAU (۲. Q	н. Н		۳	LION .	50mm	ap	Exar org	nens ano.		T	ENEUR I W	EN EAU ET /p W ↓	LIMITES (%) WL
	PONI	PONI	ATIO IOF.	SOLS ET DU RO	00	MBOI	U D'I	/PE E JMÉF	us-é	ÉTAT	ALIBF	PÉRA')1/sd	ou P			RÉSULTATS		20 40	60 80	0 100 120
	PRC	PRC	ÉLÉV			SYA	IVEA	FZ	SOI		S	técur	o cou	"N"	deur	suel		RÉS	ISTANCI DU PÉNÉ	E AU CISA	ILLEMENT (kPa) DYNAMIQUE
			22,03				z					œ	ž		ō	Vi			20 40	60 80) 100 120
	-		0,00	Sols naturels : silt argile des traces de sable, bru	∌ux avec 1-gris à	1		OF 1		\mathbb{N}		66	1-2	E							
	1			grìs-brun, humide deven à partir de 0,9 m.	ant saturé	1		GF-1		А	В	66	3-2	5			N _C = 1	Ī			
	2-					1				$\overline{1}$							N _C = 6	•			
= 1:46	3	-1				1.7		CF-2		X	В	82	2-2 1-1	3			N _C = 6	•			·····
erticale	4		20,66			1.1.	858 1			\square							N _c = 7	•	1		
chelle vi	5		1,37	Silt avec un peu d'argile sable, gris-brun, saturé.	et de	Vi	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5										N _c = 4	•			
ŭ	6-					1.	S1 3	CF-3		X	в	66	1-0 1-1	1			W = 25.8		\odot		
	7	2	19.82			:/	e,			\square							$N_c = 2$ $N_r = 2$		•••••		
			2,21	Silt argileux avec des tra- sable oris saturé. Prése	ces de	14											N - 2				
				lits de sable.		1		CF-4		X	в	66	1-1 0-0	1			$N_{\rm C} = 3$			1	1
	9		19,05			1.1				\Box							N _c = 1	1		1	
	10	3	2,98	Argile et silt, gris, saturé.		VI				\backslash							N _c = 1	•			
	11							CF-5		X	в	92	1-0 0-0	0			N _c = 1	•		۲	6 - 19
	12					VIA				$\left(\right)$							W = 70.8 N _c = 1	•	a.		
	13	4				VA		CF-6		\mathbb{V}	в	100	0-0 1-0	1			N _c = 1	•			
	14		17,76							\square							N _e = 1				
	15		4,27	de pénétralion dynamique	n essai e au cône												N = 1				
				(pas d'échantillonnage). I argileux probable.	Jépôt				8								N _C = 1	Ī			
	16-	5														-	N _c = 1	.			
	17-																N _c = 2	•			
03.200	Re	ma	rques:														<u> </u>	•			
R.1 04																					
99-95-	Ту	pe d	de fora	ge: Tarière		,		Éc	quipe	emer	nt de	e for	age: D- :	50		//					
	Pre	épa	ré par:	M. Desmarais, tech.			Vérifié	e par: C	D. Ar	sen	ault	t, ing	n. 04	+ -			2013-07-17	Page:	1	de	5

Échelle verticale = 1 : 46

121 12h	6			Clier	nt :											RAPPOR	ΓD	EI	FOI	R	GE
rimé le : 2013-0.					F	Parc é	eolier	י P s.	ier e.c	re-(de-	Saure	el			Dossier n °: Sondage n °: Date:	P-	0003	539- 20	0-01 PS-1 13-0	-101 2-13)5-30
duj - finp	P	roje	et: Par	c éolien Pierre-de-Saurel - Étude	géo	technic	que							(Coo	rdonnées (m):	No	rd ot	509	0657	',8 (Y)
VM_FR.s	E	ndr	oit: Yan	naska, Québec											Géo	M Nad83 Fuseau 8 désique Élé	évatic	n		22,0	03 (Z)
orage_L1				STRATIGRAPHIE					É	СНА	NTI	LLONS			Prof	. du roc: m	Pr ESS	als	a fin:	30	,76 m
gLog_Fc	uR - p	UR - m	E		S	(m) U					% N0	E	6	Exam	nens		TE	NEUR E	EN EAU (ET LIMI WL	ITES (%)
TVMITO	ONDE	ONDE	TION F m	DESCRIPTION DES SOLS ET DU ROC	SOLE	D'EA	NÉRO	S-ÉCH	LAT	IBRE	RATIC	s/150	u RQ	orga	ino.	RÉSULTATS	2	0 40	e0 •		0 120
('IStyle_	PROF	PROF	LÉVA PRO		SYMI	VEAU / I	TYF	sou	Ξ	CAL	ÉCUPÉ	coup	oN	eur	laus		RÉSI				AENT (kPa
~			Ψ			Z					H	qN		ð	Vis		2	0 40	60	B0 10	0 120
S.L.	10			Dépôt argileux probable.												$N_c = 1$				i.	
	19	-6														$N_c = 2$	[
	20															$N_c = 2$					
	22															N - 2					
	23	-7														$N_c = 2$					
	24															N - 3					
	25															N = 3			-		
	26															$N_c = 2$			1	1	
	27-	-8														N _c = 4	•			+++++	
	28-															N _c = 3	•				1 - E
	29															N _c = 3					
= 1 : 46	30-	9														N _c = 4	•	+ + + + +	+-++++	••••••	*****
verticale	31															N _c = 4	•				
Échelle	32															N _c = 5	•				
	33	10														N _c = 4	•				
	34															N _c = 4	•				
	35	3													1	N _c = 5	•				
	36	11														N _c = 5	•				
	37				8											N _c = 5	•				
	38-															N _c = 5	•		T.		
	39															N _c = 5	•				
	40	12														N _c = 6	¢				
	41-															N _c = 6	•				
	42															N _c = 6	•				
	43	13														N _c = 6	•				
	44															N _c = 7	•				
4.03,200	Re	ma	irques:				1		L				L					.011	<u>rgul I</u>		11111
6 R.1 04								2.6			22	2004 ····									
09-Ge-6	Тур	oe o	de forag	le: Tarière		VANCE	Éq	uipe	eme	nt de	for	age: D-	50					0			5
ğ	Pré	pa	ire par:	M. Desmarais, tech.		verifië	par: O	. Ar	sen	ault	, ing	· 0	H.			2013-07-17 Pa	ige:	2	d	3	0

7.17 12h					Clien	it :											RAPPORT	D	E	FC)R	AG	ìE
mé le : 2013-0		L		VM		P	arc é	eolier	י P s.o	ieri e.c	re-(de-	Saure	el			Dossier n°: Sondage n°: Date:	P-	000	353	9-0- PS 2013	01-1 6-12- 6-05-	/01 -13 -30
uduu -	P	roje	et: Par	rc éolien Pierre-de-Saurel - É	tude	géo	technic	que								Coc	ordonnées (m):	No	rd	50	0906	57,8	(Y)
FR.sty	E	ndre	oit: Yar	maska. Québec												MT	M Nad83 Fuseau 8	E	st		3483 2	40,5	(X)
WAT-																Pro	f. du roc: m	Pr	of. d	e fin	1: ;	30,7	(2) 6 m
Forage	pi	E		STRATIGRAPHIE			(E			É	CHA	NTI	LLONS	<u> </u>	1			ESS	AIS				
LogLog.	EUR -	EUR.	E Z E	DESCRIPTION DES		ES	E AU (но	.н	3	щ	6 NOL	mm0	B	Exa org	mens ano.		TE	NEUR	EN E/ Vp	W ET I	.IMITE: WL	S (%)
WAT -	FOND	FOND	ATIO OF	SOLS ET DU ROC		IBOL	U D'E DAT	'PE E IMÉR	JS-É(ÉTAT	LIBF	ŕÉRAT	ps/15	ou R		Γ	RÉSULTATS	2	0 40	60	80	100	120
XIStyle	PRO	РВО	PR			SYA		ΈZ	SOL	-	CP	IÉCUF	o cou	"N	deur	suel		RÉSI	STANC U PÉNI	E AU	CISAIL	LEMEN	VT (kPa) QUE
			-				z					н	ž		0	5		2	0 40	60	80	100	120
S.L.	45-			Dépôt argileux probable.													N _c = 8	0					
	46	-14															N _c = 7	• • •		••••	• • • • •	• • • • •	
	47																N _c = 8	•		ļ			
	48					3											N _c = 7	•					
	49	-15															N _c = 8	•					
-	50-																N _c = 8	•					
	51																N _c = 8	•					
	52-				8												N _c = 9	•					
	53	-16															N _c = 9	•	+			• • • • •	+++++++++++++++++++++++++++++++++++++++
	54																N _c = 8						
	55																N _c = 10	•					
46	56	17															N _c = 9	0	•				++++++++
le = 1 :-	57																N _c = 11	•					
le vertica	58-																No = 10	•					
Échel	59	18															N _o = 10						
	60-																N. = 11	•					
	61-																N = 11		1			1	
																	N _C - 11						- 11 - 11
	021	19															N _c = 11	T.	•••••	111			
	63-																$N_{\rm C} = 12$						10.00
	64																$N_c = 12$						
	65-	20															N _c = 12		•••••				
	66																N _c = 13						
	67-													8			N _c = 15	•		10			
	68																N _c = 13				i L		
	69	21															N _c = 14	•					
	70																N _c = 15	••					
2009	71 Re	ma	raues:														N _c = 15	0					
1 04.03	0																						
Ge-66 R.	Ту	oe d	de foraç	ge: Tarière				Éq	uipe	emei	nt de	e for	age: D-5	60									
EQ-09-(Pré	épa	ré par:	M. Desmarais, tech.			Vérifié	par: C). Ar	sen	ault	, ing	g. <i>O</i> Y	7.			2013-07-17 Pa	ge:	3		de	5	

-17 12h	6				Clien	t :											RAPPOR	TD	EF	OR	AG	E
amé le : 2013-07				VM		P	arc é	eolier	n P s.e	ier e.c	re-0	de-	Saure	el			Dossier n°: Sondage n°: Date:	P-0	003	539-0 P 201	-01-1(S-12-* 3-05-;	01 13 30
ty- tmpr	Р	roje	et: Pa	rc éolien Pierre-de-Saurel - É	Étude g	géo	technic	que								Coc	ordonnées (m):	Nor	d	5090	657,8 ((Y)
M_FR.s	E	ndr	oit: Yaı	maska, Québec												MTI Géo	VI Nad83 Fuseau désique É	8 ⊏s lévatior	า	348	340,5 (22,03 ((Z)
age_LV	_	_	r	STRATIC DADUIE						É	<u>с П и</u>	NTI				Pro	f. du roc: r	n Pro	of. de	fin:	30,76	m
og_For	iq - R	E	E	STRATIGRAPHIE			E)					%	E		Exar	nens		TEN	NEUR EI	N EAU ET	LIMITES	(%)
WILOGL	NDEU	NDEU	NO E	DESCRIPTION DES		OLES	D'EAU	ET BO	ÉCH.	5	BRE	ATION	150m	RQD	orga	ano.			wp 			100
Style_LV	ROFO	ROFO	EVATI	30L3 ET 20 NOC		YMB(EAU E	TYPE	ous-	ÉT/	CALIE	UPÉR	/sdno	N" ou	1	el	RESULTATS	PÉSIS				
XII	□	∎	ÉLE			S	IVIN	_	S			RÉC	Nb c	F	Ode	Visu		00	PÉNÉT	RATION	DYNAMIQ	UE
Ŀ		-		Dépôt argileux probable.										-				20	40	60 80		20
ŝ	72	-22															N _c = 14	•		•••••	•••••	
	73-								3								N _c = 15	•				
	74																N _c = 16	•				
	75-	-23															N _c = 16	•				
	76-																N _c = 17	•				
	77-							8									N _c = 18	•		1		
	78-																N _c = 16	•				
	79	-24															N _c = 18	•	•••••	.	••••••	
	80-																N _c = 18			c.	ł	
	81-						0										N _c = 20	•			1	
	82-	-25															N _c = 19					
1:46	83-																No = 19					
icale =	84																N = 20					
ielle vert	00	-															N - 21					
Ęc	85	-26	-4,18														N _C - 21	 	• • • • •	• • • • •	• • • • • • • •	****
	86-		26,21	Dépôt granulaire probable.													$N_{\rm C} = 22$					
	87-																N _c = 52					
	88	-27															N _c = 35	 i	•		, 	++
	89																N _c = 32		•			
	90																N _c = 37		•			
	91-																N _c = 32		•			
	92-	-28															N _c = 44	•••••	•	+ + + + + + + 		
	93-																N _c = 54	1		• 11		
	94																N _c = 69					
	95	-29															N _c = 52					
	96-																N _c = 60			•		
g	97																N _c = 73			•		
1.03.200	Re	ema	rques:							[L	inge de	1					1111	. cantologi	an til bidd	1000
56 R.1 04	_							<u>.</u>														
09-Ge-f	Ty	pe o	de fora	ge: Tarière		1	Várifiá	Eq	uipe	eme	nt de	e lor	age: D-	50 2.			2013-07-17	200.	1	de	5	
ġ [epa	ue par:	w. Desmarais, tech.			venne	pai. C	/. Aſ	3611	ault	, mę	. Ur	v		, i		aye.	-		J	

-17 12h	6				Client :											RAPPOF	RT	D	ΕI	FC)R	A	GE	-
rimé le : 2013-07				VM		Parc	éolieı	n P s.	ier e.c	re-	de∙	Saur	el			Dossier n°: Sondage n°: Date:	1	P-0	003	353	9-0- PS 201:	-01 S-1 3-0	-10 2-1 5-3	1 3 0
y- Impi	Р	roje	et: Pa	rc éolien Pierre-de-Saurel - É	tude gé	otechni	que								Cod	ordonnées (m):	N	lor	ł	50)906	657,	8 (\	()
A_FR.st	E	ndr	oit: Yaı	maska, Québec											MT	M Nad83 Fuseau désique	i 8 Éléva	Es tior	t 1	:	3483	340, 2 2,0	5 () 3 (2	() Z)
ge_LVI		T -	r				r	(A) (195	<u> </u>						Pro	f. du roc:	m	Pro	f. de	e fin	:	30,	76 r	n
og_Fora	id -	E	F	STRATIGRAPHIE		Ē			E		N 11	ELLONS		Free			ES	5SA		EN E4		LIMIT	'ES (ª	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NILogLi	DEUF	DEUF	NO E	DESCRIPTION DES	ES	EAU	E &	CH.	F	끮	VIION	50mi	ROD	orga	ano.				W	'P 	w ①	WL	(-,
yle_LVI	OFO	OFON	VATIC ROF.	SOLS ET DU ROC	MBO	AU DA	'YPE IUMÉ	-SUC	ÉTA	ALIB	JPÉR/	1/sdn	no "	-	_	RÉSULTATS	-	20	40	60	80	100	0 12	0
ISI:X	E	H	ÉLÉ PI		S	NIVE	FZ	S		0	RÉCL	lb co		Ddeu	Visue		RI	SIST	PÉNÉ	TRAT	CISAIL	YNA	ent (Miqu	kPa E
,				Dépôt granulaire probable								2	-			N = 79	1	20	40	60	80	100	0 12	0
S.L	99	ł									3					N - 84			• • • •					11
	100								13							N _C - 04				E.				
	100		-8,73													N _c = 103								
	101-	-31	30,76	Refus sur sols très denses à une profondeur de 30,76 m.	9											N _c = Retus								
	102-																1							
	103-	ł																						
	104-	-																						
	105-	-32																			·····	· · · · ·	+++	••••
	106																			l e				
	107	-																						4
	108-	-33																						
Ģ	109	-																						
e = 1 : 4	110	-																						
vertical	1111																	-						1
Échelle	112	-34																			 T			
	110																							
	113																							
	114-	-25																						
	115	35																						
	116																	1						
	117-																							
	118-	36															• •		••••					
	119																							
	120																							
	121																							
	122	37									1													
	123																							
2 124-																								
03.2009	Re	ma	rques:]	1	1										111					Щ	
R.1 04.1																								
Ge-66	Ту	pe o	de foraç	ge: Tarière			Éq	uipe	mer	nt de	e for	age: D-	50											
EQ-09-	Pré	épa	ré par:	M. Desmarais, tech.		Vérifié	é par: C). Ar	sen	ault	, ing	g. 67A				2013-07-17	Page	:	5		de	!	5	

-	sm La	bo S.M. Inc.							R	APF	0	RT DE F	ORAGE
PF	ROJET:	Étude géotechnique - Parc	d'éoliennes									FORAGE: TF-	01-10
SI	TE: Yan	naska (Québec)										PAGE: 1 de 2	
LO	CALISAT	TION DU FORAGE:	92	stime; re	e = 18,	66"	X: 349	9621.7	Y: 509327	7.31	1	DOSSIER NO:	F101254001
ÉC	UIPEME	NT UTILISÉ: BK-51	rh 1	TUBAGE: NW	1			CAL	ROTTIER: NO	-		TECHNICIEN: S	imon Marois, tech
ÉL	ÉVATION	DE SURFACE (m):	(20.00)	NIVEAU D'EAU	l (m):	18.45					1	DATE DU FORA	GE: 2010-03-15
				SYN	BOLES ET	ABR	ÉVIATI	ON	N Z ==		-		
CF	: Cuillière	r è diaments	N: Indice de	pénétration st	andard (cou	ips / 30	0mm)	-	Reman	lé	2	Su intact	Su remanié
TM	1: Tube à j	parois minces	Su: Résistan	ce au cisaillem	ent au sciss	oups / somètre	(kPa)	11)	Intact		Nd	Cu cone intact	U cone remanie
TP	: Tube de	PVC	Cu: Résistan	ce au cisaillem	ent au cône	suédo	is (kPa	ı)	Corottó		WP	F [)	wi e W
PS	: Shelby &	& Piston	W: Teneure	n eau (%)						d'aqu	N	×	
TS	: Tube sh	elby	WP: Limite de	plasticité (%)					THIYCHU	0 040	P:	% passant le tam	is 80 microns
			Autres: v	oir la note expl	icative cl-jo	inte							
	0	COUPE STRATIG	RAPHIQUI	E		É	CHA	NTI	LLONS			RÉSULTA	rs d'essais
Dro	Élév.	Description de	es sols		# Type	Cal	Réc.	N	Coups			Autres	Échelle graphique
(m)	20.00	Élévation géodésique	C	Symbole	no Er		%	RQD	150 mm	Piezo		essais 10 :	20 30 40 50 60 70 80 90
	0.00	Sill sableux et argileux;	brun à gris.	MUM	CF-1	N	95	27	8-13-14-12	112	AC		
	0.61	Silt et argile à argile et s	ilt, un peu de sab	le; HHH	CF-2	в	84	10	3-5-5-5	NS	AG		0
		gris		1111	CE-4	R	70	3	1-1-2-2	201	1	1	
	2 17.90	Silt. un peu de sable et d	l'argile: gris	- MAN						118	4		
			1 11 9101 910	HU	CF-4	в	62	1	0-1-0-0	0-03			10
	3			1 M	CF-5	в	100	0	1-0-0-0	201			
	16.19	Silt sableux; gris		KIIII			41		/*				
	15.18					D	41						
1	5 4.82	Argile silteuse; grise. Pre	èsence de lamine	s title		в	87	3	1-2-1-1			3	•
		organiques. Consistance	e ferme à raide.		15-8		100				AG		* / •
6					CE-9	B	100		/*				
	.			RH					,				
1				HIL.	CF-10	B	100	1	1-1-0-1		*	目	
8				RAR	TS-11		100				AG		0
				RH2	CF-12	в	67	0	0-0-0-1				
9				1 AL	TA TO 10		05						
10				HU4	15-13		95					1	
10	1			KKK	CF-14	В	100	0	0-0-0-1			1	
11				1112	TS-15		100			日	AG		
					CF-16	в	95	0	0-0-0-1				
12					05-17		100		0.0.0.1				
				KIRK	ACEN		100		0.0.0.1	1唱			
13				MA				0	0-0-0-1		1		
14					CF-19	в	100	0	0-0-0-1	一目	AG		
										11			
- 15				RARK	-			.		目			
				ANA		в	100	1	U-0-1-0		1	Ŷ	
- 16				HH I					1	7.9			
- 17				HHIS	CF-21	в	100	1	0-0-1-0	2 2 2		4	
				an	-					7.7			
18				HAL.	-								
				11/2	CF-22	в	100	0	0-0-0-1	- R	AG	*	
19				111									-
20				111									
				HAN .									
21				HAL.					ł	2 0			
				HH2	CF-23	В	100	0	0-0-0-1	• •		4	
Rei	marques	: * Prise d'une cuillère fe	ndue sur un écha	ntillon perdu de	e tube shelt	by,	Vérifi	ié par	:	2 P. 3.	A	prouvé par :	11.
		aucun essai SPT		1		•	S. 0	Grave	line, ing.		5	6. Graveline, in	g. W
									-				

	sm La	abo S.M. Inc.						F	RAPPC	ORT D	E FORAGE	
PR	OJET:	Étude géotechnique - Parc d'éoliennes								FORAGE	TF-01-10	
SIT	E: Ya	maska (Québec)				. 040	001 7	V. 50000	7.04	PAGE:	2 de 2	
ÉQ	UIPEMI	ENT UTILISÉ: BK-51	TUBAGE: NW			345	CAF	T: 509327	7.31	TECHNIC	IEN: Simon Marois, tech	
ÉLI	ÉVATIO	N DE SURFACE (m): 20.00	NIVEAU D'EAU (m): 1	8.45					DATE DU	FORAGE: 2010-03-15	
		COUPE STRATIGRAPHIQ	UE		É	CHA	NTI	LLONS		RÉSU	LTATS D'ESSAIS	
Prot	Élév Prof	Description des sols et du roc	Symbole	Type no	Cal.	Réc.	N/ RQD	Coups 150 mm	Piézo.	Autres essals	Échelle graphique	0
23				CF-24	в	100	0	0-0-0-0				
26 27 28 29				CF-25	в	100	0	0-0-0-0		٩G		
30 - 31 32				CF-26	в	100	0	0-0-0-0				
33 34 35	-13.22 33.22	Sable silteux; brun à gris. Présence d'ur horizon de 300 mm de sable graveleux a 33,4 m.	à	CF-27	в	38 70	20	14-7-13-17 17-15-14-13				
- 36 37	-17.50		X	CF-29	в	46	27	21-8-19-22				111 IV 101 III III III
38 39	-19.85	Roc: Calcaire gris à stratification horizontale		CR-30	NQ	98	35		fc 77	:= 7,0MPa		111111111111111111111111111111111111111
40 41 42	39.85 -20.84 40.84	Shale argileux rouge à stratification horlzontale FIN DU FORAGE		CR-31	NQ	100	62		55	= 5,3MPa		
43 44 45												
40 47 Ren	arque	S: * Príse d'une cuillère fandue sur un éc	hantillon perdu de tr	ube shelfs		Vérifi	épar	:			par :	
. 1011		aucun essai SPT			"	S. 6	aravel	ine, ing.		S. Gravel	ine, ing	

-17 12h	Γ				Clie	ent :				8							RAPPOR	ΓD	EF	OR/	AGE
imé le : 2013-07				VM		I	Parc	éolie	n P s.	ier e.c	re- :.	de-	Saur	el			Dossier n°: Sondage n°: Date:	P-0	0035	39-0-0 TF 2013	01-101 -01-13 -05-23
ty- Impr	Р	roje	et: Pa	arc éolien Pierre-de-Sau	irel - Étud	e géo	otechni	que								Co	ordonnées (m):	Nor	ц Ч	509075	52,5 (Y)
LVM_FRS	E	ndr	oit: Ya	imaska, Québec												MT Gé	M Nad83 Fuseau 8 odésique Élé f. du roc: m	évation Pro	n n of. de f	34780 (iin:	08,5 (X) 0,00 (Z) 6,10 m
Forage	É	tat	des éc	chantillons							Ex	ame	ns orga	anole	eptic	que	s sur les sols:	5(D) - Im	bibá/íM		
-boybo	K	1		tact Remanié		Perd	u 🔄	c	arotte)			C	Ddeur:	Inex	islan	te(I); Légère(L); Moyenn	e(M); P	ersistan) le(P)	
TIMIT	T	ype -	d'éch	antillon	Abréviati	ons												275			
Style	T	M	Tube à	a paroi mince	W _L Limite	de liq	uidité (%)	9	м.о. К	Pen	méab	ilité (c	que (%) cm/s)				N Pénétration	au n standa	rd (Nb c	oups/30()mm)
×	P	s	Tube à	à piston fixe	W _P Limite	de pla	asticité (%)	PV	Poic	ds vol	lumiqu	ue (kN/m³)				N _c Pénétralior	n dyn. (N	lb coups	s/300mm)	•
Ŀ	C T	R A	À la ta	rière	I _P Indice	de pla de liq	uidité (%)	A U	Abs Con	npres	sion u	nn. m) Iniaxiale (N	MPa)			σ' _P Pression de TAS Taux d'agre	e precor essivilé (des sols	on (kPa) ;	
S.	м	A	À la m	ain	W Teneu	ır en e	au (%)		RQD	Indi	ce de	quali	té du roc (%)			Péolotopoo ou o	ionillom	ot	ilet .	Note
	TI P'	U W	Tube to Carotti	ransparent er LVM	AG Analy S Sédim	se grai nentom	nulométric étrie	lue	AC P.	Ana Pres	lyse (ssion	chimiq Iimite	que , essai pre	essiom	étriau	je (kF	Pa) C., Intact (kPa	Isamem	ent ර		
	S	G	Sol gel	lé	R Refus	à l'enf	oncement	t	EM	Mod	dule p	ressic	ométrique	(MPa)			C _{ur} Remanié (H	Pa)	۵		
					VBS Valeu	r au Bl des tic	eu du sol		E, SP	Mod	dule d	le réad	ction du ro	c (MP:	a) H°C)						
		_		STRATIGRAPH	E	400 119			010	É	CHA	NTI	LLONS	(ESSA	IS		
	JR - p	л- Яl	E			0	E D					% N	Ę		Exar	nens		TEN	EUR EN		MITES (%)
	NDEL	NDEL	NO	DESCRIPTION E	DES	DLES	O'EAI	ET O	ÉCH	Ŀ	BRE	ATIO	150n	RQL	orga	ano.		0			H
	OFO	ROFO	ROF	0010110011		/MB(AU I	IVPE	SUC-	ÉT/	SALI	UPÉA	sdn	l" ou	-	-	RESULTATS			<u></u>	
	PF	Ъ	ÉLÉ			S	NIVE		ŝ			RÉCI	db co	4	Odeu	Visue		OU	PÉNÉTR	U CISAILL ATION DY	EMENT (kPa) NAMIQUE
			0,00	Remblais : pierre tout-v	enant	-							-		_	-		20	40	50 80	100 120
	1		-0,41	gris-noir.			*	CF-1	A	X	РW	100							1		
	2		0,41	silt (SP-SM), brun à gris,	in peu de humide				В	$\left(\right)$							AG				
_	3-	-1		devenant saturé à partir	de 1,5 m.			CF-2		Х	н	74	12-7 8-10								
= 1 : 6:	4-							07.0		$\overline{\mathbf{A}}$	_		6-8						1		
erticale	5							CF-3		\triangle	в	41	5-9	13						- C	
a lelle ve	7	-2						CF-4		М	в	33	0-0 2	2				1		• • • • • • •	
Ę	8		-2,44	Pembleie seiltereileuw													C = 25 kPa				
	9		-2,75	peu de gravier et des tra	ces de			CF-5	A	X	в	8	9-4 3-2	7			C _{UR} = 3 kPa	T T		÷. 5	
	10	3	2,15	Sable, gris, saturé. Sols naturels : silt sable	eux avec	/ /			в	\square							W = 38.9			•••••	
	11			un peu d'argile (CL), gris	, saturé.	/		CF-6		М	в	57	1-0	0			C., = 27 kPa				
	12		-3,89			1/1				\triangle			0-0				-0				
	13	4	3,89	Argile silteuse (CH), grise saturée.	е,			0E 7		\bigtriangledown	Б	100	0-0	BDT				•	*****	~	· • • • • • • • • • • • • •
	14							CF-7		\triangle	Б	100	0-0	FDI			w = 77.9 C _u = 22 kPa			e	
	16					VIA				$\overline{}$							C _{UR} = 1 kPa				
	17-	5				VI		CF-8	ŝ	М	В	100	0-0	PDT				••••	• • • • • •	• • • • • • •	·+···
	18					VI											С _u = 19 кРа				
- 1	19					VIA		CF-9		Х	в	100	0-0 0-0	PDT			L			+ ⊙	
	20	6	-6,10 6,10	Fin du forage à une profe	ondeur de												W = 77.8 $W_{L} = 62$ W = 23				
	21-			6,10 m.													$C_{\rm U} = 20 \mathrm{kPa}$				
	22	,															U _{UR} – T KPa				
	24	'																			
33.2005	Re	ma	rques:																		
.1 04.0			12493																		
e-66 R	Ty	pe (de fora	ge: Tarière				Éc	quipe	emei	nt d	e for	age: Mo	obill-	Dril	I					
9-60-03	Pre	épa	ré par:	M. Desmarais, tech.			Vérifié	par: (). Ai	rsen	auli	t, ing	g. 0	Α.			2013-07-17 Pa	age:	1	de	1

17 12h					Clie	nt :											RAPPOF	RT DE	FO	RAGE
2013-07						F	Parc e	éolie	n P	ier	re-	de-	Saur	el			Dossier n°:	P-000)3539-	0-01-101
nmé le									э.	0.0							Date:		20	13-05-23
ty- Imp	Ρ	roje	et: Pa	rc éolien Pierre-de-Sau	irel - Étude	e géo	techni	que								Co	ordonnées (m):	Nord	509	0844,2 (Y)
_LVM_FR.s	E	ndr	oit: Ya	maska, Québec												MT Gé Pro	M Nad83 Fuseau odésique E f. du roc:	8 ⊑si Élévation m Prof. (de fin:	0,00 (Z) 6,80 m
Forage.	É	tat	des éc	chantillons							Ex	ame	ns orga	anole	eptio	que	s sur les sols:	iná(D): Imbibi	5/18.45	
ogLog_	Ľ		<u> </u> In	lact Remanié		Perdu	J	C:	arotte	Э			c	Ddeur:	Inex	istan	le(I); Légère(L); Moye	nne(D); Inition nne(M); Persi	stante(P)	
TNWIT	T	ype	d'éch	antillon	Abréviati	ons	nsistanos			Mal	iàra	ranni	aug (8/)				V Nivou d	000		
Style	т	M	Tube a	a paroi mince	W _L Limite	de liqu	uidité (%)		K.	Peri	méab	ilité (c	cm/s)				N Pénétrat	ion standard (Nb coups	300mm)
×	P	s	Tube a	i piston fixe	W _P Limite	de pla	sticité (%)		PV	Poid	ds vo	lumiqu	ue (kN/m³)				N _c Pénétrat	ion dyn. (Nb c	oups/300i	nm) •
Ŀ	Т	A	À la ta	rière	I _P Indice	de liqu	uidité		U	Con	npres	sion u	iniaxiale (N	MPa)			TAS Taux d'a	gressivité des	sols	a)
S	M	A	Àlam	ain	W Teneu	r en ea	au (%)		RQD	Indi	ce de	quali	té du roc (%)			Résistance au	cisaillement	THE T	Clabile
	P	w	Carotti	ransparent er LVM	S Sédim	entom	iulometriq étrie	ue	PL	Pres	ssion	limite	ue , essai pre	essiom	étriqu	Je (kl	Pa) C_u Intact (ki	°a)	Cha.	ja ^{0*} ■
	S	G	Sol ge	lé	R Refus	à l'enf	oncement		EM	Mod	dule p	ressic	ométrique	(MPa)			C _{un} Remanié	(kPa)	Δ	
					PDT Poids	des tig	eu du sol es		E, SPo	Pote	tule c entiel	le réad de sé	ction du ro grégation	ic (MP) (mm²/	a) H°C)	r.				
	oi	E		STRATIGRAPHI	E		2			É	CHA	NTI	LLONS					ESSAIS		
	UR - I	UR-I	Ę			s	L) U		-			% NC	E	9	Exai	nens		TENEUF	EN EAU E Wp W	T LIMITES (%) WL
	FONDE	FONDE	ATION DF n	SOLS ET DU R	DES DC	BOLE	U D'E/ DATE	PE ET MÉRO	IS-ÉCI	TAT	LIBRE	ÉRATIO	os/150	ou RQ	org	ano.	RÉSULTATS	20 4		
	PROI	PROI	ÉLÉV/ PRO			SYM		₽₿	sou	ι Π	CA	RÉCUP	p coup	N	deur	'isue!		RÉSISTAN OU PÉN	CE AU CISA	AILLEMENT (kPa) DYNAMIQUE
			0,00	Developing a ferre text			-						z		0	>		20 4	0 60 8	0 100 120
	1-		0,00 -0,41	gris-noir.	enant,			CF-1	A	X	РW	100					AG			
	2		0,41	Sols naturels : silt argie un peu de sable (CL), br	eux avec un-gris à	1.			В	$\left(\right)$										
	3	-1		gris, humide devenant sa partir de 1.2 m. Présence	aturé à e de lits	Vi		CF-2		М	н	82	7-9 7-6				AG, S		·····	
= 1:6	4			de sable.		11		05.0		\bigtriangledown	B	100	1-0							
erticale	6	-				1.1		GE-3		\square	Б	100	1-1				L W = 32.1 W = 30			
chelle v	7	-2				1.		CF-4		Х	в	82	1-0 1	1			W _P = 15 C _U = 37 kPa			
щ	8					1.				\square							C _{UR} = 4 kPa			
	9					1.		CF-5		Х	в	82	2·1 1-1	2			W = 25.6 C = 32 kPa	© ⊾		
	10	-3	-3,13 3,13	Argile silteuse avec des	traces de	1											00 02 11 0		+	
	11-			sable (CH), grise, saturé	e.			CF-6		X	в	100	0-0 0-0	PDT		i.	W = 74.3		o	
	12									\square							C _u = 20 kPa	▲ ▲		
	14	-4				VI		CF-7		M	в	100	0-0	PDT			OUR THE G			
	15					VA			8 0	\bigtriangleup										
	16	-5						CE-8		\bigvee	R	100	0-0	РОТ			C _U = 20 kPa			·····
	17-					11		0, 0		\triangle	U	100	0-0				L W = 79.4			
	18					VA			1	$\overline{\langle}$			0-0				$W_{\rm L} = 57$ $W_{\rm p} = 23$			
	19	-6				1.1		CF-9		\triangle	в	100	0-0	PDI			C _u = 20 kPa C _{UR} = 1 kPa			
	21																			
	22-		-6,80			1/2											C = 21 kPo			
	23	7	6,80	Fin du forage à une profo 6,80 m.	ndeur de												0 ₀ = 21 kFa	-		
50	24																			
04.03.2	Re	ema	rques:																	
6 R.1	2 <u>00</u> 00		iy ni					4	22		1.21	2			-					
9-Ge-f	Ty	pe o	de fora	ge: Tarière				Ec	quip	eme	nt d	e for	age: Mo	obill-	Dril	1	0040 67 47	D		
å.	Pre	épa	ré par:	M. Desmarais, tech.			Vérifié	par: C). A	rsen	naul	t, ing	g. O	ц, ,			2013-07-17	Page:	ı de	9 1

-17 12h	6					Clie	ent :											RAPPOR	TD	EF	OR	AGE
né le : 2013-07.				V	M			Parc	éolie	n P s.	ier e.c	re- :.	de	-Saur	el			Dossier n°: Sondage n°: Date:	P-0	0035	539-0- TF 2013	01-101 -03-13
Imprin	P	roje	i et: Pa	arc éolien	I Pierre-de-Sau	ırel - Étud	e géo	otechni	que								Co	ordonnées (m):	Norc	1	50909	39,4 (Y)
LVM_FR.sty-	E	indr	oit: Ya	ımaska, Q	uébec												MT Gé	M Nad83 Fuseau odésique É if. du roc:	8 Est lévation m Pro	t 1 f. de 1	3489 fin:	41,3 (X) 0,00 (Z) 1,83 m
Forage_	É	tat	des éc	chantillon	S		-					Ex	ame	ns orga	anole	eptic	que	s sur les sols:				
drod_	P	1	🕖 Ini	lact 🖂	Remanié		Perd	u	c	arotte	e			(As Ddeur:	pect v	visue distan	I: Inexistant(I); Dissémi te(I); Légère(L); Moyer	né(D); Imi ine(M); Pe	bibé(IM ersistan	l) hte(P)	
NMILO	T	ype	d'éch	antillon		Abréviat	ions															
Style_L	C	F	Carotti	ier fendu paroi mince		L Limite	s de c	onsistanci uidité (%)	8	M.O.	Mat Per	ière (máab	organi ilitá (c	que (%)				Niveau d' N Pénétrati	eau on slandar	d (Nh (00000/30	0mm)
X.16	P	s	Tube à	à piston fixe		W _P Limite	de pla	usticité (%)	PV	Poic	ds vo	lumiqu	ue (kN/m³)				N _c Pénétrati	on dyn. (N	b coup:	s/300mm) •
	C	R	Tube c	arottier		I _P Indice	de pla	sticité (%)	Α	Abs	orptio	on (l/m	nin.m)				o' _P Pression	de précon	solidati	on (kPa)	
S.L	M	A A	À la ta À la m	rière ain		W Teneu	i de liq ur en e	uidité au (%)		U RQD	Con Indi	npres ce de	sion u quali	uniaxiale (1 ité du roc (MPa) %)			TAS Taux d'ag	ressivité d	les sols	3	ire
	тι	U	Tube t	ransparent		AG Analy	se grai	nulométric	lne	AC	Ana	lyse	chimic	que				Résistance au	cisaillem	ant đ	againer 30	Jaio.
	P1	w	Carotti	er LVM		S Sédin	nentom	étrie		PL	Pres	ssion	limite	, essai pre	ssiom	nétriqu	Je (kF	Pa) C _u Intact (kP	a)		× =	
	50	G	Sol gei	le		VBS Valeu	r au Bl	oncemen eu du sol		Е _м Е,	Mod	dule p	le réa	ction du ro	(MPa) ic (MP	a)		C _{ur} Remanie	(KPa)	Δ	7	
					N 495	PDT Poids	des tig	les		SPo	Pote	entiel	de sé	grégation	(mm²/	'H ℃)		•				
	pi	E		SI	RATIGRAPHI	IE	-	Ê			É	CHA	NTI	LLONS	_	. —			ESSA	IS		
	- HI	EUR -	Е Е	.		150	្ល	AU (-	Ŧ			%N0	E	8	Exar	nens ano.		TEN	EUR EN Wp	EAU ET L	IMITES (%) WL
	OND	ONDE	TION F	1	SOLS ET DU R	OC	SOLE	D'E.	NÉRC	-Ê	TAT	IBR	RATI	s/150	n RG		1 	BÉSULTATS	20	40	60 80	
	ROF	ROF	ÉVA PRO				λME	EAU / D	TYP NUN	Sous	Ē	CAL	SUPÉ	dno	0N	늘	e		RÉSIST	ANCE A		EMENT (kPa)
		•	ÉL				0	NN		0			RÉC	Np c	:	Ode	Visu		OUR	PÉNÉTR	ATION DY	NAMIQUE
	-		0,00	Rembla	iis : pierre tout-v	enant,										-		-	20	40 1	<u> </u>	100 120
	1		-0,35	gris-noir					CF-1	B	X	PW	100							1		
	2		-0,55	traces d	largile, brun-gris.	, humide.				C	$\left(\right)$											
	3	-1	-0,71	Rembla	is : pierre tout-ve	enant,	1/		CF-2	B	Х	н	82	16-17 17-24				AG, S	- 10 -			
= 1 : 63	4		0,71	Sols na	turels : silt sable	eux et	12				$\overline{\Box}$			0.4				W = 20.8 W = 43				
ticale -	5		-1.83	argileux Présenc	(CL), brun-gris, l e de lits de sable	humide. e.	1.		CF-3		X	В	74	3-2	7			$W_{p} = 14$ W = 24.8	. •			
elle ver	6	-2	1,83	Fin du fo	orage à une profe	ondeur de	1.2.											24.0		i .		•••••
Êch	1			1,03 11.																		
	9																				5 ().	
	10	-3																		. .		
	11																					
	12																					
	13	4																	••••••	++-++		
	14											3								i i		
	15																					
	16	5									2									· ·		
	17																					
	18-																					
	19	6																		+++++		
	20-																					
	22																					
	23	7																		+++++	******	
_	24																					
03.200	Re	ma	rques:												L				111181			
.1 04.																						
e-66 R	Tvi	pe (de fora	ge: Tarièr	е				É¢	quipe	eme	nt d	e for	age: Mo	bill-	Dril	I					
0-09-0	Pré	épa	ré par:	M. Desm	arais, tech.			Vérifié	par: (D. AI	rsen	aul	t, inc	g. <i>(</i> 5	Α.			2013-07-17 F	Page:	1	de	1

-17 12h	[,			Cli	ent :											RAPPOR	TD	EF	OR	AGE
nmé le : 2013-07.				VI	M		1	Parc	éolie	n P s.	ier e.c	re- :.	de	-Saur	el			Dossier n°: Sondage n°: Date:	P-0	0035	39-0- TF 2013	01-101 -04-13 3-05-23
FR.sty- Imp	P	Proj	et: Pr	arc éolien Pie	erre-de-Sau	rel - Étud	e géo	otechni	que								Coo MT	ordonnées (m): M Nad83 Fuseau	Nord 8 Es	t t	50914 3490	50,5 (Y) 71,0 (X)
-MV1_e		nu		amaska, Que	Dec												Gé Pro	f. du roc: 1	n Pro) f. de f	in:	0,00 (Z) 1,83 m
_Forage	É	tat	des é	chantillons	1				-			Ex	ame	ns orga	anol	eptio	que	s sur les sols:	né(D):lm	hihé(IM	, ,	
roglog		<u></u>		tact	Remanié		Perd	u 🔄	c	arotte	3			(Odeur	ine>	distan	le(I); Légère(L); Moyen	ле(M); Ре	ersistant	te(P)	
WAT-	C	ype F	Caroti	ier fendu		Abreviat	ions es de c	onsistance	e	M.O.	Mat	ière d	organi	que (%)				Niveau d'	eau			
X.IStyle	Т	M	Tube	à paroi mince		W _L Limite	e de liq	uidité (%)		к	Pen	méab	oilité (c	cm/s)				N Pénétratio	on standar	rd (Nb c	oups/30	0mm)
	C	R	Tube	a piston fixe carotlier		W _P Limite	e de pla	asticité (% asticité (%)	A	Abs	as vo orplic	iumiqu on (l/m	ue (KN/m³) nin. m)				N _c Penétratio σ' _P Pression (in dyn. (N Je précon	b coups solidatio	./300mm on (kPa)	.) •
S.L.	T.	A	À la ta À la m	rière ain		l _L Indice W Tener	de liq	uidité		U BOD	Con	npres	ision u quali	uniaxiale (l	MPa)			TAS Taux d'ag	ressivité c	les sols		
1201	Т	U	Tube	ransparent		AG Analy	se grar	nulométriq	ue	AC	Ana	lyse	chimic	le du loc (lue	, 70)			Résistance au	cisaillem	ent ැ	arities ab	staton
	P ¹ S(W G	Carott Sol ge	ier LVM lé		S Sédin R Refus	nentom à l'enf	étrie oncement		Р _L Е.,	Pres	ssion dule p	limite pressio	, essai pre ométrique	essiom (MPa)	étriqu	ue (kF	Pa) C _u Intact (kPa C _{un} Remanié	ı) (kPa)	A		
						VBS Valeu	r au Bl	eu du sol		E,	Moc	iule d	le réa	ction du ro	c (MP	a)		UR Homano	((2)	Δ	U	
				STRA	TIGRAPHI	PDT Poids	des tig	les		SPo	Pote	entiel	de sé	grégation	(mm²/	H ℃)			ESSA	IS		
	IR - pi	н Н Н Н	E					Ē		Γ.			% N	Ę		Exar	nens		TEN	EUREN	EAU ET L	IMITES (%)
	NDEL	UDEL	NOL	DES	CRIPTION D	ES DC	OLES	D'EAI ATE	ÉRO	-ÉCH	AT	BRE	ATIO	/150n	ROL	org	ano.		20	₩p 		
	ROFC	ROFO	ÉVAT				YMB	EAU /D	ΠΛΡΙ	snos	ÉT	CALI	CUPÉF	sdno	N" oL	'n	e	RESULIAIS	RÉSIST		L	LEMENT (kPa
	-	Ľ	Ē				0	NIN					RÉ(Nb c	-	Ode	Vist		20	PÉNÉTR/	ATION DY	(NAMIQUE
		-	0,00	Remblais :	pierre tout-ve	enant,	/ 🗱		05.1	A	\bigtriangledown							AG		<u>fili</u>		
	2		0,10	Remblais :	silt sableux à	silt et			CF-1		\triangle	PW	100									
	3	-1	0,41	Sols nature	orun. e ls : silt argile	ux avec	1.		CF-2		X	н	66									
1:63	4-			un peu de s saturé à par	able (CL), bru rtir de 1,2 m.	un-gris,	14				$\left(\right)$			a l								
rticale =	5	-	-1,83				1.		CF-3		М	В	66	1-2 1-2	3		100	AG, S W = 34.2		0		
chelle ve	7-	-2	1,83	Fin du forag 1,83 m.	je à une profo	ndeur de													•••••		• • • • • • •	+++++++++++++++++++++++++++++++++++++++
чŬ	8	1																				
	9																				11	
	10	-3																			******	
	12																					i c.
	13	-4																				
	14																					
	15							3														
	17.	5																		••••	··· · · · · · · · ·	
	18																					
	19-																					
	20																					
	22																		2			E E
	23-	7									8										• • ••	·····
600	24																					
04.03.	Re	ema	rques:																			
00 H.I	Tw	00	do fora	an Tarière					ŕ	nuin-	ma	at al.	lar		hill	D11						
-03-60-	י yl Pré	pe épa	ré par:	M. Desmara	lis, tech.			Vérifié	par: C	Juipe D. Ar	sen	ault	e iora	aye: MC	A.,	ווזע	1	2013-07-17 P	age:	1	de	1

Échelle verticale = 1 : 63

121 Zh	Γ				Clie	nt :											RAPPOR	r de	EF	OR	AGE
imé le : 2013-07				VM		I	Parc e	éolie	n P s.	'ier .e.c	re-).	de-	Saur	el			Dossier n°: Sondage n°: Date:	P-0(0035	39-0-(TF 2013	01-101 -05-13 -05-30
LVM_FR sty- lmpr	P	'roje indi	et: Pa roit: Ya	irc éolien Pierre-de-Sau imaska, Québec	ırel - Étude	9 géo	otechni	que								Coo MT Géo	ordonnées (m): M Nad83 Fuseau 8 odésique Éle	Nord Est évation	f de fi	509196 34918 (in:	53,7 (Y) 37,4 (X) 0,00 (Z)
orage_	É	tat	des éc	chantillons						1	Ex	ame	ns orga	anole	eptio	que	s sur les sols:	1101	. ue	11.	1,00 m
gLog_F	P	7	🗌 In	tact Remanié		Perd	u 🗌	С	arotte	e			c	As Ddeur:	pect ine>	visuel distan	I: Inexistant(I); Disséminé te(I); Légère(L); Moyenn	;(D); Imb e(M); Pe	ibé(IM) rsistant	e(P)	
r VMILC	T	ype	d'éch	antillon	Abréviati	ons		0					10/1					000.000			
Style	C T	F	Carott Tube à	ier fendu à paroi mince	L Limites	s de co de liq	onsistance uidité (%)	9	М.О. К	. Mat Per	ière c méab	organı bilité (r	que (%) cm/s)				 Niveau d'ea N Pénétration 	au 1 standari	d (Nb cr	oups/300)mm)
X	P	s	Tube à	a piston fixe	W _P Limite	de pla	asticité (%))	PV	Poid	ds vol	lumiqu	ue (kN/m³)				N _c Pénétration	dyn. (Nt	coups/	/300mm)	•
.L.	T.	R A	À la ta	arottier irière	I _P Indice	de pia de liq	uidité)	A U	Con	npres	sion um	nin. m) uniaxiale (N	MPa)			or _P Pression of TAS Taux d'agre	Preconsessivité d	iolidaiio les sols	in (kra)	
S.	M	Α	À la m	ain	W Teneu	r en e	au (%)	-	RQD	Indi	ce de	quali	té du roc (%)			Résistance au c	isailleme	ent,	inet of	abite
	P	w	Carotti	ransparent ier LVM	S Sédim	e gran entom	nulometriq iétrie	ue	AC PL	Pre	ssion	limite	que , essai pre	ssiom	nétriqu	ue (kF	Pa) C_U Intact (kPa)	,	ore ال	, 3 ⁵⁰	
	S	G	Sol ge	lé	R Refus	à l'enf	oncement		E _M	Mod	dule p	pressio	ométrique	(MPa)			C _{un} Remanié (k	Pa)	Δ		
					PDT Poids	des liç	eu du sol jes		E, SPo	Pote	entiel	de sé	etion du ro	$(mm^2/$	'a) 'H°C)						
	ā	E		STRATIGRAPH	IE		2		-	É	СНА	NTI	LLONS	T	,			ESSA	IS		
	ONDEUR -	ONDEUR -	TION - m F m	DESCRIPTION I SOLS ET DU R	DES	SOLES	D'EAU (n DATE	VE ET MÉRO	s-ÉCH.	TAT	IBRE	RATION %	s/150mm	u RQD	Exar org	mens ano.	RÉSULTATS	20	UR EN E Wp 40 6	AU ET LI W V 	MITES (%) VL
	PROF	PROF	ÉLÉVA			SYME	NIVEAU	TYP	sous	Ē	CAL	RÉCUPÉ	Nb coup	oN	Odeur	Visuel		RÉSIST/ OU P 20	ANCE AU PÉNÉTRA 40 6	J CISAILL ATION DY	EMENT (kPa) NAMIQUE
04.03.2009 Echelle verlicale = 1 : 63	1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23- 24- Re	-1 -2 -3 -4 -5 -6 7	0,00 0,00 -0,18 0,18 0,30 -0,61 0,61 -1,83 1,83	Remblais : pierre tout-v gris-noir. Remblais : silt avec un sable et des traces d'arg Remblais : silt argileux traces de sable, brun-gri des traces à un peu de s brun-gris et humide deve gris-brun et saturé à part m. Fin du forage à une profe 1,83 m.	enant, peu de ile, brun. avec des s. aux avec able (CL), anant tir de 1,2 ondeur de			CF-1 CF-2 CF-3	ABC		PW H B	82	3-5 5-5 1-1 0-0	1			W = 37.0		40 6		
5 R.1 0																					
0-09-Ge-0	Ty Pre	pe épa	de fora iré par:	ge: Tarière M. Desmarais, tech.			Vérifié	Éo par: (quipe D. A i	emei rsen	nt de	e for t, in:	age: D-: g. Ø	50 DA	•		2013-07-17 Pa	age:	1	de	1

-17 12h	Γ				Clie	nt:											RAPPOF	RT D	EF	OR/	AGE
2013-07-							Parc	éolie	n P	ier	re-	de-	Saur	el			Dossier n°:	P-0	0035	39-0-0	01-101
amé le :		-							5.	e.c	•						Sondage nº: Date:			2013	-06-13 -05-31
ty- Impr	Ρ	roje	et: Pa	rc éolien Pierre-de-Sa	urel - Étude	e géo	otechni	que								Coc	ordonnées (m):	Nor	t t	509258	52,4 (Y)
LVM_FR.s	E	ndr	oit: Ya ı	maska, Québec												MT Géo Pro	M Nad83 Fuseau odésique É if. du roc:	8 Es Élévation m Pro	ı n ıf. de f	34913 (in:	38,3 (X) 0,00 (Z) 1,83 m
Forage_	É	tat	des éc	hantillons							Ex	ame	ns orga	anole	eptic	que s	s sur les sols:	iné(D): Im	bibé(IM)		
LogLog.	Ľ	1		act Remanié	Al	Perd	u 🔄	C	arotle			5-5 74-2	(Ddeur:	Inex	istan	te(I); Légère(L); Moyer	nne(M); P	ersistant	e(P)	
WA7 ~	C	ype F	Carottie	antillon er fendu	Abreviati	ons s de ci	onsistance	в	м.о.	Mati	ière c	organi	que (%)				V Niveau d	'eau			
XIStyle	TI	м	Tube à	paroi mince	W _L Limite	de liq	uidité (%)		к	Peri	méab	ilité (c	:m/s)				N Pénétrati	ion standa	rd (Nb c	oups/300)mm)
	C	S R	Tube a Tube ca	piston fixe arottier	W _P Limite	de pla de pla	isticité (% isticité (%)	A	Abs	orptic	on (I/m	ie (kN/m³) iin. m)				N _C Penetrati σ' _P Pression	de précor	ib coups isolidatio	/300mm) on (kPa)	•
.F	т	A	À la tari	ière	I _L Indice	de liq	uidilé		U	Соп	npres	sion u	iniaxiale (N	MPa)			TAS Taux d'a	gressivité	des sols		
"	M. TI	A U	A la ma Tube tra	iin ansparent	W Teneu AG Analys	r en e e arar	au (%) nulométric	ine	RQD	India Ana	ce de Ivse d	quali chimio	té du roc (iue	%)			Résistance au	cisaillem	ent j	ariaet so	20110
	P١	w	Carottie	er LVM	S Sédim	entom	étrie		PL	Pres	ssion	limite	, essai pre	ssiom	étriqu	ie (kF	^p a) C_u Intact (kF	Pa)	ۍ ا	ۍ ۲	
	S	G	Sol gelé	é	R Refus	à l'enf au Bl	oncement eu du sol		E _M F	Mod	lule p lule d	ressic e réa	métrique	(MPa) c (MP	a)		C _{un} Remanié	(kPa)	Δ		
					PDT Poids	des tig	les		SPo	Pote	entiel	de sé	grégation	(mm²/	u) H ℃)						
ĺ	ā	ε		STRATIGRAPH	lE	_	Ê		1 1	ÉC	CHA	NTI	LLONS		-			ESSA	ls		
	EUR-	EUR -	Е Е	DESCRIPTION	DEC	ŝ	AU (Ŧ			% NO	mm	a	Exan	nens ano.		TEN	EUR EN I Wp	EAU ET LI W V	MITES (%) VL
	IDNO		VTION DF I	SOLS ET DU F	ROC	BOLI	J D'E	PE E MÉRO	s-ÉC	TAT	LIBRI	ÉRATI	s/15(ou RC			RÉSULTATS	20	40 E	50 80	-1 100 120
	PROF	PROF	LÉVA PRC			SYM	VEAL	1 Z N	sou	Ē	CA	ÉCUPI	coup	"N"	leur	suel		RÉSIST	ANCE A	J CISAILL	EMENT (kPa) NAMIQUE
			√ш 0.00				Ī					æ	qN		õ	Vis		20	40 E	0 80	100 120
Ī	1		0,00	Remblais : sable avec	un peu de silt aris			CE-1	A	\bigtriangledown	PW/	100									
	2		0,25	humide.		P.			D C	\triangle		100									
	3	-1	0,38	de silt, brun, humide.	des traces	1		CF-2		X	н	66	5-3 3-2								
1 63	4		0,52 \1,22 /	Remblais : silt sableux	, gris-noir,	1/1				$\left(\right)$								1 ³ 1			
ticale =	5		1,22	Sols naturels : silt argi	leux avec	11,		CF-3		Х	в	57	1-1 1-1	2			W = 52.5		•		
elle ver	6-	2	1,83	humide.	aces de																·····
Êct	8-			sable (CL), gris-brun, sa	aturé à																
	9			Fin du forage à une pro	fondeur de																
	10	-3		1,83 m.															*****	• • • • • • • • • • • • • • • • • • • •	····
	11-																				
	12																				
	13	4																	••••		
	15-																				
	16	_												2							
	17-																		1		
	18-																				
	19	6																			
	20-																				
	22-									3											
	23	7																			
6	24																				
4.03.20	Re	ma	rques:																		
6 R.1 0																					
-Ge-66	Ту	pe o	de foraç	ge: Tarière				Éc	quipe	mei	nt de	e for	age: D- :	50							
3	Pre	épa	ré par:	M. Desmarais, tech.			Vérifié	é par: (D. Ar	sen	auli	t, ing	1. O	Α.			2013-07-17	Page:	1	de	1

17 12h	6					Clie	ent :											RAPPOR	T DE F	ORA	GE
те́ le : 2013-07-				\mathbf{V}			F	Parc	éolie	n P s.	Pier .e.c	re-	de	Saure	el			Dossier n°: Sondage n°: Date:	P-0003	539-0-0 TF-1 2013-	1-101 07-13 05-23
- Impri	Р	roje	et: Pa	rc éolien Pie	erre-de-Sau	rel - Étud	e géc	otechni	que								Co	ordonnées (m):	Nord	509315	6,7 (Y)
LVM_FR sty	E	ndr	oit: Ya	maska, Qué	bec												MT Gé Pro	M Nad83 Fuseau 8 odésique Éle f. du roc: m	B Est évation Prof. de	348936 0, fin: f	6,3 (X) , 00 (Z) 6,71 m
Forage	É	tat	des éc	hantillons								Ex	ame	ns orga	nole	eptio	que	s sur les sols:	á(D): Imbibá(II	M)	
ogLog.	Ľ			act	Remanié		Perd	1	C	arott	e			C)deur:	Inex	istan	te(l); Légère(L); Moyenn	e(M); Persista	nte(P)	
TVWI	T C	ype F	d'écha	antillon er fendu		Abréviati	ions is de cr	nsistance	-	мо	Mat	ière r	ornani	ave (%)				Niveau d'es	au		
Style	т	M	Tube à	paroi mince		W _L Limite	de liqu	uidité (%)		ĸ	Per	méab	ilité (c	cm/s)				N Pénétration	n standard (Nb	coups/300n	nm)
×	P	S	Tube à	piston fixe		W _P Limite	de pla	sticité (%)	PV	Poie	ds vol	lumiqu	ue (kN/m³)				N _c Pénétration	n dyn. (Nb coup	os/300mm)	•
Ŀ	C T	R A	À la tar	arottier ière		I _P Indice	de pla de liqu	uidité (%)	A U	Abs Con	npres	sion (I/m	nın. m) Jiniaxiale (N	/IPa)			σ' _P Pression de TAS Taux d'agre	e préconsolida essivilé des so	lion (kPa) Is	
S,	м	A	À la ma	in		W Teneu	ur en ea	au (%)		RQD) Indi	ce de	quali	té du roc ('	%)			B (-1-4	1	ist it	Ste.
	TI P	U W	Tube tr	ansparent er 1 VM		AG Analy S Sédim	se grar hentom	ulométriq étrie	ue	AC P.	Ana	ilyse i ssion	chimic limite	ue essai pre	ssiom	étria	ie (kF	Pa) C. Inlact (kPa)		ran. abor	
	S	G	Sol gele	5		R Refus	à l'enf	oncement		EM	Mod	jule p	ressio	ométrique ((MPa)	ounqu	ie (ni	C _{UR} Remanié (k	(Pa)		
						VBS Valeu	r au Ble	eu du sol		E,	Mod	dule d	le réa	ction du ro	c (MP	a)					
				STR		PDT Poids	des tig	es		SPo	Pote	CHA	de se	gregation	(mm²/	H °C)	0		ESSAIS		
	R - pi	H - H	ε	0117			Τ	Ē					%	E		Evar	nens		TENEUR EI	I EAU ET LIN	ITES (%)
	DEU	DEUI	NO E	DES	CRIPTION D	ES	LES	EAU	监요	CH.	F	쀭	VIION	50m	RQD	org	ano.		Wp H	₩ ₩L 	I
	DFON	DFON	ATIC	SO	LS ET DU RO	DC	MBO	ND DA	VPE UMÉ	US-É	ÉTA'	ALIB	PÉR/	l/sdi				RÉSULTATS	20 40	60 80 1	00 120
	PRO	PRC	ÊLÉV				SYI	IVE/	ΗŻ	so		Ũ	ÉCU	100 cor	"N	deur	suel		RÉSISTANCE OU PÉNÉT	AU CISAILLE RATION DYN	MENT (kPa) AMIQUE
			0,00					z					Ľ.	ž		Ő	i>		20 40	60 80 1	00 120
chelle verticale = 1 : 63	1- 2- 3- 4- 5- 6- 7-	-1	-0,25 0,25 -0,41 0,41	calibre app: minier), gris Remblais : gris-noir. Sols nature des traces o à gris-brun, saturé à par	arent 0-20 mr se. pierre tout-ve els : silt et arg de sable (CL) humide deve rtir de 0,9 m.	n. (résidu enant, jile avec , brun-gris mant			CF-1 CF-2 CF-3 CF-4	BC		PW H B	100 57 49 67	8-10 12-13 1-1 1-1 1-0	2			W = 50.0 C _U = 14 kPa C _{UR} = 1 kPa	∧ ▲ [©])	
Ψ	8- 9 10-	-3	2,21	Silt argileux peu de sabl Présence d	avec des trad le (CL), gris, s e lits de sable	ces à un saturé. e et de silt.			CF-5			в	50	1-0 0-0	0			W = 37.5 C _U = 27 kPa	▲ ⊙		· · · · · · · · · · · · · · · · · · ·
	11-	4							CF-6		$\left \right\rangle$	в	100	0-0	U			C _U = 22 kPa C _{UR} = 1 kPa	▲ ▲		
	14- 15-		-4,50 4,50	Silt sableux	avec des trac	ces			CF-7		Å	в	100	0-0	0			L W = 32.8 $W_{L} = 26$ $W_{p} = 16$ C = 41 kPa	H⊙ ▲		
	16- 17-	-5	-5,21 5,21	Argile et silt	avec des trac	ces de			CF-8		Å	в	82	1-2 3-2	5			W = 23.3	•		
	18- 19- 20- 21-	-6		sable (CH),	gris, saturé.				CF-9 CF-10		X	B		1-0 0-0 1-0 0-0	0			C _U = 23 kPa C _{UR} = 1 kPa W = 57.5	▲ ·		· · · · ·
600	22: 23: 24:	7	-6,71 6,71	Fin du forag 6,71 m.	e à une profo	ndeur de	<u> ///</u>											С _U = 28 кРа	▲		
04.03.2	Re	ema	rques:																		
66 R.1	т								<u> </u>			nt '			L	P					
09-Ge-	I y	pe o	de toraç	ge: Tarière				14 10 1	Ec	quipe	eme	nt d	e tor	age: Mo		Dril	I	0010 07 17 5		J -	
Ğ	Pre	epa	ré par:	M. Desmara	ais, tech.			Veritié	par: C	J. A	rsen	auli	t, ing	g. O	4.			2013-07-17 Pa	age: 1	de	1

Échelle verticale = 1 : 63

-17 12h	6					Clie	ent :											RAPPOR	RT D	EF	OR/	AGE
2013-07				\mathbf{V}			I	Parc	éolie	n P	ier	re-	de	Saur	el			Dossier n°:	P-(0035	;39-0-()1-101
mé le : 2		L		$\mathbf{\nabla}$						S.	e.c							Sondage n°: Date:			TF- 2013	-08-13 -05-23
udul -	Р	roj	et: Pa	arc éolien F	' Pierre-de-Sau	ırel - Étude	e géo	otechni	que								Co	ordonnées (m):	Nor	5	509310)3,6 (Y)
FR.sty	E	ndı	roit: Ya	ımaska. Qı	Jébec												MT	M Nad83 Fuseau	18 Es	t	34865	51,5 (X)
e_LVM																	Pro	f. du roc:	m Pro	of. de t	fin:	1,83 m
_Forag	É	itat	des éc	chantillons								Ex	ame	ns orga	nole As	eptie	que: visue	s sur les sols: l: Inexistant(I): Dissém	niné(D); Im	bibé(IM	d)	
LogLog				tact	Remanié		Perd	u 🔄	C	arotte	9			(Odeur:	Inex	kistan	te(l); Légère(L); Moye	nne(M); P	ersistan	te(P)	1. 44
WWA7-6	C	ype F	Carott	iantilion ier fendu		L Limite	ons s de ci	onsistanc	9	м.о.	Mat	lière d	organi	que (%)				Y Niveau o	d'eau			
XIStyle	Т	м	Tube à	à paroi mince		W _L Limite	de liq	uidité (%)		к	Per	méab	oilité (c	cm/s)				N Pénétrat	ion standa	rd (Nb c	oups/300	mm)
	C	SR	Tube a	a piston fixe carottier		W _P Limite	de pla	isticité (% isticité (%)	PV A	Abs	ds vo orptic	lumiqu on (l/m	ue (kN/m³) nin. m)				N _c Pénétrat or' _P Pression	tion dyn. (N 1 de précor	lb coup: isolidati	3/300mm) on (kPa)	•
S.L.	T.	A	À la ta	rière		I _L Indice	de liq	uidité		U	Con	npres	sion L	iniaxiale (N	MPa)			TAS Taux d'a	gressivité	des sols	;	<i>.</i>
	TI	U	A la m Tube l	ain ransparent		AG Analys	r en ei ie grar	au (%) nulométric	lue	AC	Ana	ce de Ilyse i	e quali chimic	te au roc (que	%)			Résistance au	u cisaillem	ent a	aruet aor	aono ino
	P	W	Carotti Sol aci	ier LVM		S Sédim	enlom	étrie		P _L	Pres	ssion	limite	, essai pre	ssiom	nétriqu	ue (kF	Pa) C _u Intact (ki	Pa)	A	. È	
	51	G	Sol ge	le		VBS Valeur	a rent au Bl	eu du sol	ē.	⊏ _м Е,	Mod	dule p	le réad	ction du ro	(MPa) c (MP	a)		U _{un} Remanie	е (кра)	Δ		
	_		r			PDT Poids	des lig	ies I		SPo	Pole	entiel	de sé	grégation	(mm²/	H ℃)						
	id - F	E - 2	E	SI	RATIGRAPHI	E	T	Ē		Γ	E		×	F		-					EAU ET LI	MITES (%)
	DEUF	DEUF	NO E	D	ESCRIPTION D	ES	LES	TEAU	남 요	CH.	E	끮	VIION	50mr	ROD	org	nens ano.			Wp 	w w ———————————————————————————————————	
	OFON	OFON	ATIC	5	SOLS ET DU RO	C	MBO	AU D	YPE UMÉI	US-É	ÉTA'	ALIB	PÉRA	L/sdr	no ,			RÉSULTATS	20	40	50 80	100 120
	PR	PR	ÉLÉ				sγ	NIVE	ΗZ	So		0	RÉCU	p coi	.N.	deur	'isuel		RÉSIST	ANCE A	U CISAILLI ATION DYI	EMENT (kPa) NAMIQUE
			0,00	Romblai		ceón do	×××							z			>		20	40	50 80	100 120
	1		-0,35	calibre a	pparent 0-20 mr	n. (résidu	Ŧ,		CF-1	A	Х	PW	82									
- 1	2		0,00	Sols nat	prise. urels : silt et arg	gile avec	1/			в	$\left(\right)$							S				
	3	-1		des trace gris-brun	es de sable (CL , saturé à partir	ou CH), de 1,2 m.	14		CF-2		А	н	82	6-5 4-3							+ • • • • • •	
9 - 1 - 6	4						1/1,		CE-3		\bigvee	в	100	1-0	0			W = 50.5				
vertical	6-		-1,83	Ein du foi	rade à une profr	ondeur de	1/1		0.0		\triangle			0-0	Ū			W = 00.0		Ų		
Échelle	7-	-2	1,00	1,83 m.	lage a une prote	ndeur de														••••••	; • · · • • • • •	· · · · · · · · · · · · · · · · · · ·
	8																					
	9	3																				
	11-																				n an an an an an an an an an an an an an	
	12-									5										1		
	13	4							l. Î													-+-+-+
	14																					
	15																					
	16-	5																				
	18																					1
	19-																					
	20	6																	<u>i</u> - + +		-+-+++	+++++++++++++++++++++++++++++++++++++++
	21-																					
	22	7																				+ - + + + - + - 9 -
57	24																					
03.200	Re	ma	rques:				LL					1										41.11111
PD 1.1																						
	Ту	pe	de fora	ge: Tarière					Éc	quipe	emer	nt de	e for	age: Mo	bill-	Dril	1					
5	Pré	épa	ré par:	M. Desma	arais, tech.			Vérifié	par: C). Ai	sen	auli	, ing	. O	A			2013-07-17	Page:	1	de	1

Échelle verticale = 1 : 63

-17 12h	5				Cli	ent:											RAPPOR	TD	EF	OR	AGE
2013-07.	11					I	Parc	éolie	n P	'ier	re-	de	-Saur	el			Dossier n°:	P-0	0035	539-0-	01-101
mé le 💈		L							s.	e.c	;.						Sondage n°: Date:			TF 2013	09-13 3-05-23
y- Impri	Р	roj	et: Pa	rc éolien Pierre-de-Sau	urel - Étud	le gér	otechni	que								Co	ordonnées (m):	Nord	Ł	50932	09,0 (Y)
LVM_FR.st	E	indr	roit: Ya r	maska, Québec												MT Gé	M Nad83 Fuseau t odésique Él of du roc: n	3 Es évatior 9 Pro	t n nf. de 1	3492 fin:	52,1 (X) 0,00 (Z) 1 83 m
Forage_	É	tat	des éc	hantillons					-		Ex	ame	ens orga	anolo	eptic	que	s sur les sols:				
	E	\mathbb{Z}	/ Int	act Remanié		Perd	iu 🚺	c	arotte	e			(As Odeur:	spect v : Inex	visue tistan	l: Inexistant(I); Dissemin te(I); Légère(L); Moyenr	é(D); im ie(M); Pi	bibé(IM ersistan) ite(P)	
LVMIL	T	ype -	d'écha	antillon	Abréviat	ions											-				
Style	TI	F	Carottie Tube à	er fendu a paroi mince	W ₁ Limit	es de ci e de lia	onsistance Juidité (%)	е	м.о, К	Mau Pen	lère c méat	organı bilité (r	.que (%) cm/s)				Niveau d'e N Pénétratio	au n standa	rd (Nb c	coups/30	0mm)
×	Pf	s	Tube à	i piston fixe	W _P Limit	e de pla	asticité (%	.)	PV	Poic	ds vo	lumiqu	ue (kN/m³)	1			N _c Pénétratio	n dyn. (N	ib coupr	s/300mm	1) ●
Ŀ	CF T/	R A	Tube ca À la tar	arottier rière	I _P Indice	e de pla e de lic	asticité (% widité	.)	A U	Abs	orplic	on (l/m ssion u	nin. m) uniaxiale (!	MPa)			σ' _P Pression d TAS Taux d'agr	e précon ressivité (solidati	on (kPa)	
S.	м	A	À la ma	ain	W Tene	ur en e	au (%)		RQD	India	ce de	quali	ilé du roc ((%)							1010
	TL	U	Tube In	ansparent	AG Analy	/se grai	nulométriq	lue	AC	Ana	lyse	chimic	que	resion	-étria:	·o (kF	Résistance au c	isaillem	ent ර	anti ab	50
	s	G	Sol gel	é	R Refu	s à l'en	foncement	t	FL E _M	Mod	Jule p	pressio	ométrique	(MPa)	Burde	le (n.	C _{UR} Remanié () kPa)	▲ 		
	l I				VBS Valeu	ur au Bl	eu du sol		E,	Mod	Jule d	le réa	ction du ro	c (MP	a)				120		
		<u> </u>	Γ	STRATIGRAPHI	PDT Poias	des tig	jes T	1	SPo	Pote	entier	de se	grégation	(mm²/	'H ℃)		<u> </u>	ESSA			
	R - pi	н- н	E		<u> </u>		Ē		Γ			%	E	Т	Fyar	nens		TEN	EUR EN	EAU ET L	IMITES (%)
	IDEU	IDEU	NO E	DESCRIPTION D	DES	ILES	TEAU	ᇤᇣ	CH.	╞	HE	ATION	50m	RQD	orga	ano.			wp ⊢		wL —
	OFON	OFON	ATIK	SOLS ET DU RU	20	MBC	AU DA	YPE UMÉ	I-SU	ETA.	ALIB	PÉR/	1/sdr	NO.			RÉSULTATS	20	40	60 80	100 120
	PR	PR	ÉLÉV			sγ	NIVE	⊢z	SO		O	RÉCU	p coi	.N.:	Ddeur	lisuel		RÉSIST OU (ANCE A	U CISAILI	.EMENT (kPa /NAMIQUE
	Ц	\square	0,00										z		0	>		20	40 (50 80	100 120
Echelle verticale = 1 : 63	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 18 19 20 21 22 23 24	-1 -2 -3 -4 -5 -6 7	-0.22 0,22 -0,40 0,40 -1,22 1,22 -1,83 1,83	calibre apparent 0-20 mr minier), grise. Remblais : pierre tout-vo gris-noir. Sols naturels : silt argile des traces de sable (CL) à gris-brun, humide. Sill et argile (CL), gris-bru saturé. Fin du forage à une profo 1,83 m.	n. (résidu pinant, piux avec , brun-gris un, pindeur de			CF-1 CF-2 CF-3	BC		PW H B	66 66 92	8-10 14-15	0			W = 40.8		•		
	Hei	IIIa	rques.																		
00-0	Туг	pe (de foraç	ge: Tarière				Éc	quipe	emer	nt d	e for	age: Mc	obill-	Drill	r					
	Pré	épa	ré par:	M. Desmarais, tech.			Vérifié	par: (D. Ar	sen	aul	t, inç	. <i>O</i>	A			2013-07-17 P	age:	1	de	1

-17 12h						Cli	ent :											RAPPOR	RT D	EF	OR/	AGE
2013-07							I	Parc	éolie	n P	lier	re-	de	-Saur	el			Dossier n°:	P-(0035	39-0-0	01-101
imé le : 2		L								S.	e.c					1		Sondage n°: Date:			TF- 2013	-10-13 -05-23
y- Impr	Р	Proje	et: Pa	rc éolien Pier	re-de-Sau	ırel - Étud	e géo	otechni	que								Cod	ordonnées (m):	Nor	b	509332	21,0 (Y)
LVM_FR.SI	E	ndı	roit: Ya	maska, Québe	ec												MT Géo Pro	M Nad83 Fuseau odésique if. du roc:	18 Es Élévatior m Pro	t n of. de t	34983 (iin:	34,0 (X)),00 (Z) 1.83 m
Forage	É	tat	des éc	hantillons								Ex	ame	ns orga	anole	eptio	que	s sur les sols:		6 16 <i>4</i> / 16 4		
ogLog	Ľ	//		act	Remanié		Perd	u 🔄	c	arotte	e				Ddeur:	Inex	listan	le(I); Légère(L); Moye	nne(D); im nne(M); P	ersistan) te(P)	
TIMAT	T	ype	d'éch	antillon		Abrévia	ions											-				
Style	TI	M	Tube à	er tendu I paroi mince		W _L Limit	es ae c e de liq	onsistanci uidité (%)	e	м.о. К	. Mat Pen	méat	organı vilité (d	que (%) cm/s)				Niveau o N Pénétral	ion standa	rd (Nb c	oups/300	mm)
×	P	s	Tube à	piston fixe		W _P Limit	e de pla	asticité (%)	PV	Poie	ds vo	lumiqu	ue (kN/m³)				N _c Pénétral	ion dyn. (N	lb coup:	s/300mm)	•
J	C	R	Tube c À la tai	arottier rière		I _P Indic	e de pla e de lia	asticité (% uidité)	A U	Abs	nores	on (I/n sion i	nin. m) Iniaxiale (l	MPa)			σ' _P Pression TAS Taux d'a	de précor	isolidati	on (kPa)	
S.I	M	A	À la ma	ain		W Tene	ur en e	au (%)		RQD) Indi	ce de	quali	té du roc (%)				greadivite	103 3013		in a start
	т	U	Tube tr	ransparent		AG Analy	vse grai	nulométric	lne	AC	Ana	lyse	chimic	que			_	Résistance au	ı cisaillem	ent ර	antile aport	5
	P1 SC	w G	Sol gel	er LVM é		S Sédir	nentom s à l'enf	ietrie oncement		P _L E _M	Pres	ssion dule p	limite ressio	, essai pre ométrique	issiom (MPa)	étriqu	ie (kF	Pa) C _u Intact (ki Cun Remanié	Pa) s (kPa)	A		
						VBS Valeu	ır au Bl	eu du sol		Е,	Mod	fule c	le réa	clion du ro	c (MP	a)		- UK			U	
		-				PDT Poids	des tig	jes I	1	SPo	Pote	entiel	de sé	grégation	(mm²/	H ℃)						
	- pi	Ę	-	STRAT	IIGRAPHI	E	Т	Ê		T	E		NTI		1	_			ESSA	ls		
	EUR	EUR		DESC	BIPTION D)ES	ES	AU	-0	H		ш	NOL	- mu	B	Exar org	nens ano.		TEN	EUR EN Wp	EAU ET LII	MITES (%) /L
	UNO-	OND	VTIO	SOLS	S ET DU RO	oc	BOL	DAT	PEE	S-ÉC	TAT	LIBR	ÉRAT	s/15	N B			RÉSULTATS	20	40	30 80	100 120
	PROF	PROF	PRC PRC				SYM	IVEAL	λ	sou	ι	CA	ÉCUPI	coup	"N"	leur	suel		RÉSIST	ANCE A	U CISAILLI ATION DYI	EMENT (kPa) NAMIQUE
			ч ш 0,00					z					н	qN		ŏ	Υ.		20	40	30 80	100 120
	,	-	0,00 -0.35	Remblais : p	ierre tout-ve	enant,			CE.1	А	\bigvee	DW	100					AG				
	2		0,35	Remblais : si	ilt sableux,	gris-brun,	1		05-1	B	\square	FVV	100									1
	3		0,50	humide. Sols naturels	s : silt aroile	eux avec	1.		CE-2		\mathbb{N}	н	74	8-10							4	
63	4	-1		des traces de	sable (CH)	, brun à	1				\square			14-14					••••	******	+	· · · · · · · · · · · · · · ·
le = 1	5			à partir de 1,2	nide devena 2 m.	ant sature	1		CF-3		\mathbb{N}	в	49	1-1	3			L		- 0 -		
vertica	6		-1,83	Ein du forage		ndeur de	11.				\square			20				W = 40.8 W _L = 52				
chelle	7	-2	1,00	1,83 m.	a une proie													W _P = 17	• • • • • •	•••••	• • • • • • • •	••••
,u	8	2																				
	9																					
	10	-3																		••••	• • • • • • •	
	11-	8																				
	12-																					
	13	4																	• • • • • • •			
	14																					
	15																			i.		2
	16-	5																	• • • • • •			······
	17																					
	10																					1
	20-	6																				
	21-																					
	22																					
	23-	7																				
	24																					
03.200	Re	ma	rques:												L				1.1.1.1	<u>11</u> 11		
1 64																						
e-66 H	Tyr	pe d	de fora	ge: Tarière					Éc	quipe	emer	nt de	e for	age: Mo	bill-	Dril	I					
5-60-0	Pré	épa	ré par:	M. Desmarais	s, tech.			Vérifié	par: C	D. Ar	sen	ault	, inc	j. <i>O</i>	nA-	•		2013-07-17	Page:	1	de	1

-25 10h	6					Clie	ent:											RAPPOR	RT DE	FOR	AGE
2013-07				\mathbf{V}			I	Parc	éolie	n P	ier	re-	de-	Saure	el			Dossier n°:	P-000	3539-0	-01-101
mé le .										s.	e.c							Sondage n°: Date:		201	F-11-13 3-05-23
- Impri	Ρ	roje	et: Pa	rc éolien Pie	erre-de-Sau	ırel - Étude	e géo	otechni	que								Co	ordonnées (m):	Nord	50934	419,3 (Y)
FR.st)	E	ndr	roit: Ya	imaska, Qué	bec												MT	M Nad83 Fuseau	18 Est Élévation	3503	348,6 (X)
NV J_9																	Pro	f. du roc:	m Prof. d	e fin:	1,83 m
1_Forag	É	tat	des éc	chantillons	1							Ex	ame	ns orga	nole As	pect v	que: visue	s sur les sols: I: Inexistant(I); Dissém	iné(D); Imbibé	(IM)	
roglog				tact	Remanié	Abréviati	Perd	u [C	arotte	÷			C)deur:	Inex	istan	te(I); Légère(L); Moye	nne(M); Persis	tante(P)	
WA7-6	C	ype F	Carotti	iantillon ier fendu		L Limite	ons s de c	onsistance	9	м.о.	Mati	ière c	organi	que (%)				Y Niveau o	d'eau		
X'IStyle	Т	м	Tube à	à paroi mince		W _L Limite	de liq	uidité (%)		к	Perr	méab	ilité (c	cm/s)				N Pénétra	ion standard (N	b coups/30	00mm)
	P: C	S R	Tube à Tube c	à piston fixe		W _P Limite	de pla	isticité (%)		PV A	Poic	ds vol	lumiqu on (l/m	ue (kN/m³) nin. m)				N _c Pénétral c '- Pression	ion dyn. (Nb co 1 de préconsolic	ups/300mn lation (kPa	n) 🗢)
÷	Т	A	À la ta	rière		IL Indice	de liq	uidité		U	Con	npres	sion u	iniaxiale (N	/Pa)			TAS Taux d'a	gressivité des s	ols	,
S	M	A	À la mi	ain		W Teneu	r en e	au (%)		RQD	India	ce de	quali	té du roc (°	%)			Résistance a	ı cisaillement	in the second	alone
	P1	u W	Carotti	ransparent ier LVM		S Sédim	se grai entom	iulometriq étrie	ue	AC P	Pres	ilyse i ssion	imite	lue , essai pre	ssiom	étriqu	ie (kF	Pa) C ₁₁ Intact (k	Pa)	Chai Ja	5 ⁰
	S	G	Sol gel	lé		R Refus	à l'enf	oncement		EM	Mod	dule p	ressic	ométrique (MPa)			C _{ur} Remanié	(kPa)		
						VBS Valeur	au Bl	eu du sol		E,	Mod	lule d	le réad	ction du roo	c (MP)	a) H 901					
				STR	ATIGRAPHI	E	ues ug			370	É	CHA	NTI		(1)1117	п ()	8		ESSAIS		
	R - pi	H- H	E	1				Ē					% N	E		Exar	nens		TENEUR	EN EAU ET	LIMITES (%)
	NDEU	NDEU	NO E	DES		DES	DLES	O'EAL	B 문	ÉCH.	F	3RE	ATIOI	150m	RQD	org	ano.			/p w ├────	
	OFO	OFO	VATI	30			MBC		IVPE	-sno	ÉT⊅	ALIE	JPÉR	/sdn	l" ou	ч	-	RÉSULTATS		60 80	100 120
	H I	đ	ÉLÉ				Ś	NIVE	. 2	Ň			RÉCI	Nb co	4.	Odeu	Visue		RESISTANC OU PÉNÉ	E AU CISAIL TRATION D	LEMENT (kPa) YNAMIQUE
ł			0,00	Remblais :	pierre tout-ve	enant,				A						-			20 40	60 80	100 120
	1		-0,20 0,20	gris-noir.	sable et silt	aris-brun	Press (CF-1	B	Х	PW	100				ŝ	AG, S			
	2	-	-0,30	humide.			1				$\left(\right)$			4.9							
	3	-1	<u>-0,91</u> 0,91	Sols nature	els : sable sill d'argile (SM o	teux avec u SC),	1.1		CF-2		Å	н	82	3-2						****	
= 1:6	4			brun-gris, h	umide.	do cablo	14		05.0		\square	Б	100	1-0				10.0	le inter	10	
erticale	6		-1,83	(CL) brun à	gris, saturé à	a partir de	VI		GF-3		$ \land $	D	100	0-0				AG, S L W = 52.8			
helle v	7-	-2	1,83	1,2 m. Fin du foraç	ge à une profo	ndeur de												$W_{L} = 47$ $W_{0} = 15$			
μ	8			1,83 m.														P			
	9									ŝ.										1	
	10	-3																	· · · · · · · · · · · · · · · · · · ·	+	
	11								6	8			8								
	12																				
	13	-4															×				
	14																			1.	
	15																				
	16	5																	• • • • • • • • • •		
	18																				
	19																			4	
	20-	6																	*******	•••••	
	21-																				
	22-																				
	23-	7						6											····	• • • • • • • • • •	
	24-																				1
94.03.2	Re	ma	rques:																		
5 R.1									- 40. M												
-Ge-6(Ту	pe (de fora	ge: Tarière					Éc	uipe	emer	nt de	e for	age: Mo	bill-	Dril					
8	Pre	épa	ré par:	M. Desmara	ais, tech.			Vérifié	par: C). Ar	sen	ault	, ing	1. O	4			2013-07-25	Page: 1	de	1

-17 12h	Γ					Cli	ent :											RAPPO	RT D	EF	OR/	AGE
2013-07-				VIN	Λ		I	Parc	éolie	n P	lier	re-	de-	Saur	el			Dossier n°:	P-(00035	539-0-0	01-101
mé le 💈										S.	e.c							Sondage n°: Date:			TF- 2013-	-12-13 -05-23
r- Impr	Ρ	roje	et: Pa	rc éolien Pierre-d	e-Saur	rel - Étud	e géo	otechni	que								Co	ordonnées (m):	Nor	d	509349	99,0 (Y)
A_FR.st	E	ndr	oit: Yaı	maska, Québec													MT Gé	M Nad83 Fusea odésique	u 8 Es Élévatio	st n	35075 (59,5 (X) 0 .00 (Z)
Ige_LVA	Ļ	• - 4	1 _ 2 _												- 14		Pro	f. du roc:	m Pro	of. de	fin:	1,83 m
og_Fora	E		des ec		naniá		Perd			`=rotti	~	Ex	ame	ns orga	As	pect v	que: visue	s sur les sois: : Inexistant(I); Dissé	miné(D); In	bibé(IM	I)	
MiLogL	T	ype	d'écha	antillon		Abréviat	ions					L			Jaeur	mex	dstan	te(i); Legere(L); Moy	enne(M); P	ersistar	te(P)	- <u>11 11</u>
yle_LV	С	F	Carottie	er fendu		L Limite	es de ci	onsistanc	9	M.O.	. Mat	ière c	organie	que (%)				Y Niveau	d'eau			
XIS	P	M S	Tube à Tube à	paroi mince piston fixe		W _L Limite W _P Limite	e de líq e de pla	uidité (%) isticité (%)	K PV	Per Poie	méab ds vol	ilité (c lumiqu	:m/s) Je (kN/m³)				N Pénétr N _c Pénétr	ation standa ation dyn. (1	rd (Nb o Ib coup:	:oups/300 s/300mm)	mm) ●
	CI	R	Tube ca	arottier		l _e Indice	de pla	asticité (%)	A	Abs	orptio	on (l/m	nin. m) Iniaxiala (N				σ' _P Pression	on de préco	nsolidati	on (kPa)	
S.L	M	A	À la ma	in	1	W Tene	ur en e	au (%)		RQD	Indi	ce de	e qualit	té du roc (%)			TAS TAUX U	agressivile	085 501	, 	tote
	TI P\	u w	Tube tra	ansparent ar LVM		AG Analy S Sédir	se grar nentom	nulométric étrie	lue	AC P.	Ana Pre	lyse (chimiq limite	lue . essai pre	ssiom	iétriau	je (kF	Résistance : Pa) C., Intact (au cisaillen kPa)	ient ර	300r 300r	ø
	s	G	Sol gele	5		R Refus	à l'enf	oncemen	5	E _M	Moc	dule p	ressio	métrique	(MPa)	.ounqe		C _{UR} Reman	ié (kPa)	2		
						VBS Valeu PDT Poids	r au Bl des tig	eu du sol Jes		E, SPo	Moc Pote	lule d entiel	le réad de sé	ction du ro grégation	c (MP) (mm²/	a) H ℃)						
	ē	E		STRATIGF	APHIE	1		2			É	СНА	NTI	LLONS					ESS	AIS		
	EUR -	EUR -	Е 	DESCRIP		=9	S	AU (n	- O	Ŧ		ш	% NOI	mm	Q	Exar	nens ano.		TEN	IEUR EN Wp		MITES (%)
	FOND	FOND	ATION DF I	SOLS ET	DU RO	c	BOLI	U D'E DATE	PE E MÉR(IS-ÉC	TAT	LIBR	ÉRAT	os/15(ou R(RÉSULTATS	20	40	60 80	-1 100 120
	PRO	PRO	PR				SYM	IVEAI	L₹₿	sou	-m	CA	ÉCUP	coult	N	deur	suel		RÉSIS	FANCE A	U CISAILLI	EMENT (kPa) NAMIQUE
			0,00		-	10.11		z					æ	g		ō	ż		20	40	60 80	100 120
	1		0,00 -0,38	Remblais : pierre calibre apparent 0	concas: I-20 mm	sée de . (résidu			CF-1	A	X	PW	100					AG				
	2-		-0,76	Remblais : pierre	tout-ver	nant,				A	$\left(\right)$	-		16.9								
63	3	-1	-1,22	Sols naturels : si	lt et sab	le (ML),			CF-2	В	Å	в	74	8-5	17						• • • • • • • • •	
ale = 1	5		1,22	brun-gris à gris, hi Silt argileux avec	umide. des traci	es de			CF-3		\mathbb{N}	в	66	6-6 3-2	9			L	+-	Ð		
e vertica	6	-2	-1, <u>83</u> 1,83	sable (CL), gris-br Fin du forage à un	un, satu le profor	iré. ndeur de	11				\square							W = 34.2 W _L = 34 W _L = 13				
Échell	7-		12	1,83 m.														•• p				
	9																					
	10	-3																			·····	
	11										8								1	, ' -		
	12																					
	13	4																	h 	******		
	15-												3									
	16	-5																		+		
	17-																					
	18-																				1	
	20	6																	÷		••••	
	21-																					
	22																			1		
	23-	1																				
03.2005	Re	mai	rques:																	i li li		
R.1 04.																						
Ge-66	Ту	pe c	de foraç	ge: Tarière					É	quipe	eme	nt d	e for	age: Mo	bill-	Dril	I		,			
	Pré	épar	ré par:	M. Desmarais, te	ch.			Vérifié	par:	0. A	rsen	ault	t, ing	. O	A.			2013-07-17	Page:	1	de	1

Échelle verticale = 1 : 63

17 12h	6					Cli	ent :											RAPPOR	T DI	EF	-OR	AGE
-20-610				\mathbf{V}			I	Parc	éolie	n P	lier	re-	de	Saur	el			Dossier n°:	P-0	003	539-0	-01-101
né le : 2		L								S.	e.c).						Sondage n °: Date:			T 201	F-13-13 3-06-04
- Impri	P	roj	et: Pa	arc éolien F	vierre-de-Sau	ırel - Étud	e géc	otechni	que								Cod	ordonnées (m):	Norc	1	50946	313,9 (Y)
_FH sty	E	nd	roit: Ya	ımaska. Qı	lébec												MT	M Nad83 Fuseau 8	Es	t	3506	514,0 (X)
WN7_9				,													Pro	f. du roc: m	Pro	f. de) fin:	1,83 m
Forag	É	tat	des éc	chantillons	2							Ex	ame	ns orga	anole As	eptic	que:	s sur les sols:	ė(D): Imi	bibé(l	M)	
t og t og	Ľ	<u></u>		tact	Remanié		Perd		C	arotte	e				Ddeur:	Inex	istan	le(l); Légère(L); Moyenn	e(M); Pe	ersista	anle(P)	
TAMI	T C	ype F	e d'éch Carott	iantillon ier fendu		Abréviat	ions es de c	onsistance	2	м.о.	. Mat	tière (oroani	aue (%)				Niveau d'ea	au			
K IStyle	T	м	Tube a	à paroi mince		W _L Limite	e de liq	uidité (%)		к	Per	méat	oilité (c	cm/s)				N Pénétralior	r standar	d (Nt	coups/3()0mm)
2	P: C	S R	Tube å Tube o	à piston fixe carottier		W _P Limite	e de pla e de pla	isticité (% isticité (%)	PV A	Poid Abs	ds vo iorptic	lumiqu on (I/m	ue (kN/m³) nin, m)				N _c Pénétration σ'n Pression de	dyn. (N e précon	b cou solida	ps/300mr ation (kPa	n) 🗨
3.L.	Т	A	À la ta	rière		IL Indice	de liq	uidité	·	U	Con	npres	ision L	uniaxiale (N	MPa)			TAS Taux d'agre	essivité c	les sc	ls	2
"	M	IA U	À la m Tube t	ain ransparenl		W Tener	ur en e se grai	au (%) nulométric	ue	ROD	Indi Ana	ce de Ilyse	e quali chimic	té du roc (' jue	%)			Résistance au c	isaillem	ent	arilet	orable
	P	w	Carotli	ier LVM		S Sédin	nentom	étrie		PL	Pres	ssion	limite	, essai pre	ssiom	étriqu	ie (kF	Pa) C_u Inlact (kPa)			৫°্ড ▲ ■	
	S	G	Sol ge	lé		R Refus	à l'enf r au Bl	oncement eu du sol		Е _м Е,	Mod Mod	dule p dule c	oressio le réa	ométrique (ction du ro	(MPa) c (MP	a)		C _{ur} Remanié (k	Pa)			
			1			PDT Poids	des tig	es		SPo	Pote	entiel	de sé	grégation	(mm²/	H ℃)	6	I				
	- pi	Ę	-	ST	RATIGRAPHI	E		Ê		1	É		NTI	LLONS		<u> </u>			ESSA	IS		
	DEUR	DEUR	ż E	D	ESCRIPTION D	ES	S	EAU (E 2	H.		ш	LION	0mm	ap	Exar org	nens ano.		TEN	EUR E Wr	N EAU ET	LIMITES (%) WL
	FONE	FONE	ATIO OF	5	SOLS ET DU RO	oc	ABOL	U D'I	'PE E IMÉR	JS-É(ETAT	LIBF	ÉRA7	ps/15	ou R			RÉSULTATS	20	40	60 80	100 120
	PRC	PRO	ÉLÉV				SYA	IVEA	FZ	SOI	-	5	RÉCUF	noo o	N	deur	isuel		RÉSIST OU I	ANCE PÉNÉI	AU CISAIL	LEMENT (kPa) YNAMIQUE
			0,00					2						Z		0	>		20	40	60 80	100 120
	1		-0,30	brun, hur	urels : sable sil nide. Présence	teux (SM), de			CF-1	A	X	н	79	2-4 8-5								
	2		-0,61	Sable av	s et de paille. ec des traces de	e silt,	177			в	$\left(\right)$											
_	3	-1	0,01	gris-brun Silt argile	, humide. ux avec des tra		1.1		CF-2		Х	в	100	3-1 1-1	2			W = 35.6	. 	0		
= 1.6	4	ł		sable (CL	.), gris, saturé. I	Présence	1		05.0		$\overline{\nabla}$			1-0								
ericale	6	-	-1,83		sable.		11		UF-3		\triangle	В	82	0-1	U							
chelle v	7	-2	1,83	1,83 m.	rage a une proto	ondeur de																••••••
<u>ــــــــــــــــــــــــــــــــــــ</u>	8																			1		
	9																					
	10	-3	s																			
	12-																					
	13	-4																				+ + - + - + - +
	14																					() ()
	15																					
	16-	5																			····	
	17:																					E.
	19	8																			1	
	20-	6																	•		····	• • • • • • • • • • • •
	21-																					
	22-																					
	23-	1																				
	Re	ema	irques:																			
5																						
1 00-9F	Ту	ре	de fora	ge: Tarière	ŧ.				Éc	quipe	eme	nt d	e for	age: D-	50							
-	Pre	épa	ré par:	M. Desma	arais, tech.			Vérifié	par: C). A	rsen	aul	t, ing	g. G	nA			2013-07-17 Pa	age:	1	de	1

Échelle verticale = 1 : 63

-17 12h	5					Clie	ent :											RAPPOR	T D	EF	OR,	AGE
2013-07				\mathbf{V}	M		I	Parc	éolie	n P	'ier	re-	-de-	Saur	el			Dossier n°:	P-0	0035	39-0-	01-101
nmé le :										5.	e.c							Sondage n :: Date:			2013	-14-13 3-06-04
ity- Imp	Р	roje	et: Pa	arc éolien P	'ierre-de-Sau	irel - Étude	e géc	otechni	que								Coc	ordonnées (m):	Nord	t.	50945	59,2 (Y)
LVM_FR.S	E	Indr	roit: Ya	ımaska, Qu	iébec												Mili Géo Pro	M Nad83 Fuseau a odésique Él f. du roc: r	3 ⊏s lévatior n Pro	ז ו f. de f	in:	92,2 (A) 0,00 (Z) 1.83 m
Forage	É	tat	des ér	chantillons								Ex	ame	ns orga	anole	eptic	ques	s sur les sols:	(D): Im	5:56(IM		.,
ogLog	Ľ			tact	Remanié		Perd	u 🧾	C	arotte	e			C	Jdeur:	Inex	istan	le(I); Légère(L); Moyeni	e(D), min ne(M); Pe	ersistan) te(P)	
TIWA 7		ype	d'éch			Abréviati	ons	onsistanc	~	MO	Mat	tière (organi	ique (%)				Viveau d'e	110			
X IStyle.	T	м	Tube i	à paroi mince		W _L Limite	de liq	uidité (%)		к	Per	méat	oilité (c	cm/s)				N Pénétratio	n standar	rd (Nb c	oups/30	0mm)
	PS C	S R	Tube à Tube r	à piston fixe carottier		W _P Limite	de pla de pla	isticité (%) asticité (%)	PV A	Poic Abs	ds vo sorpti	lumiqu on (l/n	ue (kN/m³) nin. m)				N _c Pénétralio σ' _P Pression c	n dyn. (N le précon	ib coups isolidati	s/300mm on (kPa)	i) ●
S.L.	Т/	A	Àlata	rière		IL Indice	de liq	uidité		U	Con	npres	ssion L	uniaxiale (N	MPa)			TAS Taux d'agi	essivité c	des sols		.0.
	TI	A U	A là ma Tube t	ain Iransparent		AG Analy:	se grai	au (%) nulométric	lne	AC	/ Inon Ana	ce ue alyse) quan chímic	té du roc (que	%)			Résistance au o	cisaillem	ent ර	actives ab	Statone
	PV St	W	Carotti Sol ac	ier LVM		S Sédim	ientom	étrie	105	PL F.	Pres	ssion	limite	, essai pre	(MPa)	étriqu	ie (kP	Pa) C _u Intact (kPa	ι) ΈΡα)		. 1	
		3	SUI 90.	le		VBS Valeur	r au Bl	eu du sol	8	⊏ _М Е,	Moc	dule c	de réa	ction du ro	ic (MP	a)		OUR THEMALINE (Kraj	Δ	. L	
		T	Τ	ST	PATICRAPH	PDT Poids	des tig	jes 	Τ	SPo	Pole	entiel	de sé	grégation	(mm²/l	H ℃)	2	I	FSSA	20		
	R - pi	E E	Ε		Allanaria	<u>E</u>	T_	Ē		Γ			%	E		Exar	mens		TEN	EUREN	EAU ET L	IMITES (%)
	NDEU	NDEU	- NOI	DF	ESCRIPTION D	IES	OLES	D'EAL	ERO	ÉCH.	ÅT	BRE	ATIO	/150m	ROD	orga	ano.		20	WP H	W .	WL
	ROFO	ROFO	PROF				YMB(D/	TYPE	-SNO	ÉT/	CALIF	UPÉR	/sdnc	N" ou	4	el	RÉSULTATS		40		100 120
	ā	a	ÉLÉ				ŝ	NIVE		Ś		-	RÉC	Nb cc	1	Oder	Visu		OUI	PÉNÈTR	ATION DY	NAMIQUE
	$ \dashv$	\vdash	0,00	Sols nati	urels : silt et sa	ble (ML),				A	\mathbb{H}	-	$\left \right $		$\left \right $				20	40 .	<u>1</u>	
	1-	[]	0,15	brun, hurr hurr hurr	nide. Présence organiques (rac	de dicelles).			CF-1	в	Х	Н	82	2-4 6-5								
	2			Silt et sat	ole avec des tra ML), brun-gris e	ces t humide	/		CE-2		\square	В	57	4-4	7							
: 63	4	-1		devenant	gris et saturé à	, partir de	/				\square	-		3-3							+++++++ 	
cale = 1	5-			1,2			1		CF-3		X	в	49	4-3 2-1	5			AG	C	5		
elle verb	6-	-2	1,83	Fin du for	age à une profe	ondeur de	22.75	1 /			H							W = 26.3	· · · · · +			· · · · · · · · · · · · · · · · · · ·
Éche	8			1,83 m.																		1.
	9	È								2												
	10	-3																			• • • • • •	
	11	i	1						1													
	12-		1																			
	14-	-4	1						1													
	15		ĺ						(-			
	16	-5	1						l I										•••••			+
	17																					
	19	4 35	i I						ı													
	20	-6	1						, I										• • • • • • •		•+!-++-	++++++++++++++++++++++++++++++++++++
	21-							()														
	22																					
	23-	$\left \right $																				
03.200	Re	ema	arques:	- CF-3 : écha	Intillon non plas	tique.									<u> </u>							
R.1 04.																						
Ge-66	Ту	pe	de fora	ige: Tarière	1				Éc	quip	eme	nt d	e for	age: D-!	50							
6-0	Pre	épa	iré par:	: M. Desma	arais, tech.			Vérifié) par: (D. A	rsen	naul	t, ing	g. Ø	A.			2013-07-17 P	age:	1	de	1

				Clie	nt :											RAPPOR	T DE	EFC	ORA	GE
			VM		F	Parc	éolie	n P s.	Pier .e.c	re- ;.	de	Saur	el			Dossier n°: Sondage n°: Date:	P-00	00353	39-0-0 TF- 2013-	1-101 15-13 06-04
	Proj Endi	et: Pai roit: Yai	rc éolien Pierre-de-Sau maska, Québec	ırel - Étude	géo	techni	que								Co MT Gé	ordonnées (m): M Nad83 Fuseau odésique É	Nord 8 Est lévation	5 do fi	09446 34982 0	5,8 (Y) 6,4 (X) ,00 (Z)
	État	des éc	hantillons							Ex	ame	ns orga	nole	epti	que	s sur les sols:		. ae m	1:	1,85 m
Į	1/	🕖 Inti	act Remanié		Perdu		C	arotte	e		50x8	C	As Ddeur:	pect Ine	visue xistan	I: Inexistant(I); Dissémir ite(I); Légère(L); Moyen	ié(D); Imb ne(M); Pei	ibé(IM) rsistante	e(P)	
•	Туре	e d'écha	antillon	Abréviatio	ons															
	CF TM	Carotlie Tube à	er lendu paroi mince	L Limites W. Limite	i de co de liai	onsistance uidité (%)	e	м.о. к	. Mat Per	tière c méab	organi vilité (c	que (%) cm/s)				Niveau d'e N Pénétratio	au n standarc	1 (Nh cc	ups/300r	າເຕັ
	PS	Tube à	piston fixe	W _P Limite	de pla	sticité (%)	PV	Poi	ds vo	lumiqu	ue (kN/m³)				N _c Pénétratio	n ɗyn. (Nb	coups/	300mm)	•
8	CR TA	Tube ca À la tar	arottier ière	Indice	de pla de liqu	sticité (%) uidité)	A U	Abs Cor	orplic npres	on (I/m ision u	nin. m) uniaxiale (N	MPa)			σ' _P Pression o TAS Taux d'ag	le précons ressivité de	olidation es sols	n (kPa)	
	MA	À la ma	in	W Teneur	en ea	au (%)		RQD) Indi	ce de	quali	té du roc (%)			Périntanan au	icallomo		e e	one
	ru PW	Tube tra Carottie	ansparent er LVM	AG Analyse S Sédime	e gran entomr	ulométriq étrie	ue	AC Pl	Ana Pre:	lyse (ssion	chimic Iimite	que , essai pre	ssiom	nétriqu	ue (kl	Pa) C _{ii} Intact (kPa	i)	Chat	, ³⁹⁰	
	SG	Sol geld	é	R Refus	à l'enfo	oncement		EM	Мос	dule p	ressio	ométrique ((MPa)			C _{ur} Remanié (kPa)	Δ		
				VBS Valeur PDT Poids c	au Ble les tig	es du sol		E, SPo	Moc Pote	dule d entiel	le réad de sé	ction du ro grégation	c (MP (mm²/	'a) ′H°C))					
ie	E		STRATIGRAPH	E		2			É	СНА	NTI	LLONS					ESSAI	S		
- BU	UR-	Ē			S	L) N		Ŧ			% NC	E		Exa	mens		TENE	UR EN E Wp		AITES (%) L
ONDE	ONDE	TION	SOLS ET DU R	OC	SOLE	D'E/	NÉRC	s-ÉCI	LAT	IBRE	RATI	s/150	u RG			RÉSULTATS	20	40 6	- ⊙ 3 80 1	- 100 120
PROF	PROF	ÉVA			SYME	/EAU	NUN	sous	Ē	CAL	cuPÉ	idno:	0N.	iur	lei		RÉSISTA	NCE AU	CISAILLE	MENT (kPa)
		Ē				ĺ					RÉ	qN		po	Visi		00 P	40 6	TION DYN 0 80 1	AMIQUE
		0,00	Sols naturels : silt et an	gile (CH),	17		05.1		∇	1		2-5						 		
	2-		devenant saturé à partir	de 0,9 m.	VA		CF-1		\triangle	н	14	7.7							a - 1	
	3						CF-2		\mathbb{N}	в	92	2-1	4							
	↓				VA				$\left(\right)$			00								
4	5	1.00			VA		CF-3		Х	в	82	3-2 2-2	4		6	L W = 45.7	H-	- 0	1	
•	-2	1,83	Fin du forage à une profe	ondeur de												W _L = 51 W _p = 17		+++++++++		
	2 2		1,83 m.														1	•		
ç														8 0			i		•	
10	-3						2			8								••••		+++++++++++++++++++++++++++++++++++++++
11	-													3						
12							0													
13	4																		• • • • • • • •	*******
14																			1	
16																				
17																				
18																				
19	6																			
20																		. · · · · · · · · · · · · · · · · · · ·		
22																				
23	-7																			
24	-																			
R	ema	rques:																		
T	ype	de foraç	ge: Tarière				Éc	quipe	eme	nt de	e for	age: D-	50		1					
P	répa	ré par:	M. Desmarais, tech.			Vérifié	par: C	D. AI	rsen	auli	l, ing	g. O	A	•		2013-07-17 P	age:	1	de	1

S.L. X:ISiyle_LVMILogLog_Forage_LVM FR :

Échelle verticale = 1 : 63

17 12h	Γ,				Clie	nt :											RAPPOR	T D	EF	OR	AG	Ε
2013-07				VM		F	Parc	éolie	n P	ier	re-	de-	-Saur	el			Dossier n°:	P-0	0035	39-0-	01-1	01
imé le :		L							s.	e.c							Sondage n°: Date:			TF 2013	-16- 3-06-	13 15
iy- Impr	Ρ	roje	et: Pa	rc éolien Pierre-de-Sau	ırel - Étude	e géc	otechni	que								Co	ordonnées (m):	Nord	; t	50907	98,9	(Y)
_LVM_FR.st	E	ndro	oit: Ya	maska, Québec												MT Gé	M Nad83 Fuseau odésique É f. du roc: r	в Es lévatior n Prc	t 1 of. de f	3480 in:	89,6 0,00 1,83	(X) (Z) m
Forage	É	tat	des éc	hantillons		0.000					Ex	ame	ns orga	anole	eptie	que	s sur les sols:	۰۵/D)، Im				
.ogl.og	Ľ	1		act Remanié		Perdu	u	C	arotte)			(Ddeur:	ine>	tistan	te(I); Légère(L); Moyen	1e(M); Pr	ersistant	e(P)		
TUMIT	Ty Ci	ype F	d'éch Carotti	antillon er fendu	Abréviatio	ons s de cr	onsistance	P	м.о.	Mat	tière (organi	inue (%)				V Niveau d'e	201				
X:IStyle	TI	м	Tube à	a paroi mince	W _L Limite	de liq	uidité (%)	- 	к	Perr	méab	vilité (c	cm/s)				N Pénétratio	n standar	rd (Nb c	oups/30	0mm)	
	PS CI	3 R	Tube à Tube c	i piston fixe arottier	W _P Limite	de pla de pla	isticité (%) asticité (%))	PV A	Poic Abs	ds vo sorptic	lumiqu on (l/n	ue (kN/m³) nin. m)				N _c Pénétralio σ' _P Pression c	n dyn. (N le précor	b coups isolidatic	/300mm on (kPa)) •	
3.L.	T/	4	À la tar	rière	IL Indice	de liq	uidité	(U	Con	npres	ssion u	iniaxiale (N	MPa)			TAS Taux d'agi	ressivité d	ies sols		- 2	
<i>"</i>	M/ TL	A U	A la ma Tube tr	ain ransparent	W Teneur AG Analys	r en ea se grar	au (%) nulométriq	lne	RQD AC	India Ana	ce de alyse	: quali chimic	lé du roc (' que	%)			Résistance au	cisaillem	ent	actient act	Jatone	
	PV	N	Carotti	er LVM	S Sédime	entom	étrie		P _L	Pres	ssion	limite	, essai pre	ssiom	iétriqu	ie (kF	Pa) C_U Intact (kPa	ı)	▲			
	SC	3	Sol gen	é	R Refus a VBS Valeur	à l'enn au Bh	oncement eu du sol	i.	Е _м Е,	Mod Mod	Jule p Jule d	iressic le réa	ométrique (ction du ro	(MPa) c (MP	a)		C _{un} Remanie (kPa)	\bigtriangleup			
			r		PDT Poids (des tig	jes T	1	SPo	Pote	entiel	de sé	grégation	(mm²/	H ℃)	8			1146-514-1			
	iq - 1	E	c	STRATIGRAPHI	E	Т	Ē		Т	EC		NTI %		1	<u> </u>			ESSA			WITES	10/_)
	DEUR	DEUR	- NC	DESCRIPTION E	DES	LES	EAU	5	CH.		쁥	TION	50mr	aob	Exai	nens ano.			Wp		WL 	(%)
	DFON	DFON	ATIC ROF.	SOLS ET DU RO	C	MBO	AU D'	VPE UMÉI	US-É	ÉTAT	ALIB	PÉRA	L/sdr	, ou F			RÉSULTATS	20	40 6	0 80	100 1	20
	PRC	PRC	ÉLÉV PF			SΥ	4IVE/	ΗŻ	so		Ű	RÉCU	p cot	"N.	deur	isuel		RÉSIST OU	ANCE AL	I CISAILI	.EMENT (NAMIQ	' (kPa) UE
		\square	0,00	Bamblais : siorro conos									z		0	>		20	40 6	0 80	100 1	20
	1-		0,00 -0,15	calibre apparent 0-20mm	1, grise.	×		CF-1	B		N	49	16-9 8-11									
	2		-0,46	Remblais : silt argileux a peu de sable (CL), gris fe	ivec un	17:			CA	$ \left(\right) $												
ß	3	-1	-0,76 0,76	Sols naturels : silt avec de sable et d'argile (CL),	un peu /	1.1		CF-2	в	X	в	82	2-3	5			W = 23.9					+
8=1:6	4 5			Silt argileux avec des tra sable (CL), brun, saturé.	ces de Présence	1.		CF-3		\mathbb{N}	в	100	1-0	1			W = 39 B		\odot			
vertical	6		-1,83	de lits de sable. Fin du forage à une profr	ondeur de	6.1		-		\square			1-0				W = 00.0					
Échelle	7.	2	1,00	1,83 m.	maca, as														****	++++++	+++++	
	8																					
	9	-3																		4		
	11-																					
	12												I			6						
	13	4																		+-++		-++-
	14																					
	15-																				•	
	17-	5						8														<u>.</u>
	18																					
	19-																					
	20-1	6																	*****	•••••		
	21				ł																8. 8.	
	22	7																				
2	24				1																	
107.50.	Re	mar	rques:			LL					l						1					-
49-95-	Тур	oe d	le fora	ge: Tarière				Éc	quipe	emer	nt d	e for	age: D- !	50								
Ĩ	Pré	ipar	ré par:	SP. Gravel, tech.			Vérifié	par: C	D. Ar	sen	aul	t, ing	q. (5	A.			2013-07-17 P	age:	1	de	1	

Échelle verticale = 1 : 63

17 12h	6				Clie	ent :											RAPPOR	T D	EF	OR/	AGE
2013-07-				VM		F	Parc o	éoliei	n P s.	'ier .e.c	re-	de-	Saure	el			Dossier n°: Sondage n°:	P-0	0035	39-0-(TF	01-101 -17-13
onmé le																	Date:			2013	-05-23
sty- Imp	Ρ	roje	et: Pa	rc éolien Pierre-de-S	aurel - Étude	e géo	techni	que								Coo	ordonnées (m):	Norce B Es	1 ! t	509086 34942	64,0 (Y) 23.2 (X)
LVM_FR	E	ndr	roit: Ya	maska, Québec												Géo Pro	odésique Él f. du roc: n	évatior n Pro	ı ı ıf. de f	in:	0,00 (Z) 1,83 m
Forage	É	tat	des éc	hantillons							Exa	ame	ns orga	nole	eptic	ques	s sur les sols:	é(D): Im	hihé(IM)		
.oglog.	F			lact Remani	ś Carace	Perdu	ע <u> </u>	C	arotte	Э			C)deur:	: Inex	istan	te(I); Légère(L); Moyenr	ie(M); Pe	arsistant	.e(P)	
T NWIT	T t	ype ⊧	e d'éch Carotti	antillon		ions es de ci	onsistance	۵	M.O	Mat	tière (oroani	oue (%)				Niveau d'e	ตา			
(IStyle	т	м	Tube à	a paroi mince	W _L Limite	de liq	uidité (%)	- 	к	Perr	méab	ilité (c	:m/s)				N Pénétratio	n standar	rd (Nb c∕	oups/300)mm)
Î	PS C	S R	Tube à Tube c	i piston fixe carottier	W _P Limite	de pla de pla	sticité (%))	PV A	Poic Abs	ds vol sorptic	lumiqu on (l/m	Je (kN/m³) nin. m)				N _c Pénétratio σ' _P Pression d	n dyn. (N e précon	b coups isolidatio	/300mm) on (kPa)	•
3.L.	т/	A	À la tai	rière	IL Indice	de liq	uidité	2	U	Con	npres	sion u	iniaxiale (M	/IPa)			TAS Taux d'agr	essivité c	des sols	1	22) (12)
°,	M. TI	A U	A la ma Tube li	ain ransparent	W Teneu AG Analy	ur en ea se grar	au (%) nulométriq	lue	RQU AC	i Indii Ana	ce de alyse :	: qualii chimio	lé du roc (* jue	%)			Résistance au c	isaillem	ent s	artifet abor	adie
	P	N	Carotti	er LVM	S Sédim	nentom	étrie		P _L	Pres	ssion	limite.	, essai pre	ssiom	nétriqu	Je (kF	Pa) C_U Intact (kPa) (-Do)			
	SU	3	Sol gei	.é	R Herus VBS Valeu	a reni r au Bli	oncement eu du sol	ł.	E _M E,	Mou	d alut b alut	ressio le réad	metrique (ction du ro	(MPa) c (MP	'a)		C _{UR} Hemane ((Pa)	Δ		
		r	T		PDT Poids	des lig	jes T	т	SPo	Pote	entiel	de sé	grégation	(mm²/l	'H ℃)	<u> </u>	1				
	iq - 1	E		STRATIGRAP	HIE		Ē		1	E		N11	LLONS	T				ESSA		FALLET LI	MITES (%)
	DEUR	DEUF	NO E	DESCRIPTIO	1 DES	LES	EAU	ᇤ잁	CH.	F	RE	VIION	50mr	Rap	org	nens ano.			Wp 	w v - 💮 –	vL
	OFON	OFON	ATIC	SOLS ET DU	ROC	MBO		YPE UMÉ	US-É	ÉTA.	ALIB	IPÉR/	1/sdn	no "	_	_	RÉSULTATS	20	40 E	i0 80	100 120
	H	ВВ	ÉLÉ			sγ	NIVE	ΗZ	so		0	RÉCL	lb co	N	Ddeu	/isue		RÉSIST	ANCE AU	J CISAILL ATION DY	EMENT (kPa) NAMIQUE
		\square	0,00	Pemblais : pierre tou	Lyonant								z		Ľ	<u>_</u>		20	40 E	i0 80	100 120
	1		-0,10	gris-noir.	/	/		CF-1	B	X	PW	100									
	2		0,10	de silt à silteux (SM),	avec un peu gris-brun,				\vdash	$\left(\right)$			9.10								
33	3	-1	-1,22	humide.				CF-2		\wedge	Н	100	14-13						•••••	• • • • • • • •	
e = 1 :-	5	-	1,22	Silt argileux avec des sable (CL), gris-brun a	traces de a gris, saturé.	1		CF-3		M	в	74	2-1	3			W = 34.2		0		
e vertica	6		-1,83 1,83	Fin du forage à une p	ofondeur de	./.				\square											
Echelle	7-	-2		1,83 m.																	
	8																				
	9	-3																	*****		
	11																	1	1		
	12																	ŝ.,			
	13	-4																+		. 	· +
	14-																				
	16																				
	17-	-5																			
	18-																				
	19-	-6																	- .		
	20-																				
	22	8											ĺ								ļ
	23-	7																·	• • • • • • •		
8	24																				
04,03.2	Re	ma	arques:																		
6 H.1	_							4							<u> </u>						
09-Ge-t	Ty	pe i	de fora	ge: Tarière			V4.0	Ec		eme	nt d	e for	age: Mo	bile) Dri	11	2012.07.17	200.	4	de	1
3	Pre	ера	ire par:	M. Desmarais, tech			verifie	e par: 🤇	J. A	rsen	aun	t, ing	g. 0	4.	•		2013-07-17	age:	1	ae	1

-17 12h	[]					Clie	ent :											RAPPOR	TD	EF	OR	AG	E
2013-07				\mathbf{V}			I	Parc	éolie	n P	ier	re-	de-	Saure	əl			Dossier n°:	P-0	0035	39-0-	01-1	01
mé le :		-		$\mathbf{\nabla}$						s.	e.c	•						Sondage n°: Date:			201:	18- 3-06-	13 06
y- Impn	Ρ	roje	et: Pa	rc éolien I	Pierre-de-Sau	irel - Étud	e géo	otechni	que								Cod	ordonnées (m):	Nord	4 L	50907	54,6	(Y)
A_FR.st	E	ndı	roit: Ya	maska, Q	uébec												MT Géo	M Nad83 Fuseau odésique É	8 Es lévatior	t 1	3499	74,4 0,00	(X) (Z)
ige_LVA												-					Pro	f. du roc:	m Pro	f. de	in:	1,83	m
og_Fora			des ec		S Bemanié		Pord			arotte		EX	ame	ns orga	noie As	pect v	visuel	S SUF les SOIS: I: Inexistant(I); Dissémi	né(D); Im	bibé(IN)		
MILogLe	Т	ype	d'éch	antillon	Tiemanie	Abréviat	ions			aione	·			L.	deur:	Inex	istan	te(I); Legere(L); Moyer	ne(M); P	ersistar	te(P)		
yle_LVI	с	F	Carotti	er fendu		L Limite	s de ce	onsistance	e	M.O.	Mati	ère c	organi	que (%)				🗴 Niveau d	eau				
X:ISI	TI Pi	M S	Tube à Tube à	i paroi mince i piston fixe		W _L Limite	de liq de pla	uidité (%) Isticité (%)	K PV	Pern Poid	néab Is vol	ilité (c umiqu	:m/s) Je (kN/m³)				N Pénétrati N _c Pénétrati	on standa on dyn. (N	rd (Nb (b coup	oups/30 s/300mm	0mm) 1) •	
	С	R	Tube c	arottier		I _P Indice	de pla	sticité (%)	A	Abso	orptic	on (l/m	iin. m)				o' _P Pression	de précon	solidati	on (kPa)		
S.L	M	A A	A la tai À la ma	ain		U Indice W Teneu	de liqi ir en e:	uidilė au (%)		U RQD	Com Indic	pres e de	sion u quali	iniaxiale (N té du roc (°	4Pa) %)			TAS Taux d'ag	gressivité (ies sol:		offe	
	T	U	Tube ti	ransparent		AG Analy	se grar	nulométriq	lue	AC	Anal	yse o	chimiq	lue				Résistance au	cisaillem	ent ପ	active St	501	
	S	W G	Sol gel	ér LVM		R Refus	à l'enf	etrie oncement		P _L E _M	Mod	ule p	ressic	, essai pre: ométrique (ssiom MPa)	etriqu	ie (KF	'a) C _U Intact (KP C _{UR} Remanié	a) (kPa)				
						VBS Valeu	r au Bl	eu du sol		E,	Mode	ule d	e réad	ction du roo	c (MP	a) ப ஸ							
		[_	1	ST	RATIGRAPH		des lig		1	570	ÉC		NTI		(000-71	H 'U)			ESSA	IS			
	IR - pi	JR - m	E				0	ш Л					% N	E		Exan	nens		TEN	EUR EN	EAU ET I		(%)
	ONDE	ONDE	TION m		SOLS ET DU R	DES DC	OLES	D'EA ATE	e et éro	ÉCH	AT	BRE	RATIO	1150r	u RQI	orga	ano.		20	40			20
	ROFO	ROFO	ÉVAT				SYMB	EAU / D	TYP	sous	Ļ	CAL	cupéi	sdno	N" 0	'n	lei	RESOLIAIS	RÉSIST	ANCE A	U CISAIL	LEMENT	(kPa)
			Ē					N					μ	Nb d		ode	Visı		20	PÉNÉTF 40	ATION D 50 80	100 1	JE 20
		-	0,00	Rembla	is : pierre toul-v	enant,	/ 🗱		TA-1		\ge										1.1.1		
	1-		0,10	Rembla	is : sable avec ι	in peu de			CF-2		Д	н	69										
	3	.1	0,61	Sols nat	i-gris, humide. t urels : sable av	ec un peu			CF-3		M	в	66	7-7 6-7	13			AG			.' 		
1 : 63	4			de silt (S devenan	SM), brun et hum It gris et saturé à	iide 1 partir de					$\left(\right)$												
icale =	5		1 92	1,2 m.	- 1977 - 1973 - 1973 - 1973 - 1974 - 1975 - 1000 - 1975 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000	2. — 0.0 (Mediatry 10.0 (Mediatry 00.0))			CF-4		X	в	49	7-6 6-8	12								
elle vert	6	-2	1,83	Fin du fo	orage à une profe	ondeur de	1 84.0.3				\square											·	;; ;;;;;;
Ęch	8			1,00 m.																1			
	9																						
	10	-3																	• • • • • •	••••••	•••••		+
	11		5																				
	12-																				1		
	14	-4																					
	15																						
	16	-5																					
	17-								9														
	19																			11.		r.i.	
	20-	6																	•••••			+ i	
	21-																						
	22:																-				1		
	23-	1					2																
6002.50	Re	ma	trques:																				114
11 04.1																							
Ge-66 P	Ту	pe	de fora	ge: Tarièr e	B			The Spanner and Control of Spanner	Éc	quipe	emer	nt de	e for	age: D- 5	50								
	Pre	épa	ré par:	M. Desm	arais, tech.			Vérifié	é par: (D. AI	rsena	ault	, ing	. O	Ά.			2013-07-17 I	Page:	1	de	1	

Échelle verticale = 1 : 63

-17 12h	6					С	lient :											RAPPO	RT D	E F	OR	AG	iE
2013-07-				\mathbf{V}				Parc	éolie	n P	ier	re-	de-	Saur	el			Dossier n°:	P-0	0035	i39-0-	01-1	01
imé le :										s.	e.c					ġ		Sondage n°: Date:			201:	19- 3-06	-13 -06
y- Impr	Р	roje	et: Pa	rc éolie	n Pierre-de-Sa	urel - Étu	de gé	otechni	que								Cod	ordonnées (m):	Nord	i	50906	89,8	(Y)
LVM_FR.SI	E	ndr	oit: Ya	imaska,	Québec												MT Géo Pro	M Nad83 Fusea odésique f. du roc:	u8 Es Élévatior m Prc	t 1 If. de f	3503 fin:	78,0 0,00 1,8	(X) (Z) 3 m
Forage_	É	tat	des éc	chantillo	ons							Ex	ame	ns orga	nole	eptie	ques	s sur les sols:					
-boybo	K	1	🕖 Ini	tact 🗋	Remanié		Perc	Ju 🔤	C	arotte	э				AS Odeur:	: Ine>	islan	i: Inexistant(1), Disse le(I); Légère(L); Moy	enne(M); Pr	ersistan) ite(P)		
TAMIT	T	ype -	d'éch	antillon	I	Abrévia	itions				Mat			(0/)				Miyoou	<i>B</i>				
.IStyle_	TI	M	Tube à	à paroi mine	ce	W _L Lim	ite de lic	uidité (%)	;	м.ө. К	Perr	méab	ilité (c	que (76) cm/s)				N Pénétra	d eau ation standa	rd (Nb c	coups/30	0mm)	
×	PS CI	S	Tube à	a piston fixe	3	W _P Lim	ite de pl	asticité (%)	PV	Poid	ds vol	lumiqu	ue (kN/m³)				N _c Pénétra	ation dyn. (N	b coups	s/300mm	1) 🗢	
Ŀ.	т/	A	À la ta	rière		I _P Indi	ce de pi	asticité (38)	U	Соп	npres	sion u	nn. m Iniaxiale (N	MPa)			TAS Taux d	agressivité d	tes sols	011 (Кга) З	100	
Ś	M	A	À la ma	ain		W Ten	eur en e	au (%)	199 <u>9-</u> 19	ROD	India	ce de	quali	lé du roc (%)			Résistance a	au cisaillem	ent	inot.	1010He	
	P\	J W	Carotti	ransparent ier LVM		AG Ana	lyse gra limenton	nulometriq nétrie	lne	AC PL	Ana Pres	lyse u ssion	timite	jue , essai pre	ssiom	nétriqu	ue (kF	Pa) C_U Intact (kPa)	ੱ 		Ş	
	s	G	Sol gel	lé		R Ref	us à l'en	foncement	ŝ -	E _M	Mod	Jule p	ressic	ométrique	(MPa)	0		C _{UR} Reman	ié (kPa)	Δ	۰ ۱		
						VBS Vale	eur au B ds des ti	leu du sol aes		E, SPo	Mod Pote	lule d entiel	e réad de sé	ction du ro orégation	c (MP (mm²/	'a) ′H°C)							
		F		;	STRATIGRAPH	IE					ÉC	CHA	NTI	LLONS					ESSA	IS			
	- H	UR - r	Ē				o	L L		.			% NC	E		Exa	nens		TEN	EUR EN Wp	EAU ET I		s (%)
	ONDE	DNDE	rion F n		DESCRIPTION I SOLS ET DU R	DES OC	SOLE	D'EA	E ET IÉRO	ÉC	AT	IBRE	RATIC	\$/150	u RO	org	ano.		20	40 H	0 60 80		120
	ROFC	ROFC	ÉVAT				SYME	EAU / D	ΠΛΝ	Snos	ÉT	CAL	SUPÉI	sdno	N" o	5	e	RESULIAIS	RÉSIST	ANCE A	UCISAIL	LEMEN	T (kPa)
		•	Ē				0	NIN		0,			RÉC	Nb c	:	Ode	Visu		20	PÉNÉTR 40	ATION D	YNAMIC 100	1UE
	-		0,00	Remt	blais : pierre tout-v	renant,	7	8	TA-1	A	\geq			-									TT
	1.	í	0,10	Remt	oir. blais : sable silteu:	κ,	-//	4	CF-2	В	Х	н	59					AG	1				
	3		0,30	brun-g	gris, humide. naturels : sable si	Iteux (SM),			CF-3		\mathbb{N}	в	74	5-7	15								
: 63	4	-1	-1,22	brun-ç Sable	gris, humide. avec un peu de s	ilt (SM)					$\left\{ \cdot \right\}$			0.0									
cale = 1	5		-1,68	gris, s	saturé.				CF-4	A	XI	в	57	3-3 4-3	7								
lle vertio	6-	-2	1,68 -1,83	Fin du	silteux (SM), gris, u forage à une prof	saturé. ondeur de				В	$\left(\right)$												
Éche	7-		1,83	1,83 n	n.																		
	9																						
	10	-3																	· + • † •			• • • • • •	
	11																						
	12																						I
	13_	-4																	· · · · ·	••••	+ + • • • • • •	,	
	14-																						
	15	i. A																					
	17-	-5																			•••••	+	
	18																						
	19	8																					
	20	6																	1.1.1.1	+++++			
	21-																					1	
	22	_																					
	23-	1																	-				
3.2009	Re	ma	irques:																				1111
.1 04.0																							
e-66 R	Ту	pe (de fora	ge: Tari	ère				É¢	quipe	əmei	nt d	e for	age: D-	50								
6-6-0	Pré	épa	ré par:	M. Des	marais, tech.			Vérifié	par: (). AI	rsen	aul	l, inç	g. <i>O</i>	A			2013-07-17	Page:	1	de	1	

-31 09h	Γ				Clie	nt :											RAPPOR	RT D	EF	OR	AGE
2013-07						J	Parc	éolie	n P	ier	re-	de-	Saur	el			Dossier n°:	P-0	0035	39-0-(01-101
né le : 2		-							s.	e.c							Sondage n°: Date:			TF 2013	-20-13 -06-18
- Impri	P	Proj	et: Pa	rc éolien Pierre-de-Sau	irel - Étude	géo	techni	que								Co	ordonnées (m):	Nord	d :	50946!	59,0 (Y)
FR sty	E	ndı	roit: Ya	maska, Québec												MT Gé	M Nad83 Fuseau	18 Es Élévation	t	35075	53,9 (X) 7 36 (Z)
WN7-9																Pro	of. du roc:	m Pro	f. de f	in:	8,85 m
1_Forag	É	tat	des éc	chantillons							Ex	ame	ns orga	anole As	pect v	que: visue	s sur les sols: I: Inexistant(I); Dissém	niné(D); Im	bibé(IM)	1	
roglog		//		act Remanié	Abrévieti	Perd	1 <u> </u>	C:	arotte	9			C	Odeur:	Inex	istan	te(I); Légère(L); Moye	nne(M); P	ersistant	e(P)	
WN7 ⁻⁶	C	ype F	Carotti	er fendu	L Limites	ons de co	onsistance	9	м.о.	. Mat	ière d	organie	que (%)				🗴 Niveau o	d'eau			
X IStyle	т	м	Tube à	a paroi mince	W _L Limite	de liq	uidité (%)		к	Peri	méab	vilité (c	m/s)				N Pénétral	tion standa	rd (Nb c	oups/300)mm)
	P C	SR	Tube à Tube c	i piston fixe arottier	W _P Limite	de pla de pla	sticité (%))	PV A	Poic	ds vo orptic	lumiqu on (l/m	ie (kN/m³) iin. m)				N _c Pénétral o' _b Pression	tion dyn. (N n de précon	b coups solidatio	/300mm) on (kPa)	•
÷	Т	A	À la ta	rière	IL Indice	de liq	uidité		U	Соп	npres	ision u	niaxiale (I	MPa)			TAS Taux d'a	gressivité o	tes sols		
S	M		À la m Tuba t	ain	W Teneur	en e	au (%)		RQD	India	ce de	qualit	té du roc ((%)			Résistance a	u cisaillem	ent	the d	stolle
	P	w	Carotti	er LVM	S Sédime	e gran enlom	étrie	ue	PL	Pres	ssion	limite.	ue , essai pre	essiom	étriqu	Je (kF	Pa) C_u Intact (ki	Pa)	ی م	° _30°	
	S	G	Sol ge	é	R Refus	à l'enf	oncement		E _M	Mod	dule p	ressio	métrique	(MPa)			C _{un} Remanié	é (kPa)	Δ		
					VBS Valeur PDT Poids of	au Bl	eu du sol Ies		E, SPa	Mod Pole	lule c entiel	le réad de sé	ction du ro arégation	oc (MP) (mm²/l	a) H ℃)						
		-		STRATIGRAPHI	E				0.0	É	CHA	NTI	LONS	<u>,</u>				ESSA	IS		
	R - P	H-H	E				E D					% N	Ę		Exar	nens		TEN	EUREN		IMITES (%)
	NDEL	NDEL	NOL	DESCRIPTION D SOLS ET DU RO	DES DC	OLES	D'EA	ÉRO	ÉCH	AT	BRE	ATIO	/150n	ROL	org	ano.		20			
	ROFO	ROFO	EVAT PROF			YMB	D/D	TYPE	ous	ÉT/	CALI	UPÉF	sdno	N 0L	1	e	RESULTATS	PÉRIOT			EMENT (kBa)
	Р	4	ÊLI			S	NN	14 - 15 - 16 - 16 - 16 - 16 - 16 - 16 - 16	S		Co estas	RÉC	Nb c	-	Ode	Visu		OU	PÉNÉTRA	ATION DY	NAMIQUE
			17,36	Sols naturels : silt argile	eux avec	1.	× 1		A	\mathbf{k}								20	40 6		
	1-		17,21 0,15	un peu de sable, brun. P	résence /	V	```	CF-1	в	Х	в	74	1-2 2-2	4							
- 1	2-			Silt argileux avec des tra	ces de	1.	$\otimes \otimes$														
5	3	-1		sable, brun.		1.1		CF-2		X	в	100	2-3 3-4	6				++-++			+
= 1:6	4	-	15,84			1	8			\square											
erticale	6		1,52	Silt argileux avec des tra sable, beige, Présence d	ces de le lits de	1.1	888 88	CE-3		\mathbb{N}	в	100	1-1	2			C = 69 kD=			l La com	
helle v	7-	-2	15.07	silt.		14	۳2 <u>3</u>	0.0		\bigtriangleup	-		1-1	-			C _{UR} = 3 kPa		· · · · · · · ·	.	
Ĕ	8-		2,29	Silt et argile avec des tra	ces de	11	¥12			$\overline{\nabla}$			1-0								
	9			sable (CH), gris, saturé. de lits de sable.	Présence	1/1	ei. 1	CF-4		Ň	В	100	1-1	1			L W = 47.5		- O I		
	10	-3				11	```										$W_{L} = 53$ $W_{P} = 22$			i 1	·····
	11-						```	CF-5		Х	в	100	0-0 1-1	1			0 ₀ = 49 kPa				
	12		13,62	Silt argileux et sableux, g	ris.		```										C = 37 kPa				
	13-	-4	-,	saturé.	,	1.1	```	CF-6		X	в	100	1-0 0-0	0			$C_{\rm UR} = 7 \rm kPa$	Ц Н			
	14					//	```										L W = 29.2				
	15					14	```	CE-7		\bigvee	в	100	0-0	2		3	$W_{L} = 25$ $W_{P} = 17$	6			
	17-	-5					```	01-7		$ \land $	D	100	2-2				C _u = 64 kPa W = 27.0			T	
	18		11,88	Cilit at availa quaa daa ka	ana da		8/8		A	$\overline{\mathbf{A}}$											
	19		5,46	sable, gris, saturé.	ues ue		8/8	CF-8	в	Х	в	100	1-1	2			C. = 33 kPa				
	20	6				///	8/8										C _{UR} = 1 kPa	T		-+	••••••
	21-					$\langle \rangle$	```	CF-9		XI	в	100	1-0 0-0	0			L W = 57.0	۲.	C	(
	22	ļ	10,57	Araile silteuse arise satu	Irée	14	8/8			$ \rightarrow $							$W_{L} = 46$ $W_{L} = 17$			1.	
	23-	7	0,70				8/8	CF-10		X	в	100	0-0	PDT			C _U = 30 kPa			н Э	••••
5009	24 Do		rauco			///	```			/ \							L				
04.03.	ne	51118	uques:																		
66 R.1	т		ala. (ŕ						50							. 1
19-Ge-	ſy	pe	de tora	ge: Tariére				Ec	uipe	emei	nt d	e tora	age: D- :	50							
5	Pre	épa	iré par:	M. Desmarais, tech.			Vérifié	par: C). Ai	rsen	aul	t, ing	· 0	A	•		2013-07-31	Page:	1	de	2

Échelle verticale = 1 : 63

7-31 09h	6				Client	:											RAPPOF	RT D	E	FC	R	AG	iΕ
imé le : 2013-0				VM		P	Parc é	éolier	n P s.	ier e.c	re-	de-	Saur	el			Dossier n°: Sondage n°: Date:	P-	000	3539 2)-0-(TF (013	01-1 -20 -06	01 -13 -18
udul -	Р	roje	et: Par	rc éolien Pierre-de-Saurel - É	tude g	éo	technic	que								Coc	ordonnées (m):	No	rd	50	946	59,0	(Y)
FH.st)	E	ndr	oit: Yar	maska. Québec												MT	M Nad83 Fuseau	8 E	st	3	507	53,9 7 36	(X)
e_LVM				,								1000-040				Pro	f. du roc:	m Pr	of. de	e fin:	:	8,8	5 m
Forage	ā	E		STRATIGRAPHIE			Ê		_	É	CHA	NTI	LLONS	-	T			ESS	AIS		51.M - 105		
odroð	EUR.	EUR -	E - E	DESCRIPTION DES		ŝ	AU (I	ьo	Ŧ		ш	NOI %	um0	a	Exa	mens ano.		TE	NEUR	EN EA Vp	U ET L W N	IMITE NL	S (%)
TLVMI	FOND	FOND	ATIOI DF	SOLS ET DU ROC		BOL	U D'E DATI	PEE	IS-ÉC	TAT	LIBR	ÉRAT	os/15	ou R			RÉSULTATS	2	0 40	60	80	100	120
X:IStyle	PRO	PRO	PR			SYN	VEA	ţJ	sou	411	CA	ÉCUP	cont	N	leur	suel		RÉSI	STANCI U PÉNÉ	E AU C	ISAILL	EMEN	IT (kPa) QUE
			щ				Z					н	PR N		ŏ	Vi:		2	0 40	60	80	100	120
S.L.	25	1		Argile silteuse, grise, saturée.		1	``										W = 63.6 W _L = 69						
	26-	-8	9,13			A		CF-11		А	В	100	0-0	PDT			W _P = 25 C _U = 30 kPa	44	.	••••	•••••	•••••	
	27-	[8,23	Poursuite du forage par un essa de résistance au cisaillement (pa	i as																		
	29-		8,51	d'échantillonnage).													C ₁₁ = 30 kPa						1
	30	-9	0,00	cisaillement à une profondeur de	•																•••••		
	31	-		6,65 11.																			
	32	-10																	. 				+++++
	34																						
	35																				I		
	36	-11																		·-·		++	+ + + +
	37-																						
	39	10																					
: 63	40	12																					
cale = 1	41				5																		
elle vert	42	-13																	 	••••			+-++++
Éche	44																						
	45																						
	46	-14													£			•+++	• • • • • •	+++++		• • • • 	
	48																	:					
	49	-15																			+		
	50-																						
	51																					1	
	53	-16																1		 			
	54																			1	£(
	55																			1			
	56																						
	58																						
	59-	18																		•	····		
g	60																						
4.03.20(Re	ma	rques:												. 1				1411			<u>, 11 11 1</u>	<u></u>
6 R.1 0								2															
09-Ge-6	Ту	pe o	de forag	ge: Tarière		1	N// 100	Éq	luipe	emer	nt de	e for	age: D- :	50		-							
å L	Pré	èpa	ré par:	M. Desmarais, tech.			Vérifié	par: C). Ar	sen	ault	, ing	1. Of	۲.		1	2013-07-31	Page:	2		de	2	

Résultats des essais DCP

ESSAI DE P	ÉNÉTRATION D	DCP						Date de l'essai:	05/06/2013	Sector States
CALCUL DE	S CARACTÉRI	STIQUES STRUC	TURALES DES MATI	ÉRIAUX				Technicien:	M. Desmarais	Second Strange
c	lient	Dessau inc.			N° Essai (Sondaç	le)			PS-01-13	
ldentif descripti	fication et on du projet	Parc éclien Plerr	e-de-Saurel, Yamaska		Localisation (exer	nple : Chaînage, vole	direction nord, sud, es	t ou oue s t)	Pad de grue éolienne	PS-01
N° Pro	bjet Client	P-0002046-0-00	-075-01	all all all	Données	Profondeur du début o du terrain naturel en p (Mettre 0 si l'essai dét	de l'essai par rapport à la blace (mm) . bule sans excavation pré	a surface du revêtement ou alable)	0	
N° Pr	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mr uisse ëtre négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai	r	Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	ce CBR	Module n	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petit marteau 4.6 Kg => 2 Les 2 marteaux: 8 Kg =>1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁵⁾
0,33	76	76	1	230,9	1	0		N/A		1,94
0,33	76	152	1	230,9	1	0		N/A		1,94
0,33	76	229	1	230,9	1	0		N/A		1,94
2	76	305	1	38,1	1	2		24		71,35
1	76	381	1	76,2	1	1		6		17,84
2	76	457	1	38,1	1	2		24		71,35
1	76	533	1	76,2	1	1		6		17,84
2	76	610	1	38,1	1	2		24		71,35
1	76	686	1	76,2	1	1		6		17,84
1	76	762	1	76,2	1	1		6		17,84
1	76	838	1	76,2	1	1		6		17,84
2	76	914	1	38,1	1	2		24		71,35
1	76	991	1	76,2	1	1		6		17,84
1	76	1067	1	76,2	1	1		6		17,84
2	76	1143	1	38,1	1	2		24		71,35
1	76	1219	1	76,2	1	1		6		17,84
peisseur totale traversée (mm)	1219									
lataer										
1): Indias de -4	nétralian ID aireit	ales to be a descent	an affect							
n). Indice de pe	1 Descurption of a juste s	e one type de marte	au uulise				112			
): Valeur move	nne définie selon l'	a. Cork = 1/(0.01/019	annarente de la couche de	matériaux (à calcule	r ≕ 1/(0,002871 x IP) po rsidésiré)	our sol de type UH, ét C	- 2927(IP) pour a	uues matenaux		
). Selon la rela	tion proposée entre	CBR et Mr à la Figur	e 7 du Guide du logiciel "Cl	haussée 2" du MTQ						
i): Selon la rela	tion CBR = Cu/30 d	onnée à la page 35 di	u Guide du logiciel "Chause	sée 2" du MTQ						
) Si l'utilisateur	indique 4 (matéria	inconnu), le CBR do	nné à la colonne "G" corres	spond à la valeur mir	nimale des 3 CBR obten	us à partir des 3 formul	les données à la note 2	ll est	GA.	
pendant recon	nmandé de connaît	re le type de matériau	enfoncé afin d'éviter une s	ous-estimation possi	ble des valeurs CBR. N	1r et Cu		Préparé par	O. Arsenault, ing.	
								Date	21/06/2013	

	6 CARACTÉRIS	STIQUES STRUC	TURALES DES MAT	ÉRIAUX	1			Technicien:	M. Desmarais	
CI	ient	Dessau inc.			N° Essai (Sondag	e)			PS-02-13	
ldentifi descriptio	cation et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska	1	Localisation (exem	sple : Chaînage, voie	direction nord, sud, es	t ou quest)	Pad de grue éolienne	PS-02
N° Proj	et Client	P-0002046-0-00	-075-01		Données	Profondeur du début du terrain naturel en (Mettre 0 si l'essai dé	de l'essai par rapport à la place (mm) bute sans excavation pré	surface du revêtement ou alable).	0	
N° Pro	jet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige p	a couche investiguée (mn uïsse être négligée	n) 1000 max afin que la	1219	
	Doni	nées de l'essai	-	Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indi	ce CBR	Module r	ésillent Mr	Résistanc cisaillemer drainé approxim
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petit marteau 4.6 Kg => 2 Les 2 marteaux: 8 Kg =>1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa cohérer
0,5	76	76	1	152,4	1	0		N/A		4,46
0,5	76	152	1	152,4	1	0		N/A		4,46
1	76	229	1	76,2	1	1		6		17,84
2	76	305	1	38,1	1	2		24		71,3
1	76	381	1	76,2	1	1		6		17,84
2	76	457	1	38,1	1	2		24		71,3
2	76	533	1	38,1	1	2		24		71,3
2	76	610	1	38,1	1	2		24		71,3
2	76	686	1	38,1	1	2	9	24		71,35
3	76	762	1	25,4	1	5		41		160,5
3	76	838	1	25,4	1	5		41		160,5
3	76	914	1	25,4	1	5		41	1.00 perger	160,5
3	76	991	1	25,4	1	5		41		160,5
3	76	1067	1	25,4	1	5		41		160,5
3	76	1143	1	25,4	1	5		41		160,5
3	76	1219	1	25,4	1	5		41		160,5
IVM										
--	--	--	--	---	--	---	---	--	--	---
FORMOTO	ÉNÉTRATION P							Data da Vacasia	04/06/2013	
CALCUL DE	S CARACTÉRI							Technicien:	M. Desmarais	
c	lient	Dessau inc.	TOTOLEO DEO MAT		N° Essai (Sondag	je)			PS-03-13	
Identifi descriptio	ication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exen	nple : Chaïnage, voie c	direction nord, sud, es	: ou cuest)	Pad de grue éolienne	PS-03
Nº Pro	ijet Client	P-0002046-0-00	-075-01		Données	Profondeur du début d du terrain naturel en pl (Mettre 0 si l'essai déb	le l'essai par rapport à la lace (mm) . ute sans excavation pré	surface du revêtement ou alable).	0	
N° Pro	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mn isse être négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	e CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Pett marteau 4,6 Kg => 2 Les 2 marteaux, 8 Kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁵⁾
1	76	76	1	76,2	1	1		6		17,84
1	76	152	1	76,2	1	1		6		17,84
1	76	229	1	76,2	1	1		6		17,84
1	76	305	1	76,2	1	1		6		17,84
4	76	381	1	19,1	1	10		62		285,41
4	76	457	1	19,1	1	10		62		285,41
5	76	533	1	15,2	1	14		80		414,53
3	76	610	1	25,4	1	5		41		160,54
1	76	686	1	76,2	1	1		6		17,84
2	76	762	1	38,1	1	2		24		71,35
1	76	838	1	76,2	1	1		6		17,84
2	76	914	1	38.1	1	2	1	24		71,35
2	76	991	1	38,1	1	2		24		71,35
2	76	1067	1	38,1	1	2		24		71,35
1	76	1143	1	76,2	1	1		6		17,84
2	76	1219	1	38,1	1	2		24		71,35
			A CARLES AND AND AND AND AND AND AND AND AND AND							
			and the second second							
Épaisseur totale traversée (mm)	1219									
Notes: (1): Indice de pér (2): Norme ASTM (3): Valeur moye (4): Selon la relat (6): Selon la relat (6): Si l'utilisateur	nétration IP ajusté s 4 D6951/D6951M-0 inne définie selon l'i tion proposée entre Lion CBR ≈ Cu/30 d • indique 4 (matéria	selon le type de marte 9 CBR = 1/(0.01701) uniformité structurale CBR et Mr à la Figur onnée à la page 35 d 1 inconnu), le CBR de	au utilisé 9 x IP) ² pour sol de type CL apparente de la couche de e 7 du Guide du logiciel "C u Guide du logiciel "Chaus inné à la colonne "G" corre u ponence dir d'Auto-	. avec CBR < 10. CBI matériaux (à calcule haussée 2" du MTQ sée 2" du MTQ spond à la valeur mir	R = 1/(0,002871 x IP) p rsidésiré) himale des 3 CBR obter	our sol de type CH, et C sus à partir des 3 formul	BR = 292/(IP) ^{1 12} pour a les données à la note 2	utres matériaux Il est	67A .	

Date : 21/06/2013

LVM										
ESSALDE PL	ÉNÉTRATION D	CP						Date de l'essai:	31/05/2013	
CALCUL DE	S CARACTÉRI	STIQUES STRUC	TURALES DES MATÉ	RIAUX				Technicien:	M. Desmarais	LEAR DE ARTIN LEWIS
c	lient	Dessau inc.			N° Essai (Sondag	e)			PS-04-13	
ldentif descripti	ication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exem	ιple : Chaînage, voie	direction nord, sud, es	t ou ouest)	Pad de grue éolienne	PS-04
N° Pro	ojet Client	P-0002046-0-00	-075-01	den la	Données	Profondeur du début du terrain naturel en p (Mettre 0 si l'essai dél	de l'essai par rapport à la place (mm) . bute sans excavation pré	surface du revêtement ou alable)	0	
N° Pr	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige p	i couche investiguée (mn uisse être négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	India	ce CBR	Module n	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petit marteau 4,6 Kg => 2 Les 2 marteaux: 8 Kg =>1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁵⁾
1	76	76	1	76,2	1	1		6		17,84
1	76	152	1	76,2	1	1		6		17,84
1	76	229	1	76,2	1	1		6		17,84
3	76	305	1	25,4	1	5		41		160,54
1	76	381	1	76,2	1	1		6		17,84
2	76	457	1	38,1	1	2		24		71,35
2	76	533	1	38,1	1	2		24		71,35
2	76	610	1	38,1	1	2		24		71,35
2	76	686	1	38,1	1	2		24		71,35
1	76	762	1	76,2	1	1		6		17,84
2	76	838	1	38,1	1	2		24		71,35
2	76	914	1	38,1	1	2		24		71,35
1	76	991	1	76,2	1	1		6		17,84
1	76	1067	1	76,2	1	1		6		17,84
1	76	1143	1.18.1	76,2	1	1		6		17,84
1	76	1219	1	76,2	1	1		6		17,84
								2		
cpaisseur totale traversée (mm)	1219			5,4512						
Notes:										
(1): Indice de pé	nétration IP ajusté	selon le type de marte	au utilisé				0-0 W 1020			
2) Norme AST	M D6951/D6951M-0	9: CBR = 1/(0,01701	9 x IP) ² pour sol de type CL	avec CBR < 10, CB	R = 1/(0.002871 x IP) p	our sol de type CH, et	CBR = 292/(IP) ^{1.12} pour a	utres matériaux		
3): Valeur moye	anne définie selon l'	uniformité structurale	apparente de la couche de	matériaux (à calcule	ır sı désiré)					
4): Selon la rela	ition proposée entre	e CBR et Mr à la Figu	re 7 au Guide du Iogiciel "C	naussée 2° du MTQ						
b): Selon la rela	tion CBR ≈ Cu/30 c	ionnee à la page 35 d	iu Guide du logiciel "Chaus	see 2" du MTQ			des densées à la coto O		GA	
ependant recor	mmandé de connaî	u inconnu), le GBR de tre le type de matériai	u enfoncé afin d'éviler une s	spond a la valeur mi	ible des valeurs CBR. M	lus a parui des sitermi ∕ir et Cu.	uros durinees a la note 2.	Drónaró any	O Arsenault ing	
						unanna (f. 1995). 20		Prepare par:	21/06/2013	
					20.45.5510 CONTRACTOR			Date :	21/00/2013	A STATE OF STATE OF STATE

LVM										
ESSAI DE PI	ÉNÉTRATION D	DCP						Date de l'essai:	31/05/2013	
CALCUL DE	S CARACTÉRI	STIQUES STRUC	TURALES DES MATE	ÉRIAUX				Technicien:	M. Desmarais	
с	lient	Dessau inc.			N° Essai (Sondag	le)			PS-05-13	
ldentif descripti	ication et on du projet	Parc éolien Pierr	re-de-Saurel, Yamaska	1	Localisation (exen	nple : Chaînage, voie (direction nord, sud, es	t ou ouest)	Pad de grue éclienne	PS-05
N° Pro	jet Client	P-0002046-0-00	-075-01		Données	Profondeur du début o du terrain naturel en p (Mettre 0 si l'essai déb	de l'essai par rapport à la blace (mm) . bute sans excavation pré	surface du revêtement ou alable).	0	
N° Pro	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mn lisse être négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	e CBR	Module n	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Pett marteau 4,6 Kg => 2 Les 2 marteaux: 8 Kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
1	76	76	1	76,2	1	1		6		17,84
1 '	76	152	1	76,2	1	1		6		17,84
0,5	76	229	1	152,4	1	0		N/A		4,46
0,5	76	305	1	152,4	1	0		N/A		4,46
1	76	381	1	76,2	1	1		6		17,84
2	76	457	1	38,1	1	2		24		71,35
3	76	533	1	25,4	1	5		41		160,54
1	76	610	1	76,2	1	1		6		17,84
2	76	686	1	38,1	1	2		24		71,35
3	76	762	1	25,4	1	5		41		160,54
2	76	838	1	38,1	1	2		24		71,35
2	76	914	1	38,1	1	2		24		71,35
2	76	991	1	38,1	1	2		24		71,35
1	76	1067	1	76,2	1	1		6		17,84
1	76	1143	1	76,2	1	1		6		17,84
1	76	1219	1	76,2	1	1		6		17,84
				X1.10						
Épaisseur totale traversée (mm)	1219		1				1	1		
<u>Notes:</u> (1): Indice de pê (2): Norme ASTM (3): Valeur moye (4): Selon la rela	nétration IP ajusté : 4 D6951/D6951M-0 inne définie selon I tion proposée entre	selon le type de marte 19: CBR = 1/(0,01701 uniformité structurale 1 CBR et Mr à la Figur	eau utilisé 9 x IP) ² pour sol de type CL apparente de la couche de re 7 du Guide du logiciet "Cl	avec CBR < 10, CB malériaux (à calcule haussée 2° du MTQ	R = 1/(0.002871 × IP) po rsidésiré)	bur sol de type CH, et C	CBR = 292/(IP) ¹¹² pour a	utres matériaux		
(5): Selon la rela	tion CBR ≈ Cu/30 d	lonnée à la page 35 d	lu Guide du logiciel "Chaus:	sée 2" du MTQ						
(6) Si l'utilisateur	indique 4 (matéria	u inconnu), le CBR do	onné à la colonne "G" corre	spond à la valeur mir	nimale des 3 CBR obten	ius à partir des 3 formu	les données à la note 2	ll est	GA.	
cependant recon	nmandé de connaît	re le type de matériau	u enfoncé afin d'éviter une s	ous-estimation poss	ible des valeurs CBR. M	Ar et Cu.		Préparé par:	O. Arsenault, ing.	
								Date :	21/06/2013	

ESSAI DE PI CALCUL DE	ÉNÉTRATION D S CARACTÉRIS	CP	TURALES DES MATI	ÉRIAUX				Date de l'essai: Technicien:	04/06/2013 M. Desmarais	
с	lient	Dessau inc.			N° Essai (Sondag	e)			PS-06-13	
Identif descripti	ication et on du projet	Parc éclien Pierr	e-de-Saurel, Yamaska		Localisation (exen	nple : Chaînage, voie	direction nord, sud, es	t ou ouest)	Pad de grue éclienne	PS-06
N° Pro	jet Client	P-0002046-0-00	-075-01		Données	Profondeur du début o du terrain naturel en p (Mettre 0 si l'essai déb	de l'essai par rapport à la lace (mm) . pule sans excavation pré	i surface du revêtement ou alable).	0	
N° Pro	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mn lisse être négligée	n) 1000 max afin que la	1219	novo svyskova kontraktiva
	Donr	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	e CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Pett marteau: 4.6 Kg => 2 Les 2 marteaux: 8 Kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
1	76	76	1	76,2	1	1		6		17,84
1	76	152	1	76,2	1	1		6		17,84
1	76	229	1	76,2	1	1		6		17,84
2	76	305	1	38,1	1	2		24		71,35
1	76	381	1	76,2	1	1		6		17,84
2	76	457	1	38,1	1	2		24		71,35
1	76	533	1	76,2	1	1		6		17,84
1	76	610	1	76,2	1	1		6		17,84
1	76	686	1	76,2	1	1		6		17,84
2	76	762	1	38,1	1	2		24		71,35
1	76	838	1	76,2	1	1		6		17,84
1	76	914	1	76,2	1	1		6		17,84
1	76	991	1	76,2	1	1		6		17,84
1	76	1067	1	76,2	1	1		6		17,84
0,5	76	1143	1	152,4	1	0		N/A		4,46
0,5	76	1219	1	152,4	1	0		N/A		4,46
Épsisseur totale traversée (mm)	1219		din permitan di secondari							
Notes: 1): Indice de pér 2): Norme ASTN 3): Valeur moye 4): Selon la rela 5): Selon la rela 6): Si l'utilisateur rependant recon	nétration IP ajusté s A D6951/D6951M-0 nne définie selon I't tion proposée entre tion CBR ≈ Cu/30 d indique 4 (matériat nmandé de connaîte	elon le type de marte 9: CBR = 1/(0,01701) Iniformité structurale CBR et Mr à la Figur onnée à la page 35 d 1 inconnu), le CBR do 1 e le type de matériau	eau utilisé 9 x IP) ² pour sol de type CL apparente de la couche de re 7 du Guide du logiciel "C u Guide du logiciel "Chaus: nné à la colonne "G" corre: e enfoncé afin d'éviter une s	. avec CBR < 10, CB matériaux (à celcule haussée 2″ du MTQ sée 2″ du MTQ spond à la valeur mis sous-estimation poss	R = 1/(0,002871 x IP) pr r sidésiré) nimale des 3 CBR obten ible des valeurs CBR, M	our sol de type CH. et C us à partir des 3 formu fret Cu.	CBR = 292/(IP) ^{1 12} pour a les données à la note 2	utres matériaux Il est Préparé par:	67A · 0. Arsenault, ing.	

LVM	(
ESSALDE DE	ÉNÉTRATION D	NCP						Data da l'assai:	13/06/2013	
CALCUL DE	S CARACTÉRI	STIQUES STRUC	TURALES DES MATI	ÉRIALIX				Technicien:	M. Desmarais	AND AND ADDRESS OF
c	lient	Dessau inc.			N° Essai (Sondag	je)			PS-07-13	
identifi descriptio	ication et on du projet	Parc éolien Pierr	re-de-Saurel, Yamaska		Localisation (exen	nple : Chaînage, voie	direction nord, sud, es	l ou ouest)	Pad de grue éolienne	PS-07
N° Pro	jet Client	P-0002046-0-00	-075-01		Données	Profondeur du début o du terrain naturel en p (Mettre 0 si l'essai dét	de l'essai par rapport à la blace (mm) . bute sans excavation pré	a surface du revêtement ou alable).	0	
N° Pro	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mr Jisse être négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	ce CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Pett maneau: 4.6 Kg => 2 Les 2 marteaux: 8 Kg =>1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁵⁾
1	76	76	1	76,2	3	2		23		N/A
1	76	152	1	76,2	3	2		23		N/A
1	76	229	1	76,2	3	2		23		N/A
1	76	305	1	76,2	3	2		23		N/A
1	76	381	1	76,2	3	2		23		N/A
3	76	457	1	25,4	3	8		54		N/A
3	76	533	1	25,4	3	8		54		N/A
4	76	610	1	19,1	3	11		67		N/A
4	76	686	1	19,1	3	11		67		N/A
4	76	762	1	19,1	3	11		67		N/A
4	76	838	1	19,1	3	11		67		N/A
4	76	914	1	19,1	3	11		67		N/A
5	76	991	1	15,2	3	14		80		N/A
4	76	1067	1	19,1	3	11		67		N/A
5	76	1143	1	15,2	3	14		80		N/A
3	76	1219	1	25,4	3	8		54		N/A
1	19 321 200									
Épaisseur totale traversée (mm)	1219									
Notes: (1) Indice de pér (2) Norme ASTM (3) Valeur moyei (4). Selon la relai (5). Selon la relai (6) Si l'utilisateur cependant recorr	nétration IP ajusté d M D6951/D6951M-0 nne définie selon l'i tion proposée entre tion CBR = Cu/30 d indique 4 (matériai nmandé de connaît	selon le type de marte 19: CBR = 1/(0,01701' uniformité structurale CBR et Mr à la Figur Ionnée à la page 35 d u inconnu), le CBR dc	eau utilisé 9 x IP) ² pour sol de type CL apparente de la couche de re 7 du Guide du logiciel "C lu Guide du logiciel "Chaus onné à la colonne "C" corre u enfoncé afin d'éviter une s	. avec CBR < 10. CB matériaux (à calcule haussée 2° du MTQ sée 2° du MTQ spond à la valeur min sous-estimation poss	R = 1/(0.002871 x IP) po r si désiré) nimale des 3 CBR obten ible des valeurs CBR, M	our sol de type CH, et C us à partir des 3 formu Ar et Cu.	CBR = 292/(IP) ^{1 17} pour a les données à la note 2	utres maténaux Il est Préparé par: Date -	0. Arsenault, ing. 21/06/2013	

ESSAI DE P CALCUL DE	ÉNÉTRATION E	OCP STIQUES STRUC	TURALES DES MATE	ÉRIAUX				Date de l'essai: Technicien:	13/06/2013 M. Desmarais	
c	lient	Dessau inc.			N° Essai (Sondag	e)			PS-08-13	
Identii descripti	fication et ion du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exen	nple : Chainage, voie	direction nord, sud, es	t ou ouest)	Pad de grue éclienne	PS-08
N° Pro	ojet Client	P-0002046-0-00	-075-01		Données	Profondeur du début o du terrain naturel en p (Mettre 0 si l'essai dét	de l'essai par rapport à le blace (mm) . bute sans excavation pré	a surface du revêtement ou alable)	0	
N° Pr	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mn lisse être négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	ce CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petit marteau: 4,6 Kg => 2 Les 2 marteaux: 8 Kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
1	76	76	1	76,2	1	1		6		17,84
2	76	152	1	38,1	1	2		24		71,35
1	76	229	1	76,2	1	1		6		17,84
1	76	305	1	76,2	1	1		6		17,84
2	76	381	1	38,1	1	2		24		71,35
1	76	457	1.000	76,2	1	1		6		17,84
2	76	533	1	38,1	1	2		24		71,35
1	76	610	1	76,2	1	1		6		17,84
1	76	686	1	76,2	1	1		6		17,84
1	76	762	1	76,2	1	1		6		17,84
1	76	838	1	76,2	1	1		6		17,84
0,5	76	914	1	152,4	1	0		N/A		4,46
0,5	76	991	1	152,4	1	0		N/A		4,46
1	76	1067	1	76,2	1	1		6		17,84
1	76	1143	1	76,2	1	1		6		17,84
1	76	1219	1	76,2	1	1		6		17,84
	MARCH 1									
Épaisseur totale traversés (mm)	1219									
<u>lotes:</u> 1): Indice de pé	nétration IP ajusté :	selon ie type de marte	au utilisé				892	wsta: r		
2) Norme ASTI 3): Valeur moye 4): Selon la rela	M D6951/D6951M-C anne définie selon l'i itlon proposée entre	9: CBR = 1/(0,01701) uniformité structurale CBR et Mr à la Figur	9 x IP) ² pour sol de type CL apparente de la couche de e 7 du Guide du logiciel "Cl	avec CBR < 10, CB matériaux (à calcule haussée 2° du MTQ	R = 1/(0,002871 x IP) po ir sidésiré)	our sol de type CH, et C	CBR = 292/(IP) ^{1 12} pour a	utres matériaux		
5): Selon la rela 6) Si l'utilisateur	ition CBR ≈ Cu/30 d r indique 4 (matéria	lonnée à la page 35 d u inconnu), le CBR do	u Guide du logiciel "Chause nné à la colonne "G" corres	sée 2" du MTQ spond à la valeur mir	nimale des 3 CBR obten	us à partir des 3 formu	les données à la note 2	li est	oA.	
ependant recor	mmandé de connaît	re le type de matériau	enfoncé afin d'éviler une s	ous-estimation poss	ible des valeurs CBR. N	fr et Cu		Préparé par:	O. Arsenault, ing.	
								Date :	21/06/2013	

ESSAI DE PE CALCUL DE	ÉNÉTRATION D	CP	TURALES DES MATE	ÊRIAUX				Date de l'essai: Technicien:	03/06/2013 M. Desmarais	
C	lient	Dessau inc.			N° Essai (Sondag	e)			PS-09-13	
Identifi descriptio	ication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exen	ple : Chaînage, voie	direction nord, sud, es	t ou ouest)	Pad de grue éclienne	PS-09
N° Pro	ojet Client	P-0002046-0-00	-075-01		Données	Profondeur du début du terrain naturel en p (Mettre 0 si l'essai dél	de l'essai par rapport à la place (mm) . bute sans excavation pré	surface du revêtement ou atable)	0	
N° Pro	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige po	couche investiguée (mr uisse être négligée	n) 1000 max afin que la	1219	
	Donr	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	India	ce CBR	Module n	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petr marteau 4.6 Kg => 2 Les 2 marteaux: 8 Kg =>1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
3	76	76	1	25,4	1	5		41		160,54
1	76	152	1	76,2	1	1		6		17,84
0,5	76	229	1	152,4	1	0		N/A		4,46
0,5	76	305	1	152,4	1	0		N/A		4,46
2	76	381	1	38,1	1	2		24		71,35
1	76	457	1	76,2	1	1		6		17,84
2	76	533	1	38,1	1	2		24		71,35
1	76	610	1	76,2	1	1		6		17,84
1	76	686	1	76,2	1	1		6		17,84
2	76	762	1	38,1	1	2		24		71,35
0,5	76	838	1	152,4	1	0		N/A		4,46
0,5	76	914	1	152,4	1	0		N/A		4,46
1	76	991	1	76,2	1	1		6		17,84
1	76	1067	1	76,2	1	1		6		17,84
1	76	1143	1	76,2	1	1		6		17,84
1	/6	1219	1.	76,2	1	1		6		17,84
paisseur totale traversée (mm)	1219							•	Bent and Allen and Allen	
lotes:). Indice de pér 2) Norme ASTN 2) Valeur moyer 3) Valeur moyer 1) Selon la relat 5) Selon la relat 5) Si l'utilisateur 2000 das l'accord	nétration IP ajusté s M D6951/D6951M-0 nne définie seton fu tion proposée entre tion CBR ≈ Cu/30 d i Indique 4 (matériau	élon le type de marte 9 CBR = 1/(0,017011 uniformité structurale CBR et Mr à la Figur onnée à la page 35 d u inconnu), le CBR do	au utilisé 9 x IP) ² pour sol de type CL apparente de la couche de e 7 du Guide du logiciel "Cl u Guide du logiciel "Chauss nné à la colonne "G" corres perfecte d'ité de	avec CBR < 10, CB matériaux (à catcule haussée 2° du MTQ sée 2° du MTQ spond à la valeur mir	R = 1/(0,002871 x IP) po r sidésiré) nimale des 3 CBR obten	ur sol de type CH. et i us à pertir des 3 formu	CBR = 292/(IP) ^{1.12} pour a iles données à la note 2	utres matériaux Il est	OA ·	
aheugaur Lecou.	nmande de connaîtr	e le type de materiau	emonce ann d'éviter une s	ous-esumation poss	ible des valeurs CBR, M	ir et CU		Préparé par:	O. Arsenault, ing.	

ESSAI DE PI CALCUL DE	ÉNÉTRATION E	CP	TURALES DES MATI	ÉRIAUX				Date de l'essaí: Technicien:	13/06/2013 M. Desmarais	
c	lient	Dessau inc.			N° Essai (Sondag	je)			PS-10-13	
ldentif descripti	fication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exen	nple : Chainage, voie	direction nord, sud, es	t ou ouest)	Pad de grue éolienne	PS-10
N° Pro	ojet Client	P-0002046-0-00	-075-01		Données	Profondeur du début du terrain naturel en p (Mettre 0 si l'essai dél	de l'essai par rapport à la blace (mm) . bute sans excavation pré	a surface du revêlement ou alable)	0	
N° Pr	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mr uisse être négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	India	ce CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Pett marteau: 4.6 Kg => 2 Les 2 marteaux: 8 Kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
0.5	76	76	1	152,4	1	0		N/A		4,46
0.5	76	152	1	152,4	1	0		N/A		4,46
1	76	229	1	76,2	1	1		6		17,84
1	76	305	1	76,2	1	1		6		17,84
1	76	381	1	76,2	1	1		6		17,84
2	76	457	1	38,1	1	2		24		71,35
2	76	533	1	38,1	1	2		24		71,35
1	76	610	1	76,2	1	1		6		17,84
2	76	686	1	38,1	1	2		24		71,35
1	76	762	1	76,2	1	1		6		17,84
1	76	838	1	76,2	1	1		6		17,84
1	76	914	1	76,2	1	1		6		17,84
1	76	991	1	76,2	1	1		6		17,84
1	76	1067	The State 1 - Constants	76,2	1	1		6		17,84
1	76	1143	1	76,2	1	1		6		17,84
1	76	1219	1	76,2	1	1		6		17,84
A-8-50										
				A MARKAN MILL COLUMN				0		
ipaisseur totale traversée (mm)	1219									
otes:): Indice de pé (): Norme ASTM (): Valeur moye (): Selon la rela	nétration IP ajusté s 4 D6951/D6951M-0 inne définie selon l'i lion proposée entre	selon le type de marte 9: CBR = 1/(0,017019 uniformité structurale 1 CBR et Mr à la Figur	au utilisé 9 x IP) ² pour sol de type CL apparente de la couche de e 7 du Guide du logiciel "C	. avec CBR < 10. CB matériaux (à calcule haussée 2" du MTQ	R = 1/(0.002871 x IP) po rsidésiré)	our sol de type CH, et (CBR = 292/(IP) ^{1,12} pour a	utres matériaux	AND FAILS SALU	
i) Selon la rela	lion CBR = Cu/30 d	onnée à la page 35 d	u Guide du logiciel "Chaus	sée 2" du MTQ						
) SI l'utilisateur	indique 4 (matéria	u inconnu). le CBR do	nné à la colonne "G" corre	spond à la valeur mir	nimale des 3 CBR obten	us à partir des 3 formu	lles données à la note 2.	ll est	GA .	
pendant recor	nmandé de connaît	re le type de matériau	i enfoncé afin d'éviter une s	ous-estimation poss	ible des valeurs CBR. N	Ar et Cu		Préparé par	O, Arsenault, ing.	
								Date	21/06/2013	COMPANY AND ADDRESS

LVM	р. Г.		a.							
ECCALDE D	ÉNÉTRATION D	NCD.						Data da l'assais	31/05/2013	
	S CARACTÉRI			DIALLY				Technicien:	M. Desmarais	CONTRACTOR OF THE
CALCOL DE	Uand	Deservine	TURALES DES MATE	RIAUX	Nº Fasal (Fandas	-1			DE 11 12	
	inent	Dessau Inc.			Nº Essai (Sondag	e)			F3-11-13	
ldentif descripti	ication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exen	nple : Chaînage, vole	direction nord, sud, est	: ou ouest)	Pad de grue éclienne	PS-11
N° Pro	ojet Client	P-0002046-0-00	-075-01		Données	Profondeur du début o du terrain naturel en p (Mettre 0 si l'essai dét	de l'essai par rapport à la blace (mm) . pute sans excavation pré-	surface du revêtement ou alabie).	0	
N° Pro	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur lotale de la friction sur la tige pu	couche investiguée (mm lisse ôtre négligée	n) 1000 max afin que la	1219	
	Doni	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	e CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Pett marteau 4,6 Kg => 2 Les 2 marteaux: 8 Kg => 1	IР ⁽¹⁾ (mm/соџр)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁵⁾
1	76	76	1	76,2	1	1		6		17,84
1	76	152	1	76,2	1	1		6		17,84
1	76	229	1	76,2	1	1		6		17,84
3	76	305	1	25,4	1	5		41		160,54
1	76	381	1	76,2	1	1		6		17,84
2	76	457	1	38,1	1	2		24		71,35
2	76	533	1	38,1	1	2		24		71,35
2	76	610	1	38,1	1	2		24		71,35
2	76	686	1	38,1	1	2		24		71,35
1	76	762	1	76,2	1	1		6		17,84
2	76	838	1	38,1	1	2		24		71,35
2	76	914	1	38,1	1	2	6 (04 02 - 19 F	24		71,35
1	76	991	1	76,2	1	1		6		17,84
1	76	1067	1	76,2	1	1		6		17,84
1	76	1143	1	76,2	1	1		6		17,84
1	76	1219	1	76,2	1	11		6		17,84
				AMPIA_IT WY						
Épalsseur totale traversée (mm)	1219									
Notes;								1999523		
(1): Indice de pé	nétration IP aiusté s	elon le type de marte	au utilisé							
(2). Norme ASTM	4 D6951/D6951M-0	9 CBR = 1/(0 017010	9 x IP) ² pour sol de type Cl	avec CBR < 10 CR	R = 1/(0.002871 x IP) no	oursol de type CH et 0	CBR = 292/(IP) ^{1.12} pour a	utres matériaux		
(3) Valeur moye	nne définie selon l'u	iniformité structurale	apparente de la couche de	matériaux (à calcule	r si désiré)		poura			
(4) Selon la rela	lion proposée entre	CBR et Mr à la Figur	e 7 du Guide du logiciel "Cl	naussée 2" du MTQ						
(5) [.] Selon la rela	tion CBR ≈ Cu/30 d	onnée à la page 35 d	u Guide du logiciel "Chause	sée 2" du MTQ					20200 A	
(6) Si l'utilisateur	indique 4 (maténau	inconnu), le CBR do	nné à la colonne "G" corre:	spond à la valeur mir	nimale des 3 CBR obten	us à partir des 3 formu	les données à la note 2	ll est	OA.	
cependant recon	nmandé de connaît	re le type de matériau	enfoncé afin d'éviter une s	ous-estimation poss	ble des valeurs CBR. N	1r el Cu		Préparé par:	O. Arsenault, ing.	
								Date :	21/06/2013	

SSAI DE PI	ÉNÉTRATION D	OCP STIQUES STRUC	TURALES DES MATÉ	RIAUX				Date de l'essai: Technicien:	28/06/2013 M. Desmarais	
с	lient	Dessau inc.			N° Essai (Sondag	e)			PS-12-13	
ldentif descripti	fication et on du projet	Parc éolien Pierre	e-de-Saurel, Yamaska		Localisation (exem	nple : Chaînage, voie	direction nord, sud, es	t ou ouest)	Pad de grue éclienne	PS-12
Nº Pro	ojet Client	P-0002046-0-00-	-075-01		Données	Profondeur du début o du terrain naturel en p (Mettre 0 si l'essai dét	de l'essai par rapport à la place (mm) pute sans excavation pré	surface du revêtement ou alable).	0	
N° Pr	ojet LVM	P-0003539-0-01-	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mn lisse être négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	e CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petit marteau: 4.6 Kg => 2 Les 2 marteau: 8 Kg =>1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≃ Cu (kPa) sol cohérent ⁽⁶⁾
2	76	76	1	38,1	1	2		24		71,35
1	76	152	1	76,2	1	1		6		17,84
0,5	76	229	1	152,4	1	0		N/A		4,46
0,5	76	305	1	152,4	1	0		N/A		4,46
2	76	381	1	38,1	1	2		24		71,35
2	76	457	1	38,1	1	2		24		71,35
2	76	533	1	38,1	1	2		24		71,35
1	76	610	1	76,2	1	1		6		17.84
2	76	686	1	38,1	1	2		24		71,35
1	76	762	1	76,2	1	1		6		17,84
1	76	838	1	76,2	1	1		6		71.25
2	76	914	1	38,1	1	2		24		17.84
1	/6	991	1	76,2	1			6		17,04
	76	1067	1	76,2		1		6		17.84
1	70	1143	1	76.2	1	1		6		17.84
1	10	1213	1	70,2		· · · · · · · · · · · · · · · · · · ·				
	Contraction of the second									
12.72.28	CARDON THE COL								101	
alsseur totale versée (mm) ves:	1219	selon le tune de marte	nu utilieA							
Norme ASTI Valeur moye Selon la rela Selon la rela	M D6951/D6951M-C anne définie selon l' ation proposée entre ation CBR ≈ Cu/30 c	99 CBR = 1/(0,01701) uniformité structurale 9 CBR et Mr à la Figur lonnée à la page 35 d	au uninse 9 x IP) ² pour sol de type CL apparente de la couche de 1e 7 du Guide du logiciel "C 1u Guide du logiciel "Chaus	avec CBR ≺ 10, CB matériaux (à calcule haussée 2" du MTQ sée 2" du MTQ	R = 1 /(0,002871 x IP) po arsidésiré)	our sol de type CH, et (CBR = 292/(IP) ^{1.12} pour e	utres matériaux		
Si l'utilisateu	r indique 4 (matéria	u inconnu), le CBR do	nné à la colonne "G" corre	spond à la valeur mi	nimale des 3 CBR obter	nus à partir des 3 formu	iles données à la note 2	ll est	GA.	
endant recor	mmandé de connaît	re le type de matériau	enfoncé afin d'éviter une s	ous-estimation poss	ible des valeurs CBR. M	Ar et Cu		Préparé par	O. Arsenault, ing.	
								Date	02/07/2013	a distant in the second second

ESSAI DE PI CALCUL DE	ÉNÉTRATION E S CARACTÉRI	OCP STIQUES STRUC	TURALES DES MATE	ÉRIAUX				Date de l'essal: Technicien:	30/05/2013 M. Desmarais	
с	lient	Dessau inc.			N° Essai (Sondag	e)			TF-01-13	
ldentif descripti	ication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exem	nple : Chaînage, vole	direction nord, sud, es	t ou ouest)	Chemin des Brouillard	
N° Pro	jet Client	P-0002046-0-00	-075-01		Données	Profondeur du début d du terrain naturel en p (Mettre 0 si l'essai dél	de l'essai par rapport à la blace (mm) . bute sans excavation pré	surface du revêtement ou alable)	0	
N° Pr	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mr uisse être négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	ce CBR	Module r	ésillent Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petit marteau 4,6 Kg => 2 Les 2 marteaux: 6 Kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau Inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁵⁾
7	76	76	1	10,9	3	20		93		N/A
8	76	152	1	9,5	3	23		98		N/A
10	76	229	1	7,6	3	30		105		N/A
11	76	305	1	6,9	3	33		109		N/A
8	76	381	1	9,5	3	23		98		N/A
5	76	457	1	15,2	3	14		80		N/A
5	76	533	1	15,2	3	14		80		N/A
4	76	610	1	19,1	3	11		67		N/A
4	76	686	1	19,1	3	11		67		N/A
4	76	762	1	19,1	3	11		67		N/A
4	76	838	1	19,1	3	11		67		N/A
3	76	914	1	25,4	3	8		54		N/A
2	76	991	1	38,1	3	5		39		N/A
2	76	1067	1	38,1	3	5		39		N/A
1	76	1143	1	76,2	3	2		23		N/A
2	76	1219	. 1	38,1	3	5		39		N/A
(1)										
Épaisseur totale traversée (mm)	1219									
fotes: 1): Indice de pé 2): Norme ASTI 3): Valeur moye 4): Selon la rela (5): Selon la rela	nétration IP ajusté : 1/ D6951/D6951M-C Inne définie selon IV tion proposée entre tion CBR = Cu/30 d	selon le type de marte 19: CBR = 1/(0,01701) uniformité structurale CBR et Mr à la Figur ionnée à la page 35 d	eau utilisé 9 x IP) ⁷ pour sol de type CL apparente de la couche de re 7 du Guide du logiciel "C hausde du logiciel "Chaus	. avec CBR < 10, CB matériaux (à calcule haussée 2° du MTQ sée 2° du MTQ	R = 1/(0.002871 x IP) po r si désiré)	our sol de type CH, et (CBR = 292/(IP) ^{1 12} pour a	utres matériaux	64	
6) Si l'utilisateur	indíque 4 (matéria	u inconnu). le CBR do	onné à la colonne "G" corre	spond à la valeur mir	nimale des 3 CBR obten	ius à partir des 3 formu	iles données à la note 2	ll est	OA.	
ependant recor	nmandé de connaît	re le type de matériau	enfoncé afin d'éviter une s	sous-estimation poss	ible des valeurs CBR. N	Ar et Cu		Préparé par:	O. Arsenault, ing.	and the second second
								Date :	21/06/2013	

SSAI DE PÉ ALCUL DE	ÉNÉTRATION D S CARACTÉRIS	CP STIQUES STRUC	TURALES DES MATÉ	RIAUX				Date de l'essai: Technicien:	30/05/2013 M. Desmarais	
C	lient	Dessau inc.			N° Essai (Sondag	e)			TF-02-13	
ldentifi descriptio	ication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exem	nple : Chaînage, voie	direction nord, sud, es	t ou ouest)	Chemin des Brouillard	
N° Pro	jet Client	P-0002046-0-00-	075-01		Données	Profondeur du début du terrain naturel en p (Mettre 0 si l'essai dél	de l'essai par rapport à la blace (mm) . bute sans excavation pré	surface du revêtement ou alable).	0	
N° Pro	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mn lisse être négligée	n) 1000 max afin que la	1219	
	Doni	nées de l'essai	Sonije delatina elizi falle più proveni di Sonigano et ma	Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	ce CBR	Module r	ésillent Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petit marteau: 4.6 kg => 2 Les 2 marteau: 8 kg =>1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁵⁾
8	76	76	1	9,5	3	23		98		N/A
18	76	152	1	4,2	3	58		125		N/A
20	76	229	1	3,8	3	65		129		N/A
11	76	305	1	6,9	3	33		109		N/A
3	76	381	1	25,4	3	8		54		N/A
2	76	457	1	38,1	1	2		24		71,35
2	76	533	1	38,1	1	2		24		71,35
3	76	610	1	25,4	1	5		41		160,54
2	76	686	1	38,1	1	2		24		71,35
2	76	762	1	38,1	1	2		24		71,35
2	76	838	1	38,1	1	2		24		71,35
2	76	914	1	38,1	1	2		24		71,35
2	76	991	1	38,1	1	2		24		71,35
1	76	1067	1	76,2	1	1		6		17,84
2	76	1143	1	38,1	1	2		24		71,35
2	76	1219	1	38,1	1	2		24		71,35
paisseur totale	1219									
averšće (mm) 			505P-							1
Indice de pér Norme ASTN Valeur moye	nétration IP ajusté : 4 D6951/D6951M-0 nne définie selon l'i	elon le type de marte 9 [.] CBR = 1/(0,017016 uniformité structurale	au utilisé 9 x IP) ² pour sol de type CL apparente de la couche de	. avec CBR < 10. CB matéлaux (à calcule	R = 1/(0,002871 x IP) po rsidésiré)	our sol de type CH, et i	CBR = 292/(IP) ^{1.12} pour a	utres matériaux		
Selon la rela Selon la rela	lion proposée entre tion CBR ≈ Cu/30 d	CBR et Mr à la Figur onnée à la page 35 d	e 7 du Guide du logiciel "C u Guide du logiciel "Chaus	haussée 2" du MTQ sée 2" du MTQ						
Si l'utilisateur	indique 4 (matéria	inconnu), le CBR do	nné à la colonne "G" corre	spond à la valeur mi	nimale des 3 CBR obten	us à partir des 3 formi	ules données à la note 2.	11 est	GA.	
	mandé de conneit	re le type de matériau	enfoncé afin d'éviter une s	ous-estimation poss	ible des valeurs CBR. N	Ar et Cu		Préparé par	O Amonault ing	

	ΞΝΈΤΒΑΤΙΟΝ Γ	ICP						Date de l'essai:	27/05/2013	
CALCUL DES	S CARACTÉRIS	STIQUES STRUC	TURALES DES MATÉ	RIAUX				Technicien:	M. Desmarais	
CI	lient	Dessau inc.			N° Essai (Sondag	e)			TF-03-13	
ldentifi descriptic	ication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exem	nple : Chaînage, voie	direction nord, sud, es	ou ouest)	Chemin des Brouillard	
N° Proj	jet Client	P-0002046-0-00	-075-01		Données	Profondeur du début o du terrain naturel en p (Mettre 0 si l'essai déb	de l'essai par rapport à la blace (mm) bute sans excavation pré	surface du revêtement ou atable)	0	
N° Pro	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mr Jisse être négligée	i) 1000 max afin que la	1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	ce CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petit marteau: 4,6 kg => 2 Les 2 marteau: 8 kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
22	76	76	1	3,5	3	73		132		N/A
38	76	152	1	2,0	3	100		142		N/A
36	76	229	1	2,1	3	100		142		N/A
14	76	305	1	5,4	3	44		117		N/A
7	76	381	1	10,9	3	20		93		N/A
13	76	457	1	5,9	3	40		114		N/A
16	76	533	1	4,8	3	51		121		N/A
13	76	610	1	5,9	3	40		114		N/A
12	76	686	1	6,4	3	37		112		N/A
10	76	762	1	7,6	1	30		105		900,98
9	76	838	1	8,5	1	27		102		800,69
12	76	914	1	6,4	1	37		112		1105,09
10	76	991	1	7,6	1	30		105		900,98
8	76	1067	1	9,5	1	23		98	1446	701,74
5	76	1143	1	15,2	1	14		80		414,53
4	76	1219	1	19,1	1	10		62		285,41
Épaisseur totale traversée (mm)	1219									
Votes: (1): Indice de pér (2): Norme ASTM (3): Valeur moyer (4): Selon la relat (5): Selon la relat (6) Si l'utilisateur cependant recom	nétration IP ajusté e 4 D6951/D6951M-0 nne définie selon fa lion proposée entre tuon CBR ≈ Cu/30 d indique 4 (matériai nmandé de connaît	selon le type de marte 9: CBR = 1/(0,01701) uniformité structurale • CBR et Mr à la Figur onnée à la page 35 d u inconnu). le CBR de re le type de matériat	eu utilisé) x IP) ² pour sol de type CL apparente de la couche de e 7 du Guide du logiciel "Claus u Guide du logiciel "Chauss inné à la colonne "G" corres e enfoncé afin d'éviter une s	avec CBR < 10, CB matériaux (à calcule haussée 2° du MTQ sée 2° du MTQ spond à la valeur mir ous-estimation poss	R = 1/(0,002871 x IP) po rsidésiré) nimale des 3 CBR obten bble des vateurs CBR, 1	our sol de type CH, et 0 us à partirdes 3 formu Aret Cu	CBR = 292/(IP) ^{1 12} pour a iles données à la note 2	utres matériaux Il est Prónaró nor	674 ·	
								, repare par.	21/06/2013	

LVM ESSAI DE PI	ÉNÉTRATION E)CP						Date de l'essai:	30/05/2013 M Desmarais	
CALCUL DE	lient	Dessau inc.	TURALES DES MATE	RIAUX	N° Essal (Sondag	le)		Technicich.	TF-04-13	
identif descripti	ication et on du projet	Parc éolien Pierr	re-de-Saurel, Yamaska		Localisation (exem	nple : Chaînage, voie	direction nord, sud, es	ou ouest)	Rang Thiersant	
N° Pro	ijet Client	P-0002046-0-00	-075-01		Données	Profondeur du début o du terrain naturel en p (Mettre 0 si l'essai dét	de l'essai par rapport à la blace (mm) bute sans excavation pré	surface du revêtement ou alable)	0	
N° Pr	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mn uisse être négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁸⁾	Indic	ce CBR	Module r	ésillent Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petit marteau 4.6 Kg => 2 Les 2 marteaux: 8 Kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau Inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
7	76	76	1	10,9	3	20		93		N/A
14	76	152	1	5,4	3	44		117		N/A
10	76	229	1	7,6	3	30		105		N/A
5	76	305	1	15,2	3	14		80		N/A
6	76	381	1	12,7	3	17		88		N/A
5	76	457	1	15,2	1	14		80		414,53
3	76	533	1	25,4	1	5		41		160,54
1	76	610	1	76,2	1	1		6		17,84
2	76	686	1	38,1	1	2		24		71,35
1	76	762	1	76,2	1	1		6		17,84
2	76	838	1	38,1	1	2		24		71,35
1	76	914	1	76,2	1	1		6		17,84
1	76	991	1	76,2	1	1		6		17,84
1	76	1067	1	76,2	1	1		6		17,84
1	76	1143	1	76,2	1	1		6		17,84
1	76	1219	1	76,2	1	1		6		17,84
100 1 3 1 5 1	San Arriston									
Épalaseur totale traveraée (mm) Notes:	1219			Makini ti						
 Indice de pé Norme ASTI Valeur moye Valeur moye Selon la rela Selon la rela Selon la rela Si l'utilisateur 	nétration IP ajusté M D6951/D6951M-C Inne définie selon l' Ition proposée entre Ition CBR = Cu/30 c i Indique 4 (matéria	selon le type de marte 39: CBR = 1/(0.01701 uniformité structurale 9 CBR et Mr à la Figu donnée à la page 35 c u inconnu). le CBR de	eau utilisé 9 x IP) ² pour sol de type CL apparente de la couche de re 7 du Guide du logiciel "C du Guide du logiciel "Chaus onné à la colonne "G" corre	. avec CBR < 10, CB matériaux (à calcule haussée 2° du MTQ sée 2° du MTQ spond à la valeur min	R = 1/(0.002871 × IP) po r sidésiré) nimale des 3 CBR obten	our sol de type CH, et (nus à partir des 3 formu	CBR = 292/(IP) ^{1 12} pour a ules données à la note 2	utres matériaux Il est	<i>6</i> A .	
cependant recor	mmandé de connaî	re le type de matéria	u enfoncé afin d'éviter une s	sous-estimation poss	ible des valeurs CBR, M	vir et Cu		Préparé par:	O. Arsenault, ing.	and the second second
								Date :	21/06/2013	ALL AN AGAINMENT

IVM	2		1 BL					0.1118.34	2	
								Data da l'assolu	30/05/2013	
CALCUL DE	ENETRATION L							Technicien:	M. Desmarais	and the second second
CALCOL DE.	5 CARACTERK		TURALES DES MATE		1					
CI	lient	Dessau inc.	AND THE ST		N° Essai (Sondag	le)			TF-05-13	
ldentifi descriptic	ication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska	1	Localisation (exen	nple : Chaînage, voie	direction nord, sud, es	t ou ouest)	Rang Thiersant	
N° Proj	jet Client	P-0002046-0-00	-075-01		Données	Profondeur du début du terrain naturel en p (Mettre 0 si l'essai dél	de l'essai par rapport à la place (mm) . bute sans excavation pré	surface du revêtement ou alable).	0	
N° Pro	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	i couche investiguée (mn uisse être négligée	n) 1000 max afin que la	1219	
	Doni	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	ce CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petrmarteau. 4,6 kg => 2 Les 2 marteaux. 8 kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
14	76	76	1	5,4	3	44		117		N/A
18	76	152	1	4,2	3	58		125		N/A
8	76	229	1	9,5	3	23		98		N/A
5	76	305	1	15,2	3	14		80		N/A
4	76	381	1	19,1	1	10		62		285,41
2	76	457	1	38,1	1	2		24		71,35
2	76	533	1	38,1	1	2		24		71,35
2	76	610	1	38,1	1	2		24		71,35
2	76	686	1	38,1	1	2		24		71,35
2	76	762	1	38,1	1	2		24		71,35
1	76	838	1	76,2	1	1		6		17,84
1	76	914	1	76,2	1	1		6		17,84
1	76	991	1	76,2	1	1		6		17,84
2	76	1067	1	38,1	1	2		24		71,35
1	76	1143	1	76,2	1	1		6		17,84
2	76	1219	1	38,1	1	2		24		71,35
						-				
Épaisseur totale	1219									
traversée (mm)	.2.10									
(4) (adias da 1	- Analian ID al. 14									
(i) indice de per	netration IP ajuste :	seion le type de marte	au dullise		D		000 - 000 //0112			
(2) Norme ASTN (3) Valeur move	nne définie selon la	uniformité structurale	e x i≃) : pour sol de type CL apparente de la couche de	avec UBR < 10, CB maténaux (à calcule	n. – 17(0.0028/1 X IP) p ir sidésiré)	our sol de type CH, et l	ODR = Z92/(IP) POULE	ands marghanx		
(4) Selon la relat	lion proposée entre	CBR et Mr à la Figur	apparente de la coucile de	haussée 2" du MTO	a doaro)					
5): Selon la relat	tion CBR = Cu/30 d	onnée à la page 35 d	u Guide du Ioniciel "Chaus	sée 2" du MTO						
6) Si l'utilisateur	indique 4 (matéria	u inconnu). le CBR do	enné à la colonne "G" corre	spond à la valeur mi	nimale des 3 CBR obter	us à partir des 3 formi	ules données à la note 2.	llest	OA .	
cependant recom	nmandé de connaît	re le type de matériau	enfoncé afin d'éviter une s	sous-estimation poss	ible des valeurs CBR, 1	vir et Cu.		Préparé par:	O. Arsenault, ing.	
								Date :	21/06/2013	The state of the second

LVM		0.1.01000		1. 201	10.02.0			ante di Stato		
ESSAI DE PI	ÉNÉTRATION D	DCP		• Julica intractione and				Date de l'essai:	31/05/2013	
CALCUL DE	S CARACTÉRI	STIQUES STRUC	TURALES DES MATE	ÉRIAUX	r			Technicien:	M. Desmarais	
c	lient	Dessau inc.			N° Essai (Sondag	ie)			TF-06-13	
ldentif descripti	ication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exen	nple : Chaînage, voie	direction nord, sud, as	t ou ouést)	Rang Thiersant	
N° Pro	ojet Client	P-0002046-0-00	-075-01		Données	Profondeur du début o du terrain naturel en p (Mettre 0 si l'essai dét	de l'essai par rapport à la blace (mm) bute sans excavation pré	a surface du revêtement ou alable)	0	
N° Pro	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mn uisse être négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai	-	Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	ce CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Pett marteau 4.6 kg => 2 Les 2 marteaux: 8 kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁵⁾
2	76	76	1	38,1	3	5		39		N/A
6	76	152	1	12,7	3	17		88		N/A
8	76	229	1	9,5	3	23		98		N/A
8	76	305	1	9,5	3	23		98		N/A
7	76	381	1	10,9	3	20		93		N/A
4	76	457	1	19,1	3	11		67		N/A
3	76	533	1	25,4	3	8		54		N/A
1	76	610	1	76,2	1	1		6		17,84
2	76	686	1	38,1	1	2		24		71,35
1	76	762	1	76,2	1	1		6		17,84
1	76	838	1	76,2	1	1		6		17,84
2	76	914	1	38,1	1	2		24		71,35
1	76	991	. 1	76,2	1	1		6		17,84
1	76	1067	1	76,2	1	1		6		17,84
0,5	76	1143	1	152,4	1	0		N/A		4,46
0,5	76	1219	1	152,4	1	0		N/A		4,46
	Contraction of the		A CARLER CARLEN							
									<u></u>	
			and the second							
					a server and a server of					
Épaisseur totale traversée (mm)	1219									
Notes: (1): Indice de pé (2). Norme ASTN (3): Valeur moye (4): Selon la rela (5): Selon la rela (6) Si l'utilisateur cependant recor	nétration IP ajusté M D6951/D6951M-(anne définie selon l' ation proposée entre ation CBR ≈ Cư/30 et r indique 4 (matéria mmandé de connaît	selon le type de marte 09: CBR = 1/(0.01701) uniformité structurale a CBR ef Mr à la Figur donnée à la page 35 d u inconnu), le CBR do tre le type de matériau	eau utilisé 9 x IP) ² pour sol de type CL apparente de la couche de re 7 du Guide du logiciel "C lu Guide du logiciel "Chaus onné à la colonne "G" corre u enfoncé afin d'éviter une t	, avec CBR < 10, CB matériaux (à calcule haussée 2° du MTQ sée 2° du MTQ spond à la valeur mis sous-estimation poss	R = 1/(0,002871 x IP) p ar si désiré) nimale des 3 CBR obter ible des valeurs CBR. 1	our sol de type CH, et t nus à partir des 3 formu Mr et Cu	CBR = 292/(IP) ¹⁻¹² pour é ules données à la note 2	utres metériaux li est Préparé par:	OA ·	
								Date :	21/06/2013	

IVM	9				na 19 - Collineard - Collineard -	1038				
ESSALDE		CP						Date de l'essair	13/06/2013	
	S CARACTÉRIS		TURALES DES MATE	PIALLY				Technicien:	M. Desmarais	the second second second second second second second second second second second second second second second s
C	lient	Dessau inc.	TORALLO DEG MART		N° Essai (Sondag	je)			TF-07-13	
identif descripti	fication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exen	nple : Chaînage, vole	direction nord, sud, est	t ou ouest)	Chemin Joyal (intersed	ction Thiersant)
N° Pro	ojet Client	P-0002046-0-00	-075-01		Données	Profondeur du début o du terrain naturel en p (Mettre 0 si l'essai dét	de l'essai par rapport à la place (mm) . bute sans excavation pré	a surface du revêtement ou alable).	0	
N° Pr	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mm uisse être négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	ce CBR	Module n	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petit marteau: 4.6 Kg => 2 Les 2 marteau: 8 Kg =>1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁵⁾
7	76	76	1	10,9	3	20		93		N/A
14	76	152	1	5,4	3	44		117		N/A
12	76	229	1	6,4	3	37		112		N/A
3	76	305	1	25,4	3	8		54		N/A
2	76	381	1	38,1	3	5		39		N/A
2	76	457	1	38,1	1	2		24		71,35
1	76	533	1	76,2	1	1		6		17,84
1	76	610	1	76,2	1	1		6		17,84
1	76	686	Statistical states	76,2	1	1		6		17,84
1	76	762	1	76,2	1	1		6		17,84
1	76	838	1	76,2	1	1		6		17,84
1	76	914	1	76,2	1	1		6		17,84
1	76	991	1	76,2	1	1		6		17,84
1	76	1067	1	76,2	1	1		6		17,84
1	76	1143	1	76,2	1	1		6		17,84
4	76	1219	1	19,1	1	10		62		285,41
A CONTRACTOR				• •					0.000 0000	
					1				0.00	
Épaisseur totale traversée (mm)	1219	L				1	1			
Notes; (1): Indice de pé (2): Norme ASTI (3): Valeur moye (4): Selon la rela (5): Selon la rela (6) Si futilisateur cependant recor	nétration IP ajusté a M D6951/D6951M-C anne définie selon I ation proposée entre ation CBR ≈ Cu/30 d r indique 4 (matériai mmandé de connaît	selon le type de marte 90- CBR = 1/(0,01701 uniformité structurale 9 CBR et Mr à la Figu Ionnée à la page 35 c u inconnu), le CBR de re le type de matérial	eau utilisé 9 x IP) ² pour sol de type CL apparente de la couche de re 7 du Guide du logiciel "C du Guide du logiciel "Chaus onné à la colonne "G" corre u enfoncé afin d'éviter une s	. avec CBR < 10. CB matériaux (à calcule haussée 2° du MTQ sée 2° du MTQ spond à la valeur mi sous-estimation poss	IR = 1/(0,002871 x IP) p or si désiré) nimale des 3 CBR obter ible des valeurs CBR. 1	oursol de type CH. et i nus à partirdes 3 formu v/ret Cu	CBR = 292/(IP) ^{1 12} pour a Jles données à la note 2.	utres matériaux Il est Préparé par: Date :	GA . 0. Arsenault, ing. 21/06/2013	

ALCUL DES CARACTER	the second second second second second second second second second second second second second second second se						Date de l'essai:	31/05/2013	
Oll+	RISTIQUES STRUC	TURALES DES MATI	ERIAUX				i echnicien:	M. Desmarais	
Client	Dessau inc.			N° Essai (Sondag	le)			TF-08-13	
Identification et description du projet	Parc éolien Pierr	re-de-Saurel, Yamaska		Localisation (exen	nple : Chaînage, voie d	direction nord, sud, es	t ou ouest)	Chemin Joyal	
N° Projet Client	P-0002046-0-00	-075-01		Données	Profondeur du début d du terrain naturel en p (Mettre 0 si l'essai déb	de l'essai par rapport à la lace (mm) . pute sans excavation pré	a surface du revêtement ou alable).	0	
N° Projet LVM	P-0003539-0-01	-101		générales	Épaisseur totale d e la friction sur la tige pu	couche investiguée (mr isse être négligée	n) 1000 max afin que la	1219	
Do	nnées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	e CBR	Module r	ésilient Mr	Résistance au cisaillement nor drainée approximative
Nombre Pénétratior de coups (mm)	n Profondeur cumulée (mm)	Facteur marteau Pett marteau 46 kg ≍> 2 Les 2 marteaux 8 kg =>1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁵⁾
8 76	76	1	9,5	3	23		98		N/A
17 76	152	1	4,5	3	54		123		N/A
7 76	229	1	10,9	3	20		93		N/A
3 76	305	1	25,4	3	8		54		N/A
2 76	381	1	38,1	3	5		39		N/A
2 76	457	1	38,1	1	2		24		71,35
2 76	533	1	38,1	1	2		24		71,35
2 76	610	1	38,1	1	2		24		71,35
1 76	686	1	76,2	1	1		6		17,84
2 76	762	1	38,1	1	2		24		71,35
1 76	838	1	76,2	1	1		6		17,84
1 76	914	1	76,2	1	1		6		17,84
1 76	991	1	76,2	1	1		6		17,84
1 76	1067	1	76,2	1	1		6		17,84
1 76	1143	11	76,2	1	1		6		17,84
1 70	1219	1	70,2						
	100								
paisseur totale 1219	_				I				
aisseur totale 1219 aversée (mm)				£	•				

SSAI DE PE	ÉNÉTRATION D	CP						Date de l'essai:	13/06/2013	
ALCUL DE	S CARACTÉRIS	TIQUES STRUC	TURALES DES MATE	RIAUX				Technicien:	M. Desmarais	
с	lient	Dessau inc.			N° Essai (Sondag	e)			TF-09-13	
ldentifi descriptio	ication et on du projet	Parc éolien Pierre	e-de-Saurel, Yamaska		Localisation (exem	nple : Chainage, voie	direction nord, sud, es	t ou ouest)	Chemin Joyal	
N° Pro	jet Client	P-0002046-0-00-	075-01		Données	Profondeur du début o du terrain naturel en p (Mettre 0 si l'essai déb	de l'essai par rapport à la blace (mm) pute sans excavation pré	surface du revêtement ou alable).	0	
N° Pro	ojet LVM	P-0003539-0-01-	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mn ilsse être négligée	n) 1000 max afin que la	1219	
	Don	iées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	e CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Peti marteau: 4,6 kg => 2 Les 2 marteaux: 8 kg =>1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁵⁾
11	76	76	1	6,9	3	33		109		N/A
28	76	152	1	2,7	3	95		140		N/A
19	76	229	1	4,0	3	62		127		N/A
5	76	305	1	15,2	3	14		80		N/A
3	76	381	1	25.4	3	8		54		N/A
2	76	457	1	38,1	1	2		24		71,35
2	76	533	1	38,1	1	2		24		71,35
2	76	610	1	38,1	1	2		24		71,35
2	76	686	1	38,1	1	2		24		71,35
1	76	762	1	76,2	1	1		6		17,84
2	76	838	1	38,1	1	2		24		71,35
1	76	914	1	76,2	1	1		6		17,84
2	76	991	1	38,1	1	2	-	24		/1,35
1	76	1067	1	76,2	1	1		6		17,84
1	76	1143	1	76,2		1	+	6		17,04
1	/6	1219	1	/6,2				0		17,04
		2. 1. m.:								
paisseur totale raversée (mm)	1219						-	1	1	L
tes: c Indice de pé c Norme ASTM Valeur moye Selon la rela c Selon la rela) Si l'utilisateur	nétration IP ajusté s M D6951/D6951M-C inne définie selon I tion proposée entre tion CBR = Cu/30 d i indique 4 (matéria	selon le type de marte 9° CBR = 1/(0.017019 uniformité structurale / CBR et Mr à la Figur Ionnée à la page 35 di 1 inconnu), le CBR do 1 inconnu), le CBR do	au utilisé x IP) ² pour sol de type CL apparente de la couche de e 7 du Guide du logiciel "C u Guide du logiciel "Chaus: nné à la colonne "G" corre apfance à din d'évider une	. avec CBR < 10, CB matériaux (à calcule haussée 2° du MTQ sée 2° du MTQ spond à la valeur mir	R = 1/(0,002871 x IP) pr rsidésiré) nimale des 3 CBR obter	our sol de type CH, et (us à partir des 3 formu	CBR = 292/(IP) ^{1 12} pour a ules données à la note 2	utres matérieux Il est	64.	

ALCULT DE CARACTÉRISTICUETURALES DES NATÉRIQUE Technicismi et la passau no. M demains Décassau no. N° Essau (Sondage) TF-10-13 Demains Décassau no. N° Essau (Sondage) Décassau no. Décassau no. <th>LVM ESSAI DE PI</th> <th>ÉNÉTRATION D</th> <th>OCP</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Date de l'essai:</th> <th>13/06/2013</th> <th></th>	LVM ESSAI DE PI	ÉNÉTRATION D	OCP						Date de l'essai:	13/06/2013	
Cim Description Priority Total Marcinel on a prod revision Approd Sectin Approd	CALCUL DE	S CARACTÉRIS	STIQUES STRUC	TURALES DES MATÉ	RIAUX				Technicien:	M. Desmarais	
description of an order of control of an order of an or	с	lient	Dessau inc.			N° Essai (Sondag	e)			TF-10-13	
N° Projet Clen 000000000000000000000000000000000000	ldentif descripti	îcation et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exem	uple : Chainage, voie (direction nord, sud, es	t ou ouest)	Chemin Joyal	
N° Projet LVM Padodation Bindrame Benarmating the dis basicant interginge 1ga N° Projet LVM Domés de l'essait Indice de l'essait Type de Indice de l'essait Nodele réalisant de lise pauke de medginge Nodele réalisant de l'essait d'analise approximative Nomès de l'essait Pendent de la second inverdinge Nodele réalisant de la second inverdinge Nodele réalisant de l'essait d'analise approximative Nodele réalisant de la second inverdinge Nodele réalisant de la canalise approximative Nomès de l'essait Pendent de la second inverdinge Nodele réalisant de la second inverdinge Nodele réalisant de la canalise approximative Nodele réalisant de la canalise approximative Nodele réalisant de la canalise approximative Només de l'essait Pendent de la second inverdinge Res (n indice GBR Indice GBR Module réalisant de la second de l	N° Pro	ojet Client	P-0002046-0-00	-075-01		Données	Profondeur du débul o du terrain naturel en p (Mettre 0 si l'essai déb	de l'essai par rapport à la place (mm) pute sans excavation pré	surface du revêtement ou atable)	0	
Domées de l'essai Indice de l'yop de phátration (P Type de Matériau (P) Indice CBR Module résilient Mr Résiliance au chainean approximative approximatepproximatepproximative approximative approximatepproximative appr	N° Pre	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mm iisse être négligée	n) 1000 max afin que la	1219	
Nember Preferation Consider Faster Description Preferation (mm/outpine) Preferatinterterterterterteretereterterterterterte		Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	e CBR	Module r	ésillent Mr	Résistance au cisaillement non drainée approximative
8 76 76 1 9.5 3 23 98 NA 27 76 152 1 2.8 3 91 139 NA 15 76 223 1 5.1 3 47 119 NA 6 76 305 1 12.7 3 17 88 NA 2 78 381 1 38,1 3 5 39 NA 2 76 610 1 38,1 2 9 60 274.26 1 76 685 1 76.2 2 5 37 137.13 2 76 610 1 38,1 2 9 60 274.26 1 76 883 1 76.2 2 5 37 137.13 2 76 914 1 76.2 2 5 37 137.13 2	Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Pett manteau 4.6 Kg => 2 Les 2 manteaux: 8 Kg =>1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
27 76 152 1 2.8 3 91 139 NA 15 76 223 1 5.1 3 47 119 NA 6 76 305 1 12.7 3 177 886 NA 2 78 381 1 38,1 3 5 39 NA 2 76 633 1 38,1 2 9 60 274.26 1 76 646 1 76.2 2 5 37 137.13 2 76 610 1 38,1 2 9 60 274.26 1 76 686 1 76.2 2 5 37 137.13 2 76 76.2 1 38.1 2 9 60 274.26 1 76 914 1 76.2 2 5 37 137.13 2 76 143 1 36.1 2 9 60 274.26 <td< td=""><td>8</td><td>76</td><td>76</td><td>1</td><td>9,5</td><td>3</td><td>23</td><td></td><td>98</td><td></td><td>N/A</td></td<>	8	76	76	1	9,5	3	23		98		N/A
16 76 229 1 6.1 3 47 119 NA 6 76 305 1 12,7 3 17 88 NA 2 76 331 1 38,1 3 5 39 NA 2 76 457 1 38,1 3 5 39 NA 2 76 457 1 38,1 2 9 60 274,26 2 76 610 1 38,1 2 9 60 274,26 1 76 666 1 76,2 2 5 37 137,13 2 76 762 1 38,1 2 9 60 274,26 1 76 914 1 76,2 2 5 37 137,13 2 76 1067 1 76,2 2 5 37 137,13 2	27	76	152	1	2,8	3	91		139		N/A
6 76 305 1 12.7 3 17 88 NA 2 76 331 1 38,1 3 5 39 NA 2 76 457 1 38,1 3 5 39 NA 2 76 457 1 38,1 2 9 60 274.26 2 76 610 1 38,1 2 9 60 274.26 1 76 666 1 76,2 2 5 37 157.13 2 76 762 1 38,1 2 9 60 274.26 1 76 914 1 76.2 2 5 37 137.13 2 76 143 1 38.1 2 9 60 274.26 1 76 1067 1 76.2 2 5 37 137.13 2	15	76	229	1	5,1	3	47		119		N/A
2 76 381 1 38,1 3 5 39 NA 2 76 467 1 38,1 3 5 39 NA 2 76 533 1 38,1 2 9 60 274,26 1 76 666 1 76,2 2 5 37 137,13 2 76 663 1 76,2 2 5 37 137,13 2 76 76,2 1 38,1 2 9 60 274,26 1 76 688 1 76,2 2 5 37 137,13 2 76 914 1 76,2 2 5 37 137,13 2 76 1143 1 38,1 2 9 60 274,26 1 76 1219 1 76,2 2 5 37 137,13 2	6	76	305	1	12,7	3	17		88		N/A
2 76 457 1 38,1 3 5 39 NA 2 76 533 1 38,1 2 9 60 274,26 2 76 610 1 38,1 2 9 60 274,26 1 76 666 1 76,2 2 5 37 137,13 2 76 762 1 38,1 2 9 60 274,26 1 76 666 1 76,2 2 5 37 137,13 2 76 762 1 38,1 2 9 60 274,26 1 76 914 1 76,2 2 5 37 137,13 2 76 1067 1 76,2 2 5 37 137,13 2 76 143 1 38,1 2 9 60 274,26 1 76 1219 1 76,2 2 5 37 137,13	2	76	381	1	38,1	3	5		39		N/A
2 76 533 1 38,1 2 9 60 274,26 2 76 610 1 35,1 2 9 60 274,26 1 76 686 1 76,2 2 5 37 137,13 2 76 762 1 35,1 2 9 60 274,26 1 76 686 1 76,2 2 5 37 137,13 2 76 941 1 76,2 2 5 37 137,13 2 76 941 1 76,2 2 5 37 137,13 2 76 143 1 38,1 2 9 60 274,26 1 76 1067 1 76,2 2 5 37 137,13 2 76 1143 1 38,1 2 9 60 274,26 1	2	76	457	1	38,1	3	5		39		N/A
2 76 610 1 38,1 2 9 60 274,26 1 76 886 4 76,2 2 5 37 137,13 2 76 762 1 38,1 2 9 60 274,26 1 76 838 1 76,2 2 5 37 137,13 1 76 914 1 76,2 2 5 37 137,13 2 76 914 1 76,2 2 5 37 137,13 2 76 914 1 76,2 2 5 37 137,13 2 76 143 1 38,1 2 9 60 274,26 1 76 1219 1 76,2 2 5 37 137,13 2 76 143 1 38,1 2 9 60 274,26 1 76 1219 1 76,2 2 5 37 137,13	2	76	533	1	38,1	2	9		60		274,26
1 76 686 1 76.2 2 5 37 137,13 2 76 762 1 33,1 2 9 60 274,26 1 76 838 1 76,2 2 5 37 137,13 1 76 914 1 76,2 2 5 37 137,13 2 76 914 1 76,2 2 5 37 137,13 2 76 914 1 38,1 2 9 60 274,26 1 76 1067 1 76,2 2 5 37 137,13 2 76 1143 1 38,1 2 9 60 274,26 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 <	2	76	610	1	38,1	2	9		60		274,26
2 76 762 1 38,1 2 9 60 274,26 1 76 838 1 76,2 2 5 37 137,13 1 76 914 1 76,2 2 5 37 137,13 2 76 991 1 38,1 2 9 60 274,26 1 76 1067 1 76,2 2 5 37 137,13 2 76 1143 1 38,1 2 9 60 274,26 1 76 1219 1 76,2 2 5 37 137,13 2 76 1143 1 38,1 2 9 60 274,26 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13	1	76	686	1	76,2	2	5		37		137,13
1 76 838 1 76,2 2 5 37 137,13 1 76 914 1 76,2 2 5 37 137,13 2 76 911 1 38,1 2 9 60 274,26 1 76 1067 1 76,2 2 5 37 137,13 2 76 1143 1 38,1 2 9 60 274,26 1 76 1067 1 76,2 2 5 37 137,13 2 76 1143 1 38,1 2 9 60 274,26 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 16 1 76,2 2 5 37 137,13 1 </td <td>2</td> <td>76</td> <td>762</td> <td>1</td> <td>38,1</td> <td>2</td> <td>9</td> <td></td> <td>60</td> <td></td> <td>274,26</td>	2	76	762	1	38,1	2	9		60		274,26
1 76 914 1 76,2 2 5 37 137,13 2 76 991 1 38,1 2 9 60 274,26 1 76 1067 1 76,2 2 5 37 137,13 2 76 1143 1 38,1 2 9 60 274,26 1 76 1143 1 38,1 2 9 60 274,26 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 1 1 1 1 1 0 1 1 0 <	1	76	838	1	76,2	2	5		37		137,13
2 76 991 1 38,1 2 9 60 274,26 1 76 1067 1 76,2 2 5 37 137,13 2 76 1143 1 38,1 2 9 60 274,26 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 1 76 1219 1 76,2 2 5 37 137,13 1 1 76 1219 1 76,2 2 5 37 <td>1</td> <td>76</td> <td>914</td> <td>1</td> <td>76,2</td> <td>2</td> <td>5</td> <td></td> <td>37</td> <td></td> <td>137,13</td>	1	76	914	1	76,2	2	5		37		137,13
1 76 1067 1 76,2 2 5 37 137,13 2 76 1143 1 38,1 2 9 60 274,26 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 1 1 76,2 2 5 37 137,13 1 1 1 76,2 2 5 37 137,13 1 1 1 1 76,2 2 5 37 137,13 1 1 1 1 1 10,10 1 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10	2	76	991	1	38,1	2	9		60		274,26
2 76 1143 1 38,1 2 9 60 274,26 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 137 137,13 1 76 1219 1 </td <td>1</td> <td>76</td> <td>1067</td> <td>1</td> <td>76,2</td> <td>2</td> <td>5</td> <td></td> <td>37</td> <td></td> <td>137,13</td>	1	76	1067	1	76,2	2	5		37		137,13
1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 76 1219 1 76,2 2 5 37 137,13 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>2</td><td>76</td><td>1143</td><td>1</td><td>38,1</td><td>2</td><td>9</td><td></td><td>60</td><td></td><td>274,26</td></t<>	2	76	1143	1	38,1	2	9		60		274,26
paisseur totals 1219 stes: 1210 stes: 1210	1	76	1219	1	76,2	2	5		37		137,13
paisseur totale raversée (mm) 1219 20tes. 2) Indice de pénétration IP ajusté selon le type de marteau utilisé 3) Norme ASTM D6051/D6051M-00 ⁻ CBR = 1/(0.017019 x IP) ² pour sol de type CL avec CBR < 10. CBR = 1/(0.002871 x IP) pour sol de type CH, et CBR = 292/(IP) ^{1 12} pour autres matériaux 2) Valeur moyenne définie selon l'uniformité structurate apparente de la couche de matériau (à calculer si désiré) 3) Selon la relation proposée entre CBR et Mr à la Figure 7 du Guide du logiciel "Chaussée 2" du MTQ 3) Si l'utilisateur indique 4 (matériau inconnu), le CBR donné à la colonne "G" correspond à la valeur minimale des 3 CBR obtenus à partir des 3 formules données à la note 2. Il est pendant recommandé de connaître le type de matériau enfoncé afin d'éxiter une sous-estimation possible des valeurs CBR. Mr et Cu.											
paisseur totale averatée (mm) 1219 20tes:): Indice de pénétration IP ajusté selon le type de marteau utilisé): Norme ASTM D6051/D6051M-09: CBR = 1/(0.017019 x IP) ² pour sol de type CL avec CBR < 10. CBR = 1/(0.002871 x IP) pour sol de type CH, et CBR = 292/(IP) ^{1 12} pour autres matériaux): Valeur moyenne définie selon l'uniformité structurale apparente de la couche de matériaux (à calculer si désiré)): Valeur moyenne définie selon l'uniformité structurale apparente de la couche de matériaux (à calculer si désiré)): Selon la relation proposée entre CBR et Mr à la Figure 7 du Guide du logiciel "Chaussée 2" du MTQ): Selon la relation cBR ~ Cu/30 donnée à la page 35 du Guide du logiciel "Chaussée 2" du MTQ): Selon la relation cBR ~ Cu/30 donnée à la colonne "G" correspond à la valeur minimale des 3 CBR obtenus à partir des 3 formules données à la note 2. Il est pendant recommandé de connaître le type de matériau enfoncé afin d'éxiter une sous-estimation possible des valeurs CBR. Mr et Cu. Préparé par: 0. Arsenault, ing. Data: 2400/2013				the second second second second second second second second second second second second second second second s							
stes:): Indice de pénétration IP ajusté selon le type de marteau utilisé): Norme ASTM D6951/D6951M-09° CBR = 1/(0.017019 x IP) ² pour sol de type CL avec CBR < 10. CBR = 1/(0.002871 x IP) pour sol de type CH, et CBR = 292/(IP) ^{1 12} pour autres matériaux): Valeur moyenne définie selon l'uniformité structurale apparente de la couche de matériaux (à calculer si désiré)): Selon la relation proposée entre CBR et Mr à la Figure 7 du Guide du logiciel "Chaussée 2" du MTQ): Selon la relation cCBR = CL/30 donnée à la page 35 du Guide du logiciel "Chaussée 2" du MTQ): Selon la relation de l'uniformitie selonne, le comme "G" correspond à la valeur minimale des 3 CBR obtenus à partir des 3 formules données à la note 2. Il est): Sel l'utilisateur indique 4 (matériau inconnu), le CBR donné à la colonne "G" correspond à la valeur minimale des 3 CBR obtenus à partir des 3 formules données à la note 2. Il est Préparé par: O.Arsenault, ing. Detaint recommandé de connaître le type de matériau enfoncé afin d'éviter une sous-estimation possible des valeurs CBR. Mr et Cu. Préparé par:: O.Arsenault, ing.	Épaisseur totale traversée (mm)	1219							1		
	Notes; (1): Indice de pé (2): Norme ASTI (3): Valeur moye (4): Selon la rela (5): Selon la rela (6) SI l'utilisateur cependant recor	métration IP ajusté M D6951/D6951M-(anne définie selon I' ation proposée entre ation CBR ≈ Cu/30 c r indique 4 (matéria mmandé de connaîl	selon le type de marte 99 CBR = 1/(0.01701 uniformité structurale 9 CBR et Mr à la Figur fonnée à la page 35 d u inconnu), le CBR dt re le type de matériai	eau utilisé 9 x IP) ² pour sol de type CL apparente de la couche de re 7 du Guide du logiciel "C fu Guide du logiciel "Chaus puné à la colonne "G" corre p enfoncé a fin d'éviter une p	, avec CBR < 10, CB matériaux (à celcule haussée 2" du MTQ sée 2" du MTQ spond à la valeur mi sous-estimation poss	R = 1/(0.002871 x IP) pv r si désiré) nimale des 3 CBR obten ible des valeurs CBR, h	our soide type CH, et t us à partir des 3 formu Ar et Cu	CBR = 292/(IP) ^{1 +2} pour a Jes données à la note 2	utres matérieux Il est Prénaré par	OA ·	
DAIM 12 TREASANT									Date :	21/06/2013	

ESSAI DE PI	ÉNÉTRATION D	OCP STIQUES STRUC	TURALES DES MATÉ	RIAUX				Date de l'essai: Technicien:	04/06/2013 M. Desmarais	
с	lient	Dessau inc.			N° Essai (Sondag	e)			TF-11-13	ek 1 2 1 1
ldentif descripti	ication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exem	ple : Chaînage, vole	direction nord, sud, es	t ou ouest)	Chemin Joyal	
N° Pro	jet Client	P-0002046-0-00	-075-01		Données	Profondeur du début d du terrain naturel en p (Mettre 0 si l'essai dét	de l'essai par rapport à la blace (mm) pute sans excavation pré	surface du revêtement ou alable).	D	
N° Pr	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mn tisse être négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	India	e CBR	Module n	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petit marteau: 4.6 Kg => 2 Les 2 marteaux: 8 Kg =>1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≂ Cu (kPa) sol cohérent ⁽⁵⁾
11	76	76	1	6.9	3	33		109		N/A
13	76	152	1	5,9	3	40		114		N/A
11	76	229	1	6,9	3	33		109		N/A
7	76	305	1	10,9	3	20		93		N/A
7	76	381	1	10,9	3	20		93		N/A
5	76	457	1	15,2	3	14		80		N/A
6	76	533	1	12,7	3	17		88		N/A
4	76	610	1	19,1	3	11		67		N/A
2	76	686	1	38,1	3	5		39		N/A
4	76	762	1	19,1	3	11		67		N/A
1	76	838	1	76,2	3	2		23		N/A
1	76	914	1	76,2	3	2		23		N/A
1	76	991	1	76,2	1	1		6		17,84
1	76	1067	1	76,2	1	1		6		17,84
1	76	1143	1	76,2	1	1		6		17,84
1	76	1219	1	76,2	1	1		6		17,84
	and an and									
Épaïsseur totale traversée (mm)	1219							I		<u> </u>
<u>Votes:</u> 1): Indice de pé 2) Norme ASTI 3): Valeur moye 4): Selon la rela 5): Selon la rela 6) Si l'utilisateur sependant recor	nétration IP ajusté : M D6951/D6951M-G anne définie selon f tition proposée entre tition CBR ≈ Cu/30 c r indique 4 (matéria mmandé de connaît	selon le type de marte 39: CBR = 1/(0.01701) uniformité structurale 6 CBR et Mr à la Figur Ilonnée à la page 35 d u inconnu). le CBR do re le type de matériau	eau utilisé 9 x IP) ² pour sol de type CL apparente de la couche de re 7 du Guide du logiciel "C lu Guide du logiciel "Chaus onné à la colonne "G" corre- u enfoncé afin d'éviter une s	avec CBR < 10. CB matériaux (à calcule haussée 2° du MTQ sée 2° du MTQ spond à la valeur mi ious-estimation poss	R = 1/(0,002671 x IP) pr r si désiré) nimale des 3 CBR obter hible des valeurs CBR, M	our sol de type CH. et i us à partir des 3 formu fret Cu	CBR = 292/(IP) ^{1.12} pour a iles données à la note 2.	utres matériaux Il est Préparé par:	6A · 0. Arsenault, ing.	

IVM					esterio di alterne					
								Data da l'assair	04/06/2013	
CALCUL DE	ENETRATION L		TUDALES DES MATE	PIALLY				Technicien:	M. Desmarais	
C	lient	Dessau inc.	TORALES DES MAT		N° Essai (Sondag	le)	2 TALL 1		TF-12-13	
ldentifi descriptio	ication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exem	nple : Chainage, voie	direction nord, sud, es	t ou ouest)	Chemin Joyal	
N° Pro	jet Client	P-0002046-0-00	-075-01		Données	Profondeur du début d du terrain naturel en p (Mettre 0 si l'essai dél	de l'essai par rapport à la blace (mm) bute sans excavation pré	surface du revêtement ou alable)	0	the bear
N° Pro	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pu	couche investiguée (mm utsse être négligée	n) 1000 max afin que la	1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indic	ce CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Pett marteau: 4.6 Kg => 2 Les 2 marteau: 8 Kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
13	76	76	1	5,9	3	40		114		N/A
24	76	152	1	3,2	3	80		135		N/A
25	76	229	1	3,0	3	84		137		N/A
27	76	305	1	2,8	3	91		139		N/A
15	76	381	1	5,1	3	47		119		N/A
9	76	457	1	8,5	3	27		102		N/A
8	76	533	1	9,5	3	23		98		N/A
7	76	610	1	10,9	3	20	<u> </u>	93		N/A
4	76	686	1	19,1	3	11		67		N/A
3	76	762	1	25,4	3	8		54		N/A
4	76	838	1	19,1	3	11		67		N/A
3	76	914	1	25,4	3	8		54		N/A
2	76	991	1	38,1	3	5	-	39		N/A
2	76	1067	1	38,1	3	5		39		N/A
4	76	1143	1	19,1	3	11		67		N/A
5	/6	1219	1	15,2	3	14		00		19/6
	and the second second									
Épaisseur totale traversée (mm)	1219	i								J
Notes: (1): Indice de pé (2): Norme ASTM (3): Valeur moye (4): Selon la rela (5): Selon la rela (6) Si l'utilisateur cependant recon	nétration IP ajusté M D6951/D6951M- Inne définie selon l' tition proposée entre tition CBR ≈ Cu/30 d • indique 4 (matéria nmandé de connaî	selon le type de marté)9: CBR = 1/(0.01701 uniformité structurale o CBR et Mr à la Figu donnée à la page 35 c u inconnu), le CBR de re le type de matériau	sau utilisé 9 x IP) ² pour sol de type CL apparente de la couche de re 7 du Guide du logiciel "C du Guide du logiciel "Chaus sonné à la colonne "G" corre u enfoncé afin d'éviter une s	. avec GBR < 10, CB matériaux (à calcule haussée 2" du MTQ sée 2" du MTQ spond à la valeur min sous-estimation poss	R = 1/(0.002871 x IP) p r si désiré) nimale des 3 CBR obter lible des valeurs CBR. †	our sol de type CH. et nus à partir des 3 formu Mr et Cu	CBR = 292/(IP) ^{1,12} pour a Jes données à la note 2	utres matériaux Il est Préparé par:	GA.	

LVM										
SSAI DE PÉ	ÉNÉTRATION D	CP						Date de l'essai:	05/06/2013	
ALCUL DE	S CARACTÉRIS	STIQUES STRUC	TURALES DES MATE	ÉRIAUX				Technicien:	M. Desmarais	1
C	lient	Dessau inc.			N° Essai (Sondag	e)			TF-13-13	
ldentifi descriptio	ication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exem	nple : Chaînage, voie	direction nord, sud, es	t ou ouest)	Chemin Salvas	
N° Pro	jet Client	P-0002046-0-00	-075-01		Données	Profondeur du début du terrain naturel en (Mettre 0 si l'essai dé	de l'essai par rapport à le place (mm) . bute sans excavation pré	a surface du revêtement ou alabie)	0	
N° Pro	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige p	i couche investiguée (mr uisse être négligée	n) 1000 max afin que la	1219	
	Doni	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indi	ce CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Pett marteau 4,6 Kg => 2 Les 2 marteaux: 8 Kg => 1	IP ^(I) (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
1	76	76	1	76,2	3	2		23		N/A
1	76	152	1	76,2	3	2		23		N/A
2	76	229	1	38,1	3	5		39		N/A
3	76	305	1	25,4	3	8		54		N/A
5	76	381	1	15,2	3	14		80		N/A
5	76	457	1	15,2	3	14		80		N/A
5	76	533	1	15,2	3	14		80		N/A
2	76	610	1	38,1	3	5		39		N/A
1	76	686	1	76,2	1	1		6		17,84
2	76	762	1	38,1	1	2		24		71,35
1	76	838	1	76,2	1	1		6		17,84
1	76	914	1	76,2	1	1		6		17,84
1	76	991	1	76,2	1	1		6		17,84
1	76	1067	1	76,2	1	1		6		17,84
1	76	1143	1	76,2	1	1		6		17,84
1	76	1219	1	76,2	1	1		6		17,84
J. Basher H										
paisseur totale /aversée (mm)	1219									
tes: : Indice de pér	nétration IP ajusté :	selon le type de marte	au utilisé			· · · · · · · · · · · · · · · · · · ·				24 - 10 ⁻⁰⁰⁰ 00185
Norme ASTN Valeur moye	M D6951/D6951M-0 inne définie selon l' tion proposée entre	9: CBR = 1/(0,01701) uniformité structurale a CBR et Mr à la Figur	9 x IP) ² pour sol de type CL apparente de la couche de re 7 du Guide du logiciel "C	avec CBR < 10, CB matériaux (à calcule haussée 2° du MTO	3R = 1/(0.002871 x IP) p ar sidésiré)	our sol de type CH. et	CBR = 292/(IP) ^{1.12} pour a	autres matériaux		
Selon la rela	tion CBR = Cu/30 c	fonnée à la page 35 d	lu Guide du logiciel "Chaus	sée 2" du MTQ						
Si l'utilisateur	indique 4 (matéria	u inconnu). le CBR de	onné à la colonne "G" corre	spond à la valeur mi	nimale des 3 CBR obter	us à partir des 3 form	ules données à la note 2	llest	OA.	
pendant recon	nmandé de connaît	re le type de matériau	enfoncé afin d'éviter une :	sous-estimation poss	sible des valeurs CBR.	dr et Cu		Préparé par	O. Arsenault, ing.	
								Date	21/06/2013	and the Education of the second

SSAI DE PI ALCUL DE	ÉNÉTRATION D S CARACTÉRIS	CP	TURALES DES MATÉ	ÉRIAUX				Date de l'essai: Technicien:	05/06/2013 M. Desmarais	
с	lient	Dessau inc.		and the second	N° Essai (Sondag	je)	- 4.201		TF-14-13	
Identif descriptio	ication et on du projet	Parc éolien Pierr	e-de-Saurel, Yamaska		Localisation (exem	nple : Chainage, voie	direction nord, sud, es	l ou ouest)	Chemin Salvas	
N° Pro	jet Client	P-0002046-0-00	-075-01		Données	Profondeur du début du terrain naturel en p (Mettre 0 si l'essai dé	de l'essai par rapport à la blace (mm) bute sans excavation pré	surface du revêtement ou atable)	0	
N° Pro	ojet LVM	P-0003539-0-01	-101		générales	Épaisseur totale de la friction sur la tige pi	couche investiguée (mn lisse être négligée	n) 1000 max afin que la	1219	
	Doni	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indie	e CBR	Module r	ésilient Mr	Résistance au cisaillement non drainée approximative
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Pett marteau 4.6 Kg => 2 Les 2 marteaux 8 Kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résillent (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
1	76	76	1	76,2	3	2		23		N/A
2	76	152	1	38,1	3	5		39		N/A
1	76	229	1	76,2	3	2		23		N/A
2	76	305	1	38,1	3	5		39		N/A
4	76	381	1	19,1	3	11		67		N/A
4	76	457	1	19,1	3	11		67		N/A
4	76	533	1	19,1	3	11		67		N/A
1	76	610	1	76,2	3	2		23		N/A
3	76	686	1	25,4	3	8		54		N/A
5	76	762	1	15,2	3	14		80		N/A
5	76	838	1	15,2	3	14		80		N/A
3	76	914	1	25,4	3	8		54		N/A
3	76	991	1	25,4	3	8		54		N/A
3	/b 70	1067	1	25,4	3	8		54		N/A
3	76	1143	1	25,4	3	5		30		N/A
lisseur totale versée (mm)	1219									
es: Indice de pé Norme ASTM Valeur moye Selon la rela Selon la rela Si l'utilisateur	nétration IP ajusté s 1 D6951/D6951M-0 nne définie selon l'i tion proposée entre tion CBR ≈ Cu/30 d indique 4 (matériai	elon le type de marte 9: CBR = 1/(0.01701) uniformité structurale CBR et Mr à la Figur onnée à la page 35 d u inconnu), le CBR de	au utilisé 9 x IP) ² pour sol de type CL apparente de la couche de e 7 du Guide du logiciel "C u Guide du logiciel "Chaus: smé à la colonne "C" corre	avec CBR < 10. CB maténaux (à calcule haussée 2" du MTQ sée 2" du MTQ spond à la valeur mit	R = 1/(0,002871 × IP) p rsidésiré) simale des 3 CBR obten	our sol de type CH, et	CBR = 292/(IP) ^{1 12} pour a Jes données à la note 2	utres matériaux Il est	64-	

SSAI DE PE	ÉNÉTRATION D	CP	TURALES DES MATÉ	ÉRIAUX				Date de l'essai: Technicien:	04/06/2013 M. Desmarais	
Client Dessau inc.					N° Essai (Sondag	e)			TF-15-13	
Identification et description du projet Parc éolien Pierre-de-Saurel, Yamaska					Localisation (exem	ple : Chaînage, voie	direction nord, sud, es	t ou cuest)	Chemin Salvas	
N° Pro	Projet Client P-0002046-0-00-075-01 Profondeur du début de l'essai par rapport à la surface du revêtement ou du terrain naturel en place (mm). 0 Données (Mettre 0 si l'essai débute sans excavation préalable) 0									
N° Pro	N° Projet LVM P-0003539-0-01-101			générales	Épaisseur totale de la couche investiguée (mm) 1000 max afin que la friction sur la tige puisse être négligée			1219		
	Doni	Indice de Type de Indice CBR Module résilient Mr pénétration IP Matériau ⁽⁶⁾		ésilient Mr	Résistance au cisaillement non drainée approximative					
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petimarteau 4.6 kg => 2 Les 2 marteaux: 8 kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR (2)	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
1	76	76	1	76,2	2	5		37		137,13
1	76	152	1	76,2	2	5		37		137,13
1	76	229	1	76,2	2	5		37		137,13
1	76	305	1	76,2	2	5		37		137,13
1	76	381	1	76,2	2	5		37		137,13
2	76	457	1	38,1	2	9		60		274,26
1	76	533	1	76,2	2	5		37		137,13
2	76	610	1	38,1	2	9		60		274,26
1	76	686	1	76,2	2	5		37		137,13
1	76	762	1	76,2	2	5		37		137,13
1	76	838	1	76,2	2	5		37		137,13
1	76	914	1	76,2	2	5		37		137,13
1	76	991	1	76,2	2	5		37		137,13
1	76	1067	1	76,2	2	5		37		137,13
0,5	76	1143	1	152,4	2	2		23		68,57
0,5	76	1219	1	152,4	2	2		23		68,57
	14-35 SS 172.5		Constant and the	L						
palsseur totale traversée (mm)	1219									
otes;): Indice de pé 2): Norme ASTN 3): Valeur moye 4): Selon la rela 5): Selon la rela 5): Selon la rela 6): Si l'utilisateur accordant record	métration IP ajusté : M D6951/D6951M-C anne définie selon In ation proposée entre ation CBR ≈ Cu/30 d r indique 4 (matéria manadé de consail	selon le type de marte 19: CBR = 1/(0,017011 0 CBR et Mr à la Figur Ionnée à la page 35 d u inconnu), le CBR de	au utilisé) x IP) ² pour sol de type CL apparente de la couche de e 7 du Guide du logiciel "C u Guide du logiciel "Chaus nné à la colonne "G" corre us froncé afin d'évater une	. avec CBR < 10, CB matériaux (à calcule haussée 2" du MTQ sée 2" du MTQ spond à la valeur mi suus-setimation poss	R = 1/(0.002871 x IP) p r si désiré) nimale des 3 CBR obter ible des valeurs CBR ob	our sol de type CH, et t us à partir des 3 formu fret Cu	CBR = 292/(IP) ^{1 12} pour é iles données à la note 2	ultres malérieux Il est		

ALCUL DES CARACTERISTIQUES STRUCTURALES DES MATERIAUX	Technicien: M Desmarais
Client Dessau inc. N° Essai (Sondage)	TF-16-13
Identification et description du projet Parc éclien Pierre-de-Saurel, Yamaska LocalIsation (exemple : Chainage, voie direction	1 nord, sud, est ou ouest) Chemin Salvas
N° Projet Client P-0002046-0-00-075-01 Profondeur du début de l'essa du terrain naturel en place (m Données (Mettre 0 si l'essai débute san:	par rapport à la surface du revêtement ou n). s excavation préalable).
N° Projet LVM P-0003539-0-01-101 générales friction sur la tige puisse êtr	investiguée (mm) 1000 max afin que la e négligée
Données de l'essai Indice de Type de Indice CBR	Résistance au cisaillement no drainée approximative
Nombre Je coups Pénétration (mm) Profondeur cumulée (mm) Facteur marteau Petitmarteau 45 kg => 2 Les 2 marteau: 8 kg => 1 IP ⁽¹⁾ (mm/coup) Argle CL => 1 CH => 2 (mm/coup) Argle CH => 2 Aute martériau inconnu => 4 CBR ⁽²⁾ In r	dice CBR Module résilient Module résilient ≈ Cu (kPa) sol noyen ⁽³⁾ (MPa) ⁽⁴⁾ moyen (MPa) ⁽⁷⁾ cohérent ⁽⁵⁾
0,5 76 76 1 152,4 3 1	11 N/A
0,5 76 152 1 152,4 3 1	11 N/A
1 76 229 1 76,2 1 1	6 17,84
1 76 305 1 76,2 1 1	6 17,84
1 76 381 1 76,2 1 1	6 17,84
2 76 457 1 38,1 1 2	24 71,35
2 76 533 1 38,1 1 2	24 71,35
2 76 610 1 38,1 1 2	24 71,35
2 76 686 1 38.1 1 2	24 71,35
3 76 762 1 25,4 1 5	41 160,54
2 76 838 1 38,1 1 2	24 /1,35
3 76 914 1 25,4 1 5	41 160,54
3 76 991 1 25.4 1 5	41 100,54
2 76 1067 1 38,1 1 2	24 71,55
	24 11,55
1 76 1219 1 76,2 1	
3 76 991 1 26,1 1 5 2 76 1067 1 38,1 1 2 2 76 1143 1 38,1 1 2 1 76 1219 1 76,2 1 1 1 76 1219 1 76,2 1 1 1 76 1219 1 76,2 1 1 1 76 1219 1 76,2 1 1 1 76 1219 1 76,2 1 1 1 76 1219 1 76,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41 24 24 6 24

ESSAI DE PI CALCUL DE	ÉNÉTRATION D S CARACTÉRI	OCP STIQUES STRUC	TURALES DES MATE	ÉRIAUX				Date de l'essai: Technicien:	27/05/2013 M. Desmarais	
с	lient	Dessau inc.			N° Essai (Sondag	e)			TF-17-13	
Identif descripti	Identification et escription du projet Parc éclien Pierre-de-Saurel, Yamaska Localisation (exemple : Chainage, voie direction nord, sud, est ou ouest) Chemin des Brouillard									
N° Pro	jet Client	P-0002046-0-00	46-0-00-075-01 Profondeur du début de l'essai par rapport à la surface du revêtement ou du terrain naturel en place (mm). 0 Données (Mettre 0 si l'essai débute sans excavation préalable)			0				
N° Pro	N° Projet LVM P-0003539-0-01-101				générales	Épaisseur totale de la couche investiguée (mm) 1000 max afin que la friction sur la tige puisse être négligée			1219	
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	pe de Indice CBR Module résilient Mr cisali ériau ⁽⁶⁾ appr		Résistance au cisaillement non drainée approximative		
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Pett marteau 4.6 Kg => 2 Les 2 marteaux: 8 Kg =>1	IP ^(I) (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾
10	76	76	1	7,6	3	30		105		N/A
7	76	152	1	10,9	3	20		93		N/A
5	76	229	1	15,2	3	14		80		N/A
5	76	305	1	15,2	3	14		80		N/A
5	76	381	1	15,2	3	14		80		N/A
5	76	457	1	15,2	3	14		80		N/A
6	76	533	1	12,7	3	17		88		N/A
5	76	610	1	15,2	3	14		80		N/A
5	76	686	1	15,2	3	14		80		N/A
4	76	762	1	19,1	3	11		67		N/A
5	76	838	1	15,2	3	14		80		N/A
4	76	914	1	19,1	3	11		67		N/A
4	76	991	1	19,1	3	11		67		N/A
4	76	1067	1	19,1	3	11		67		N/A
7	76	1143	1	10,9	3	20		93		N/A
3	76	1219	1	25,4	3	8		54		N/A
The state of the second										
Épaisseur totale traversée (mm)	1219									
Notes: (1): Indice de pé (2): Norme ASTI (3): Valeur moya (3): Valeur moya (4): Selon la rela (5): Selon la rela (6) Si l'utilisateur cependant recor	nétration IP ajusté : M D6951/D6951M- onne définie selon I Llon proposée entre tion CBR ~ Cu/30 c r indique 4 (matéria mmandé de connaît	selon le type de marte)9: CBR = 1/(0.01701) uniformité structurale o CBR et Mr à la Figur Ionnée à la page 35 d u inconnu). le CBR do re le type de matériau	au utilisé 9 x IP) ² pour sol de type CL apparente de la couche de 10 Guide du logiciel "Chaus iu Guide du logiciel "Chaus onné à la colonne "G" corre a enfoncé afin d'éviter une s	. avec CBR < 10, CB matériaux (à calcule haussée 2° du MTQ sée 2° du MTQ spond à la valeur min sous-estimation poss	R = 1/(0.002871 x IP) p r sidésiré) nimale des 3 CBR obter ible des valeurs CBR 10	oursol de type CH, et i sus à partir des 3 formu Ar et Cu	CBR = 292/(IP) ^{1.12} pour a Lies données à la note 2	utres metériaux Il est Préparé par:	GA · O. Arsenault, ing.	

IVM									6			
	ÉNÉTRATION I							Data da l'assais	13/06/2013			
	S CARACTÉRI		TURALES DES MATI	PIALLY				Technicien:	M. Desmarais			
C	lient	Dessau inc.	TORALLO DEG MATT		N° Essai (Sondag	je)		TF-18-13				
ldentif descripti	Iffication et Itification du projet Parc éclien Pierre-de-Saurel, Yamaska Localisation (exemple : Chainage, voie direction nord, sud, est ou ouest) Chemin des Brouillard											
N° Pro	ojet Client	P-0002046-0-00-075-01 Profondeur du début de l'essai par rapport à la surface du revêtement ou du terrain naturel en place (mm). 0 Données (Mettre 0 si l'essai débute sans excavation préalable).										
N° Pr	N° Projet LVM P-0003539-0-01-101				générales	Épaisseur totale de la couche investiguée (mm) 1000 max afin que la friction sur la tige puisse être négligée			1219			
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indice CBR		Indice CBR		Module r	Résistance a cisaillement nr drainée approximativ	
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Petrmanteau 4.6 Kg ≫ 2 Les 2 marteaux: 8 Kg =>1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau Inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁵⁾		
13	76	76	1	5,9	3	40		114		N/A		
21	76	152	1	3,6	3	69		131		N/A		
8	76	229	1	9,5	3	23		98		N/A		
7	76	305	1	10,9	3	20		93		N/A		
6	76	381	1	12,7	3	17		88		N/A		
3	76	457	1	25,4	3	8		54		N/A		
5	76	533	1	15,2	3	14		80		N/A		
7	76	610	1	10,9	3	20		93		N/A		
7	76	686	1	10,9	3	20		93		N/A		
8	76	762	1	9,5	3	23		98		N/A		
7	76	838	1	10,9	3	20		93		N/A		
7	76	914	1	10,9	3	20		93		N/A		
4	76	991	1	19,1	3	11		67		N/A		
4	76	1067	1	19,1	3	11		67		N/A		
6	76	1143	1	12,7	3	17		88		N/A		
7	76	1219	1	10,9	3	20		93		N/A		
	1 the second				a							
A State					The second second second	L	l					
Épaisseur totale traversée (mm)	1219											
Notes: (1): Indice de pé (2): Norme ASTI (3): Valeur moyé (4) Selon la rela (5): Selon la rela (6) Si l'utilisateur cependant recor	onétration IP sjusté : M D6951/D6951M- anne définie selon l' ation proposée entre ation CBR ≈ Cu/30 c r indique 4 (matéria mmandé de connaîl	selon le type de marte 19: CBR = 1/(0.01701) uniformité structurale 0 CBR et Mr à la Figu Ionnée à la page 35 c u inconnu), le CBR de re le type de matériau	eau utilisé 9 x IP) ² pour sol de type Cl apparente de la couche de re 7 du Guide du logiciel "C tu Guide du logiciel "Chaus onné à la colonne "G" corre u enfoncé afin d'éviter une :	, avec CBR < 10, CB matériaux (à calcule haussée 2° du MTQ sée 2° du MTQ spond à la valeur mi sous-estimation poss	R = 1/(0,002871 x IP) p er aidésiré) nimale des 3 CBR obter able des valeurs CBR, t	our sol de type CH. et C nus à partir des 3 formu Mr et Cu	DBR = 292/(IP) ^{1 12} pour a les données à la note 2.	utres matériaux Il est Préparé par:	GA · O. Arsenault, ing.			
								Date :	21/06/2013			

LV IYI ESSAI DE PI	ÉNÉTRATION D	CP						Date de l'essai:	13/06/2013		
CALCUL DE	S CARACTÉRI	STIQUES STRUC	TURALES DES MATE	RIAUX				Technicien:	M. Desmarais	N. B. M. Physics, N.	
с	lient	Dessau inc.			N° Essai (Sondag	e)		TF-19-13			
ldentif descripti	fication et on du projet	Parc éolien Pierr	clien Pierre-de-Saurel, Yamaska Localisation (exemple : Chainage, vole direction nord, sud, est ou ouest) Chemin des Brouillard								
Nº Pro	ojet Client	P-0002046-0-00	-075-01	Profondeur du début de l'essai par rapport à la surface du revêtement ou du terrain naturel en place (mm). Données (Mettre 0 si l'essai débute sans excavation préalable)							
N° Pr	N° Projet LVM P-0003539-0-01-101			générales	Épaisseur totale de la couche investiguée (mm) 1000 max afin que la friction sur la tige puisse être négligée			1219			
	Don	nées de l'essai		Indice de pénétration IP	Type de Matériau ⁽⁶⁾	Indice CBR		Indice CBR Module r		e résilient Mr Cisaillement non drainée approximative	
Nombre de coups	Pénétration (mm)	Profondeur cumulée (mm)	Facteur marteau Pett marteau 4,6 Kg => 2 Les 2 marteaux: 8 Kg => 1	IP ⁽¹⁾ (mm/coup)	Argile CL => 1 Argile CH => 2 Autre matériau => 3 Matériau inconnu => 4	CBR ⁽²⁾	Indice CBR moyen ⁽³⁾	Module résilient (MPa) ⁽⁴⁾	Module résilient moyen (MPa) ⁽³⁾	≈ Cu (kPa) sol cohérent ⁽⁶⁾	
14	76	76	1	5.4	3	44		117		N/A	
24	76	152	1	3,2	3	80		135		N/A	
10	76	229	1	7,6	3	30		105		N/A	
8	76	305	1	9,5	3	23		98		N/A	
5	76	381	1	15,2	3	14		80		N/A	
3	76	457	1	25,4	3	8		54		N/A	
3	76	533	1	25,4	3	8		54		N/A	
5	76	610	1	15,2	3	14		80		N/A	
6	76	686	1	12,7	3	17		88		N/A	
6	76	762	1	12,7	3	17		88		N/A	
8	76	838	1	9,5	3	23		98		N/A	
7	76	914	1	10,9	3	20		93		N/A	
7	76	991	1	10,9	3	20		93		N/A	
5	76	1067	1	15,2	3	14		80		N/A	
4	76	1143	1	19,1	3	11		67		N/A	
4	76	1219	11	19,1	3	11		67		N/A	
		-1412-141-141-14									
- and the second											
Épaisseur totale traversée (mm)	1219	1 - 109 5 C						A An Anna Anna Anna Anna			
Notes: 1): Indice de pé 2): Norme ASTI 3): Valeur moye 4): Selon la rela 5): Selon la rela 6): Si l'utilisateur ependant recor	nétration IP ajusté : M D6951/D6951M-c sonne définie selon IP attion proposée entre attion CBR ~ Cu/30 d r indique 4 (matéria mmandé de connaît	selon le type de marte 19: CBR = 1/(0.01701) uniformité structurale o CBR et Mr à la Figur Ionnée à la page 35 d u inconnu), le CBR do re le type de matériau	au utilisé 9 x IP) ² pour sol de type CL apparente de la couche de e 7 du Guide du logiciel "C u Guide du logiciel "Chaus nné à la colonne "G" corre e enfoncé afin d'éviter une s	avec CBR < 10, CB matériaux (à calcule haussée 2" du MTQ sée 2" du MTQ spond à la valeur mir ious-estimation poss	R = 1/(0.002671 x IP) pr r si désiré) nimale des 3 CBR obten nible des valeurs CBR. N	our sol de type CH, et C us à parlir des 3 formu ár et Cu.	CBR = 202/(IP) ^{1 12} pour e les données à la note 2.	utres metériaux Il est Préparé par:	O. Arsenault, ing.		

Résultats des profils scissométriques

PLATE-FORME DE L'ÉOLIENNE Nº	PROFIL SCISSOMÉTRIQUE Nº	PROFONDEUR (m)	Cu en place (kPa)	Cu corrigé (kPa)	REMARQUE
	А	0,5	108	97	
		1,0	50	45	
		1,5	18	16	
		0,5	105	94	
	В	1,0	68	61	
		1,5	38	34	
		0,5	24	22	Sols possiblement remaniés à ce niveau
PS-01	С	1,0	87	78	Présence de lits de sable
		1,5	47	42	
	D	0,5	83	75	
		1,0	34	30	
		1,5	9	9	Matériaux probablement très silteux à ce niveau
		0,5	91	82	
	E	1,0	83	75	
		1,5	23	20	
	A	0,5	126	113	
		1,0	143	128	
		1,5	107	96	
		0,5	158	143	
	В	1,0	99	89	Présence de lits de sable
		1,5	9	9	Matériaux probablement très silteux à ce niveau
PS-02		0,5	125	112	
	С	1,0	156	140	
		1,5	139	125	
		0,5	129	116	
	E	1,0	> 172	> 154	Au-delà de la limite du scissomètre
	_	1,5	145	131	

PLATE-FORME DE L'ÉOLIENNE Nº	PROFIL SCISSOMÉTRIQUE Nº	PROFONDEUR (m)	Cu en place (kPa)	Cu corrigé (kPa)	REMARQUE
		0,5	106	95	
	А	1,0	109	98	
		1,5	54	49	
		0,5			Sols à prédominance sableuse à ce niveau
	В	1,0			Sols à prédominance sableuse à ce niveau
		1,5	44	40	
		0,5			Sols à prédominance sableuse à ce niveau
PS-03	С	1,0			Sols à prédominance sableuse à ce niveau
		1,5	41	37	
	D	0,5	128	116	
		1,0	107	96	
		1,5	56	51	
	E	0,5	91	82	
		1,0	55	50	
		1,5	49	44	
		0,5	82	73	
	А	1,0	49	44	
		1,5	34	30	
		0,5	47	42	
PS 04	D	1,0	42	38	
F 3-04		1,5	36	32	
		0,5			Sol trop raide pour enfoncer l'ailette (excavé à la pelle)
	E	1,0	50	45	
		1,5	33	30	

PLATE-FORME DE L'ÉOLIENNE N°	PROFIL SCISSOMÉTRIQUE Nº	PROFONDEUR (m)	Cu en place (kPa)	Cu corrigé (kPa)	REMARQUE
		0,5	100	90	
	А	1,0	88	79	
		1,5	19	17	
		0,5	99	89	
	В	1,0	77	69	
		1,5	35	31	
	С	0,6	100	90	
PS-05		1,1	58	52	
		1,6	10	10	Matériaux probablement très silteux à ce niveau
		0,5	136	122	
	D	1,0	88	79	
		1,5	63	57	
	E	0,5	92	83	
		1,0	52	46	
		1,5	21	19	

PLATE-FORME DE L'ÉOLIENNE N°	PROFIL SCISSOMÉTRIQUE Nº	PROFONDEUR (m)	Cu en place (kPa)	Cu corrigé (kPa)	REMARQUE
		0,5	128	116	
	А	1,0	77	69	
		1,5	38	35	
		0,5	132	119	
	В	1,0	72	65	
		1,5	35	31	
		0,5	113	101	
PS-06	С	1,0	75	67	
		1,5	51	46	
		0,5	103	93	
	D	1,0	80	72	
		1,5	38	34	
	E	0,5	93	84	
		1,0	91	82	
		1,5	53	47	
		0,5			Sols à prédominance sableuse à ce niveau
	А	1,0			Sols à prédominance sableuse à ce niveau
		1,5	164	148	
		0,5			Sols à prédominance sableuse à ce niveau
PS-07	В	1,0			Sols à prédominance sableuse à ce niveau
		1,5	16	15	
		0,5			Sols à prédominance sableuse à ce niveau
	С	1,0			Sols à prédominance sableuse à ce niveau
		1,5	7	7	Matériaux probablement très silteux à ce niveau

PLATE-FORME DE L'ÉOLIENNE Nº	PROFIL SCISSOMÉTRIQUE Nº	PROFONDEUR (m)	Cu en place (kPa)	Cu corrigé (kPa)	REMARQUE
		0,5	101	91	
	А	1,0	80	72	
		1,5	24	22	
		0,5	18	16	Sols possiblement remaniés à ce niveau
	В	1,0	63	57	
		1,5	24	22	
	С	0,5	115	104	
PS-08		1,0	64	57	
		1,5	26	24	
		0,5	115	104	
	D	1,0	65	58	
		1,5	34	30	
	E	0,5	89	80	
		1,0	45	40	
		1,5	23	20	

PLATE-FORME DE L'ÉOLIENNE N°	PROFIL SCISSOMÉTRIQUE Nº	PROFONDEUR (m)	Cu en place (kPa)	Cu corrigé (kPa)	REMARQUE
		0,5	68	61	
	А	1,0	39	35	
		1,5	43	39	
	D	0,5			Sols à prédominance sableuse à ce niveau
	D	1,0			Sol trop raide pour enfoncer l'ailette
	С	0,5	59	53	
		1,0	55	50	
P3-09		1,5	46	41	
		0,5	70	63	
	D	1,0	35	31	
		1,5	53	47	
	E	0,5	99	89	
		1,0	49	44	
		1,5	36	32	
Tableau 1 : Résistances au cisaillement du sol intact et non drainé

PLATE-FORME DE L'ÉOLIENNE N°	PROFIL SCISSOMÉTRIQUE Nº	PROFONDEUR (m)	Cu en place (kPa)	Cu corrigé (kPa)	REMARQUE
		0,5	106	95	
	А	1,0	63	57	
		1,5	26	24	
		0,5	81	73	
	В	1,0	74	67	
		1,5	48	43	
		0,5	106	95	
PS-10	С	1,0	74	67	
		1,5	34	30	
		0,5	95	85	
	D	1,0	37	33	
		1,5	30	27	
	E	0,5	87	78	
		1,0	79	71	
		1,5	39	35	
		0,5	91	82	
	В	1,0	62	56	
DC 11		1,5	78	70	
P3-11		0,5	65	58	
	С	1,0	68	62	
		1,5	53	48	
		0,5	94	84	
	С	1,0	61	55	
DC 10		1,5	35	31	
PS-12		0,5	99	89	
	D	1,0	60	54	
		1,5	40	36	

Annexe 3 Essais de laboratoire

Col. symboles	Sondage n°	Échantillon n°	Profondeur (m)	Description	Class. "unifiée" (ASTM D-2487)
	TF-02-13	CF-1A	0.00 - 0.41	Gravier et sable, un peu de silt.	-
— — —	TF-04-13	CF-1A	0.00 - 0.10	Sable graveleux, silteux.	
	TF-07-13	CF-1A	0.00 - 0.25	Gravier et sable, traces de silt.	
	TF-10-13	CF-1A	0.00 - 0.35	Gravier et sable, un peu de silt.	
©	TF-12-13	CF-1A	0.00 - 0.38	Sable et gravier, un peu de silt.	-
					04.

EQ-09-Ge-68 R.1 04.03.2009

Col. symboles	Sondage n°	Échantillon n°	Profondeur (m)	Description	Class. "unified (ASTM D-2487
0	PS-02-13	CF-22	33.38 - 33.99	Sable silteux.	SM
	PS-07-13	CF-2	0.61 - 1.22	Sable, un peu de silt.	SM
—— <u>V</u> —	PS-11-13	CF-25	36.42 - 37.03	Sable, traces de silt.	SP-SM
	TF-11-13	CF-1C	0.30 - 0.61	Sable silteux, traces d'argile.	SM-SC
— <u>©</u> —	TF-14-13	CF-3	1.22 - 1.83	Silt el sable, traces d'argile.	ML
\longrightarrow	TF-19-13	CF-2B	0.30 - 0.61	Sable silteux.	SM
					-
the second second second second second second second second second second second second second second second s					A.

S.L.

EQ-09-Ge-68 R.1 04.03.2009

Col. symboles	Sondage n°	Échantillon n°	Profondeur (m)	Description	Class. "unifiée" (ASTM D-2487)
-6-	PS-04-13	CF-2	0.61 - 1.22	Silt sableux, argileux.	-
	PS-11-13	CF-24	31.85 - 32.46	Sable et silt, un peu d'argile.	
	PS-11-13	CF-6	3.81 - 4.42	Argile silteuse.	-
<u>→</u> ☆──	TF-02-13	CF-2	0.61 - 1.22	Silt argileux, un peu de sable.	•
@	TF-03-13	CF-2B	0.71 - 1.22	Silt sableux, argileux.	CL
\longrightarrow	TF-04-13	CF-3	1.22 - 1.83	Silt argileux, un peu de sable.	2
<u> </u>	TF-08-13	CF-1B	0.35 - 0.61	Silt et argile, traces de sable.	
- @	TF-11-13	CF-3	1.22 - 1.83	Silt et argile, un peu de sable.	CL
					<u></u> Λ .

S.L.

EQ-09-Ge-68 R.1 04.03.2009

OA.

X-IStyle_LVMILab Lab_Limite_LVM_FR STY - Imprimé le: 2013-07-31710:02:00

S.L.

EQ-09-Ge-69 R.1 04.03.2009

X°ISIYle_LVM/Lab Lab_Limite_LVM_FR.STY - Imprimé le: 2013-07-31710-05 34

S.L.

EQ-09-Ge-69 R.1 04.03.2009

			каррог	a a essi	ai de consolida Norme:	ASTM D
Client : Projet :	Parc éolien Pierre- Parc éolien Pierre-	de-Saurel de-Saurel, Yami	aska, QC		Date : Dossier :	26-juil-2 P-0002046-0-00-075
ondage No	: PS-07	E	Échantillon No :	TM-6	Profondeur (m) :	4,12
		Pre	ssion de consol	idation (kPa)	
1,70	1,0) 	10,0	100,0		1000,0	10000,0
1,60						
1,50						
(a) 1,40						
1,30 1,30						
90 1,20	++++++++++++++++++++++++++++++++++++					
ip 1,10						
1,00		•				
0,90					\	
0,80						
ractéristiqu	es géotechniques de	es sols :				
lice des vide neur en eau ids volumiq gré de satu	es initial (e₀) : ı initiale (w) : ue humide initial (γ , ration initial (Sr) :	1,57 62,6% : 16,4 kN/m³ 100,0%	Remarque : La	a densité e deoré (relative des solides de saturation initial e	est estimée (Gs=2,73)
ession de pr lice de reco	réconsolidation (σ'₅) mpression (C _r)	: 50 kPa 0,02	L.			
ice de gonfl ice de com	lement (Cs) : pression vierge (Cc)	0,05 : 0,97				
paré par :					Vérifié par :	
					ala	
ée Soucy, t	ech.			L	Jean Verreault, ing	•

Annexe 4 Résultats des sondages au piézocône et des essais de redémarrage

Description: Parc éolien Pierre-de-Saurel Projet: P-0003539-0-01-101 Essais de redémarrage - Mesures du frottement

Page 1 de 1

Annexe 5 Accélérogrammes

075-P-0003539-0-01-101-GE-0001-00

RAPPORT D'ÉTUDE GÉOTECHNIQUE PARC ÉOLIEN PIERRE-DE SAUREL - YAMASKA, SAINT-ROBERT ET SAINT-AIMÉ (QUÉBEC)

075-P-0003539-0-01-101-GE-0001-00

RAPPORT D'ÉTUDE GÉOTECHNIQUE PARC ÉOLIEN PIERRE-DE SAUREL - YAMASKA, SAINT-ROBERT ET SAINT-AIMÉ (QUÉBEC)

Annexe 6 Extraits pertinents du devis spécial 110 du MTQ

<u>Annexe 1</u> <u>Calcul de la résistance géotechnique latérale pondérée</u>

des pieux dans les sols pulvérulents

(Révision Avril 2006)

Résistance géotechnique latérale pondérée (sols pulvérulents)

Pour la détermination de la résistance géotechnique latérale, nous recommandons au concepteur d'utiliser la méthode de Broms qui est décrite dans :

 Broms, B.B., « Lateral Resistance of Piles in Cohesionless Soils », Journal of the Soil Mechanics and Foundation Divison - ASCE, vol. 90, no. SM3, May, pp. 123-156, (1964).

L'approche par étapes décrite ci-dessous est tirée du manuel « Design and construction of driven pile foundations, workshop manual vol. 1 » de la FHWA, publication no. FHWA HI 97-013 (révision de 1998). Elle s'établit comme suit :

- Déterminer le type de sol (cohérent ou pulvérulent) présent à l'intérieur de la profondeur critique sous la surface (le manuel de la FHWA parle de 4 à 5 fois le diamètre des pieux, mais nous recommandons plutôt une valeur de 5 mètres). La méthode présentée ici n'est valable que pour les sols pulvérulents ;
- Déterminer le coefficient de réaction horizontal du sol, n_h, à partir du tableau 1 tiré du Manuel canadien d'ingénierie des fondations (1994) :

État de	n _h (N/m³)
compacité du sol	Au-dessus de la nappe	Sous la nappe
Lâche	2200 x 10 ³	1300 x 10 ³
Compact	6600 x 10 ³	4400 x 10 ³
Dense	18000×10^{3}	11000 x 10 ³

Tableau 1 : Valeurs de nh pour des sols pulvérulents

- Ajuster la valeur de n_h déterminée à l'étape 2 en fonction de la compacité du sol pulvérulent :
 - multiplier n_h par 0,5 pour un sol compact à dense
 - multiplier n_h par 0,25 pour un sol lâche
- 4. Déterminer les propriétés du pieu suivantes :
 - module d'élasticité, E, (Pa)
 - moment d'inertie, l, (m⁴)
 - module de section, S, (m³) autour d'un axe perpendiculaire au plan de chargement
 - contrainte admissible, f_y, dans l'acier, ou résistance en compression ultime, f'_c, pour le béton (Pa)
 - longueur enfouie du pieu, D, (m)

- diamètre ou largeur du pieu, b, (m)
- excentricité de la charge appliquée en tête du pieu, e_c, pour les pieux à têtes libres (m)
- · facteur de forme Cs (pour pieux d'acier seulement), où :
 - 1. C_s = 1,3 pour un pieu avec section circulaire
 - C_s = 1,1 pour un pieu « H[']» lorsque la charge latérale est perpendiculai- re aux ailes
 - 3. C_s = 1,5 pour un pieu « H » lorsque la charge latérale est parallèle aux ailes
- moment résistant du pieu, M_y, (N-m), où :
 - 1. pour des pieux d'acier : My = CsfyS
 - 2. pour des pieux de béton : $M_y = f_c S$;
- 5. Déterminer la longueur de transfert η :

$$\eta = \sqrt[5]{\frac{n_h}{EI}};$$

- Déterminer le facteur de longueur adimensionnel égal à η multipliée par D ;
- 7. Déterminer le type de pieu (court, long ou intermédiaire) :
 - $\sin \eta D > 4,0 \rightarrow \log \theta$
 - $\sin \eta D < 2,0 \rightarrow court$
 - si 2,0 < η D < 4,0 \rightarrow intermédiaire ;
- Déterminer les paramètres des sols suivants, pour la partie du pieu enrobée dans le sol) :
 - Coefficient de butée K_p = tan² (45 + F/2)
 - Poids volumique déjaugé moyen γ';
- Déterminer la résistance géotechnique latérale ultime Q_u d'un pieu isolé selon ce qui suit :
 - a. Pieu court

À l'aide de D/b (et de e_c/D pour le cas à tête libre), utiliser l'abaque de la figure 1 pour choisir la valeur correspondante de $Q_u/K_p b^3 \gamma'$ et résoudre pour trouver Q_u (en N).

b. Pieu long

À l'aide de M_y/b^4 ?'K_p (et de e_c/b pour le cas à tête libre), utiliser l'abaque de la figure 2 pour choisir la valeur correspondante de Q_u/K_pb^3 ?' et résoudre pour trouver Q_u (en N).

c. Pieu intermédiaire

Calculer Q_u pour un pieu court et pour un pieu long (selon a et b) et adopter la plus faible des deux valeurs ;

- Déterminer, pour un pieu isolé, la résistance géotechnique latérale pondérée (à L'ÉLUL) Q_m en multipliant Q_u par un coefficient de tenue de 0,5 ;
- Déterminer la réaction à l'ÉLUT (la charge latérale de service) Q_a en fonction du déplacement admissible y choisi par le concepteur (une valeur de 10 mm peut être utilisée en l'absence de plus d'information). À l'aide du facteur ηD (et de e_c/D pour le cas à tête libre), utiliser l'abaque de la figure 3 pour choisir la valeur correspondante de y(El)^{3/5}n_h^{2/5}/Q_aD et résoudre pour trouver Q_a (en N) ou y (en m);
- 12. Comparer Q_a et Q_m:
 - si Q_a > Q_m, utiliser Q_m et calculer y_m selon l'étape 11
 - si Q_a < Q_m, utiliser Q_a et y choisi
 - si Q_a et y ne sont pas disponibles, utiliser Q_m et y_m;
- 13. Réduire la capacité des pieux isolés déterminée à l'étape 12 en fonction de l'effet de groupe. La réduction est fonction de l'espacement dans le groupe de pieux et le facteur de réduction approprié est déterminé à l'aide du tableau 2 (l'espacement des pieux est calculé centre à centre dans la direction de la charge latérale).

Tableau	2	: Facteur	de	réduction	de	groupe
---------	---	-----------	----	-----------	----	--------

Espacement des pieux	Facteur de réduction
8b	1,0
6b	0,8
4b	0,5
3b	0,4

14. En ajout à cette méthode, nous recommandons d'ajuster la capacité latérale des pieux inclinés en fonction de leur inclinaison par rapport à la verticale et de l'orientation de la charge latérale. Le tableau 3, dont les valeurs sont tirées du « Foundation engineering handbook », Whiterkorn & Fang (1975), présente les facteurs d'accroissement ou de réduction à appliquer :

Tableau 3 : Facteurs d'accroissement et de réduction pour l'inclinaison

Inclinaison ? du pieu par rapport à la verticale (°)	Facteur multiplicatif
22,5	0,75
15,0	0,80
7,5	0,90
0	1,00
-7,5	1,08
-15,0	1,16
-22,5	1,22
-30,0	1,27
ns le tableau 3, le signe de ? doit être déterminé à	l'aide de la figure 4 :

Figure 4 : Détermination du signe de l'inclinaison du pieu

 Déterminer la capacité totale du groupe de pieux. Il est à noter qu'aucune résistance n'est attribuée au sol entourant la semelle dans laquelle les pieux sont encastrés.

FIGURE 1 – RÉSISTANCE GÉOTECHNIQUE LATÉRALE DES PIEUX COURTS DANS LES SOLS PULVÉRULENTS

-

FIGURE 2 – RÉSISTANCE GÉOTECHNIQUE LATÉRALE DES PIEUX LONGS DANS LES SOLS PULVÉRULENTS

FIGURE 3 – DÉFLECTION LATÉRALE DES PIEUX DANS LES SOLS PULVÉRULENTS

.

<u>Annexe 2</u> <u>Calcul de la résistance géotechnique latérale pondérée</u>

.

des pieux dans les sols cohérents

(Révision Avril 2006)

Résistance géotechnique latérale pondérée des pieux (sols cohérents)

Pour la détermination de la résistance géotechnique latérale, nous recommandons au concepteur d'utiliser la méthode de Broms qui est décrite dans :

 Broms, B.B., « Lateral Resistance of Piles in Cohesive Soils », Journal of the Soil Mechanics and Foundations Divison - ASCE, vol. 90, no. SM2, March, pp. 27-63, (1964).

L'approche par étapes décrite ci-dessous est inspirée du manuel « Design and construction of driven pile foundations, workshop manual vol. 1 » de la FHWA, publication no. FHWA HI 97-013 (révision de 1998). Elle s'établit comme suit :

- Déterminer le type de sol (cohérent ou pulvérulent) présent à l'intérieur de la profondeur critique sous la surface (le manuel de la FHWA parle de 4 à 5 fois le diamètre des pieux, mais nous recommandons plutôt une valeur de 5 mètres). La méthode présentée ici n'est valable que pour les sols cohérents ;
- Déterminer le coefficient de réaction horizontal du sol, K_h à l'aide de la relation suivante :

 $K_h = 67c_u/b$

où : cu = résistance en cisaillement non drainé (en Pa),

b = largeur ou diamètre de pieu (m)

(Note : c_u peut être estimée égale à la moitié de la valeur de résistance en compression non confinée, q_u);

- Ajuster la valeur de K_h déterminée à l'étape 2 en fonction de la consistance du sol cohérent :
 - multiplier K_h par 0,17 à 0,33 pour une argile très molle à molle
 - multiplier K_h par 0,25 à 0,50 pour une argile ferme à très raide ;
- 4. Déterminer les propriétés du pieu suivantes :
 - module d'élasticité, E, (Pa)
 - moment d'inertie, I, (m⁴)
 - module de section, S, (m³) autour d'un axe perpendiculaire au plan de chargement
 - contrainte admissible, f_y, dans l'acier, ou résistance en compression ultime, f'_c, pour le béton (Pa)
 - longueur enfouie du pieu, D, (m)
 - excentricité de la charge appliquée en tête du pieu, e_c, pour les pieux à têtes libres (m)

- facteur de forme C_s (pour pieux d'acier seulement), où :
 - 1. Cs = 1,3 pour un pieu avec section circulaire
 - C_s = 1,1 pour un pieu « H » lorsque la charge latérale est perpendiculai- re aux ailes
 - 3. C_s = 1,5 pour un pieu « H » lorsque la charge latérale est parallèle aux ailes
- moment résistant du pieu, My, (N-m), où :
 - 1. pour des pieux d'acier : $M_y = C_s f_y S$
 - 2. pour des pieux de béton : $M_y = f_c S$;
- Déterminer le coefficient ß :

$$\beta = \sqrt[4]{\frac{\kappa_h b}{4EI}};$$

- 6. Déterminer le facteur de longueur adimensionnel égal à ß multiplié par D ;
- 7. Déterminer le type de pieu (court ou long) :
 - si $\text{SD} > 2,25 \rightarrow \text{long}$
 - si $BD < 2,25 \rightarrow court$

(Note : pour des valeurs de ßD situées entre 2,0 et 2,5, il est suggéré de faire les calculs qui suivent selon les méthodes pour pieux long et court, et de retenir la valeur la plus faible) ;

- Determiner la résistance géotechnique latérale ultime Q_u d'un pieu isolé selon ce qui suit :
 - a. Pieu court

À l'aide de D/b (et de e_c /D pour le cas à tête libre), utiliser l'abaque de la figure 1 pour choisir la valeur correspondante de Q_u/c_ub^2 et résoudre pour trouver Q_u (en N).

b. Pieu long

À l'aide de M_y/c_ub^3 (et de e_c/b pour le cas à tête libre), utiliser l'abaque de la figure 2 pour choisir la valeur correspondante de Q_u/c_ub^2 et résoudre pour trouver Q_u (en N);

- Déterminer, pour un pieu isolé, la résistance géotechnique latérale pondérée (à L'ÉLUL) Q_m en multipliant Q_u par un coefficient de tenue de 0,5 ;
- Déterminer la réaction à l'ÉLUT (la charge latérale de service) Q_e en fonction du déplacement admissible y choisi par le concepteur (une valeur de 10 mm peut être utilisée en l'absence de plus d'information). À l'aide de ßD (et de e_c/D pour

le cas à tête libre), utiliser l'abaque de la figure 3 pour choisir la valeur correspondante de yK_hbD/Q_a et résoudre pour trouver Q_a (en N) ou y (en m);

- 11. Comparer Q_a et Q_m :
 - si $Q_a > Q_m$, utiliser Q_m et calculer y_m selon l'étape 10
 - si Q_a < Q_m, utiliser Q_a et y choisi
 - si Q_a et y ne sont pas disponibles, utiliser Q_m et y_m;
- 12. Réduire la capacité des pieux isolés déterminée à l'étape 11 en fonction de l'effet de groupe. La réduction est fonction de l'espacement dans le groupe de pieux et le facteur de réduction approprié est déterminé à l'aide du tableau 2 (l'espacement des pieux est calculé centre à centre dans la direction de la charge latérale) :

Tableau 2 :	Facteur	de réduction	de	groupe
-------------	---------	--------------	----	--------

Espacement des pieux	Facteur de réduction	
8b	1,0	
6b	0,8	
4b	0,5	
3b	0,4	

13. En ajout à cette méthode, nous recommandons d'ajuster la capacité latérale des pieux inclinés en fonction de leur inclinaison par rapport à la verticale et de l'orientation de la charge latérale. Le tableau 3, dont les valeurs sont tirées du « Foundation engineering handbook », Whiterkorn & Fang (1975), présente les facteurs d'accroissement ou de réduction à appliquer :

	Ta	ab	leau	3:	Facteurs	d'accro	issement	et de	réduction	pour I	'inclinaison
--	----	----	------	----	----------	---------	----------	-------	-----------	--------	--------------

Inclinaison ? du pieu par rapport à la verticale (°)	Facteur multiplicatif
22,5	0,75
15,0	0,80
7,5	0,90
0	1,00
-7,5	1,08
-15,0	1,16
-22,5	1,22
-30,0	1,27

Dans le tableau 3, le signe de ? doit être déterminé à l'aide de la figure 4 :

Figure 4 : détermination du signe de l'inclinaison du pieu

 Déterminer la capacité totale du groupe de pieux. Il est à noter qu'aucune résistance n'est attribuée au sol entourant la semelle dans laquelle les pieux sont encastrés.

Figure 1 – RÉSISTANCE GÉOTECHNIQUE LATÉRALE DES PIEUX COURTS DANS LES SOLS COHÉSIFS

FIGURE 2 – RÉSISTANCE GÉOTECHNIQUE LATÉRALE DES PIEUX LONGS DANS LES SOLS COHÉSIFS.

Figure 3 – DÉFLECTION LATÉRALE DES PIEUX DANS LES SOLS COHÉSIFS
Annexe 7 Photographies

Photographie nº 1 : Roc échantillonné au forage PS-02-13

Photographie n° 2 : Strate de remplissage de silt avec un peu d'argile observée dans le roc à PS-02-13 (39,9 m à 40,1 m)

Photographie n° 3 : Roc échantillonné au forage PS-11-13

075-P-0003539-0-01-101-GE-0001-00

RAPPORT D'ÉTUDE GÉOTECHNIQUE PARC ÉOLIEN PIERRE-DE SAUREL - YAMASKA, SAINT-ROBERT ET SAINT-AIMÉ (QUÉBEC)

Annexe 8 Croquis de localisation des forages

0

LÉGENDE :			
TF-NN-A	A FORAGE-NUMÉR	PO-ANNÉE	
	ÉLÉVATION (m)	(U-Annee	
PS-NN-A 00.00	A FORAGE-NUMÉF	RO-ANNÉE AVEC	ESSAI
	DE PÉNÉTRATIO	N DYNAMIQUE	
, SM-NN-A			· _
•	FORAGE AN LEK (LABO SM INC, 2	IEUR-NUMERO-A 010)	INNEE
COOF	RDONNÉE FUSE	ES MTM N EAU 8	JAD83
N° SONDAGE	NORD (Y)	EST (X)	ÉLÉVATION (Z)
PS-01-13	5 094 327,0	348 954,0	18,09
PS-02-13	5 094 444,5	349 591,8	17,65
PS-03-13	5 094 529,1	350 046,3	19,03
PS-05-13	5 093 135,1	348 511,0	19,14
PS-06-13	5 093 332,0	349 553,3	19,13
PS-07-13	5 093 428,7	350 067,7	20,76
TF-07-13	5 093 149,9	348 937,7	
TF-08-13	5 093 096,3	348 651,6	
TF-09-13	5 093 209,0	349 252,1	
TF-10-13	5 093 321,0	349 834,0	
TF-11-13	5 093 419,3	350 348,6	
TF-12-13	5 093 499,0	350 759,5	
TF-13-13	5 094 613,9	350 614,0	
TF-14-13	5 094 559,2	350 292,2	
TF-15-13	5 094 465,8	349 826,4	
TF-20-13	5 094 659,0	350 753,9	17,36
SM-01-10	5 093 277,0	349 622,0	18,66
		RRF-DE {	SAUREL
••••••	S.E	.C.	
Projet PARC ÉC			SAUREL

YAMASKA, SAINT-ROBERT ET SAINT-AIMÉ, QUÉBEC

LOCALISATION DES FORAGES

Titr

PARTIELLE OU TOTALE, EN EST STRICTEMENT PROHIBÉE SANS AVOIR PRÉALABLEMENT OBTENU L'AUTORISATION ÉCRITE DE LVM.

LÉGENDE : TF-NN-AA 00,00 F

FORAGE-NUMÉRO-ANNÉE

PS-NN-AA FORAGE-NUMÉRO-ANNÉE AVEC ESSAI DE PÉNÉTRATION DYNAMIQUE ÉLÉVATION (m)

COORDONNÉES MTM NAD83 FUSEAU 8

N° SONDAGE	NORD (Y)	EST (X)	ÉLÉVATION (Z)
PS-04-13	5 090 912,5	347 806,4	21,73
PS-08-13	5 092 683,8	349 078,5	20,37
PS-09-13	5 092 109,0	349 161,3	20,82
PS-10-13	5 091 587,5	349 028,9	21,37
PS-11-13	5 091 041,9	348 907,8	22,16
PS-12-13	5 090 657,8	348 340,5	22,03
TF-01-13	5 090 754,1	347 807,0	
TF-02-13	5 090 849,2	348 360,6	
TF-03-13	5 090 939,4	348 941,3	
TF-04-13	5 091 450,5	349 071,0	
TF-05-13	5 091 963,7	349 187,4	
TF-06-13	5 092 552,4	349 138,3	
TF-16-13	5 090 800,4	348 093,4	
TF-17-13	5 090 871,7	349 423,2	
TF-18-13	5 090 770,7	349 978,0	
TF-19-13	5 090 702,6	350 376,5	

NOTES

Proje

1. RÉFÉRENCES : IMAGES AÉRIENNES PROVENANT DE GOOGLE EARTH, DATE DES IMAGES : 6 SEPTEMBRE 2009.

Cliest PARC ÉOLIEN PIERRE-DE SAUREL S.E.C.

PARC ÉOLIEN PIERRE-DE SAUREL ÉTUDE GÉOTECHNIQUE

YAMASKA, SAINT-ROBERT ET SAINT-AIMÉ, QUÉBEC

LOCALISATION DES FORAGES

			LVM inc		
		Drumi	mondville (Québec) Téléphone : 819. Télécopieur : 819.	J2C 5A 475.668 475.669	
Prénaré O Arsenault ing	Discipline GÉOTECHNI	QUE	Chargé de projet O. Arsenault, ing.		
- · · · - · · ·			O. Arsenault,	ing.	
Dessiné S. Lessard Vérifié O. Arsenault, ing	Échelle 1 : 10 000 Date 2014-01-07		O, Arsenault, No. de séquence 02 de (ing. 9 03	
Dessiné S. Lessard Vérifié O. Arsenault, Ing ØA Serv. resp. Projet	Échelle 1 : 10 000 Date 2014-01-07 Otp	Disc. Type	0. Arsenault, No. de séquence 02 de (N ⁰ Dessin	ing. 03 Rév.	

