304 DA5

Projet intégré de construction du boulevard René-Lévesque et du prolongement ouest du boulevard de Portland à Sherbrooke

6211-06-152

ÉTUDE DE FAISABILITÉ ET DE CIRCULATION AXE RENÉ-LÉVESQUE / LIEN HAUT-BOIS SHERBROOKE

Version finale

CIVA 3385, rue King Ouest Sherbrooke (Québec) J1L 1P8

Tél.: (819) 565-3385 Fax: (819) 821-4283

> Projet nº: S04279B Mars 2010

ÉQUIPE DE RÉALISATION DU PROJET

Martine Bélanger, ing. Directrice de projet

Myrriamme Vilmont, ing.
Jean-François Comeau, ing. Jr
Jean François Barabé, tech.
Sylvain Lefebvre, tech.
Cindy Bolduc-Hamel
Nancy Talbot, Dess.

Préparée par :

Jean-François Comeau, ing. Jr

Analyste en transport

N° membre O.I.Q.: 5003374

Vérifiée par

Martine Bélanger, ing.

Directrice de projet

Nº membre O.I.Q.: 111 296

Date: 20/0-03.08

Date: 2010 -03-08

Page

TABLE DES MATIÈRES

		_
1.	INTRODUCTION	1
2.	SITUATION ACTUELLE ET SCÉNARIOS ÉTUDIÉS	4
2.1 2.1.1 2.1.2 2.1.3	SITUATION ACTUELLE Données socio-démographiques Occupation du sol Hiérarchie du réseau routier à l'étude	5
2.2	SCÉNARIO 1 – RACCORDEMENT RUE DU PRÉSIDENT-KENNEDY	7
2.3	SCÉNARIO 2 – RACCORDEMENT LIEN HAUT-BOIS	7
3.	GÉNÉRATION, DISTRIBUTION ET AFFECTATION DES DÉPLACEMENTS	8
3.1 3.1.1 3.1.2	SCÉNARIO 1 – RACCORDEMENT RUE DU PRÉSIDENT-KENNEDY	8
3.2 3.2.1 3.2.2	SCÉNARIO 2 – RACCORDEMENT RUE DU HAUT-BOIS	10
4.	FAISABILITÉ ET ÉVALUATION DES IMPACTS	14
4.1 4.1.1 4.1.2 4.1.3	SCÉNARIO 1 – RACCORDEMENT RUE DU PRÉSIDENT-KENNEDY	14 16
4.2 4.2.1 4.2.2 4.2.3	SCÉNARIO 2 – RACCORDEMENT LIEN HAUT-BOIS	18 19
4.3	SYNTHÈSE DE L'ÉVALUATION DES IMPACTS	22

5.	ANALYSE DE LA CIRCULATION	23
5.1	SCÉNARIO 1 – RACCORDEMENT RUE DU PRÉSIDENT-KENNEDY	23
5.1.1	Conditions de circulation anticipées – Heure de pointe du matin et du soir	
5.1.2	Mode de gestion aux intersections	
5.1.3	Géométrie – Scénario 1	
5.1.4	Achalandage	29
5.2	SCÉNARIO 2 – RACCORDEMENT RUE DU HAUT-BOIS	29
5.2.1	Conditions de circulation anticipées – Heure de pointe du matin	
5.2.2	Mode de gestion aux intersections	
5.2.3	Géométrie – Scénario 2	34
5.2.4	Achalandage	36
6.	MESURES DE MITIGATION	36
6.1	SCÉNARIO 1	36
6.2	SCÉNARIO 2	37
7.	ESTIMATION SOMMAIRE	38
8.	ANALYSE COMPARATIVE	39
9.	CONCLUSIONS ET RECOMMANDATIONS	42

FIGURES

Figure 1.1:	Localisation du secteur à l'étude et scénarios étudiés	2
Figure 3.1:	Conditions de circulation anticipées – Scénario 1 – Heure de pointe	4.4
Figure 3.2 :	matin/soir Conditions de circulation anticipées – Scénario 2 – Heure de pointe	11
i iguie 3.2 .	matin/soir	12
Figure 5.1:	Vue en plan de l'axe René-Lévesque	
Figure 5.2 :	Géométrie de l'axe René-Lévesque – Coupe Ra-Ra	
Figure 5.3 :	Géométrie de l'axe René-Lévesque – Coupe Rb-Rb	
Figure 5.4 :	Géométrie des intersections – Scénario 1	
Figure 5.5 :	Géométrie des intersections – Scénario 2	
	TABLEAUX	
Tableau 2.1 :	Classification des éléments routiers du secteur	6
Tableau 3.1:	Génération des déplacements – Scénario 1	9
	Génération des déplacements – Scénario 2	
	Expropriation en fonction du scénario 2	
	Expropriation en fonction du scénario 2	
	Évaluation comparative des scénarios considérés	
	Évaluation comparative des différents scénarios considérés	
Tableau 8.2 :	Bilan comparatif	41
	ANNEVEO	
	ANNEXES	
Annexe A	Données socio-démographiques	
Annexe B	Hiérarchie du réseau routier	
Annexe C	Génération, distribution et affectation des déplacements – Scénario 1	
Annexe D Annexe E	Génération, distribution et affectation des déplacements – Scénario 2 Plan des scénarios	
Annexe F	Rapports de simulations	
Annexe G	Justification des feux de circulation	
Annexe G Annexe H	Justification des voies de virage	
Annexe I	Estimations	
/ IIIICAC I	Louinations	

1. INTRODUCTION

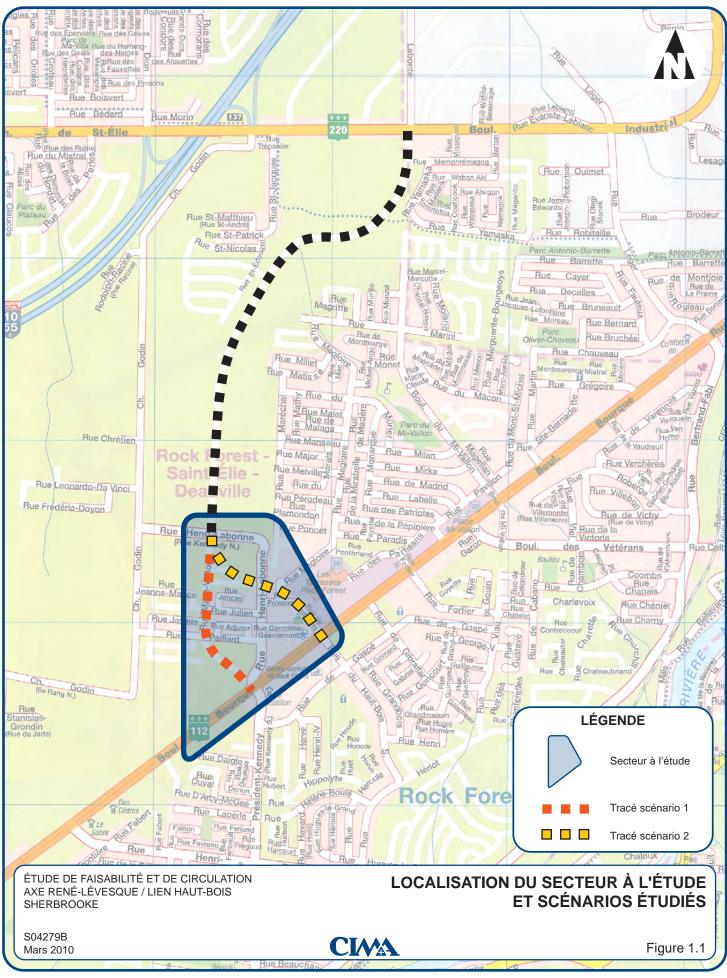
Le projet

Dans le cadre de la planification du développement de son réseau routier et suite au dépôt d'études de circulation préliminaires sur l'aménagement d'un axe entre le boulevard Industriel et le boulevard Bourque, la Ville de Sherbrooke demande l'évaluation d'un tracé alternatif pour l'axe René-Lévesque, le lien Haut-Bois. Le nouvel alignement considéré vise principalement à rapprocher l'axe René-Lévesque du secteur commercial des Terrasses Rock Forest.

La réalisation de ce nouvel alignement génèrera une nouvelle dynamique de mouvements véhiculaires et permettra d'ouvrir de nouvelles possibilités de développements pour l'arrondissement Rock Forest–Saint-Élie–Deauville de la Ville de Sherbrooke. La figure 1.1 localise le secteur à l'étude.

Le raccordement envisagé au boulevard Industriel est identique pour les deux scénarios, alors que le raccordement au boulevard Bourque diffère selon le scénario considéré :

Scénario 1 – Raccordement à l'intersection existante Bourque / du Président-Kennedy


Scénario 2 – (Lien Haut-Bois) – Raccordement à l'intersection existante Bourque / du Haut-Bois

Le secteur à l'étude est enclavé entre le boulevard Bourque, la rue du Haut-Bois et la rue Henri-Labonne, trois axes routiers présents dans l'arrondissement de Rock Forest–Saint-Élie–Deauville de la Ville de Sherbrooke.

Le mandat de CIMA+

La Ville de Sherbrooke a donc mandaté CIMA+ pour l'exécution d'une étude comprenant deux volets, soit un volet concernant la faisabilité et un autre relatif à la circulation inhérente aux deux tracés considérés.

L'étude de faisabilité du mandat consiste à évaluer la possibilité et les impacts du raccordement de la portion sud, du futur axe René-Lévesque au boulevard Bourque, en fonction des deux scénarios considérés.

Le volet circulation du mandat consiste à l'analyse des impacts sur la circulation induite par le raccordement de la portion sud, du futur axe René-Lévesque, au niveau du boulevard Bourque, selon les deux scénarios considérés.

Notons que l'état actuel des lieux, le tracé, la géométrie et les conditions de circulation prévues avec le scénario initialement considéré (scénario 1), lequel sert de base comparative au nouveau tracé considéré (scénario 2), se réfère au rapport déposé précédemment par CIMA+ en avril 2007 « Concept d'aménagement géométrique de l'axe René-Lévesque et du prolongement du boulevard de Portland, à Sherbrooke ». Une description plus exhaustive de l'ensemble du scénario initial y est présentée.

L'étude effectuée dans le cadre de ce mandat reprend uniquement les données inhérentes à la phase 2 de l'étude précédente, soit le plan de développement du secteur.

La méthodologie utilisée

La démarche employée implique la réalisation des activités suivantes :

- Recueil des données disponibles et complémentaires;
- Caractérisation de la situation actuelle et des scénarios envisagés;
- Génération, distribution et affectation des déplacements;
- Simulation et analyse des conditions de circulation;
- Évaluation des impacts et élaboration des mesures de mitigation;
- Recommandations.

2. SITUATION ACTUELLE ET SCÉNARIOS ÉTUDIÉS

Le projet d'aménagement du futur axe René-Lévesque se veut un lien routier de desserte des cellules Mi-Vallon et Saint-Jacques permettant de se raccorder le boulevard Industriel et le boulevard Bourque. La présente section présente donc une brève description de l'état actuel des lieux et des deux différents scénarios pressentis de l'axe René-Lévesque.

2.1 SITUATION ACTUELLE

Pour les fins de cette étude, l'axe René-Lévesque s'est vu attribuer un alignement nord-sud. Ainsi, cet alignement permettra d'identifier clairement les approches de chacune des intersections considérées et de faciliter la compréhension de l'étude.

Actuellement, la desserte des mouvements entre le boulevard Bourque et le boulevard Industriel est possible par trois itinéraires distincts, à l'intérieur du secteur Rock Forest. Depuis le boulevard Bourque, il est possible d'atteindre le boulevard Industriel par les parcours suivants :

- Par la rue Joyal et le chemin Godin;
- Par la rue Henri-Labonne et le chemin Godin;
- Par la rue Léger.

Toutefois, ces trois itinéraires ne sont pas propices à une telle vocation (hiérarchisation), en raison de l'achalandage prévalant sur ces tronçons routiers ou selon leur localisation géographique à l'intérieur de la Ville de Sherbrooke.

L'amélioration de la hiérarchisation du réseau routier est donc requise en raison de sa déficience actuelle et du fait qu'elle est incomplète.

Présentement, les cellules Mi-Vallon et Saint-Jacques sont enclavées, générant ainsi un déséquilibre des déplacements ainsi que des problèmes de sécurité.

La desserte en transport en commun pour les pôles d'origine / destinations du secteur est aussi déficiente.

Par conséquent, le potentiel de développement résidentiel, à l'intérieur du périmètre urbain considéré dans le secteur à l'étude, ne peut être déployé en raison de l'absence d'aménagements et d'infrastructures adéquates.

Afin d'assurer une meilleure desserte des cellules résidentielles, de produire un effet structurant des zones adjacentes (commerciales et industrielles) et de favoriser l'implantation éventuelle du transport collectif dans un contexte de développement durable, l'aménagement de l'axe René-Lévesque est justifié.

La caractérisation de l'état actuel du secteur devant accueillir l'axe René-Lévesque est illustrée sur la figure 1.1.

2.1.1 Données socio-démographiques

La présentation des données socio-démographiques a déjà été effectuée dans le cadre du rapport précédemment déposé. L'annexe A renferme la section relative à la population sherbrookoise, telle que présentée dans le précédent rapport.

2.1.2 Occupation du sol

Actuellement, le territoire développé, couvert par le secteur à l'étude, possède principalement un caractère résidentiel. Toutefois, le long de l'artère principale qu'est le boulevard Bourque, l'occupation du sol se rapporte plutôt à une occupation de type commercial. Des industries sont aussi localisées aléatoirement dans le secteur, mais leur faible nombre ne permet pas d'identifier un secteur industriel propre en soi.

Selon les prévisions de développement obtenues auprès de la Ville de Sherbrooke, l'occupation du sol du territoire étudié devrait garder sa vocation actuelle, soit une occupation commerciale le long du boulevard Bourque et une occupation principalement résidentielle ailleurs dans le secteur.

2.1.3 Hiérarchie du réseau routier à l'étude

La hiérarchie du réseau routier qui dessert le secteur à l'étude, telle que présentée précédemment dans le rapport « Planification du boulevard René-Lévesque et du prolongement du boulevard de Portland, à Sherbrooke » est présentée à l'annexe B du présent rapport.

Le tableau 2.1 présente les éléments routiers hiérarchisés en fonction de leur débit journalier ainsi qu'un commentaire relié à l'utilisation du lien par rapport à sa classe.

TABLEAU 2.1: CLASSIFICATION DES ELEMENTS ROUTIERS DU SECTEUR

Nom de l'axe	Géométrie	Débit journalier (véh./jour)	Classe	Commentaires sur le débit
Boulevard Bourque	2 voies/dir.	De 14 200 à 50 100	Artère	Supérieur à la classe
Boulevard Industriel	1 voie/dir.	De 16 900 à 20 400	Artère	Correspond à la classe
Boulevard du Mi-Vallon	1 voie/dir.	11 200	Collectrice résidentielle	Supérieur à la classe
Rue Léger (partie nord)	1 voie/dir.	16 100	Collectrice industrielle	Supérieur à la classe
Rue Léger (partie sud)	1 voie/dir.	11 500	Collectrice résidentielle	Supérieur à la classe
Rue Sauvé	1 voie/dir.	7 200	Collectrice industrielle	Correspond à la classe
Chemin Godin (partie nord)	1 voie/dir.	9 200	Collectrice commerciale	Correspond à la classe
Chemin Godin (partie sud)	1 voie/dir.	7 700	Collectrice commerciale	Correspond à la classe
Rue Poisson	1 voie/dir.	7 000	Collectrice résidentielle	Correspond à la classe
Rue Henri-Labonne	1 voie/dir.	5 100	Collectrice résidentielle	Correspond à la classe

Référence : tableau 2.3, rapport « Planification du boulevard René-Lévesque et du prolongement du boulevard de Portland, à Sherbrooke »

Il est à noter qu'un débit supérieur à la classe ne signifie pas nécessairement que les conditions de circulation sont mauvaises sur l'axe en question. Il peut cependant dénoter la présence d'un axe jouant plus que son rôle dans l'organisation du réseau routier.

2.2 SCÉNARIO 1 – RACCORDEMENT RUE DU PRÉSIDENT-KENNEDY

Comme les différences entre les deux variantes de l'axe René-Lévesque sont localisées exclusivement entre le boulevard Bourque et la rue Henri-Labonne, le présent mandat se concentre donc essentiellement sur cette portion du tracé envisagé.

Le scénario 1 prévoit un raccordement de l'axe René-Lévesque au niveau de l'intersection du boulevard Bourque et de la rue du Président-Kennedy.

Le tronçon étudié de l'alignement ainsi prévu pour l'axe René-Lévesque implique donc la présence, dans le secteur considéré, des cinq intersections suivantes :

- Axe René-Lévesque, boulevard Bourque et rue du Président-Kennedy;
- Axe René-Lévesque et rue Paillard;
- Axe René-Lévesque et rue Julien;
- Axe René-Lévesque et rue Poisson;
- Axe René-Lévesque et rue Henri-Labonne.

Le tracé du scénario 1 prévoit ainsi scinder le quartier résidentiel, lequel comprend les rues Poisson, Adjutor, Paillard, Julien, Joncas, Jasmin ainsi que le boulevard Marie-Victorin, en deux secteurs distincts.

La figure 1.1 illustre le tracé du scénario 1 relatif au raccordement de l'axe René-Lévesque, au niveau de l'intersection du boulevard Bourque et de la rue du Président-Kennedy.

2.3 SCÉNARIO 2 – RACCORDEMENT LIEN HAUT-BOIS

La Ville de Sherbrooke a aussi envisagé un autre raccordement possible pour l'axe René-Lévesque, le lien Haut-Bois, soit au niveau de l'intersection du boulevard Bourque et de la rue du Haut-Bois (scénario 2).

Ce tracé prévoit que l'axe René-Lévesque emprunte l'alignement actuel de la rue du Haut-Bois, tout juste à l'ouest des Terrasses Rock Forest, pour allez rejoindre l'alignement prévu à l'intersection de l'axe René-Lévesque et de la rue Henri-Labonne.

La section étudiée de l'alignement du scénario 2 prévoit la présence de trois intersections distinctes, soit :

- Axe René-Lévesque, boulevard Bourque et rue du Haut-Bois;
- Axe René-Lévesque et rue Magloire;
- Axe René-Lévesque et rue Henri-Labonne.

La figure 1.1 illustre le tracé du scénario 2 relatif au raccordement du boulevard René-Lévesque selon le lien Haut-Bois.

3. GÉNÉRATION, DISTRIBUTION ET AFFECTATION DES DÉPLACEMENTS

La génération des déplacements anticipés est effectuée sur la base des références et des méthodes de génération reconnues. Elle s'appuie aussi sur les informations recueillies et validées auprès de la Ville de Sherbrooke.

3.1 SCÉNARIO 1 – RACCORDEMENT RUE DU PRÉSIDENT-KENNEDY

Afin de pouvoir évaluer les conditions de circulation anticipées pour le scénario 1 de l'axe René-Lévesque, une génération des déplacements envisagés, suivie de leur distribution et de leur affectation, a été réalisée. La génération des déplacements sur l'axe René-Lévesque a déjà été présentée dans le rapport « Planification du boulevard René-Lévesque et du prolongement du boulevard de Portland, à Sherbrooke ».

3.1.1 Génération des déplacements

La présente section rappelle l'achalandage induit par les développements attendus se drainant sur l'axe René-Lévesque uniquement au moyen du tableau 3.1, tel que projeté.

L'annexe C présente toutefois les données et les informations complètes relatives à la génération des déplacements en fonction du tracé du scénario 1.

TABLEAU 3.1: GENERATION DES DEPLACEMENTS – SCENARIO 1

Usage du sol	Unités	Débit à l'heure de pointe du matin (véh./h)		Débit à l'heure de pointe du soir (véh./h)	
		Entrée	Sortie	Entrée	Sortie
Phase 1					
Résidentiel	2 500 logements	413	1 237	1 341	788
Commercial	100 000 pi² de plancher	191	134	320	307
Total		604	1 371	1 661	1 095
Phase 2					
Industriel	63 ha de terrain	774	159	198	704
Total Phases 1 et 2		1 378	1 530	1 859	1 799

Référence : tableau 3.1, rapport « Planification du boulevard René-Lévesque et du prolongement du boulevard de Portland, à Sherbrooke »

3.1.2 Distribution des déplacements

La répartition des mouvements attendus, selon le scénario 1 de l'axe René-Lévesque, a été effectuée dans le cadre de l'étude précédente. La figure 3.1 expose l'achalandage prévu, relatif à chacun des mouvements, aux différentes intersections étudiées. Se référer au rapport « Planification du boulevard René-Lévesque et du prolongement du boulevard de Portland, à Sherbrooke », initialement déposé pour plus d'informations sur la répartition et l'affectation de l'achalandage véhiculaire.

L'annexe C présente la section complète du rapport d'analyse du scénario 1, au niveau de l'affectation et de la distribution des déplacements.

Toutefois, dans la précédente étude, l'accès au futur développement commercial envisagé était considéré directement sur le futur axe René-Lévesque. Dans la cadre de la présente étude, l'accès aux commerces sera plutôt considéré sur le boulevard Bourque.

3.2 SCÉNARIO 2 – RACCORDEMENT RUE DU HAUT-BOIS

Afin de pouvoir évaluer les conditions de circulation anticipées, en fonction du nouvel alignement considéré de l'axe René-Lévesque, il est préalablement nécessaire d'effectuer la génération, la distribution et l'affectation des déplacements anticipés. Telle que mentionnée précédemment, la génération des déplacements de l'axe René-Lévesque a déjà été présentée dans le rapport « Planification du boulevard René-Lévesque et du prolongement du boulevard de Portland, à Sherbrooke ».

3.2.1 Génération des déplacements

La génération des déplacements, nécessaires à l'évaluation des débits véhiculaires futurs, considère un achalandage supplémentaire à celui évalué dans l'analyse du scénario 1. Ainsi, l'ajout des déplacements générés par une banque et une pharmacie a été considéré, en plus des débits de circulation fournis par la Ville de Sherbrooke, en considération de l'axe du scénario 2.

Ainsi, les débits étudiés dans les conditions de circulation relatives au scénario 2 sont légèrement supérieurs à ceux indiqués à l'intérieur du tableau 3.1. Le tableau 3.2 expose donc les nouveaux débits pour l'analyse du scénario 2 de l'axe René-Lévesque.

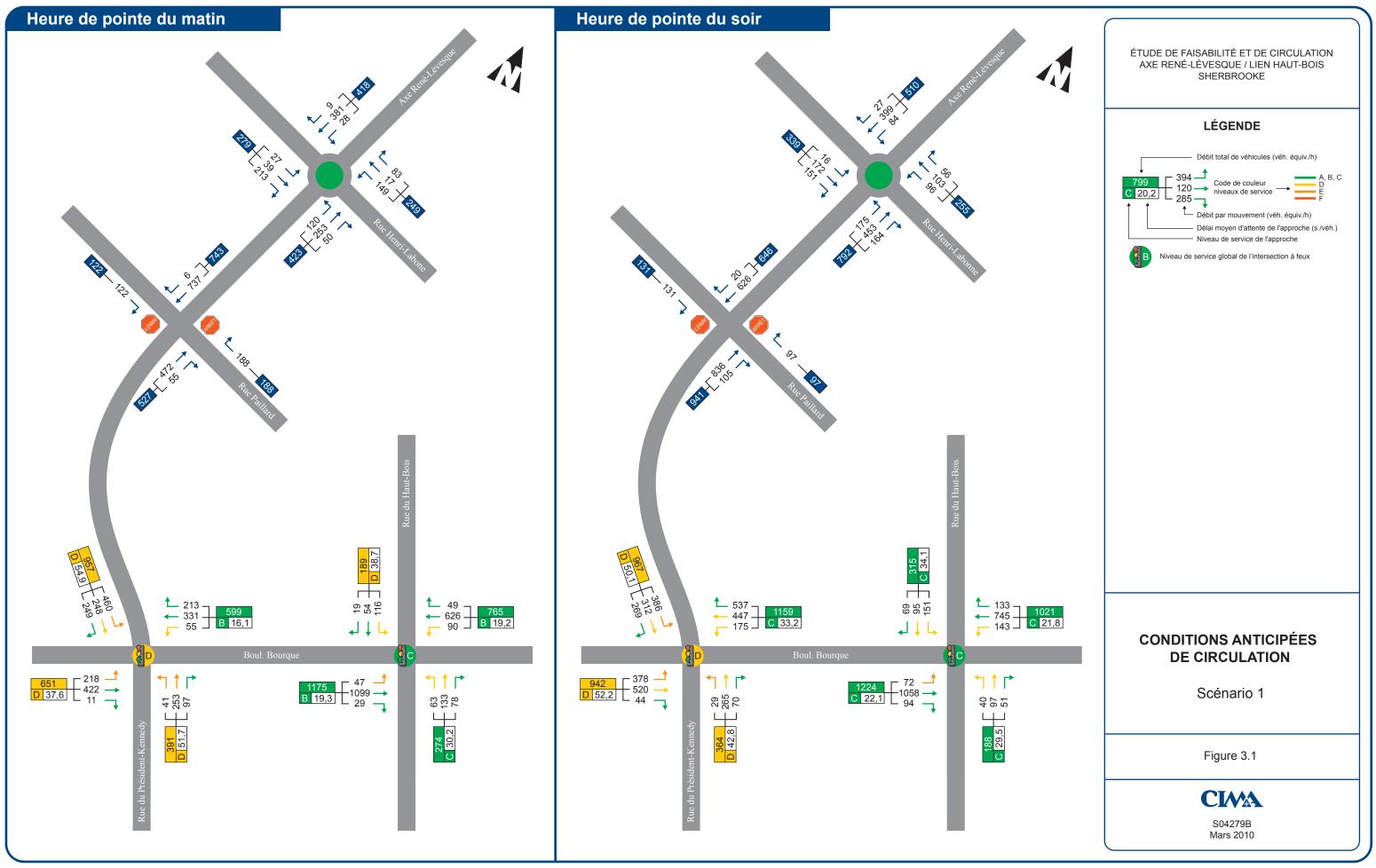
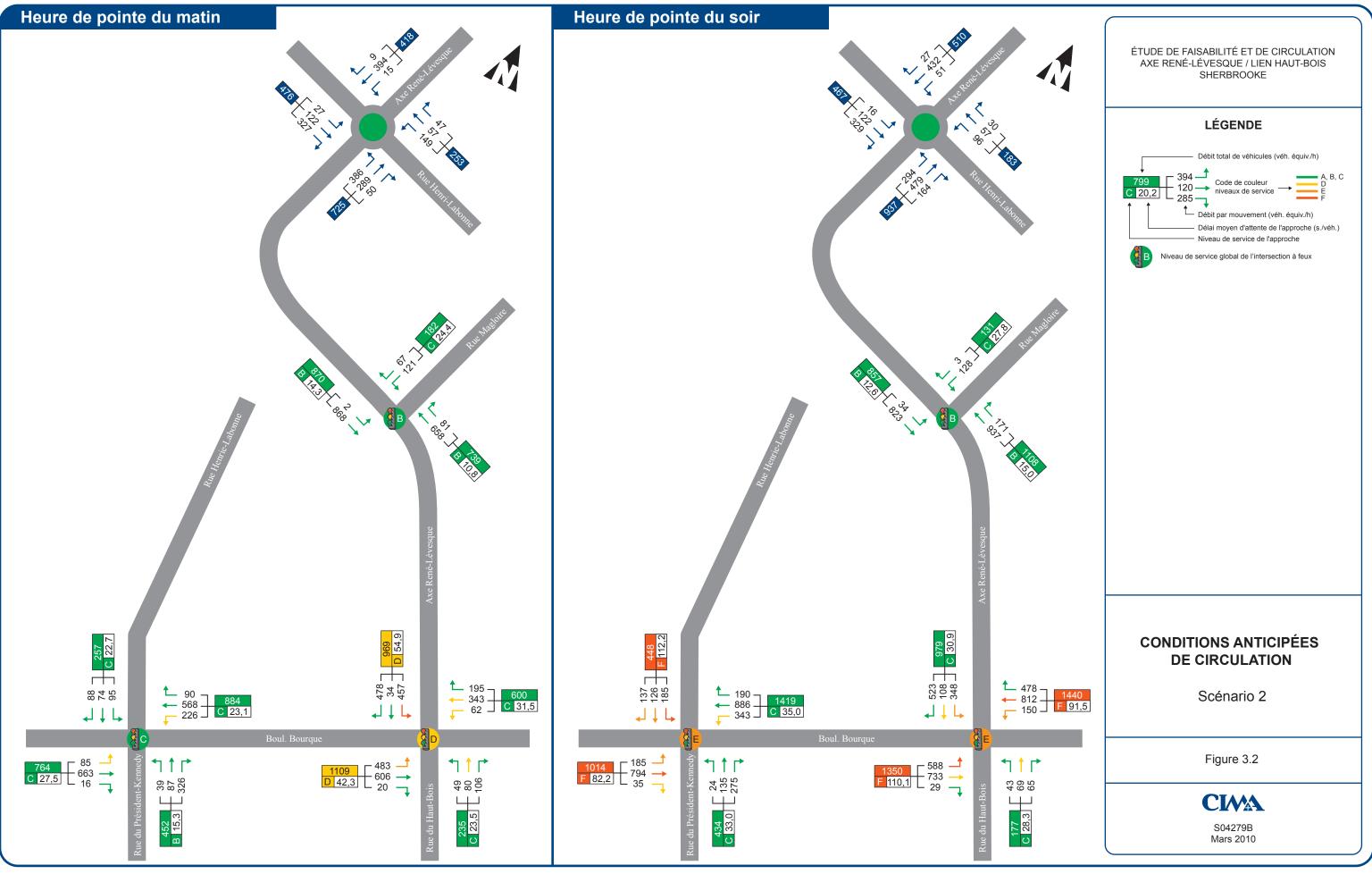


TABLEAU 3.2: GENERATION DES DEPLACEMENTS – SCENARIO 2

Usage du sol	Unités	Débit à l'heure de pointe du matin (véh./h)		Débit à l'heure de pointe du soir (véh./h)		
		Entrée	Sortie	Entrée	Sortie	
	Phase 1					
Résidentiel	2 500 logements	413	1 237	1 341	788	
Commercial	100 000 pi² de plancher	213	150	379	368	
Total		626	1 387	1 720	1 156	
Phase 2						
Industriel	63 ha de terrain	774	159	198	704	
Total Phases 1 et 2		1 400	1 546	1 918	1 860	


L'annexe D présente toutefois les données et les informations complètes relatives à la génération des déplacements en fonction du tracé du scénario 2.

3.2.2 Distribution des déplacements

Selon les informations obtenues concernant les projets de développements prévus et des débits de circulation anticipés sur l'axe René-Lévesque, une répartition de ces mouvements a été effectuée. Le réseau considéré dans la répartition des mouvements comprend toutes les intersections de l'axe René-Lévesque comprises entre le boulevard Bourque et la rue Henri-Labonne.

Les débits effectifs à l'heure de pointe du matin et ceux relatifs à l'heure de pointe du soir sont exposés à la figure 3.2.

L'annexe D présente la section complète du rapport d'analyse du scénario 1 au niveau de l'affectation et de la distribution des déplacements.

Notons que le futur développement commercial envisagé, lequel est localisé à l'intérieur du quadrant nord-ouest de l'intersection du boulevard Bourque et de la rue Henri-Labonne, a été considéré dans les analyses. La distribution des débits relatifs au projet commercial a toutefois été faite en fonction d'un accès situé sur le boulevard Bourque.

4. FAISABILITÉ ET ÉVALUATION DES IMPACTS

Ce chapitre présente un argumentaire permettant de comparer les impacts du raccordement de la portion sud de l'axe René-Lévesque au boulevard Bourque, selon les deux scénarios considérés (scénario 1 et scénario 2).

4.1 SCÉNARIO 1 – RACCORDEMENT RUE DU PRÉSIDENT-KENNEDY

La considération d'un raccordement selon le scénario 1, pour la portion sud de l'axe René-Lévesque, implique plusieurs avantages et inconvénients contribuant à évaluer la justification du scénario à privilégier.

Le raccordement de la portion sud de l'axe René-Lévesque, au niveau de la rue du Président-Kennedy (scénario1), implique plusieurs impacts de natures variées, ceuxci étant développés dans la présente section.

4.1.1 Impacts socio-économiques

Raccordement des secteurs résidentiels

Selon le tracé proposé dans le scénario 1, le raccordement de l'axe René-Lévesque avec le boulevard Bourque ne prévoit aucun lien direct à la rue Magloire, lequel aurait permis de drainer les mouvements d'entrées et de sorties du quartier Mi-Vallon. Ainsi, la longueur de parcours inhérente à ces mouvements d'entrées et de sorties du quartier résidentiel est maintenue telle qu'elle existe actuellement. Cette situation ne permet donc pas de soulager le boulevard Bourque et le quartier résidentiel d'une partie de l'achalandage induit par les mouvements d'entrées et de sorties au quartier résidentiel Mi-Vallon.

Toutefois, les mouvements s'effectuant depuis le quartier résidentiel situé à l'intérieur du quadrant nord-ouest de l'intersection de l'axe René-Lévesque et du boulevard Bourque peuvent être facilement drainés par la présence de l'axe René-Lévesque, permettant ainsi de diminuer la longueur de parcours de ces résidents.

Potentiel de développement

Le potentiel de développement du secteur est localisé à la section nord du tronçon envisagé pour l'axe René-Lévesque, en raison de l'occupation résidentielle actuelle du secteur situé dans la section sud. Le développement d'une portion à l'extrême sud du tracé est aussi possible (entre le boulevard Bourque et la rue Paillard). Toutefois, la zone résidentielle limite le potentiel de développement commercial. Les zones potentielles de développement possible sont actuellement boisées et en friches (annexe E).

L'axe René-Lévesque envisagé offre un potentiel de génération d'un achalandage véhiculaire intéressant, dans l'arrondissement Rock Forest–Saint-Élie–Deauville, permettant d'envisager divers projets (commerciaux ou résidentiels) distincts.

Expropriation

Le tracé prévu de l'axe René-Lévesque traverse perpendiculairement la rue Paillard en suivant l'alignement du boulevard Marie-Victorin; deux routes développées ayant une vocation résidentielle. Conséquemment, si la Ville maintient l'emprise à 30 m et la géométrie proposée l'expropriation de résidences est à prévoir. Au total, trois bâtiments de type résidence unifamiliale devront être démolis. Le tableau 4.1 présente chacun de ces bâtiments.

TABLEAU 4.1: EXPROPRIATION EN FONCTION DU SCENARIO 2

Propriétaire	N° civique	N° de cadastre
Résidence unifamiliale	1664, rue PAILLARD	3068015
Résidence unifamiliale ¹	1665 à 1667, rue PAILLARD	1467182
Résidence unifamiliale	1660, rue JASMIN	1467183

Ce terrain est déjà la propriété de la Ville de Sherbrooke

D'autres terrains doivent également être acquis partiellement ou en totalité par la Ville de Sherbrooke afin de permettre la construction de l'axe René-Lévesque, en fonction du tracé du scénario 1. L'annexe E illustre la localisation de ces terrains.

Notons d'ailleurs que la localisation d'un bâtiment (1668, rue Paillard – 3068014) n'implique pas nécessairement sa démolition. L'expropriation de cette résidence est donc à valider selon l'alignement définitif, le tracé et la géométrie finale privilégiée

ainsi que le potentiel de variation de la largeur d'emprise requise. Une variation de la largeur de l'emprise peut être effectuée afin de minimiser l'impact sur la propriété.

Historique d'occupation

Dû à l'absence de données pertinentes, l'évaluation de l'historique d'occupation du secteur n'a pu être effectuée.

4.1.2 Impacts physiques

Sol

Selon les données relatives à différents forages effectués dans le secteur à l'étude et répertoriés sur le site internet du Ministère du Développement Durable, Environnement et Parcs (MDDEP), la profondeur du socle rocheux a pu être déterminée. Notons toutefois que ces données proviennent de puits de forage réalisés depuis 1967 et qu'une certaine incertitude quant à leur exactitude est à considérer. Les profondeurs du roc sont donc présentées ici uniquement à titre indicatif.

Le roc a été trouvé pour des profondeurs variant entre 0,9 m et 4,6 m. Conséquemment, la possibilité de devoir réaliser des travaux d'excavation de roc doit être prévue, bien que les quantités à prévoir semblent être peu élevées. Toujours selon ces informations, le type de sol recouvrant le roc, au droit des forages effectués dans la zone touchée par le scénario 1, est de la terre végétale. Le plan du scénario 1, présenté à l'annexe E, localise les forages à proximité du tracé.

Profil en long

Selon la physionomie du terrain naturel existant (faiblement accidentée), peu de travaux de déblai sont à prévoir lors de la construction de l'axe René-Lévesque. Ainsi, les raccordements aux travées existantes peuvent s'effectuer au moyen de pentes ayant une faible déclivité. Il est donc prévu que les travaux de remblai soient plus importants que ceux de déblai.

Présence d'utilité publique

L'alignement de l'axe René-Lévesque, en fonction du scénario 1, implique la relocalisation d'un seul élément de la mécanique municipale, soit une borne-fontaine, tel qu'indiqué au plan fourni à l'annexe E.

Divers

Aucun débordement à l'extérieur de l'emprise n'est à prévoir pour la construction de l'axe René-Lévesque.

Le raccordement existant de la rue Henri-Labonne au boulevard Bourque n'est plus effectif selon l'étude du scénario 1. En effet, tel qu'illustré de façon conceptuelle sur le plan du scénario 1 de l'annexe E, il est prévu de venir créer un cul-de-sac sur la rue Henri-Labonne afin de forcer la sortie au quartier résidentiel par les rues plus au nord.

4.1.3 Impacts environnementaux

Déboisement

Le territoire situé au sud de la rue Paillard est principalement boisé. L'alignement proposé dans le scénario 1 implique donc le déboisement d'une superficie équivalente à l'emprise prévue, soit sur ± 13 000 m². La localisation du secteur boisé est illustrée à l'annexe E.

Paysage

Au niveau du paysage, aucun impact majeur n'est anticipé puisque le boulevard sera aménagé au niveau du sol existant et qu'il n'est pas prévu d'y construire des structures routières en hauteur (ex. : viaduc, échangeur, etc.).

Bruit

Puisque selon le scénario 1, l'axe René-Lévesque traverse un secteur résidentiel et de façon à assurer la quiétude des résidents, des mesures d'atténuation du bruit, inhérent à la circulation véhiculaire, pourraient être envisagées selon les résultats d'une évaluation exhaustive des impacts sonores.

Divers

Les autres impacts, concernant l'aspect environnemental, n'ont pas pu être évalués puisque les données (zone humide) nécessaires à leur évaluation n'étaient pas disponibles au moment de l'étude.

4.2 SCÉNARIO 2 – RACCORDEMENT LIEN HAUT-BOIS

La considération d'un raccordement selon le scénario 2, pour la portion sud de l'axe René-Lévesque, comporte plusieurs éléments (positifs et négatifs) qui contribuent à évaluer sa justification.

Le raccordement de la portion sud de l'axe René-Lévesque, selon le scénario 2, implique plusieurs impacts de natures variées, ceux-ci étant développés dans la présente section.

4.2.1 Impacts socio-économiques

Raccordement des secteurs résidentiels

L'alignement considéré pour l'axe René-Lévesque permet d'offrir un lien direct entre cette nouvelle artère et le quartier résidentiel Mi-Vallon par la rue Magloire. Ce tracé permet donc de diminuer la longueur de parcours des mouvements d'entrées et de sorties et par la même occasion, de soulager le quartier Mi-Vallon et le boulevard Bourque d'une partie de l'achalandage induit par les résidents.

Selon le scénario 2, la rue Henri-Labonne et la rue Poisson se terminent en cul-desac, donc le quartier résidentiel situé à l'intérieur du quadrant nord-ouest de l'intersection de l'axe René-Lévesque et du boulevard Bourque, reste desservi par le boulevard Bourque via la rue Henri-Labonne et par le chemin Godin.

Potentiel de développement

Au nord de la rue Magloire, les terrains situés de part et d'autre de l'alignement prévu de l'axe René-Lévesque présentent un potentiel de développement intéressant, les terrains actuels n'étant pas développés (boisés et en friches). De plus, la vocation plus commerciale des terrains, adjacents au tracé considéré de l'axe René-Lévesque, offre un potentiel de développement commercial important. La superficie des développements et l'occupation du sol sont observables depuis le plan du scénario 2 inséré à l'annexe E.

Le scénario 2 offre également l'opportunité d'aider à la revitalisation du secteur commercial des Terrasses Rock Forest, situé dans le quadrant nord-est de l'intersection actuelle du boulevard Bourque et de la rue du Haut-Bois.

Expropriation

Avec la construction de l'axe René-Lévesque, la Ville de Sherbrooke doit procéder à l'expropriation de certains terrains. Au total, quatre bâtiments devront être démolis, soit deux résidences unifamiliales ainsi que deux immeubles à condos. Le tableau 4.3 présente chacun de ces bâtiments.

TABLEAU 4.3: EXPROPRIATION EN FONCTION DU SCENARIO 2

Propriétaire	N° civique	N° de cadastre
Résidence unifamiliale	4915, rue HENRI-LABONNE	1467301
Résidence unifamiliale	4927, rue HENRI-LABONNE	1467299
Immeuble à condos	4939, rue MAGLOIRE	2031022
Immeuble à condos	4942, rue MAGLOIRE	2031024

D'autres terrains doivent également être acquis partiellement ou en totalité par la Ville de Sherbrooke afin de permettre la construction de l'axe René-Lévesque, en fonction du tracé du scénario 2. Le plan du scénario 2 de l'annexe E illustre la localisation de ces terrains.

Historique d'occupation

Dû à l'absence de données pertinentes, l'évaluation de l'historique d'occupation du secteur n'a pu être effectuée.

4.2.2 Impacts physiques

Sol

Selon les données relatives à des forages effectués dans le secteur à l'étude et répertoriés sur le site internet du Ministère du Développement Durable, Environnement et Parcs (MDDEP), la profondeur du socle rocheux a pu être déterminée à proximité du scénario 2. Rappelons que les profondeurs du roc sont présentées ici uniquement à titre indicatif, puisque les données impliquent une incertitude quant à leur exactitude.

Le roc a été trouvé pour des profondeurs variant entre 0,6 m et 4,6 m. Conséquemment, la possibilité de devoir réaliser des travaux d'excavation de roc, lors de la construction du raccordement spécifié dans le scénario 2, est à prévoir. Toujours selon ces informations, une couche de terre végétale ou un dépôt granulaire recouvre le roc au droit des forages effectués dans le secteur touché par le scénario 2. L'annexe E illustre la localisation des forages réalisés dans le secteur étudié.

Profil

Toutefois, selon le tracé inhérent au scénario 2, le profil en long de l'axe René-Lévesque nécessite peu de travaux de déblai puisque la physionomie du terrain naturel est peu accidentée. Ainsi, les raccordements aux travées existantes peuvent s'effectuer au moyen de pentes ayant une faible déclivité. Il est donc prévu que les travaux de remblai soient plus importants que ceux de déblai.

Présence d'utilité publique

L'alignement de l'axe René-Lévesque, en fonction du scénario 2, implique également la relocalisation de divers éléments d'utilité publique. Entre autres, notons qu'une conduite de gaz est actuellement présente dans l'emprise existante de la rue Henri-Labonne. Toutefois, le tracé du scénario 2 n'implique pas nécessairement la relocalisation de la conduite. Sa présence peut cependant être problématique selon l'état actuel du sol et selon les travaux de terrassement requis.

Divers

L'emprise présentée au plan, inhérente à l'axe René-Lévesque, empiète dans le débarcadère du bâtiment commercial existant des Terrasses Rock Forest. Toutefois, la largeur de l'emprise de l'axe René-Lévesque pourra être adaptée, selon les conditions du secteur prévalant sur la rue actuelle du Haut-Bois, afin de limiter les interventions sur les propriétés privées, tel que le débarcadère actuel des Terrasses Rock Forest.

Toujours en fonction du tracé du scénario 2, un tronçon de l'alignement actuel de la rue Henri-Labonne est abandonné. Il est donc nécessaire de prévoir les travaux de démolition de cette route ou, à tout le moins, d'installer la signalisation adéquate et de fermer physiquement l'accès de cette section de la rue Henri-Labonne.

Le quadrant sud-ouest de l'intersection de l'axe René-Lévesque et de la rue Magloire peut nécessiter des travaux de terrassement importants en raison du relief accidenté du terrain à cet endroit. Toutefois, selon les bases d'une première analyse, la construction d'un mur de soutènement ne semble pas requise.

Le tracé actuel proposé dans le scénario 2 implique la création d'une intersection en « T », à l'intérieur d'une courbe horizontale. La visibilité de l'approche secondaire est toutefois située du côté extérieur de la courbe et n'est donc pas pénalisée.

L'accès existant d'un terrain (n° civique : 4951, rue Henri-Labonne et n° de cadastre : 1467300), qui se fait actuellement depuis la rue Henri-Labonne, doit être déplacé afin d'y permettre les mouvements d'entrées et de sorties depuis l'axe René-Lévesque.

4.2.3 Impacts environnementaux

Déboisement

Le territoire, situé au sud de la rue Henri-Labonne et au nord de la rue Joncas, est principalement boisé et en friche. L'alignement proposé dans le scénario 2 implique donc le déboisement d'une superficie équivalente à l'emprise prévue, soit sur ± 13 000 m². La localisation du secteur boisé est illustrée sur le plan présenté à l'annexe E.

Paysage

Au niveau du paysage, aucun impact majeur n'est anticipé puisque l'axe sera aménagé au niveau du sol existant et qu'il n'est pas prévu d'y construire de viaduc ou d'échangeur.

Bruit

Puisque selon le scénario 2, l'axe René-Lévesque est adjacent à un secteur résidentiel et pour assurer la quiétude des résidents, des mesures d'atténuation du bruit, inhérent à la circulation véhiculaire, pourraient être envisagées selon les résultats d'une évaluation exhaustive des impacts sonores.

Divers

Les autres impacts concernant l'aspect environnemental n'ont pas pu être évalués dû à l'absence de données.

4.3 SYNTHÈSE DE L'ÉVALUATION DES IMPACTS

Le tableau 4.4 présente un récapitulatif de l'ensemble des impacts attendus avec la construction de l'axe René-Lévesque en fonction du scénario 1.

TABLEAU 4.4: ÉVALUATION COMPARATIVE DES SCENARIOS CONSIDERES

Impacts	Scénario 1	Scénario 2			
SOCIO-ÉCONOMIQUES					
Longueur de parcours pour les résidents des quartiers adjacents	Raccordé au quartier situé au quadrant nord-ouest de l'int. Bourque / du Haut-Bois	Raccordé au quartier Mi-Vallon			
Potentiel de développement	Faible	Moyen			
Expropriation	2 à 3 résidences unifamiliales, selon la variation possible de l'emprise	2 résidences unifamiliales et 2 immeubles à condos			
PHYSIQUES					
Roc	En surface	En surface			
Profil en long	Faible dénivelé	Faible dénivelé			
Structures et infrastructures à déplacer	Faible	Moyen			
Conflit avec l'emprise	Aucun	Terrasses Rock Forest Quai de livraison (variation possible de l'emprise)			
ENVIRONNEMENTAUX					
Déboisement	Majeur	Majeur			
Paysage	Mineur	Mineur			
Bruit	Mesures d'atténuation des impacts sonores à valider	Mesures d'atténuation des impacts sonores à valider			

5. ANALYSE DE LA CIRCULATION

L'analyse de la circulation est effectuée en fonction de la situation actuelle du tracé initialement étudié (scénario 1) et du nouveau tracé à considérer (scénario 2).

L'intersection de l'axe René-Lévesque et de la rue Henri-Labonne, laquelle est gérée au moyen d'un carrefour giratoire, n'est pas discutée dans la présente étude puisqu'elle a déjà fait l'objet d'une analyse complète dans le rapport précédent et que la variabilité des débits est négligeable entre les différents scénarios étudiés.

Selon les conclusions et les recommandations du rapport précédent, la géométrie proposée pour l'axe René-Lévesque est illustrée aux figures 5.1, 5.2 et 5.3, tirée du rapport de CIMA+ « Concept d'aménagement géométrique de l'axe René-Lévesque et du prolongement de l'axe de Portland, à Sherbrooke », daté du 2008-05-05.

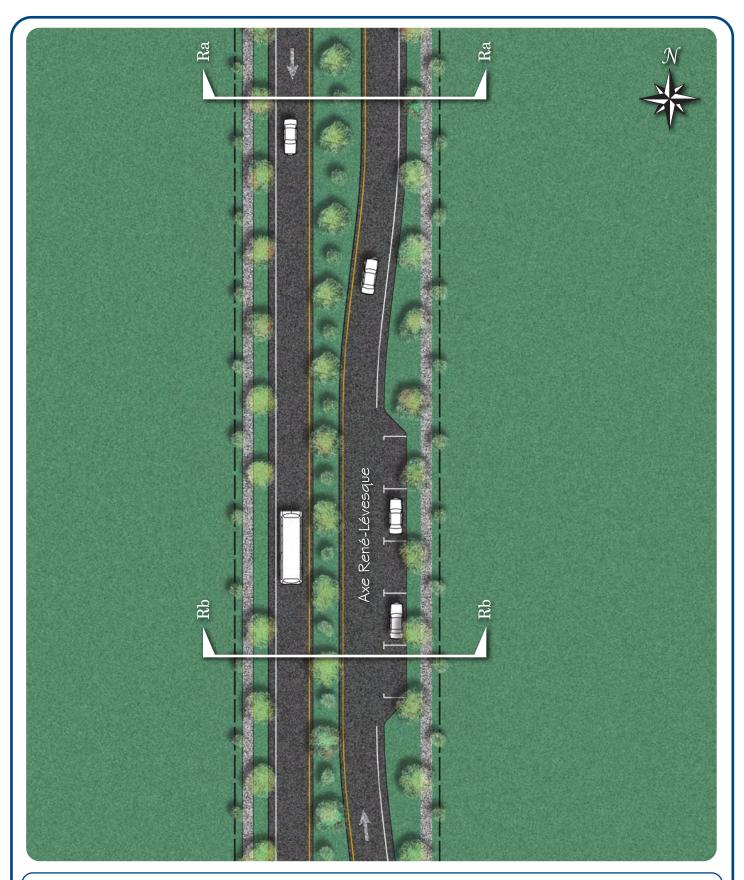
5.1 SCÉNARIO 1 – RACCORDEMENT RUE DU PRÉSIDENT-KENNEDY

La simulation des conditions de circulation à prévoir dans le secteur a permis d'établir le mode de gestion et la géométrie requise, tels que décrits dans le rapport précédent et présentés dans la section suivante.

5.1.1 Conditions de circulation anticipées – Heure de pointe du matin et du soir

En raison de la mise à jour des débits, les niveaux de services présentés initialement dans le rapport « Planification du boulevard René-Lévesque et du prolongement du boulevard de Portland, à Sherbrooke » ont été ajustés. Les ajustements apportés au réseau sont :

- Évaluation de la géométrie requise aux approches des intersections;
- Optimisation de la programmation des feux;
- Inclusion des temps de feux pour piétons.

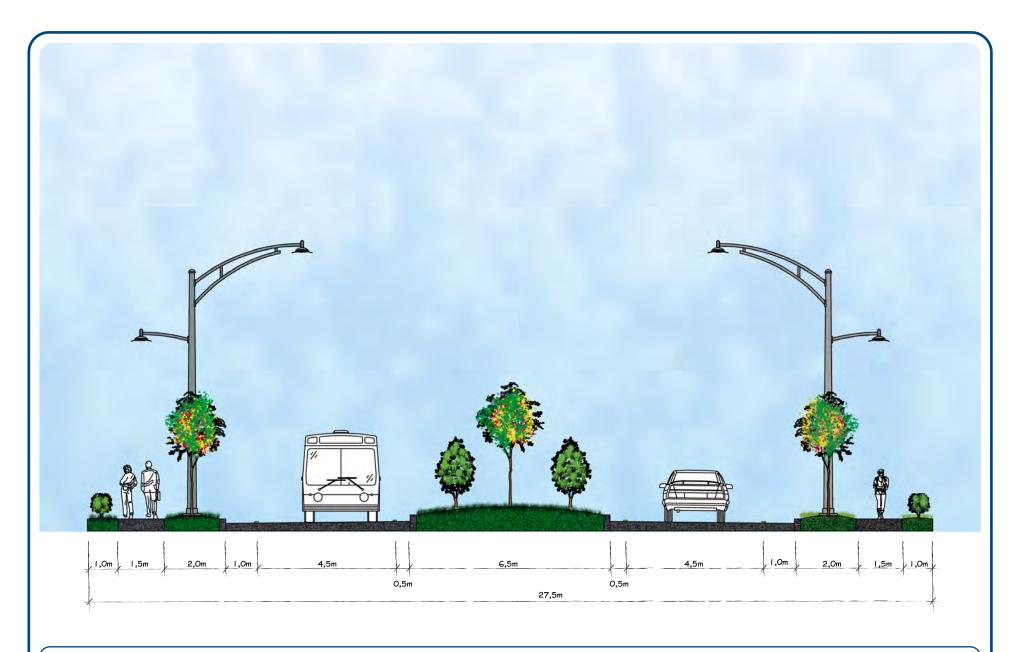

Les rapports sont présentés à l'annexe F alors que la figure 3.1 montre les conditions de circulation obtenues pour l'ensemble des intersections simulées, selon le tracé de l'axe René-Lévesque du scénario 1, pour les heures de pointe du matin et du soir.

Intersection Bourque et du Haut-Bois

Les approches de l'intersection du boulevard Bourque et de la rue du Haut-Bois présentent des conditions de circulation variant de bonnes à acceptables avec des niveaux de service B, C et D, pour l'heure de pointe du matin. Pour l'heure de pointe du soir, les conditions de circulation aux approches sont toutes acceptables, avec des niveaux de service C.

La présence d'un niveau de service E (inacceptable), pour le mouvement de virage à gauche depuis l'approche ouest, aux heures de pointe du matin et du soir, est due au délai d'attente de la phase (cycle de 110 secondes), alors qu'aucun refoulement à l'extérieur de la voie de virage n'est observé.

ÉTUDE DE FAISABILITÉ ET DE CIRCULATION AXE RENÉ-LÉVESQUE / LIEN HAUT-BOIS SHERBROOKE

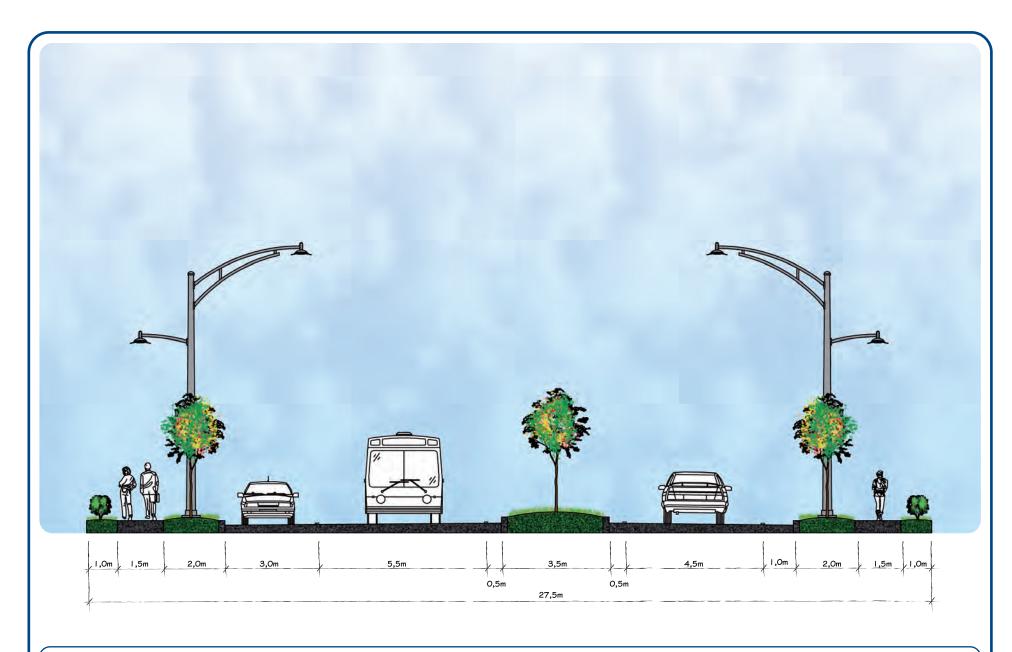

GÉOMÉTRIE DE L'AXE RENÉ-LÉVESQUE

Vue en plan

S04279B Mars 2010

Figure 5.1

ÉTUDE DE FAISABILITÉ ET DE CIRCULATION AXE RENÉ-LÉVESQUE / LIEN HAUT-BOIS SHERBROOKE


GÉOMÉTRIE DE L'AXE RENÉ-LÉVESQUE

Vue en coupe-type Coupe Ra-Ra

S04279B Mars 2010

Figure 5.2

ÉTUDE DE FAISABILITÉ ET DE CIRCULATION AXE RENÉ-LÉVESQUE / LIEN HAUT-BOIS SHERBROOKE

GÉOMÉTRIE DE L'AXE RENÉ-LÉVESQUE

Vue en coupe-type avec stationnement Coupe Rb-Rb

S04279B Mars 2010

Figure 5.3

Intersection Bourque et René-Lévesque

Selon les conditions de circulation simulées à l'aide des logiciels *Synchro 6* et *SimTraffic* pour le raccordement du scénario 1, les niveaux de service prévus aux approches de l'intersection du boulevard Bourque et de l'axe René-Lévesque varient de B à D le matin, soit bonnes à acceptables. Pour l'heure de pointe du soir, les conditions de circulation aux approches sont acceptables, avec des niveaux de service C et D.

La présence de niveaux de service E (inacceptable), pour les mouvements de virage à gauche depuis les approches ouest, nord et sud, aux heures de pointe du matin et du soir, est due au délai d'attente de la phase (cycle de 110 secondes), alors qu'aucun refoulement à l'extérieur de la voie de virage n'est observé pour ces mouvements.

Le matin, la présence d'un niveau de service (inacceptable), pour le mouvement toutdroit depuis l'approche sud, est due au délai d'attente de la phase (cycle de 110 secondes), alors que le refoulement observé au 95^e centile est d'une longueur de 68 m.

5.1.2 Mode de gestion aux intersections

Le mode de gestion des mouvements aux différents carrefours, compris dans le secteur étudié, relatif au tracé du scénario, est illustré à la figure 3.1 du présent rapport.

5.1.3 Géométrie – Scénario 1

Le rapport précédemment déposé avait également déterminé la géométrie requise au niveau de chacune des approches des différentes intersections du secteur étudié. La figure 5.4 illustre la géométrie effective de chacune des intersections simulées dans le cadre du présent mandat, en apportant certaines modifications à celles employées dans le rapport précédent, afin de refléter avec plus de justesse la situation actuelle.

5.1.4 Achalandage

L'axe René-Lévesque traverse un quartier résidentiel comprenant principalement des résidences de type unifamilial. Ce tracé de l'axe René-Lévesque modifie ainsi l'achalandage prévalant actuellement dans le quartier par une desserte supérieure à 1 650 véhicules, durant l'heure de pointe du soir. Cette situation constitue donc un impact défavorable pour les résidents de ce quartier résidentiel.

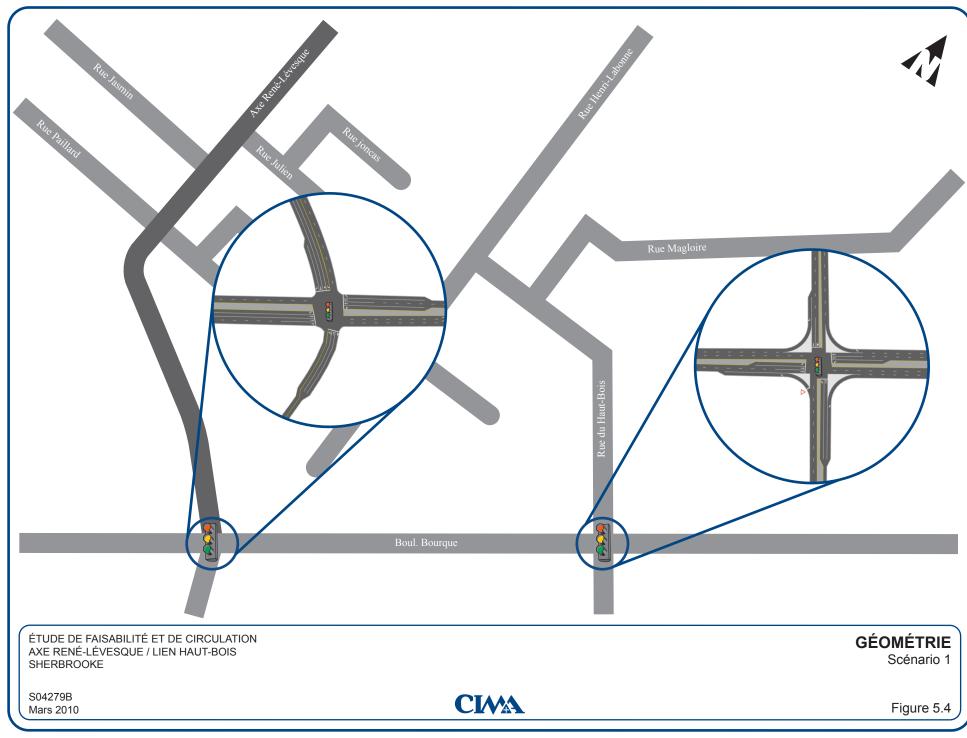
5.2 SCÉNARIO 2 – RACCORDEMENT RUE DU HAUT-BOIS

En fonction des développements envisagés et de l'achalandage anticipé, le réajustement de divers éléments doit être effectué, soit :

- Mode de gestion de l'intersection de l'axe René-Lévesque et de la rue Magloire;
- Évaluation de la géométrie requise aux approches des intersections existantes;
- · Optimisation de la programmation des feux;
- Inclusion des temps de feux pour piétons.

Les rapports sont présentés à l'annexe F alors que la figure 3.2 montre les conditions de circulation obtenues pour l'ensemble des intersections simulées, selon le tracé de l'axe René-Lévesque du scénario 1, pour les heures de pointe du matin et du soir.

5.2.1 Conditions de circulation anticipées – Heure de pointe du matin


En fonction de la géométrie des voies de circulation et des intersections actuelles, et en fonction de la géométrie prédéterminée pour les nouvelles intersections créées, les conditions de circulation ont été évaluées pour les heures de pointe du matin et du soir. Toutefois, des retards et des files d'attente ont été décelés.

Par conséquent, une optimisation de la géométrie, en plus de l'optimisation du phasage et du minutage des feux de circulation du secteur à l'étude, a été effectuée. La simulation des conditions de circulation a donc été effectuée en considérant l'optimisation de la géométrie et des feux.

Intersection Bourque et René-Lévesque

Selon les conditions de circulation simulées avec les logiciels *Synchro 6* et *SimTraffic*, les niveaux de service obtenus à l'intersection du boulevard Bourque et de l'axe René-Lévesque, à l'heure de pointe du matin, varient de C à D selon les approches, soit des conditions de circulation acceptables. Pour l'heure de pointe du soir, les niveaux de service obtenus varient de C à F selon les approches, soit des conditions de circulation variant d'acceptables à inacceptables.

Le matin, des niveaux de service E et F (inacceptables) sont obtenus aux approches ouest et nord pour les mouvements de virage à gauche. Toutefois, ces niveaux de service sont dus au délai d'attente de la phase (cycle de 120 secondes), alors qu'aucun refoulement à l'extérieur de la voie de virage n'est observé pour ces mouvements.

Le soir, des conditions de circulation inacceptables (E et F) sont obtenues au niveau des mouvements suivants :

- Virage à gauche depuis l'approche ouest;
- Virage à gauche depuis l'approche nord;
- Virage à gauche depuis l'approche est;
- Tout-droit depuis l'approche est.

Les conditions de circulation inacceptables associées au mouvement de virage à gauche depuis l'approche nord le soir sont dues au délai d'attente de la phase (cycle de 120 secondes), alors qu'aucun refoulement à l'extérieur de la voie de virage n'est observé.

Pour toutes les autres conditions de circulations inacceptables (E et F), un problème de capacité est relevé, alors que les rapports de volume sur la capacité (V/C) du virage à gauche depuis l'approche ouest d'une valeur de 1;01 sont opposés à un rapport de 0;90 pour le tout-droit depuis l'approche est. Des rapports aussi élevés ne peuvent coexister lorsqu'ils se rapportent à des mouvements opposés, comme dans le cas présent.

Conséquemment, les files d'attente à l'approche ouest débordent jusqu'à l'intersection du boulevard Bourque et de la rue du Président-Kennedy, créant ainsi des retards supplémentaires à cette intersection.

Afin de réduire ce problème de capacité, l'ajout d'une voie de virage à gauche en double à l'approche ouest de l'intersection est à considérer. Elle permettrait d'améliorer les niveaux de service simulés de manière à obtenir de meilleurs résultats.

Intersection Bourque et du Président-Kennedy

L'intersection du boulevard Bourque et de la rue du Président-Kennedy présente des conditions de circulation variant d'excellentes à acceptables pour des niveaux de service de A et D à l'heure de pointe du matin. Pour l'heure de pointe du soir, les niveaux de service obtenus sont B et F, soit des conditions de circulation variant de bonnes à inacceptables.

La présence de niveaux de service E et F (inacceptables), aux approches nord et ouest, est conséquente au refoulement observé de l'intersection de l'axe René-Lévesque et du boulevard Bourque qui provoque de l'interblocage des véhicules en direction est.

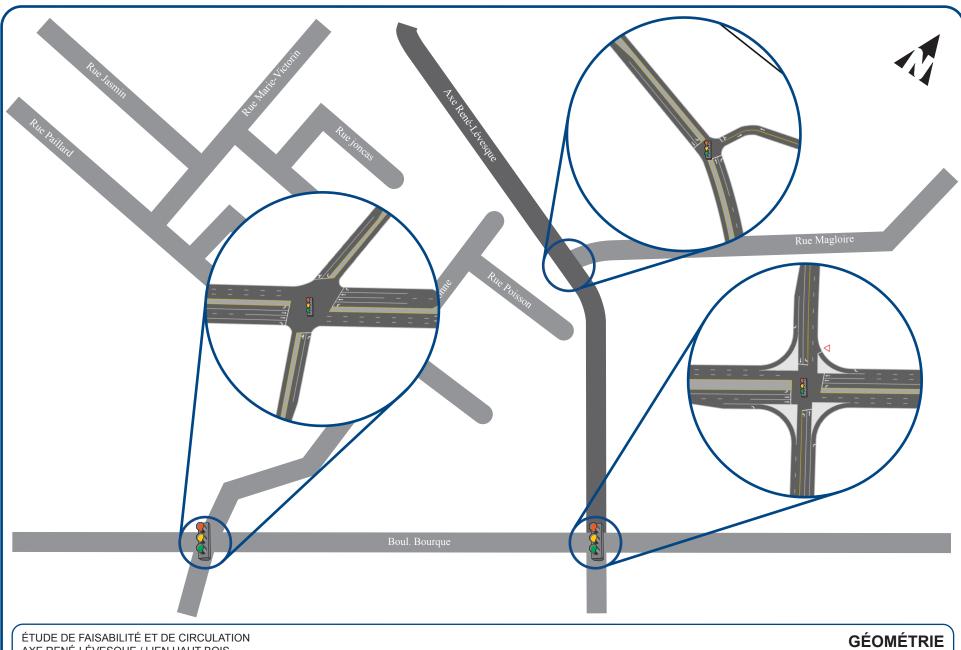
Intersection René-Lévesque et Magloire

Au niveau de la nouvelle intersection créée au croisement de l'axe René-Lévesque et de la rue Magloire, les simulations ont montré des niveaux de service A et C pour l'heure de pointe du matin et du soir (excellents à acceptables).

5.2.2 Mode de gestion aux intersections

La gestion des mouvements à la nouvelle intersection, créée par le croisement de l'axe René-Lévesque et de la rue Magloire, doit idéalement être effectuée au moyen de feux de circulation, telle que justifiée par le critère 3 prévu dans les normes de signalisation du MTQ (Tome V, Chapitre 8), pour la justification des feux de circulation, tant pour l'heure de pointe du matin que pour celle du soir.

Le mode de gestion des mouvements aux intersections existantes et des nouveaux carrefours créés est montré sur la figure 3.2 du présent document. L'annexe G présente les documents justificatifs des feux de circulation à l'intersection de l'axe René-Lévesque et de la rue Magloire.


5.2.3 Géométrie – Scénario 2

En concordance avec la géométrie proposée initialement, une seule voie de circulation par direction a été considérée sur l'ensemble de l'axe René-Lévesque, à l'exception de la direction nord du tronçon, compris entre le boulevard Bourque et la rue Magloire. Sur ce tronçon, la présence de deux voies de circulation est nécessaire, en raison de plus de débits anticipés dans ce premier tronçon de l'axe René-Lévesque de la voie de virage en double, située à l'approche ouest de l'intersection de l'axe René-Lévesque et du boulevard Bourque.

Les voies de virage à gauche ainsi que les aménagements géométriques (îlots de virage à droite) des intersections existantes ont aussi été conservés de façon préliminaire. Toutefois, une réévaluation de leur géométrie est effectuée.

En raison des débits présents aux heures de pointe étudiées et de la distribution de la circulation anticipée, l'intersection formée par le croisement de l'axe René-Lévesque et de la rue Magloire requiert des aménagements de virage à gauche et à droite. Ces voies de virage permettent d'améliorer la fluidité de la circulation présente sur chacune des approches et de sécuriser les mouvements effectifs.

Ainsi, selon les normes de conception du MTQ (Tome I, Chapitre 8) et à la suite d'une réévaluation des voies auxiliaires après la simulation des conditions de circulation, les voies auxiliaires requises sont présentées de façon conceptuelle à la figure 5.5. Les calculs de justification des voies de virage sont présentés à l'annexe H.

AXE RENÉ-LÉVESQUE / LIEN HAUT-BOIS SHERBROOKE

Scénario 2

S04279B Mars 2010 CIMA

Figure 5.5

5.2.4 Achalandage

Selon le scénario 2, l'axe René-Lévesque est localisé à la limite périphérique nord d'un quartier résidentiel composé principalement de résidences de type unifamilial. Ainsi, ce tracé de l'axe René-Lévesque n'influe pas directement sur l'achalandage effectif dans les quartiers résidentiels adjacents. L'achalandage actuel ne subit donc pas de modifications notables.

6. MESURES DE MITIGATION

Les conditions de circulation présentées dans la section précédente sont conséquentes à des mesures de mitigation apportées par rapport à la situation actuelle, et ce, pour chacun des deux scénarios considérés.

6.1 SCÉNARIO 1

Pour le scénario 1, une mise à jour des mesures de mitigation présentées dans le rapport déposé précédemment par CIMA+, en avril 2007 « Concept d'aménagement géométrique de l'axe René-Lévesque et du prolongement du boulevard de Portland, à Sherbrooke » est effectuée.

Selon les recommandations du précédent rapport et en considérant que la géométrie du boulevard Bourque doit être maintenue, les mesures de mitigations proposées pour le scénario 1 sont :

Intersection boulevard Bourque / axe René-Lévesque / du Président-Kennedy

- Approche ouest : allonger la voie de virage à gauche à 150 m;
- Approche nord : aménager une voie de virage à gauche en double (125 m);
- Approche nord : aménager une voie de virage à droite (50 m);
- Approche sud : aménager une voie partagée de tout-droit et de virage à droite (50 m);
- Approche sud : aménager une voie de virage à gauche (50 m);
- Optimisation des feux de circulation.

Intersection boulevard Bourque / rue du Haut-Bois

Optimisation des feux de circulation.

Axe René-Lévesque

• Entre Bourque et Paillard : deux voies de circulation en direction nord.

6.2 SCÉNARIO 2

Pour le scénario 2, considérant les contraintes d'emprises et maintenant la géométrie actuelle du boulevard Bourque, les mesures de mitigation suivantes sont recommandées :

Intersection boulevard Bourque / axe René-Lévesque

- Approche ouest : allonger la voie de virage à gauche à 250 m;
- Approche nord : aménager une voie de virage à gauche de 250 m;
- Approche est : allonger la voie de virage à gauche existante à 150 m;
- Approche est : aménager la voie de virage à droite sortant dans sa propre voie;
- Optimisation des feux de circulation.

Intersection axe René-Lévesque / rue Magloire

- Approche nord : aménager une voie de virage à gauche (50 m);
- Optimisation des feux de circulation.

Intersection boulevard Bourque / rue du Président-Kennedy

- Approche ouest : allonger la voie de virage à gauche à 150 m;
- Approche nord : aménager une voie de virage à gauche de 125 m;
- Approche est : allonger la voie de virage à gauche à 100 m;
- Approche sud : aménager une voie de virage à droite de 100 m;
- Optimisation des feux de circulation.

Axe René-Lévesque

• Entre Bourque et Magloire : aménager deux voies de circulation en direction nord.

Toutefois, tel que décrit dans l'analyse de la circulation du scénario 2, l'ajout d'une voie de virage à gauche en double à l'approche ouest de l'intersection du boulevard Bourque et de l'axe René-Lévesque permettrait d'obtenir de meilleures conditions de circulation et des files d'attente ne se prolongeant pas jusqu'à l'intersection du boulevard Bourque et de la rue du Président-Kennedy.

7. ESTIMATION SOMMAIRE

La présente estimation inclut l'aménagement des infrastructures en fonction de la géométrie actuelle du secteur et selon les deux scénarios étudiés.

L'estimation ne comprend cependant pas les coûts d'expropriation, l'arpentage, les honoraires professionnels, les frais relatifs aux demandes environnementales ainsi que les travaux de raccordement au profil existant. La relocalisation des dispositifs d'éclairage et électriques et les aménagements hydrauliques et hydrologiques hors de l'emprise n'ont également pas été considérés.

De plus, la quantité de roc et des autres types de sols à excaver, de même que le remblai, ont été estimés de façon très préliminaire, en fonction des données connues au moment de la rédaction de la présente étude. Des travaux de reconnaissance plus exhaustifs devront être réalisés afin de connaître avec plus d'exactitude les quantités réelles nécessaires à l'aménagement des différents scénarios.

Les travaux relatifs à l'aménagement de l'axe René-Lévesque, selon le scénario 1 d'une longueur de 965 m, soit du boulevard Bourque jusqu'à l'entrée au giratoire (intersection axe René-Lévesque et rue Henri-Labonne). Pour le scénario 2, les travaux d'aménagement de l'axe René-Lévesque, du boulevard Bourque jusqu'à l'entrée du giratoire (axe René-Lévesque et rue Henri-Labonne), sont d'une longueur de 835 m.

Selon les bases des estimations effectuées pour le tronçon étudié de l'axe René-Lévesque, les coûts de construction sommaires sont tous deux dans le même ordre de grandeur, soit environ de 5 000 000 \$ chacun. Les coûts engendrés par les travaux ne constituent donc pas un critère prépondérant dans le choix du scénario à retenir.

L'annexe I présente le bordereau d'estimation sommaire relatif à chacun des scénarios considérés dans cette étude.

8. ANALYSE COMPARATIVE

L'étude de faisabilité et de circulation a permis de consolider la justification de construire l'axe René-Lévesque, telle que présentée dans le cadre du précédent rapport déposé.

Les deux tracés étudiés (scénarios 1 et 2) pour la portion sud de l'axe René-Lévesque comportent des avantages et des inconvénients en commun ou qui leur sont propres.

La justification du lien a déjà été l'objet d'une argumentation ayant démontrée les impacts positifs associés à sa réalisation. L'analyse comparative présentée ici est donc effectuée uniquement selon les considérations globales relatives à différents critères regroupés au sein des quatre familles suivantes :

- Socio-économiques
- Physiques
- Environnementaux
- Circulation

Chacune des quatre familles comportent trois critères, ce qui leurs confèrent le même niveau d'importance et qui permet de départager équitablement les deux scénarios entre eux.

Le tableau 8.1 dresse un comparatif entre les scénarios étudiés.

Le scénario qui est avantagé par rapport à l'autre se voit attribuer la couleur vert, alors que le scénario étant désavantagé par rapport à l'autre se voit attribuer la couleur orange. Dans le cas où les deux scénarios sont équivalents, le jaune est employé.

TABLEAU 8.1: ÉVALUATION COMPARATIVE DES DIFFERENTS SCENARIOS CONSIDERES

Impacts	Scénario 1	Scénario 2			
SOCIO-ÉCONOMIQUES					
Raccordement	Raccordé au quartier situé au quadrant nord- ouest de l'int. Bourque / du Haut-Bois	Raccordé au quartier Mi- Vallon			
Potentiel de développement	Résidentiel	Résidentiel et commercial			
Expropriation	2 à 3 résidences unifamiliales, selon la variation possible de l'emprise	2 résidences unifamiliales et 2 immeubles à logements			
PHYSIQUES					
Roc	En surface	En surface			
Profil en long	Faible dénivelé	Faible dénivelé			
Conflit avec l'emprise	Aucun	Terrasses Rock Forest Quai de livraison (variation possible de l'emprise)			
ENVIRONNEMENTAUX					
Déboisement	Superficie: ± 13 000 m²	Superficie: ± 13 000 m²			
Paysage	Mineur	Mineur			
Bruit	Axe traversant un secteur résidentiel	Axe adjacent à un secteur résidentiel			
CIRCULATION					
Niveau de service par mouvement	Présences d'un niveau de service E	Présence de niveaux de service E et F			
File d'attente et refoulement	À l'intérieur des refuges	À l'extérieur des refuges			
Modification géométrique	Moyenne	Moyenne			

Le tableau 8.2 dresse un bilan comparatif permettant d'identifier le scénario avantagé pour chacune des familles, et ce, afin de statuer quant au scénario le plus avantageux pour l'axe René-Lévesque.

TABLEAU 8.2: BILAN COMPARATIF

Familles	Scénario 1	Scénario 2
SOCIO-ÉCONOMIQUES	Désavantagé Avantagé	
PHYSIQUES	Equivalent	Equivalent
ENVIRONNEMENTAUX	Désavantagé	Avantagé
CIRCULATION	Avantagé	Désavantagé
Global	Désavantagé	Avantagé

Les résultats obtenus suite à l'analyse comparative démontrent que le raccordement de la portion sud de l'axe René-Lévesque au boulevard Bourque selon le scénario 2 s'avère plus favorable, alors que deux familles de critères sont avantagées, comparativement à une seule pour le scénario 1.

Ainsi, malgré la présence de problématiques de circulation induite par les limitations au niveau des interventions possibles sur le boulevard Bourque, le scénario 2 est recommandé.

Cependant, compte tenu des conditions de circulation obtenues par simulation, un balancement des débits est à prévoir dans le secteur. Ainsi, la réaffectation de l'achalandage véhiculaire permettra d'atténuer les problématiques de circulation anticipées.

9. CONCLUSIONS ET RECOMMANDATIONS

L'étude a d'une part permis de cibler les impacts à prévoir (avantages et inconvénients) aux niveaux socio-économiques, physiques et environnementaux, alors qu'elle a également fourni les informations nécessaires permettant de prévoir les conditions de circulation associées à chacun des scénarios à l'étude, en plus de la caractérisation de l'achalandage dans les quartiers résidentiels.

Ainsi, selon les bases de l'analyse effectuées dans le présent rapport, le scénario 2 s'avère un alignement plus intéressant compte tenu de l'adéquation des avantages et des inconvénients attendus dans le secteur. Parmi les points forts du scénario 2, il faut entre autres noter :

- Raccordement direct avec la cellule résidentielle Mi-Vallon;
- Potentiel de développement commercial et résidentiel élevé;
- Minimisation des impacts sur la quiétude dans les secteurs résidentiels.

L'évaluation des intersections créées sur l'axe René-Lévesque, selon les normes de conception routière du MTQ, a permis d'établir un concept géométrique des différentes approches de ces intersections. Ainsi, en considérant la limitation des interventions possibles sur le boulevard Bourque, il est recommandé d'aménager les intersections prévues conformément au concept géométrique proposé à la figure 5.5.

ANNEXE A EXTRAIT DU RAPPORT PRÉCÉDENT DONNÉES SOCIO-DÉMOGRAPHIQUES

Extrait tiré du rapport « Planification du boulevard René-Lévesque et du prolongement du boulevard de Portland à Sherbrooke »

CIMA+, 2007-04-16

DONNÉES SOCIO-DÉMOGRAPHIQUES

En 2006, sur l'ensemble du territoire de la ville de Sherbrooke résidaient 147 601 personnes. Le tableau 2.1 présente l'évolution de la population par arrondissement de 1996 à 2006.

Tableau 2.1 : Évolution démographique des arrondissements de la Ville de Sherbrooke

Appounicement	POPULATION	POPULATION	POPULATION	VARIA	ATION
ARRONDISSEMENT	EN 1996	EN 2001	EN 2006	1996-	2006
de Brompton	5 583	5 771	5 972	+ 399	+ 7,1 %
de Fleurimont	39 482	41 289	41 014	+ 1 532	+ 3,8 %
de Lennoxville	4 036	4 947	5 047	+ 1 011	+ 25,0 %
du Mont-Bellevue	31 678	31 373	33 130	+ 1 452	+ 4,6 %
de Rock Forest – Saint- Élie – Deauville	25 351	29 500	30 854	+ 5 503	+ 21,7 %
de Jacques-Cartier	28 405	29 311	31 584	+ 3 179	+ 11,2 %
TOTAL	134 535	142 191	147 601	13 066	+9,7 %

Source : Gazette officielle du Québec, décembre 2006.

En termes d'évolution, l'arrondissement de Rock Forest – Saint-Élie – Deauville est celui connaissant la plus forte croissance de population, avec une augmentation de 5 503 habitants sur une période de 10 ans, représentant 42,1 % des nouveaux habitants de la ville de Sherbrooke (5 503/13 066). C'est donc dans cet arrondissement que se concentre l'augmentation de la population.

Le rapport Étude sectorielle sur la gestion de l'urbanisation¹ présente les perspectives démographiques 1991-2016 effectuées par l'Institut de la statistique du Québec (ISQ) pour l'ancienne MRC de la région sherbrookoise. Selon les projections établies et ajustées, la population de l'ancienne MRC de Sherbrooke, et donc de la Ville de Sherbrooke, devrait augmenter d'environ 2 % annuellement.

_

Cependant, les discussions avec les représentants de la Ville de Sherbrooke ont mené au choix d'un taux d'accroissement de 1,5 %/année pour cette étude. Ce taux sera appliqué aux déplacements sur le réseau routier.

ANNEXE B EXTRAIT DU RAPPORT PRÉCÉDENT HIÉRARCHIE DU RÉSEAU ROUTIER

Extrait tiré du rapport « Planification du boulevard René-Lévesque et du prolongement du boulevard de Portland à Sherbrooke » CIMA+, 2007-04-16

HIÉRARCHIE DU RÉSEAU ROUTIER À L'ÉTUDE

Cette section présente la hiérarchie du réseau routier qui dessert le secteur à l'étude. La hiérarchisation sera faite en fonction de son état actuel afin d'en prévoir l'évolution en fonction de la nouvelle demande.

La hiérarchie des éléments du réseau routier du secteur à l'étude

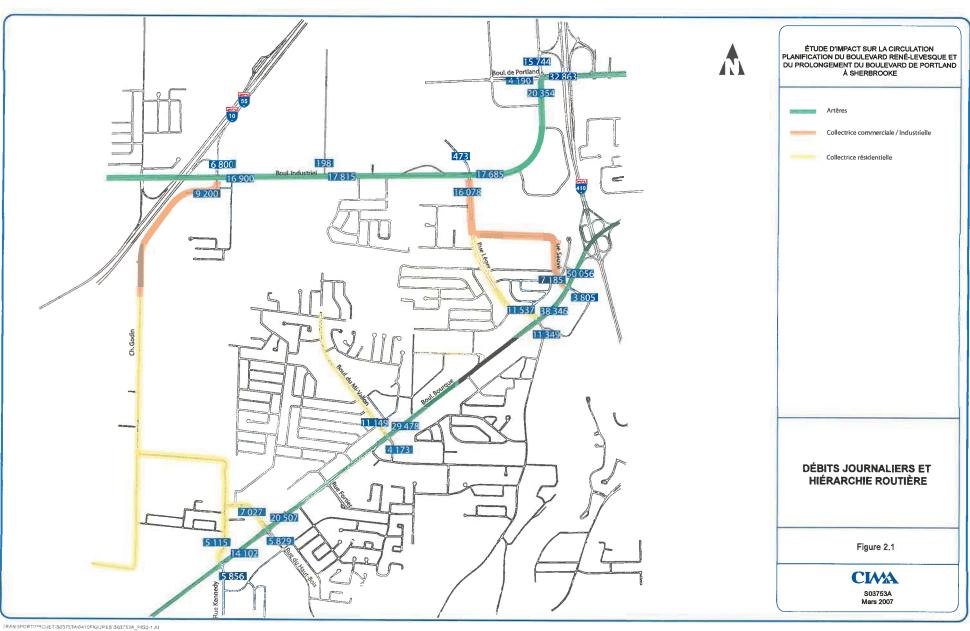
La norme canadienne présente différents critères de classification pour définir la hiérarchie des réseaux routiers. Les critères suggérés par la norme sont, entre autres, l'utilisation du sol, la fonction de la route, le débit et les types de raccordement.

Le tableau 2.2 résume les débits théoriques pour les classes de routes les plus pertinentes alors que l'annexe A présente les caractéristiques de classification hiérarchique contenues dans les normes canadiennes en vigueur.

Tableau 2.2 : Classification des éléments routiers selon la norme canadienne*

CLASSIFICATION	FONCTION	RACCORDEMENTS SOUHAITABLES	DÉBIT JOURNALIER (VÉH./JOUR)**
Artère principale	Mouvement de	Autoroute	
	circulation	Artère	10 000 - 30 000
		Collectrice	
Collectrice	50 % mouvement de	Artère	
	circulation et	Collectrice	Commerciale <12 000
	50 % accès à la propriété	Locale	Résidentielle < 8 000
Locale résidentielle	Accès à la propriété	Collectrice	< 1 000
		Locale	tolérance
			jusqu'à 3 000

Source: TAC, Geometric Design Guide for Canadian Roads, Table 1.3.4.2, September 1999


Une classification en fonction principalement du débit et de l'utilisation du sol a été faite pour les axes routiers étudiés. La figure 2.1 illustre les débits journaliers tirés des comptages reçus de la Ville de Sherbrooke. Le tableau 2.3 de la page suivante présente les éléments routiers hiérarchisés en fonction de leur débit journalier ainsi qu'un commentaire relié à l'utilisation du lien par rapport à sa classe.

^{**} Cette colonne présente un débit journalier typique souhaitable pour chaque classe et ne signifie pas que la capacité des voies de circulation est atteinte.

Tableau 2.3 : Classification des éléments routiers du secteur

Nom de l'axe	GEOMETRIE	DEBIT JOURNALIER (VEH. /JOUR)	CLASSE	COMMENTAIRES SUR LE DEBIT
Boulevard Bourque	2 voies/dir.	De 14 200 à 50 100	Artère	Supérieur à la classe
Boulevard Industriel	1 voie/dir.	De 16 900 à 20 400	Artère	Correspond à la classe
Boulevard du Mi- Vallon	1 voie/dir.	11 200	Collectrice résidentielle	Supérieur à la classe
Rue Léger (partie nord)	1 voie/dir.	16 100	Collectrice industrielle	Supérieur à la classe
Rue Léger (partie sud)	1 voie/dir.	11 500	Collectrice résidentielle	Supérieur à la classe
Rue Sauvé	1 voie/dir.	7 200	Collectrice industrielle	Correspond à la classe
Chemin Godin (partie nord)	1 voie/dir.	9 200	Collectrice commerciale	Correspond à la classe
Chemin Godin (partie sud)	1 voie/dir.	7 700	Collectrice commerciale	Correspond à la classe
Rue Poisson	1 voie/dir.	7 000	Collectrice résidentielle	Correspond à la classe
Rue Henri-Labonne	1 voie/dir.	5 100	Collectrice résidentielle	Correspond à la classe

Il est à noter qu'un débit supérieur à la classe ne signifie pas nécessairement que les conditions de circulation sont mauvaises sur l'axe en question. Il peut dénoter cependant que l'axe joue plus que son rôle dans l'organisation du réseau routier.

Organisation typique d'un réseau routier

Il est pertinent de rappeler certains principes généraux de développement du réseau routier énoncés dans le plan de transport, soit :

- L'espacement entre les points de raccordement des voies artérielles municipales transversales avec le réseau autoroutier devrait être de 0,8 à 1,5 km;
- Dans la grille municipale, les artères délimitant les zones résidentielles, commerciales ou industrielles devraient être espacées d'un kilomètre. Ces zones ne sont pas des enclaves, car elles sont raccordées au réseau supérieur;
- Les principaux axes doivent supporter un volume important de transit, mais le nombre de collectrices doit permettre la dispersion et doit atténuer les effets sur les quartiers.

Organisation actuelle du réseau routier

Dans l'axe est-ouest, les boulevards Bourque et Industriel drainent les déplacements vers le centre-ville et vers l'autoroute 410. Ils alimentent aussi l'autoroute 10 et la zone industrielle.

Dans l'axe nord-sud, le seul lien continu entre les boulevards Bourque et Industriel est la collectrice Léger, ce qui est insuffisant. Le boulevard du Mi-Vallon joue un rôle de desserte d'un quartier assez vaste, mais rabat inévitablement l'ensemble du trafic sur le boulevard Bourque. Le chemin Godin, à l'ouest, constitue un axe nord-sud, mais il n'est pas continu, car les automobilistes doivent emprunter la rue Henri-Labonne pour y accéder. Le chemin Godin est assez fréquenté par des camions et supporte en plus un trafic de transit qui désire atteindre l'autoroute 10 ou le boulevard Industriel.

ANNEXE C

EXTRAIT DU RAPPORT PRÉCÉDENT

GÉNÉRATION, DISTRIBUTION ET AFFECTATION DES DÉPLACEMENTS SCÉNARIO 1 Extrait tiré du rapport « Planification du boulevard René-Lévesque et du prolongement du boulevard de Portland à Sherbrooke »

CIMA+, 2007-04-16

GÉNÉRATION DES DÉPLACEMENTS

La génération des déplacements est effectuée sur la base des références et méthodes reconnues de génération. Elle s'appuie également sur les informations recueillies et validées auprès de la Ville de Sherbrooke.

Phase 1

Le plan du développement de la phase 1 fourni par la Ville de Sherbrooke est présenté à l'annexe B. Il montre un développement résidentiel de faible à moyenne densité bordant le nouveau boulevard René-Lévesque. Avec les superficies calculées par CIMA+ et les densités établies de concert avec les représentants de la Ville de Sherbrooke (variant de 18 à 40 logements/ha), le potentiel de nouveaux logements a été estimé à environ 2 500.

Aux extrémités du nouveau lien se trouvent des superficies commerciales ayant façade sur les boulevards Industriel et Bourque. Suite à des discussions avec la Ville, seule la superficie commerciale donnant sur le boulevard Bourque a été considérée dans l'étude, en raison de son plus grand potentiel d'attraction de déplacements.

Phase 2

La phase 2 concerne essentiellement le développement d'une bande de terrain industriel (200 m) de part et d'autre du prolongement du boulevard de Portland. Une superficie de 63 hectares de terrain a donc été considérée.

Le tableau suivant présente la génération des débits véhiculaires pour les deux phases de développement prévues alors que l'annexe C donne plus de détails.

Tableau 3.1: Génération des déplacements

		Débit à l'heure de pointe du matin (véh./h)		Débit à l'heure de pointe du soir (véh./h)		
Usage du sol	Unités	Entrée	Sortie	Entrée	Sortie	
Phase 1						
Résidentiel	2 500 logements	413	1 237	1 341	788	
Commercial	100 000 pi ² de plancher	191	134	320	307	
Total		604	1 371	1 661	1 095	
Phase 2	Phase 2					
Industriel	63 ha de terrain	774	159	198	704	
Total Phases 1 et 2		1 378	1 530	1 859	1 799	

L'affectation des déplacements résidentiels a été réalisée sur la base des destinations énoncées au tableau 2.5, du moins pour les nouveaux résidents de la portion sud du boulevard René-Lévesque. En effet, pour les nouveaux résidents de la partie nord, les pourcentages d'utilisation des axes Bourque (58 %) et Industriel (13 %) à destination du centre-ville ont été inversés pour refléter le fait que les résidents de la partie nord sont beaucoup plus près du boulevard Industriel (58 %) que du boulevard René-Lévesque (13 %).

Les déplacements commerciaux ont été affectés à 70 % sur le boulevard Bourque et à 30 % en provenance du boulevard Industriel via le boulevard René-Lévesque.

Les déplacements générés par le développement industriel bordant le prolongement du boulevard de Portland (phase 2) ont été affectés à 45 % par la porte d'entrée ouest (soit l'intersection Industriel/René-Lévesque/de Portland) et à 55 % par la porte d'entrée est (soit l'intersection de Portland/Industriel). La provenance la plus importante est le boulevard de Portland venant de l'est (40 %).

Distribution des déplacements

Selon le découpage de l'enquête origine-destination 2003, la zone à l'étude fait partie du secteur municipal 14, situé dans l'arrondissement de Rock Forest – Saint-Élie – Deauville. L'analyse des données de l'enquête origine-destination 2003 montre que les demandes de déplacements pour ce territoire sont presqu'exclusivement destinées vers les grands secteurs² E, D, B, F et J; ce, pour tous les motifs. Le mode de transport prédominant est l'automobile, donc tous les calculs se basent uniquement sur les déplacements effectués par les usagers de la voiture. De même, en pointe du matin, les motifs « Études », « Travail » et « Autres » représentent 97 % des déplacements. La démarche d'affectation et d'assignation va se reposer uniquement sur ces motifs.

Afin de répartir les déplacements déclarés à l'enquête origine-destination par les résidents du secteur municipal 14, les destinations sont regroupées en fonction des axes routiers empruntés. Seuls les déplacements à l'intérieur du territoire de la RMR de Sherbrooke font l'objet de cette classification. Le tableau suivant expose la répartition des destinations des déplacements générés par le secteur d'étude durant la pointe du matin.

Tableau 2.4 : Destinations des déplacements du secteur d'étude – Heure de pointe du matin

_	DESTINATION (A PARTIR DU COEUR DEVELOPPEMENT)		
Vers le nord pour rejoindre le boulevard Industriel et les trois destinations suivantes :	Boulevard Industriel vers l'est (centre-ville)	13 %	
	Boulevard Industriel vers l'ouest (Saint-Élie)	3 %	
	A-10/55	8 %	
Vers le sud pour	Boulevard Bourque vers l'est (centre-ville)	58 %	
rejoindre le boulevard Bourque et les trois	Boulevard Bourque vers l'ouest (Magog, etc.)	9 %	
destinations suivantes :	Au sud du boulevard Bourque	9 %	

² Arr. de Brompton (A), Arr. de Fleurimont (B), Arr. de Lennoxville (C), Arr. du Mont-Bellevue (D), Arr. de Rock Forest-Saint-Élie-Deauville (E), Arr. de Jacques-Cartier (F), Portion de la MRC du Haut-Saint-François (G), Portion de la MRC du Val-Saint-François (H), Portion de la MRC de Coaticook (I), Portion de la MRC de Memphrémagog (J), Hors territoire (K).

Projet		366 - 5. 120V \$ 565V \$	Préparé par	ARCIN	Dossier 504279 B
Objet	AM	VINI	Vérifié par	- Solla	~1: · 30/10/09
		3c. 1	Date	28 actobre'ng	Page Z de 3
Acie	A CUX	commerces sur P	Dourque		
	11 4	2 S			
	a v v	For Pa	illand		
	10 _ 1	470			
	7	12 400 55			
	*				
				\	
				. \	4
		E		K	Ė,
	1	6.			the transfer of the second sec
		sayer Lavanan			
		The state of the s			
		f			
		\.		,	54 46 2 626
				·	1 1 1 1 90 L
					A LANGE
					47 45 (1) 78
			,60	Burge	29
			9 150 344 55		
		11.L	14/		
8	. 0	10 Jul	1795	^	
	11 1	25%	0 7 7 7		
		188 LY	3		
			\		
			\		
			4		

CIMA

Projel		- 1 ·	* Préparé par	alc	Dossier	504279B	
Objet	PM	pre l'initia	Vérifié par	Hi (m-1:	30/10/0		
		Sc. 1	Date	28 ertobre 109		2_ de 3	
Acces		mences sur Bo	urque				
	4 4 4	2 2 4 197	Pailland				
	57	\$ 118 105 \$ 118 105					
				\	Kart Bois		
	,	- Luzosuz			20.3		
					1 2 12 LA	7 7 ⁴⁵	/
			\ at	Danie	12 4	T TO ST	
	427		251 A 386 173		qu	4	
	man of	, 277 ·	170 A 7 191	10			
			m A				
/							

ANNEXE D

GÉNÉRATION, DISTRIBUTION ET AFFECTATION DES DÉPLACEMENTS SCÉNARIO 2

Dossler:

Calcul

Date:

25-mars-08

Prolet:

M00944A_EC Prolongement du boulevard René-Lévesque

Total des déplacements	Bruts	Entrée	Sortle
Nouveaux déplacements :	38	22	16
Pass-by:	44	25	19
Diverted Link Trips:	0	0	0

Code:	880			
Référence :	Trip Generation	Handbook		a= ac 1
Land Use :	Pharmacy/Drug	store without drive thro	ugh window	Company (Company)
Commerce :	Pharmaprix			
Période :	Pointe du matin	te . * y merte teenropro get	the second of the same about the second	
Quantité	Unités	Taux de génération	Pourcentage entrée	Pourcentage sortie
16 493	pi.ca	0.0032	59%	41%
Déplacements	Proportion	Bruts	Entrée	Sortie
Génération	100%	53	31	22
Èchanga	20%	11	6	5
TC	0%	0	0	0
Pass-By	53%	22	13	9
Diverted Link Trips	0%	0	0	0
Net	27%	20	12	8

Code:	912			
Référence :	Trip Generation	Handbook		•
Land Use :	Drive-In-bank		y y	
Commerce :	Banque		And the second s	
Période :	Pointe du matin			
Quantité	Unités	Taux de génération	Pourcentage entrée	Pourcentage sortie
4 020	pl.ca	0.01234	56%	44%
Déplacements	Proportion	Bruts	Entrée	Sortle
Génération	100%	50	28	22
Échange	20%	10	8	4
тс	0%	0	0	0
Pass-By	54%	22	12	10
Diverted Link Trips	0%	0	0	0
Net	26%	18	10	8

Dossier:

Calcul

Date :

25-mars-08

Prolet:

Net

26%

M00944A_EC Profongament du boulevard René-Lévesque

Total des déplacements	Bruts	Entrée	Sortie
Nouveaux déplacements :	120	59	61
Pass-by:	138	70	68
Diverted Link Trips :	0	0	0

Code: 880 Référence : Trip Generation Handbook Pharmacy/Drugstore without drive through window Land Use : Commerce: Pharmaprix Pointe de l'après-midi Période : Unités Taux de génération Pourcentage entrée Pourcentage sortie Quantité 16 493 0.00842 pi.ca 50% 50% Déplacements Proportion **Bruts** Entrée Sortle 139 70 69 100% Génération Échange 20% 28 14 14 TC 0 0 0 0% Pass-By 53% 59 30 29 Diverted Link Trips 0% 0 0 0 Net 27% 52 26 26

912 Code: Trip Generation Handbook Référence : Drive-In-bank Land Use: Commerce: Banque Pointe de l'après-midi Période : Quantité Unités Taux de génération Pourcentage entrée Pourcentage sortie 4 020 pł.ca 0.04574 50% 50% **Déplacements** Proportion Bruts Entrée Sortie 184 92 92 Génération 100% 37 19 Échange 20% 18 TC 0% 0 0 0 54% 79 40 39 Pass-By Diverted Link Trips 0% 0 0 0

68

33

35

Projet Axe Revé - Lévesque Préparé par MC Dossier 504279 B

Objet Sc. 2 AM Vérifié par

Accès aux commerces -> Heuri-La bonneDate 2010-01-18 Page 6 de 7

Int. Président-Kennedy / Bourque

Nord
$$4^{1}$$
 32 + 139 · $\left(\frac{182}{182 + 154 + 118}\right) = 32 + 56 = 88$

$$\frac{1}{4}$$
 27 + 139 * $\left(\frac{154}{102 + 154 + 118}\right)$ = 27 + 47 = 74

$$L_{\Delta}$$
 20 + 39 + 139 = $\left(\frac{118}{182 + 154 + 118}\right) = 20 + 39 + 36 = 95$

Est
$$f = 5 + 49 + 187 = (\frac{94}{145 + 196 + 94}) = 5 + 49 + 36 = 90$$

$$7 \qquad 11 + 187 * \left(\frac{196}{195 + 196 + 94}\right) = 11 + 76 = 87$$

Projet Axe Revé - Lévesque Préparé par Dossier 504279 B

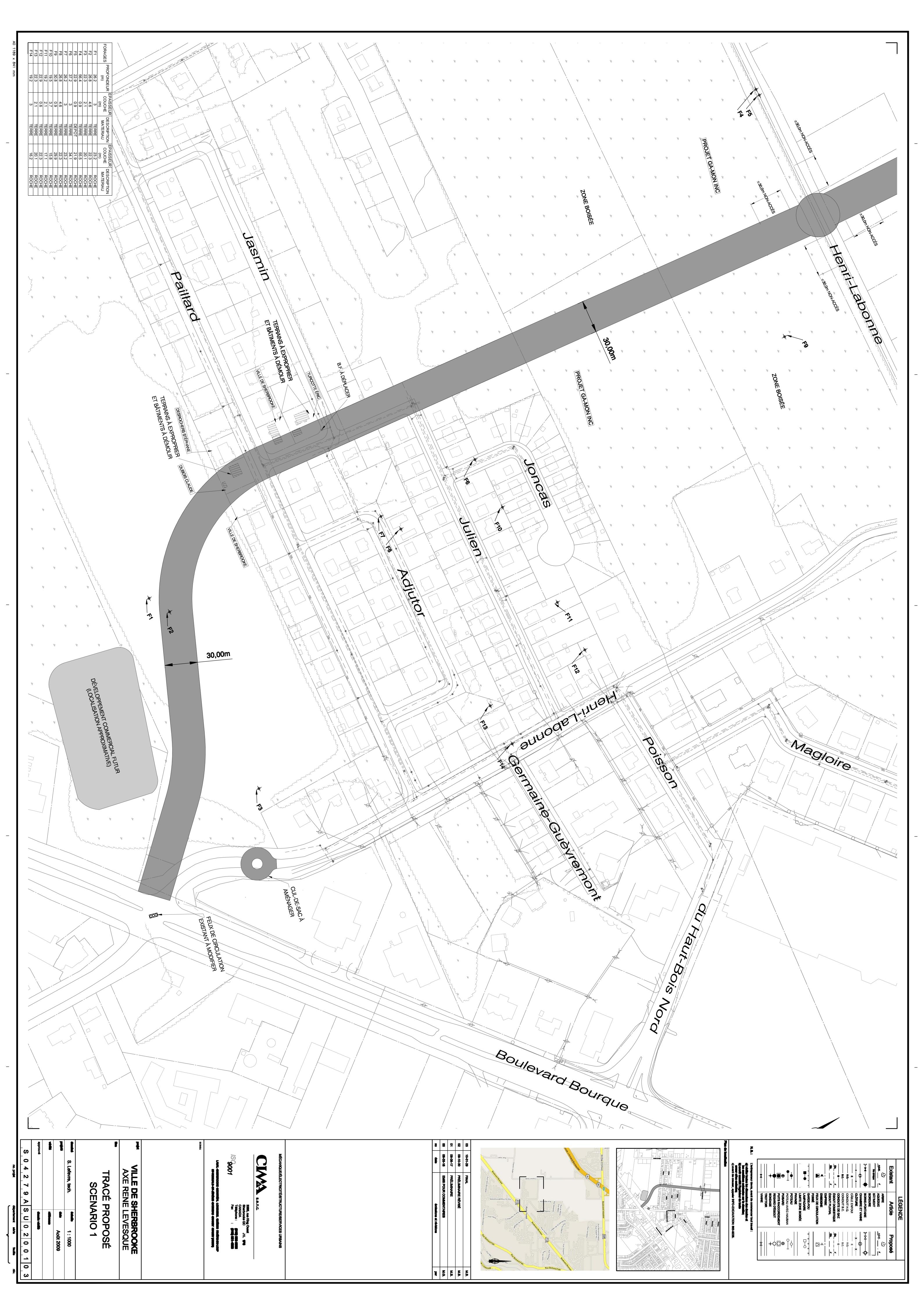
Objet Sc. 2 PM Vérifié par

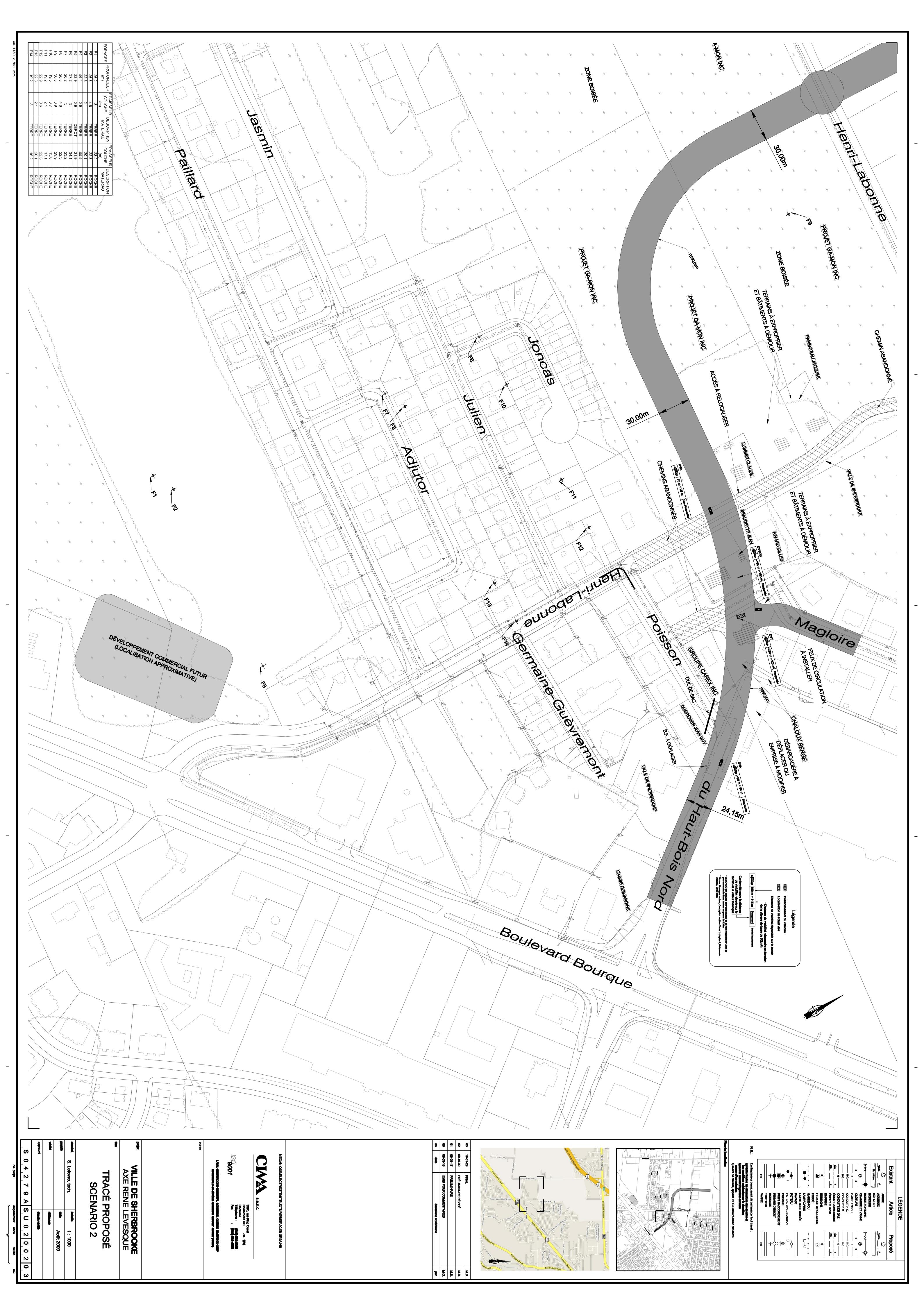
Accès aux commerces - Heuri - Date 2008-01-18 Page 6 de 7

Int. Président-Kennedy / Bourque

Nord 4 19 + 317 ×
$$\left(\frac{232}{232+213+119}\right) = 19+118 = 137$$

$$L_{0} = 15 + 79 + 317 \left(\frac{179}{232 + 213 + 179} \right) = 15 + 79 + 91 = 185$$


Est
$$21 + 90 + 531 = (\frac{181}{181 + 244 + 335})^{2} = 21 + 90 + 79 = 190$$


$$\frac{1}{1}$$
 $\frac{29}{10} + \frac{331}{101 + 244 + 335} = 29 + 106 = 135$

in:
$$4 96 + 47331 = 427$$
 $96 = (25 + 378) = 64 donc, 904]$

out:
$$42$$
 + 317 = 409 $92 * $(\frac{71}{71 + 450}) = 13$ $\frac{4}{2} \dots \text{donc.} 797$

ANNEXE E PLAN DES SCÉNARIOS

ANNEXE F RAPPORTS DE SIMULATIONS

2: Boul. Bourque & Axe René-Lévesque Performance by approach

Approach	EB	WB	NB	SB	All
Total Delay (hr)	6.9	3.2	5.9	14.5	30.5
Delay / Veh (s)	37.6	16.1	51.7	54.9	40.1
Stop Delay (hr)	5.3	2.4	5.1	12.3	25.0
St Del/Veh (s)	28.9	12.0	44.2	46.5	32.9
Total Stops	454	353	366	866	2039
Stop/Veh	0.69	0.49	0.89	0.91	0.74
Vehicles Entered	656	722	408	944	2730
Vehicles Exited	661	714	413	956	2744
Hourly Exit Rate	661	714	413	956	2744
Denied Entry Before	0	0	0	0	0
Denied Entry After	0	0	0	0	0

13: Boul. Bourque & Haut-Bois Performance by approach

Approach	EB	WB	NB	SB	All
Total Delay (hr)	6.5	4.1	2.4	2.1	15.0
Delay / Veh (s)	19.3	19.2	30.2	38.7	22.1
Stop Delay (hr)	4.8	2.4	2.1	1.9	11.2
St Del/Veh (s)	14.3	11.4	26.8	35.7	16.5
Total Stops	542	319	162	151	1174
Stop/Veh	0.45	0.42	0.58	0.79	0.48
Vehicles Entered	1197	764	282	190	2433
Vehicles Exited	1208	764	281	191	2444
Hourly Exit Rate	1208	764	281	191	2444
Denied Entry Before	0	0	0	0	0
Denied Entry After	0	0	0	0	0

20: Henri-Labonne & Axe René-Lévesque Performance by approach

Approach	EB	WB	NB	SB	All
Total Delay (hr)	0.4	0.3	1.1	1.2	3.0
Delay / Veh (s)	5.5	4.6	9.5	10.4	8.1
Stop Delay (hr)	0.1	0.1	0.0	0.1	0.4
St Del/Veh (s)	1.6	1.2	0.3	1.2	1.0
Total Stops	86	67	37	99	289
Stop/Veh	0.32	0.28	0.09	0.24	0.21
Vehicles Entered	270	242	420	411	1343
Vehicles Exited	270	241	425	410	1346
Hourly Exit Rate	270	241	425	410	1346
Denied Entry Before	0	0	0	0	0
Denied Entry After	0	0	0	0	0

25: Paillard & Axe René-Lévesque Performance by approach

Approach	EB	WB	NB	SB	All
Total Delay (hr)	0.5	1.2	1.6	3.2	6.4
Delay / Veh (s)	13.9	22.6	8.2	15.9	13.4
Stop Delay (hr)	0.4	1.0	0.6	1.3	3.3
St Del/Veh (s)	12.2	18.7	3.2	6.4	6.8
Total Stops	91	152	193	352	788
Stop/Veh	0.77	0.81	0.28	0.48	0.46
Vehicles Entered	117	188	694	732	1731
Vehicles Exited	118	188	690	731	1727
Hourly Exit Rate	118	188	690	731	1727
Denied Entry Before	0	0	0	0	0
Denied Entry After	0	0	0	0	0

Total Network Performance

Total Delay (hr)	62.9	
Delay / Veh (s)	59.4	
Stop Delay (hr)	40.0	
St Del/Veh (s)	37.8	
Total Stops	4301	
Stop/Veh	1.13	
Vehicles Entered	3807	
Vehicles Exited	3816	
Hourly Exit Rate	3816	
Denied Entry Before	0	
Denied Entry After	0	

2: Boul. Bourque & Axe René-Lévesque Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	3.5	3.4	0.0	0.6	2.2	0.4	0.8	4.2	0.9	9.8	3.6	1.1
Delay / Veh (s)	57.9	28.3	6.0	41.8	17.4	6.7	64.7	56.4	32.2	74.6	52.5	17.5
Stop Delay (hr)	2.9	2.4	0.0	0.6	1.6	0.2	0.7	3.6	0.7	8.6	2.9	0.7
St Del/Veh (s)	48.5	19.8	4.6	37.7	12.5	4.1	59.1	48.0	26.8	65.9	43.2	10.8
Total Stops	203	244	7	48	207	98	41	237	88	502	203	161
Stop/Veh	0.94	0.57	0.58	0.87	0.46	0.47	0.91	0.88	0.90	1.06	0.83	0.68
Vehicles Entered	214	430	12	57	457	208	44	266	98	467	243	234
Vehicles Exited	218	431	12	55	452	207	45	269	99	475	245	236
Hourly Exit Rate	218	431	12	55	452	207	45	269	99	475	245	236
Denied Entry Before	0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

2: Boul. Bourque & Axe René-Lévesque Performance by movement

Movement	All
Total Delay (hr)	30.5
Delay / Veh (s)	40.1
Stop Delay (hr)	25.0
St Del/Veh (s)	32.9
Total Stops	2039
Stop/Veh	0.74
Vehicles Entered	2730
Vehicles Exited	2744
Hourly Exit Rate	2744
Denied Entry Before	0
Denied Entry After	0

13: Boul. Bourque & Haut-Bois Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	0.8	5.6	0.0	1.2	2.9	0.0	0.8	1.5	0.1	1.6	0.5	0.0
Delay / Veh (s)	57.2	18.0	2.7	52.0	16.3	2.8	44.2	37.5	5.6	47.3	34.0	5.1
Stop Delay (hr)	0.8	4.0	0.0	1.0	1.4	0.0	0.7	1.3	0.1	1.5	0.4	0.0
St Del/Veh (s)	53.1	12.8	0.5	43.0	8.2	0.1	41.1	32.8	4.2	44.0	30.7	4.1
Total Stops	53	489	0	74	245	0	53	109	0	115	36	0
Stop/Veh	1.00	0.44	0.00	0.91	0.38	0.00	0.84	0.77	0.00	0.97	0.73	0.00
Vehicles Entered	53	1116	28	82	636	46	64	141	77	119	49	22
Vehicles Exited	54	1126	28	81	638	45	63	141	77	120	49	22
Hourly Exit Rate	54	1126	28	81	638	45	63	141	77	120	49	22
Denied Entry Before	0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

13: Boul. Bourque & Haut-Bois Performance by movement

Movement	All
Total Delay (hr)	15.0
Delay / Veh (s)	22.1
Stop Delay (hr)	11.2
St Del/Veh (s)	16.5
Total Stops	1174
Stop/Veh	0.48
Vehicles Entered	2433
Vehicles Exited	2444
Hourly Exit Rate	2444
Denied Entry Before	0
Denied Entry After	0

20: Henri-Labonne & Axe René-Lévesque Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	0.0	0.1	0.3	0.2	0.0	0.1	0.3	0.7	0.1	0.1	1.1	0.0
Delay / Veh (s)	4.8	6.5	5.4	4.6	5.3	4.4	9.0	9.7	9.7	9.4	10.4	10.3
Stop Delay (hr)	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
St Del/Veh (s)	1.3	1.6	1.7	1.2	1.2	1.0	0.3	0.3	0.3	1.2	1.2	1.1
Total Stops	7	11	68	47	5	15	14	20	3	7	90	2
Stop/Veh	0.28	0.30	0.33	0.31	0.36	0.20	0.11	0.08	0.07	0.24	0.24	0.25
Vehicles Entered	25	37	208	151	14	77	126	252	42	29	373	9
Vehicles Exited	25	37	208	151	14	76	128	254	43	29	373	8
Hourly Exit Rate	25	37	208	151	14	76	128	254	43	29	373	8
Denied Entry Before	0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

20: Henri-Labonne & Axe René-Lévesque Performance by movement

Movement	All
Total Delay (hr)	3.0
Delay / Veh (s)	8.1
Stop Delay (hr)	0.4
St Del/Veh (s)	1.0
Total Stops	289
Stop/Veh	0.21
Vehicles Entered	1343
Vehicles Exited	1346
Hourly Exit Rate	1346
Denied Entry Before	0
Denied Entry After	0

25: Paillard & Axe René-Lévesque Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	0.1	0.1	0.2	0.5	0.7	0.0	0.2	1.2	0.1	0.0	3.2	0.0
Delay / Veh (s)	22.2	18.9	11.2	25.4	21.7	11.3	13.2	7.6	8.2	12.1	15.9	14.5
Stop Delay (hr)	0.1	0.1	0.2	0.4	0.6	0.0	0.2	0.4	0.0	0.0	1.3	0.0
St Del/Veh (s)	19.6	15.4	10.1	22.1	17.4	8.9	9.1	2.5	2.9	6.2	6.4	6.2
Total Stops	13	16	62	57	90	5	48	125	20	1	347	4
Stop/Veh	0.87	0.73	0.78	0.88	0.78	0.71	0.74	0.22	0.35	1.00	0.48	0.50
Vehicles Entered	15	22	80	65	116	7	65	572	57	1	723	8
Vehicles Exited	16	22	80	65	116	7	64	569	57	1	722	8
Hourly Exit Rate	16	22	80	65	116	7	64	569	57	1	722	8
Denied Entry Before	0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

25: Paillard & Axe René-Lévesque Performance by movement

Movement	All
Total Delay (hr)	6.4
Delay / Veh (s)	13.4
Stop Delay (hr)	3.3
St Del/Veh (s)	6.8
Total Stops	788
Stop/Veh	0.46
Vehicles Entered	1731
Vehicles Exited	1727
Hourly Exit Rate	1727
Denied Entry Before	0
Denied Entry After	0

Total Network Performance

Total Delay (hr)	62.9
Delay / Veh (s)	59.4
Stop Delay (hr)	40.0
St Del/Veh (s)	37.8
Total Stops	4301
Stop/Veh	1.13
Vehicles Entered	3807
Vehicles Exited	3816
Hourly Exit Rate	3816
Denied Entry Before	0
Denied Entry After	0

Intersection: 2: Boul. Bourque & Axe René-Lévesque

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	Т	TR	L
Maximum Queue (m)	99.8	48.6	46.1	6.1	34.9	49.7	49.2	41.6	26.4	88.1	64.6	122.1
Average Queue (m)	45.6	27.8	23.3	0.9	12.7	23.7	21.8	14.3	10.9	35.2	31.8	55.5
95th Queue (m)	81.4	46.5	42.2	4.0	26.7	43.3	40.7	31.9	23.5	68.5	57.2	110.2
Link Distance (m)		1204.6	1204.6			251.9	251.9			708.9		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (m)	200.0			80.0	80.0			80.0	65.0		65.0	200.0
Storage Blk Time (%)										2	1	
Queuing Penalty (veh)										5	2	

Intersection: 2: Boul. Bourque & Axe René-Lévesque

Movement	SB	SB	SB
Directions Served	L	T	R
Maximum Queue (m)	171.3	229.0	57.8
Average Queue (m)	62.7	60.4	21.7
95th Queue (m)	125.4	159.9	50.1
Link Distance (m)		410.1	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)	200.0		50.0
Storage Blk Time (%)		10	0
Queuing Penalty (veh)		73	1

Intersection: 13: Boul. Bourque & Haut-Bois

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	L	Т	Т	L	Т	LT	Т	
Maximum Queue (m)	55.8	104.2	98.9	42.1	52.7	52.2	32.9	58.4	51.4	27.7	
Average Queue (m)	14.8	57.4	55.6	18.3	27.9	27.4	13.6	26.2	28.0	5.8	
95th Queue (m)	33.6	95.5	92.9	34.0	48.8	49.3	26.6	46.7	46.1	16.9	
Link Distance (m)		159.7	159.7		1382.2	382.2		345.0	249.2	249.2	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (m)	50.0			50.0			80.0				
Storage Blk Time (%)	0	10	2		0					0	
Queuing Penalty (veh)	0	5	0		0					0	

Intersection: 20: Henri-Labonne & Axe René-Lévesque

Movement	EB	WB	NB	SB
Directions Served	ULTR	ULTR	ULTR	ULTR
Maximum Queue (m)	26.3	20.1	25.8	32.6
Average Queue (m)	11.1	9.6	7.1	13.1
95th Queue (m)	21.4	17.4	19.4	27.2
Link Distance (m)	345.4	299.6	532.2	912.4
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 25: Paillard & Axe René-Lévesque

Movement	EB	WB	NB	NB	SB			
Directions Served	LTR	LTR	L	TR	LTR	l		
Maximum Queue (m)	32.8	57.3	23.0	85.0	131.3	}		
Average Queue (m)	13.5	24.8	9.0	27.9	53.5	<u>, </u>		
95th Queue (m)	25.0	42.0	19.1	64.6	101.7	,		
()	359.9	309.0	410.1	410.1	532.2	2		
Upstream Blk Time (%)								
Queuing Penalty (veh)								
Storage Bay Dist (m)								
Storage Blk Time (%)								
Queuing Penalty (veh)								

Nework Summary

Network wide Queuing Penalty: 86

Intersection: 2: Boul. Bourque & Axe René-Lévesque

Phase	2	4	5	6	7	8	13	15	
Movement(s) Served	EBL	SBT	EBT	WBT	SBL	NBT	WBL	NBL	
Maximum Green (s)	21.0	37.0	24.0	24.0	21.0	24.0	21.0	8.0	
Minimum Green (s)	8.0	10.0	10.0	10.0	8.0	8.0	8.0	8.0	
Recall	None	None	C-Max	C-Max	None	None	None	None	
Avg. Green (s)	17.6	30.2	45.5	35.1	20.0	19.8	17.8	15.7	
g/C Ratio	0.14	0.26	0.39	0.32	0.18	0.17	0.12	0.10	
Cycles Skipped (%)	13	6	6	0	3	3	26	30	
Cycles @ Minimum (%)	0	3	0	0	0	0	10	23	
Cycles Maxed Out (%)	32	32	94	100	68	35	32	70	
Cycles with Peds (%)	0	13	16	16	0	10	0	0	

Controller Summary

Average Cycle Length (s): 110.0 Number of Complete Cycles: 29

Intersection: 13: Boul. Bourque & Haut-Bois

Phase	2	3	4	6	7	8
Movement(s) Served	NBTL	WBL	EBT	SBTL	EBL	WBT
Maximum Green (s)	33.0	20.0	43.0	33.0	21.0	43.0
Minimum Green (s)	8.0	9.0	4.0	8.0	9.0	4.0
Recall	None	None	C-Max	None	None	C-Max
Avg. Green (s)	25.5	13.1	61.5	25.5	10.7	64.2
g/C Ratio	0.23	0.11	0.56	0.23	0.07	0.58
Cycles Skipped (%)	0	10	0	0	25	0
Cycles @ Minimum (%)	0	16	0	0	31	0
Cycles Maxed Out (%)	23	10	100	23	0	100
Cycles with Peds (%)	10	0	17	6	0	7

Controller Summary

Average Cycle Length (s): 110.0 Number of Complete Cycles: 29

Intersection: 25: Paillard & Axe René-Lévesque

Phase	2	4	5	6	8
Movement(s) Served	NBTL	EBTL	NBL	SBTL	WBTL
Maximum Green (s)	39.0	20.0	5.0	31.0	20.0
Minimum Green (s)	4.0	4.0	4.0	4.0	4.0
Recall	Max	None	None	Max	None
Avg. Green (s)	40.4	14.1	5.2	37.4	14.1
g/C Ratio	0.67	0.24	0.02	0.62	0.24
Cycles Skipped (%)	0	0	72	0	0
Cycles @ Minimum (%)	0	0	0	0	0
Cycles Maxed Out (%)	100	29	28	100	29
Cycles with Peds (%)	7	8	0	9	7

Controller Summary

Average Cycle Length (s): 60.0 Number of Complete Cycles: 56

2: Boul. Bourque & Axe René-Lévesque Performance by approach

Approach	EB	WB	NB	SB	All
Total Delay (hr)	13.9	10.8	4.3	13.6	42.5
Delay / Veh (s)	52.2	33.2	42.8	50.1	44.3
Stop Delay (hr)	10.6	8.8	3.7	11.5	34.7
St Del/Veh (s)	39.9	27.3	36.5	42.6	36.1
Total Stops	870	817	301	857	2845
Stop/Veh	0.91	0.70	0.83	0.88	0.82
Vehicles Entered	961	1168	360	971	3460
Vehicles Exited	959	1163	363	976	3461
Hourly Exit Rate	959	1163	363	976	3461
Denied Entry Before	0	0	0	3	3
Denied Entry After	0	0	0	0	0

13: Boul. Bourque & Haut-Bois Performance by approach

Approach	EB	WB	NB	SB	All	
Total Delay (hr)	7.7	6.2	1.5	3.1	18.5	
Delay / Veh (s)	22.1	21.8	29.5	34.1	23.9	
Stop Delay (hr)	5.7	3.6	1.2	2.8	13.3	
St Del/Veh (s)	16.5	12.6	22.9	30.8	17.2	
Total Stops	604	431	108	229	1372	
Stop/Veh	0.48	0.42	0.58	0.69	0.49	
Vehicles Entered	1253	1012	186	330	2781	
Vehicles Exited	1239	1017	186	332	2774	
Hourly Exit Rate	1239	1017	186	332	2774	
Denied Entry Before	1	0	0	0	1	
Denied Entry After	0	0	0	0	0	

20: Henri-Labonne & Axe René-Lévesque Performance by approach

Approach	EB	WB	NB	SB	All
Total Delay (hr)	1.1	0.6	3.6	2.0	7.3
Delay / Veh (s)	12.0	7.8	16.1	13.9	13.6
Stop Delay (hr)	0.3	0.2	0.6	0.4	1.5
St Del/Veh (s)	3.6	2.3	2.6	2.6	2.7
Total Stops	151	115	334	189	789
Stop/Veh	0.45	0.44	0.41	0.37	0.41
Vehicles Entered	332	261	809	517	1919
Vehicles Exited	334	263	814	517	1928
Hourly Exit Rate	334	263	814	517	1928
Denied Entry Before	0	0	0	0	0
Denied Entry After	0	0	0	0	0

25: Paillard & Axe René-Lévesque Performance by approach

Approach	EB	WB	NB	SB	All
Total Delay (hr)	0.7	0.6	4.4	2.8	8.5
Delay / Veh (s)	17.7	22.3	13.4	15.5	14.7
Stop Delay (hr)	0.5	0.5	1.8	1.2	4.1
St Del/Veh (s)	13.7	19.6	5.4	6.7	7.0
Total Stops	113	82	524	326	1045
Stop/Veh	0.80	0.85	0.44	0.50	0.50
Vehicles Entered	140	97	1189	653	2079
Vehicles Exited	141	97	1192	657	2087
Hourly Exit Rate	141	97	1192	657	2087
Denied Entry Before	0	0	0	0	0
Denied Entry After	0	0	0	0	0

Total Network Performance

Total Delay (hr)	88.9	
Delay / Veh (s)	64.0	
Stop Delay (hr)	53.8	
St Del/Veh (s)	38.7	
Total Stops	6111	
Stop/Veh	1.22	
Vehicles Entered	4996	
Vehicles Exited	5011	
Hourly Exit Rate	5011	
Denied Entry Before	4	
Denied Entry After	0	

2: Boul. Bourque & Axe René-Lévesque Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	7.9	5.9	0.1	2.4	4.8	3.6	0.4	3.4	0.5	7.8	4.3	1.5
Delay / Veh (s)	75.0	39.5	9.9	46.4	39.1	23.9	56.7	45.9	25.0	72.0	48.8	19.9
Stop Delay (hr)	6.4	4.2	0.1	2.1	4.0	2.8	0.4	2.9	0.4	7.0	3.5	1.0
St Del/Veh (s)	60.5	28.0	6.7	41.5	32.1	18.5	52.4	38.7	21.4	65.0	40.0	13.3
Total Stops	443	395	32	144	316	357	24	223	54	420	268	169
Stop/Veh	1.16	0.74	0.70	0.79	0.71	0.66	0.89	0.83	0.82	1.08	0.84	0.63
Vehicles Entered	380	536	45	183	448	537	27	266	67	389	316	266
Vehicles Exited	382	532	45	184	443	536	27	270	66	388	321	267
Hourly Exit Rate	382	532	45	184	443	536	27	270	66	388	321	267
Denied Entry Before	0	0	0	0	0	0	0	0	0	1	1	1
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

2: Boul. Bourque & Axe René-Lévesque Performance by movement

Movement	All
Total Delay (hr)	42.5
Delay / Veh (s)	44.3
Stop Delay (hr)	34.7
St Del/Veh (s)	36.1
Total Stops	2845
Stop/Veh	0.82
Vehicles Entered	3460
Vehicles Exited	3461
Hourly Exit Rate	3461
Denied Entry Before	3
Denied Entry After	0

13: Boul. Bourque & Haut-Bois Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	1.2	6.3	0.1	2.0	3.9	0.2	0.5	1.0	0.1	2.2	0.9	0.0
Delay / Veh (s)	65.8	20.9	4.4	51.1	19.4	4.2	40.7	37.4	4.6	47.7	36.4	1.3
Stop Delay (hr)	1.2	4.5	0.0	1.6	1.9	0.0	0.4	0.8	0.0	2.0	0.8	0.0
St Del/Veh (s)	61.0	15.1	1.5	40.4	9.5	0.1	34.4	29.6	0.1	43.6	32.6	0.0
Total Stops	72	530	2	124	307	0	36	72	0	158	71	0
Stop/Veh	1.06	0.49	0.02	0.86	0.42	0.00	0.86	0.76	0.00	0.96	0.76	0.00
Vehicles Entered	69	1091	93	144	729	139	41	95	50	163	92	75
Vehicles Exited	68	1078	93	145	731	141	42	95	49	164	93	75
Hourly Exit Rate	68	1078	93	145	731	141	42	95	49	164	93	75
Denied Entry Before	0	1	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

13: Boul. Bourque & Haut-Bois Performance by movement

Movement	All
Total Delay (hr)	18.5
Delay / Veh (s)	23.9
Stop Delay (hr)	13.3
St Del/Veh (s)	17.2
Total Stops	1372
Stop/Veh	0.49
Vehicles Entered	2781
Vehicles Exited	2774
Hourly Exit Rate	2774
Denied Entry Before	1
Denied Entry After	0

20: Henri-Labonne & Axe René-Lévesque Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	0.0	0.6	0.5	0.2	0.2	0.1	0.7	2.2	0.7	0.3	1.6	0.1
Delay / Veh (s)	9.1	12.7	11.4	7.7	8.3	7.2	15.5	16.4	15.6	14.0	14.0	11.9
Stop Delay (hr)	0.0	0.2	0.1	0.1	0.1	0.0	0.1	0.3	0.1	0.1	0.3	0.0
St Del/Veh (s)	2.6	3.6	3.6	2.5	2.4	1.9	2.5	2.6	2.7	3.1	2.5	2.7
Total Stops	5	82	64	46	44	25	76	192	66	35	145	9
Stop/Veh	0.42	0.47	0.44	0.45	0.44	0.41	0.44	0.40	0.40	0.42	0.36	0.35
Vehicles Entered	12	174	146	102	99	60	171	475	163	85	406	26
Vehicles Exited	12	177	145	102	101	60	172	478	164	84	407	26
Hourly Exit Rate	12	177	145	102	101	60	172	478	164	84	407	26
Denied Entry Before	0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

20: Henri-Labonne & Axe René-Lévesque Performance by movement

Movement	All
Total Delay (hr)	7.3
Delay / Veh (s)	13.6
Stop Delay (hr)	1.5
St Del/Veh (s)	2.7
Total Stops	789
Stop/Veh	0.41
Vehicles Entered	1919
Vehicles Exited	1928
Hourly Exit Rate	1928
Denied Entry Before	0
Denied Entry After	0

25: Paillard & Axe René-Lévesque Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	0.1	0.4	0.2	0.4	0.2	0.0	0.2	3.8	0.4	0.0	2.7	0.1
Delay / Veh (s)	22.6	21.7	12.5	23.9	20.0	17.9	11.7	13.4	13.6	33.0	15.4	14.0
Stop Delay (hr)	0.1	0.3	0.2	0.4	0.2	0.0	0.1	1.5	0.2	0.0	1.1	0.0
St Del/Veh (s)	18.9	16.5	9.9	21.4	16.7	17.1	8.2	5.2	5.8	22.9	6.5	7.6
Total Stops	11	51	51	53	27	2	46	426	52	5	309	12
Stop/Veh	0.92	0.75	0.85	0.90	0.75	1.00	0.78	0.41	0.52	1.25	0.49	0.60
Vehicles Entered	12	68	60	60	35	2	60	1030	99	4	629	20
Vehicles Exited	12	69	60	59	36	2	59	1033	100	4	633	20
Hourly Exit Rate	12	69	60	59	36	2	59	1033	100	4	633	20
Denied Entry Before	0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

25: Paillard & Axe René-Lévesque Performance by movement

Movement	All
Total Delay (hr)	8.5
Delay / Veh (s)	14.7
Stop Delay (hr)	4.1
St Del/Veh (s)	7.0
Total Stops	1045
Stop/Veh	0.50
Vehicles Entered	2079
Vehicles Exited	2087
Hourly Exit Rate	2087
Denied Entry Before	0
Denied Entry After	0

Total Network Performance

Total Delay (hr)	88.9
Delay / Veh (s)	64.0
Stop Delay (hr)	53.8
St Del/Veh (s)	38.7
Total Stops	6111
Stop/Veh	1.22
Vehicles Entered	4996
Vehicles Exited	5011
Hourly Exit Rate	5011
Denied Entry Before	4
Denied Entry After	0

Intersection: 2: Boul. Bourque & Axe René-Lévesque

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	Т	TR	L
Maximum Queue (m)	156.9	90.5	87.6	14.5	75.1	100.5	110.6	87.6	19.4	57.0	54.4	73.5
Average Queue (m)	89.3	41.4	37.9	2.3	33.3	35.0	39.9	46.4	5.3	27.5	23.6	41.3
95th Queue (m)	145.2	73.0	66.8	8.7	59.9	61.3	82.9	85.7	14.2	44.8	42.9	69.7
Link Distance (m)		1202.6 1	202.6			272.1	272.1			617.9		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (m)	200.0			100.0	80.0			80.0	65.0		65.0	200.0
Storage Blk Time (%)	0				0			2		0	0	
Queuing Penalty (veh)	0				0			5		0	0	

Intersection: 2: Boul. Bourque & Axe René-Lévesque

Movement	SB	SB	SB	
Directions Served	L	Т	R	
Maximum Queue (m)	100.2	168.4	57.9	
Average Queue (m)	46.5	67.1	27.1	
95th Queue (m)	81.4	135.4	60.4	
Link Distance (m)		403.2		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)	200.0		50.0	
Storage Blk Time (%)		14	0	
Queuing Penalty (veh)		91	0	

Intersection: 13: Boul. Bourque & Haut-Bois

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	Т	L	Т	LT	Т	
Maximum Queue (m)	53.0	105.7	111.5	35.0	56.8	64.1	68.0	27.2	43.0	62.4	31.2	
Average Queue (m)	20.1	59.6	59.1	1.3	28.3	31.7	35.3	9.2	17.2	38.1	13.0	
95th Queue (m)	42.4	98.8	97.7	18.4	49.3	56.0	59.3	21.3	34.5	58.1	26.9	
Link Distance (m)		140.3	140.3		1	1382.4 ⁻	1382.4		1213.2	125.8	125.8	
Upstream Blk Time (%)		0	0									
Queuing Penalty (veh)		0	1									
Storage Bay Dist (m)	50.0			80.0	50.0			80.0				
Storage Blk Time (%)	0	10	2	0	1	1						
Queuing Penalty (veh)	0	7	2	0	6	2						

Intersection: 20: Henri-Labonne & Axe René-Lévesque

Movement	EB	WB	NB	SB
Directions Served	ULTR	ULTR	ULTR	ULTR
Maximum Queue (m)	45.2	26.5	90.9	55.3
Average Queue (m)	17.3	13.6	33.9	20.8
95th Queue (m)	34.8	23.2	69.7	43.0
Link Distance (m)	922.6	699.9	532.2	912.4
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 25: Paillard & Axe René-Lévesque

Movement	EB	WB	NB	NB	SB	3
Directions Served	LTR	LTR	L	TR	LTR	{
Maximum Queue (m)	36.0	31.0	93.9	157.6	108.2	2
Average Queue (m)	16.9	14.7	11.0	70.3	49.0)
95th Queue (m)	30.7	26.7	46.5	135.0	89.1	
Link Distance (m)	853.5	307.7	403.2	403.2	532.2	2
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Nework Summary

Network wide Queuing Penalty: 114

Intersection: 2: Boul. Bourque & Axe René-Lévesque

Phase	2	4	5	6	7	8	13	15
Movement(s) Served	EBL	SBT	EBT	WBT	SBL	NBT	WBL	NBL
Maximum Green (s)	27.0	30.0	25.0	25.0	14.0	24.0	27.0	8.0
Minimum Green (s)	8.0	10.0	10.0	10.0	8.0	8.0	8.0	8.0
Recall	None	None	C-Max	C-Max	None	None	None	None
Avg. Green (s)	26.4	31.2	30.9	29.4	14.1	19.8	27.2	10.1
g/C Ratio	0.23	0.28	0.27	0.27	0.13	0.18	0.23	0.05
Cycles Skipped (%)	3	0	3	0	0	0	6	43
Cycles @ Minimum (%)	0	0	0	0	0	0	0	40
Cycles Maxed Out (%)	82	71	97	100	94	38	84	57
Cycles with Peds (%)	0	10	9	19	0	9	0	0

Controller Summary

Average Cycle Length (s): 110.0 Number of Complete Cycles: 28

Intersection: 13: Boul. Bourque & Haut-Bois

Phase	2	3	4	6	7	8
Movement(s) Served	NBTL	WBL	EBT	SBTL	EBL	WBT
Maximum Green (s)	30.0	24.0	42.0	30.0	17.0	50.0
Minimum Green (s)	8.0	9.0	4.0	8.0	9.0	4.0
Recall	None	None	C-Max	None	None	C-Max
Avg. Green (s)	26.2	17.4	53.6	26.2	11.6	62.0
g/C Ratio	0.24	0.16	0.49	0.24	0.08	0.56
Cycles Skipped (%)	0	0	0	0	20	0
Cycles @ Minimum (%)	0	3	0	0	23	0
Cycles Maxed Out (%)	35	13	100	35	9	100
Cycles with Peds (%)	13	0	10	16	0	13

Controller Summary

Average Cycle Length (s): 110.0 Number of Complete Cycles: 28

Intersection: 25: Paillard & Axe René-Lévesque

Phase	2	4	5	6	8
Movement(s) Served	NBTL	EBTL	NBL	SBTL	WBTL
Maximum Green (s)	38.0	20.0	5.0	30.0	20.0
Minimum Green (s)	4.0	4.0	4.0	4.0	4.0
Recall	Max	None	None	Max	None
Avg. Green (s)	40.9	12.7	5.0	37.1	12.7
g/C Ratio	0.68	0.21	0.03	0.63	0.21
Cycles Skipped (%)	2	2	69	0	2
Cycles @ Minimum (%)	0	0	2	0	0
Cycles Maxed Out (%)	98	20	28	100	20
Cycles with Peds (%)	9	7	0	9	5

Controller Summary

Average Cycle Length (s): 58.9 Number of Complete Cycles: 57

13: René-Lévesque & Performance by approach

Approach	EB	WB	NB	SB	All	
Total Delay (hr)	13.3	5.3	1.5	14.9	35.1	
Delay / Veh (s)	42.3	31.5	23.5	54.9	42.8	
Stop Delay (hr)	10.0	4.0	1.0	12.2	27.3	
St Del/Veh (s)	31.9	23.8	15.7	44.9	33.2	
Total Stops	903	335	95	1142	2475	
Stop/Veh	0.80	0.55	0.40	1.17	0.84	
Vehicles Entered	1133	607	236	986	2962	
Vehicles Exited	1136	608	235	970	2949	
Hourly Exit Rate	1136	608	235	970	2949	
Denied Entry Before	0	0	0	0	0	
Denied Entry After	0	0	0	0	0	

19: Paillard & Henri-Labonne Performance by approach

Approach	EB	NB	SB	All
Total Delay (hr)	0.0	0.1	0.0	0.1
Delay / Veh (s)	3.6	1.2	0.2	1.4
Stop Delay (hr)	0.0	0.0	0.0	0.0
St Del/Veh (s)	2.1	0.3	0.1	0.5
Total Stops	45	0	0	45
Stop/Veh	1.00	0.00	0.00	0.13
Vehicles Entered	45	261	38	344
Vehicles Exited	45	260	38	343
Hourly Exit Rate	45	260	38	343
Denied Entry Before	0	0	0	0
Denied Entry After	0	0	0	0

20: Henri-Labonne & René-Lévesque Performance by approach

Approach	EB	WB	NB	SB	All
Total Delay (hr)	2.2	0.4	3.8	2.2	8.6
Delay / Veh (s)	16.9	8.2	14.2	15.7	14.6
Stop Delay (hr)	0.8	0.2	1.5	0.6	3.1
St Del/Veh (s)	6.2	3.2	5.7	4.3	5.3
Total Stops	272	89	353	253	967
Stop/Veh	0.57	0.49	0.37	0.50	0.46
Vehicles Entered	481	182	954	506	2123
Vehicles Exited	480	181	953	512	2126
Hourly Exit Rate	480	181	953	512	2126
Denied Entry Before	0	0	0	0	0
Denied Entry After	0	0	0	0	0

31: René-Lévesque & Magloire Performance by approach

Approach	EB	WB	SB	All
Total Delay (hr)	3.5	2.3	1.3	7.0
Delay / Veh (s)	14.3	10.8	24.4	13.9
Stop Delay (hr)	1.4	0.9	1.1	3.4
St Del/Veh (s)	5.9	4.1	21.9	6.8
Total Stops	348	251	153	752
Stop/Veh	0.40	0.33	0.81	0.41
Vehicles Entered	869	765	188	1822
Vehicles Exited	869	761	190	1820
Hourly Exit Rate	869	761	190	1820
Denied Entry Before	0	0	0	0
Denied Entry After	0	0	0	0

34: Président-Kennedy & Performance by approach

Approach	EB	WB	NB	SB	All	
Total Delay (hr)	6.1	5.7	1.9	1.6	15.3	
Delay / Veh (s)	27.5	23.1	15.3	22.7	23.1	
Stop Delay (hr)	4.4	3.5	1.5	1.5	10.9	
St Del/Veh (s)	19.8	14.4	12.3	20.8	16.5	
Total Stops	534	531	327	205	1597	
Stop/Veh	0.67	0.60	0.73	0.79	0.67	
Vehicles Entered	795	889	447	258	2389	
Vehicles Exited	799	889	446	258	2392	
Hourly Exit Rate	799	889	446	258	2392	
Denied Entry Before	0	0	0	0	0	
Denied Entry After	0	0	0	0	0	

Total Network Performance

Total Delay (hr)	74.9
Delay / Veh (s)	68.0
Stop Delay (hr)	45.1
St Del/Veh (s)	40.9
Total Stops	5918
Stop/Veh	1.49
Vehicles Entered	3977
Vehicles Exited	3958
Hourly Exit Rate	3958
Denied Entry Before	0
Denied Entry After	0

13: René-Lévesque & Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	7.5	5.8	0.0	0.8	4.4	0.2	0.5	0.9	0.2	13.2	0.5	1.2
Delay / Veh (s)	56.1	33.1	6.4	45.1	45.4	3.4	31.1	38.7	7.2	106.3	30.6	9.2
Stop Delay (hr)	5.9	4.2	0.0	0.6	3.4	0.0	0.4	0.7	0.0	11.3	0.4	0.5
St Del/Veh (s)	43.7	23.9	0.7	37.6	35.1	0.1	23.6	30.0	0.2	91.2	25.2	3.6
Total Stops	490	410	3	50	285	0	36	59	0	1055	34	53
Stop/Veh	1.01	0.65	0.12	0.82	0.82	0.00	0.67	0.74	0.00	2.35	0.63	0.11
Vehicles Entered	484	625	24	61	348	198	54	81	101	457	54	475
Vehicles Exited	482	630	24	61	344	203	53	80	102	440	54	476
Hourly Exit Rate	482	630	24	61	344	203	53	80	102	440	54	476
Denied Entry Before	0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

13: René-Lévesque & Performance by movement

Movement	All
Total Delay (hr)	35.1
Delay / Veh (s)	42.8
Stop Delay (hr)	27.3
St Del/Veh (s)	33.2
Total Stops	2475
Stop/Veh	0.84
Vehicles Entered	2962
Vehicles Exited	2949
Hourly Exit Rate	2949
Denied Entry Before	0
Denied Entry After	0

19: Paillard & Henri-Labonne Performance by movement

Movement	EBL	EBR	NBL	NBT	SBT	SBR	All
Total Delay (hr)	0.0	0.0	0.0	0.1	0.0	0.0	0.1
Delay / Veh (s)	5.9	3.5	3.1	1.1	0.2	0.1	1.4
Stop Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
St Del/Veh (s)	2.6	2.1	0.4	0.3	0.1	0.1	0.5
Total Stops	3	42	0	0	0	0	45
Stop/Veh	1.00	1.00	0.00	0.00	0.00	0.00	0.13
Vehicles Entered	3	42	14	247	34	4	344
Vehicles Exited	3	42	14	246	34	4	343
Hourly Exit Rate	3	42	14	246	34	4	343
Denied Entry Before	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0

20: Henri-Labonne & René-Lévesque Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	0.1	0.6	1.6	0.2	0.1	0.1	1.1	2.0	0.6	0.2	1.9	0.1
Delay / Veh (s)	16.7	17.1	16.8	8.3	8.7	7.1	13.6	14.7	13.8	14.2	16.0	13.9
Stop Delay (hr)	0.0	0.2	0.6	0.1	0.0	0.0	0.5	8.0	0.3	0.1	0.5	0.0
St Del/Veh (s)	6.0	5.9	6.4	3.6	3.1	2.6	5.6	5.6	5.7	4.1	4.4	3.7
Total Stops	11	68	193	48	27	14	122	174	57	29	210	14
Stop/Veh	0.65	0.54	0.57	0.53	0.47	0.42	0.41	0.36	0.34	0.51	0.50	0.48
Vehicles Entered	18	127	336	92	57	33	297	490	167	57	420	29
Vehicles Exited	17	126	337	91	57	33	296	490	167	58	424	30
Hourly Exit Rate	17	126	337	91	57	33	296	490	167	58	424	30
Denied Entry Before	0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

20: Henri-Labonne & René-Lévesque Performance by movement

Movement	All
Total Delay (hr)	8.6
Delay / Veh (s)	14.6
Stop Delay (hr)	3.1
St Del/Veh (s)	5.3
Total Stops	967
Stop/Veh	0.46
Vehicles Entered	2123
Vehicles Exited	2126
Hourly Exit Rate	2126
Denied Entry Before	0
Denied Entry After	0

31: René-Lévesque & Magloire Performance by movement

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All	
Total Delay (hr)	0.0	3.5	2.2	0.1	0.9	0.4	7.0	
Delay / Veh (s)	11.8	14.4	11.7	3.1	27.9	18.5	13.9	
Stop Delay (hr)	0.0	1.4	0.9	0.0	8.0	0.3	3.4	
St Del/Veh (s)	6.9	5.8	4.5	0.6	24.9	16.8	6.8	
Total Stops	1	347	228	23	96	57	752	
Stop/Veh	0.50	0.40	0.33	0.29	0.81	0.81	0.41	
Vehicles Entered	2	867	687	78	118	70	1822	
Vehicles Exited	2	867	683	78	120	70	1820	
Hourly Exit Rate	2	867	683	78	120	70	1820	
Denied Entry Before	0	0	0	0	0	0	0	
Denied Entry After	0	0	0	0	0	0	0	

34: Président-Kennedy & Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	1.0	5.0	0.0	2.4	3.2	0.2	0.3	0.7	0.9	0.8	0.5	0.3
Delay / Veh (s)	42.9	26.1	8.2	38.0	19.9	7.1	31.0	27.6	10.1	31.5	26.0	10.8
Stop Delay (hr)	0.9	3.4	0.0	1.8	1.7	0.1	0.3	0.5	0.7	0.8	0.5	0.3
St Del/Veh (s)	38.6	17.7	6.6	29.0	10.5	2.4	28.0	23.0	7.7	29.4	22.4	10.7
Total Stops	79	443	12	193	290	48	31	64	232	84	54	67
Stop/Veh	0.91	0.64	0.71	0.86	0.50	0.54	0.82	0.75	0.72	0.90	0.72	0.74
Vehicles Entered	87	691	17	223	576	90	38	85	324	93	75	90
Vehicles Exited	87	695	17	225	575	89	38	85	323	93	75	90
Hourly Exit Rate	87	695	17	225	575	89	38	85	323	93	75	90
Denied Entry Before	0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

34: Président-Kennedy & Performance by movement

Movement	All
Total Delay (hr)	15.3
Delay / Veh (s)	23.1
Stop Delay (hr)	10.9
St Del/Veh (s)	16.5
Total Stops	1597
Stop/Veh	0.67
Vehicles Entered	2389
Vehicles Exited	2392
Hourly Exit Rate	2392
Denied Entry Before	0
Denied Entry After	0

Total Network Performance

Total Delay (hr)	74.9
Delay / Veh (s)	68.0
Stop Delay (hr)	45.1
St Del/Veh (s)	40.9
Total Stops	5918
Stop/Veh	1.49
Vehicles Entered	3977
Vehicles Exited	3958
Hourly Exit Rate	3958
Denied Entry Before	0
Denied Entry After	0

Intersection: 13: René-Lévesque &

Movement	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	Т	R	L	Т	Т	L	Т	L	Т	
Maximum Queue (m)	193.2	103.7	82.6	46.1	30.6	65.3	57.5	29.2	33.7	247.2	233.5	
Average Queue (m)	100.5	47.1	45.8	2.5	13.8	35.7	29.1	9.9	15.5	137.6	57.0	
95th Queue (m)	173.4	83.1	77.1	21.7	27.2	55.2	47.7	22.2	30.1	251.9	218.1	
Link Distance (m)		403.9	403.9			1382.4 ⁻	1382.4	1	213.4		341.6	
Upstream Blk Time (%)											1	
Queuing Penalty (veh)											6	
Storage Bay Dist (m)	250.0			50.0	100.0			80.0		300.0		
Storage Blk Time (%)			7							0		
Queuing Penalty (veh)			1							1		

Intersection: 19: Paillard & Henri-Labonne

Movement	EB	NB
Directions Served	LR	LT
Maximum Queue (m)	15.8	3.6
Average Queue (m)	6.9	0.1
95th Queue (m)	13.7	1.9
Link Distance (m)	1476.9	214.6
Upstream Blk Time (%)	
Queuing Penalty (veh)		
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 20: Henri-Labonne & René-Lévesque

Movement	EB	WB	NB	SB
Directions Served	ULTR	ULTR	ULTR	ULTR
Maximum Queue (m)	90.8	27.7	106.0	75.3
Average Queue (m)	28.6	12.0	38.2	26.1
95th Queue (m)	59.8	22.1	82.4	52.4
Link Distance (m)	922.6	699.9	179.3	912.4
Upstream Blk Time (%))			
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 31: René-Lévesque & Magloire

Movement	EB	EB	WB	WB	SB	
Directions Served	L	Т	Т	R	LR	
Maximum Queue (m)	6.4	145.0	120.4	11.6	55.4	
Average Queue (m)	0.3	66.7	42.7	3.9	23.6	
95th Queue (m)	2.8	127.3	96.2	10.9	43.7	
Link Distance (m)		377.6	341.6	341.6	333.3	
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)	80.0					
Storage Blk Time (%)		3				
Queuing Penalty (veh)		0				

Intersection: 34: Président-Kennedy &

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	LT	R	L	TR
Maximum Queue (m)	30.4	206.6	74.8	10.0	59.9	58.0	137.8	22.1	47.6	47.8	31.0	36.6
Average Queue (m)	14.8	53.8	35.7	2.8	29.4	22.6	29.4	5.7	19.0	22.7	11.0	10.7
95th Queue (m)	28.3	144.3	62.0	9.4	54.0	48.5	90.1	14.6	37.2	40.1	24.9	27.9
Link Distance (m)		664.1	664.1			403.9	403.9	403.9	643.5	643.5		214.6
Upstream Blk Time (%)		0					0					
Queuing Penalty (veh)		0					0					
Storage Bay Dist (m)	200.0			80.0	125.0						200.0	
Storage Blk Time (%)			0									
Queuing Penalty (veh)			0									

Nework Summary

Network wide Queuing Penalty: 9

Intersection: 13: René-Lévesque &

Phase	1	2	3	4	5	6	7	8
Movement(s) Served	WBL	EBT	NBL	SBTL	EBL	WBT	SBL	NBTL
Maximum Green (s)	9.0	55.0	11.0	26.0	37.0	26.0	11.0	26.0
Minimum Green (s)	8.0	10.0	8.0	10.0	8.0	10.0	8.0	10.0
Recall	None	Min	None	None	None	Min	None	None
Avg. Green (s)	28.0	34.1	11.2	25.2	33.7	19.6	11.2	25.2
g/C Ratio	0.20	0.31	0.10	0.23	0.31	0.18	0.10	0.23
Cycles Skipped (%)	23	0	0	0	0	0	0	0
Cycles @ Minimum (%)	0	0	0	0	0	0	0	0
Cycles Maxed Out (%)	74	13	100	88	65	28	100	88
Cycles with Peds (%)	0	10	0	13	0	19	0	16

Controller Summary

Average Cycle Length (s): 109.9 Number of Complete Cycles: 29

Intersection: 31: René-Lévesque & Magloire

Phase	2	4	5	6
Movement(s) Served	EBTL	SBL	EBL	WBT
Maximum Green (s)	54.0	26.0	4.0	46.0
Minimum Green (s)	5.0	5.0	4.0	5.0
Recall	Max	None	None	Max
Avg. Green (s)	58.0	14.4	0.0	57.9
g/C Ratio	0.71	0.18	0.00	0.71
Cycles Skipped (%)	0	0	100	0
Cycles @ Minimum (%)	0	5	0	0
Cycles Maxed Out (%)	100	12	0	100
Cycles with Peds (%)	0	7	0	12

Controller Summary

Average Cycle Length (s): 82.0 Number of Complete Cycles: 40

Intersection: 34: Président-Kennedy &

Phase	1	2	4	5	6	8
Movement(s) Served	WBL	EBT	SBTL	EBL	WBT	NBTL
Maximum Green (s)	23.0	31.0	32.0	22.0	32.0	32.0
Minimum Green (s)	8.0	10.0	8.0	8.0	10.0	8.0
Recall	None	Max	None	None	Max	None
Avg. Green (s)	18.0	32.0	23.7	10.6	40.1	23.7
g/C Ratio	0.20	0.37	0.28	0.10	0.47	0.28
Cycles Skipped (%)	5	0	0	15	0	0
Cycles @ Minimum (%)	0	0	0	26	0	0
Cycles Maxed Out (%)	20	100	15	0	100	15
Cycles with Peds (%)	0	10	10	0	5	13

Controller Summary

Average Cycle Length (s): 85.8 Number of Complete Cycles: 38

13: René-Lévesque & Performance by approach

Approach	EB	WB	NB	SB	All
Total Delay (hr)	39.6	36.0	1.3	8.5	85.4
Delay / Veh (s)	110.1	91.5	28.3	30.9	79.6
Stop Delay (hr)	32.8	28.8	1.0	6.7	69.2
St Del/Veh (s)	91.0	73.0	22.4	24.5	64.5
Total Stops	1996	1687	84	599	4366
Stop/Veh	1.54	1.19	0.51	0.61	1.13
Vehicles Entered	1314	1440	164	988	3906
Vehicles Exited	1279	1397	166	984	3826
Hourly Exit Rate	1279	1397	166	984	3826
Denied Entry Before	0	0	0	0	0
Denied Entry After	0	0	0	0	0

19: Paillard & Henri-Labonne Performance by approach

Approach	EB	NB	SB	All
Total Delay (hr)	0.0	0.2	0.0	0.2
Delay / Veh (s)	3.2	1.4	0.2	1.4
Stop Delay (hr)	0.0	0.0	0.0	0.1
St Del/Veh (s)	2.1	0.3	0.1	0.3
Total Stops	28	1	0	29
Stop/Veh	1.00	0.00	0.00	0.05
Vehicles Entered	27	498	27	552
Vehicles Exited	28	497	27	552
Hourly Exit Rate	28	497	27	552
Denied Entry Before	0	0	0	0
Denied Entry After	0	0	0	0

20: Henri-Labonne & René-Lévesque Performance by approach

Approach	EB	WB	NB	SB	All
Total Delay (hr)	2.0	0.4	2.9	2.2	7.6
Delay / Veh (s)	15.4	8.0	12.0	15.6	13.3
Stop Delay (hr)	0.7	0.2	0.6	0.6	2.1
St Del/Veh (s)	5.4	3.4	2.4	4.2	3.6
Total Stops	256	92	323	245	916
Stop/Veh	0.54	0.48	0.37	0.48	0.44
Vehicles Entered	474	194	881	515	2064
Vehicles Exited	475	192	879	512	2058
Hourly Exit Rate	475	192	879	512	2058
Denied Entry Before	0	0	0	0	0
Denied Entry After	0	0	0	0	0

31: René-Lévesque & Magloire Performance by approach

Approach	EB	WB	SB	All
Total Delay (hr)	3.0	4.5	1.0	8.5
Delay / Veh (s)	12.6	15.0	27.8	14.8
Stop Delay (hr)	1.2	1.8	0.9	3.9
St Del/Veh (s)	4.8	6.0	25.4	6.7
Total Stops	318	471	109	898
Stop/Veh	0.37	0.44	0.84	0.43
Vehicles Entered	866	1074	129	2069
Vehicles Exited	866	1072	130	2068
Hourly Exit Rate	866	1072	130	2068
Denied Entry Before	0	0	0	0
Denied Entry After	0	0	0	0

34: Président-Kennedy & Performance by approach

Approach	EB	WB	NB	SB	All
Total Delay (hr)	22.8	13.3	4.0	13.3	53.5
Delay / Veh (s)	82.2	35.0	33.0	112.2	59.5
Stop Delay (hr)	18.9	8.5	3.6	12.9	43.9
St Del/Veh (s)	68.1	22.4	29.2	108.9	48.8
Total Stops	1282	1059	368	426	3135
Stop/Veh	1.28	0.77	0.83	1.00	0.97
Vehicles Entered	1017	1368	443	432	3260
Vehicles Exited	982	1368	440	422	3212
Hourly Exit Rate	982	1368	440	422	3212
Denied Entry Before	0	0	0	0	0
Denied Entry After	0	0	0	25	25

Total Network Performance

Total Delay (hr)	166.3
Delay / Veh (s)	122.6
Stop Delay (hr)	119.4
St Del/Veh (s)	88.0
Total Stops	9417
Stop/Veh	1.93
Vehicles Entered	4959
Vehicles Exited	4810
Hourly Exit Rate	4810
Denied Entry Before	0
Denied Entry After	25

13: René-Lévesque & Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	30.7	8.8	0.1	3.2	31.5	1.4	0.4	0.8	0.1	6.4	1.3	0.7
Delay / Veh (s)	203.6	43.7	15.1	75.7	144.4	10.2	34.6	44.5	5.0	65.8	43.8	5.1
Stop Delay (hr)	26.4	6.3	0.1	2.4	26.1	0.3	0.3	0.7	0.0	5.5	1.1	0.1
St Del/Veh (s)	175.0	31.4	6.4	56.8	119.6	2.1	29.2	37.5	0.2	56.6	37.3	0.4
Total Stops	1415	574	7	201	1452	34	32	52	0	512	87	0
Stop/Veh	2.61	0.79	0.23	1.32	1.85	0.07	0.80	0.78	0.00	1.47	0.78	0.00
Vehicles Entered	561	723	30	154	804	482	39	67	58	350	110	528
Vehicles Exited	526	723	30	150	766	481	40	67	59	348	110	526
Hourly Exit Rate	526	723	30	150	766	481	40	67	59	348	110	526
Denied Entry Before	0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

13: René-Lévesque & Performance by movement

Movement	All
Total Delay (hr)	85.4
Delay / Veh (s)	79.6
Stop Delay (hr)	69.2
St Del/Veh (s)	64.5
Total Stops	4366
Stop/Veh	1.13
Vehicles Entered	3906
Vehicles Exited	3826
Hourly Exit Rate	3826
Denied Entry Before	0
Denied Entry After	0

19: Paillard & Henri-Labonne Performance by movement

Movement	EBL	EBR	NBL	NBT	SBT	SBR	All
Total Delay (hr)	0.0	0.0	0.0	0.2	0.0	0.0	0.2
Delay / Veh (s)	5.6	3.1	3.2	1.2	0.2	0.1	1.4
Stop Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.1
St Del/Veh (s)	3.5	2.1	0.4	0.3	0.1	0.1	0.3
Total Stops	2	26	1	0	0	0	29
Stop/Veh	1.00	1.04	0.02	0.00	0.00	0.00	0.05
Vehicles Entered	2	25	42	456	24	3	552
Vehicles Exited	2	26	42	455	24	3	552
Hourly Exit Rate	2	26	42	455	24	3	552
Denied Entry Before	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0

20: Henri-Labonne & René-Lévesque Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	0.1	0.6	1.4	0.2	0.1	0.1	0.9	1.6	0.5	0.2	1.9	0.1
Delay / Veh (s)	14.0	15.9	15.4	8.2	8.2	7.2	11.4	12.5	11.7	15.5	15.7	14.5
Stop Delay (hr)	0.0	0.2	0.5	0.1	0.0	0.0	0.2	0.3	0.1	0.1	0.5	0.0
St Del/Veh (s)	5.0	4.8	5.6	3.7	2.9	3.0	2.4	2.3	2.4	4.6	4.2	4.3
Total Stops	9	66	181	55	24	13	108	163	52	31	202	12
Stop/Veh	0.56	0.53	0.54	0.53	0.42	0.42	0.39	0.36	0.35	0.55	0.47	0.41
Vehicles Entered	16	124	334	105	57	32	276	455	150	57	428	30
Vehicles Exited	16	125	334	104	57	31	276	453	150	55	428	29
Hourly Exit Rate	16	125	334	104	57	31	276	453	150	55	428	29
Denied Entry Before	0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

20: Henri-Labonne & René-Lévesque Performance by movement

Movement	All
Total Delay (hr)	7.6
Delay / Veh (s)	13.3
Stop Delay (hr)	2.1
St Del/Veh (s)	3.6
Total Stops	916
Stop/Veh	0.44
Vehicles Entered	2064
Vehicles Exited	2058
Hourly Exit Rate	2058
Denied Entry Before	0
Denied Entry After	0

31: René-Lévesque & Magloire Performance by movement

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.2	2.9	4.2	0.2	1.0	0.0	8.5
Delay / Veh (s)	20.9	12.3	16.8	5.3	28.1	17.9	14.8
Stop Delay (hr)	0.1	1.0	1.8	0.0	0.9	0.0	3.9
St Del/Veh (s)	13.9	4.5	7.0	0.9	25.6	17.1	6.7
Total Stops	30	288	417	54	106	3	898
Stop/Veh	0.94	0.35	0.46	0.33	0.83	1.00	0.43
Vehicles Entered	32	834	910	164	126	3	2069
Vehicles Exited	32	834	909	163	127	3	2068
Hourly Exit Rate	32	834	909	163	127	3	2068
Denied Entry Before	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0

34: Président-Kennedy & Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	3.0	19.3	0.5	4.9	7.8	0.6	0.2	1.1	2.7	8.8	2.3	2.2
Delay / Veh (s)	59.0	89.2	46.7	54.5	32.6	12.1	34.8	30.3	34.0	166.3	73.1	64.9
Stop Delay (hr)	2.5	15.9	0.4	3.8	4.5	0.3	0.2	1.0	2.4	8.6	2.1	2.2
St Del/Veh (s)	49.8	73.7	38.9	42.3	18.6	5.4	31.3	25.4	30.7	162.6	68.2	63.6
Total Stops	204	1033	45	320	609	130	20	103	245	237	87	102
Stop/Veh	1.11	1.33	1.18	0.99	0.71	0.71	0.95	0.76	0.86	1.25	0.77	0.82
Vehicles Entered	184	794	39	322	864	182	21	134	288	195	113	124
Vehicles Exited	181	763	38	323	862	183	21	135	284	185	114	123
Hourly Exit Rate	181	763	38	323	862	183	21	135	284	185	114	123
Denied Entry Before	0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	11	7	7

34: Président-Kennedy & Performance by movement

Movement	All
Total Delay (hr)	53.5
Delay / Veh (s)	59.5
Stop Delay (hr)	43.9
St Del/Veh (s)	48.8
Total Stops	3135
Stop/Veh	0.97
Vehicles Entered	3260
Vehicles Exited	3212
Hourly Exit Rate	3212
Denied Entry Before	0
Denied Entry After	25

Total Network Performance

Total Delay (hr)	166.3
Delay / Veh (s)	122.6
Stop Delay (hr)	119.4
St Del/Veh (s)	88.0
Total Stops	9417
Stop/Veh	1.93
Vehicles Entered	4959
Vehicles Exited	4810
Hourly Exit Rate	4810
Denied Entry Before	0
Denied Entry After	25

Intersection: 13: René-Lévesque &

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	L	Т	L	T
Maximum Queue (m)	257.8	407.3	410.8	23.1	138.0	259.9	241.0	194.7	20.5	40.9	144.7	52.5
Average Queue (m)	214.7	255.7	196.7	1.6	53.4	160.9	151.5	39.9	8.6	14.6	80.1	22.1
95th Queue (m)	315.5	508.3	438.7	17.0	136.0	284.1	267.6	179.9	17.7	31.6	126.2	41.7
Link Distance (m)		403.9	403.9			1382.4	1382.4	1382.4	1	213.4		341.6
Upstream Blk Time (%)		12	5									
Queuing Penalty (veh)		73	28									
Storage Bay Dist (m)	250.0			50.0	150.0				80.0		300.0	
Storage Blk Time (%)	37	0	15	0	0	26						
Queuing Penalty (veh)	133	3	4	0	0	38						

Intersection: 19: Paillard & Henri-Labonne

Movement	EB	NB
Directions Served	LR	LT
Maximum Queue (m)	13.1	8.5
Average Queue (m)	5.4	0.4
95th Queue (m)	12.4	3.9
Link Distance (m)	1476.9	214.6
Upstream Blk Time (%	5)	
Queuing Penalty (veh)		
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 20: Henri-Labonne & René-Lévesque

Movement	EB	WB	NB	SB
Directions Served	ULTR	ULTR	ULTR	ULTR
Maximum Queue (m)	80.0	29.7	102.1	68.4
Average Queue (m)	27.6	12.8	35.9	26.8
95th Queue (m)	56.1	23.7	79.4	50.4
Link Distance (m)	922.6	699.9	179.3	912.4
Upstream Blk Time (%))			
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 31: René-Lévesque & Magloire

Movement	EB	EB	WB	WB	SB	
Directions Served	L	Т	Т	R	LR	
Maximum Queue (m)	46.1	162.6	165.4	147.4	34.2	
Average Queue (m)	6.7	56.7	74.6	19.7	17.6	
95th Queue (m)	25.0	116.7	150.1	83.4	31.3	
Link Distance (m)		377.6	341.6	341.6	333.3	
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)	80.0					
Storage Blk Time (%)		2				
Queuing Penalty (veh)		1				

Intersection: 34: Président-Kennedy &

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	Т	Т	R	L	Т	Т	R	LT	R	L	TR
Maximum Queue (m)	116.7	334.8	221.8	57.4	100.4	228.8	428.1	181.1	90.3	111.3	110.5	111.5
Average Queue (m)	53.5	126.1	99.2	8.4	54.1	55.6	82.7	19.0	24.8	38.5	58.0	34.9
95th Queue (m)	149.1	342.3	257.8	34.7	93.4	139.3	252.8	95.9	55.0	95.8	120.4	93.9
Link Distance (m)		664.1	664.1			403.9	403.9	403.9	643.5	643.5		214.6
Upstream Blk Time (%)		0				0	0	0				
Queuing Penalty (veh)		0				0	1	0				
Storage Bay Dist (m)	200.0			80.0	125.0						200.0	
Storage Blk Time (%)	0	9	13		0							
Queuing Penalty (veh)	0	17	4		0							

Nework Summary

Network wide Queuing Penalty: 302

Intersection: 13: René-Lévesque &

Phase	1	2	3	4	5	6	7	8
Movement(s) Served	WBL	EBT	NBL	SBTL	EBL	WBT	SBL	NBTL
Maximum Green (s)	18.0	48.0	9.0	26.0	37.0	28.0	9.0	26.0
Minimum Green (s)	8.0	10.0	8.0	10.0	8.0	10.0	8.0	10.0
Recall	None	Min	None	None	None	Min	None	None
Avg. Green (s)	33.7	35.1	9.1	24.8	37.4	28.8	9.1	24.8
g/C Ratio	0.27	0.29	0.07	0.20	0.31	0.24	0.07	0.20
Cycles Skipped (%)	4	0	0	0	0	0	0	0
Cycles @ Minimum (%)	0	0	0	0	0	0	0	0
Cycles Maxed Out (%)	96	14	100	76	97	100	100	76
Cycles with Peds (%)	0	14	0	14	0	14	0	14

Controller Summary

Average Cycle Length (s): 121.6 Number of Complete Cycles: 26

Intersection: 31: René-Lévesque & Magloire

Phase	2	4	5	6
Movement(s) Served	EBTL	SBL	EBL	WBT
Maximum Green (s)	54.0	26.0	4.0	46.0
Minimum Green (s)	5.0	5.0	4.0	5.0
Recall	Max	None	None	Max
Avg. Green (s)	58.6	12.8	4.4	56.1
g/C Ratio	0.73	0.16	0.01	0.70
Cycles Skipped (%)	0	0	78	0
Cycles @ Minimum (%)	0	0	22	0
Cycles Maxed Out (%)	100	12	22	100
Cycles with Peds (%)	0	12	0	10

Controller Summary

Average Cycle Length (s): 80.4 Number of Complete Cycles: 41

Intersection: 34: Président-Kennedy &

Phase	1	2	4	5	6	8
Movement(s) Served	WBL	EBT	SBTL	EBL	WBT	NBTL
Maximum Green (s)	23.0	31.0	32.0	22.0	32.0	32.0
Minimum Green (s)	8.0	10.0	8.0	8.0	10.0	8.0
Recall	None	Max	None	None	Max	None
Avg. Green (s)	22.1	31.0	30.5	16.4	38.7	30.5
g/C Ratio	0.23	0.32	0.31	0.16	0.40	0.31
Cycles Skipped (%)	0	0	0	3	0	0
Cycles @ Minimum (%)	0	0	0	3	0	0
Cycles Maxed Out (%)	75	100	81	18	100	81
Cycles with Peds (%)	0	14	11	0	14	14

Controller Summary

Average Cycle Length (s): 97.6 Number of Complete Cycles: 33

ANNEXE G JUSTIFICATION DES FEUX DE CIRCULATION

Scénario 2 - prél. rev.

Préparé par

J-F Comeau, ing. Jr

Dossier

S04279A

Objet Justification de feux de circulation Vérifié par

Critère 3 Pointe AM

Date

26 octobre 2009

Page

1 de 1

V5 **V4**

Critère 3 : Débit minimal de véhicules durant une heure

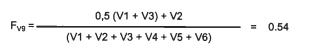
Norme - Ouvrages routiers, MTQ, Signalisation Routière (Tome V), chapitre 8 - Révision Décembre 2005

Population:	150 000
Vitesse:	50

10 000 70

V12/11/10

Magloire

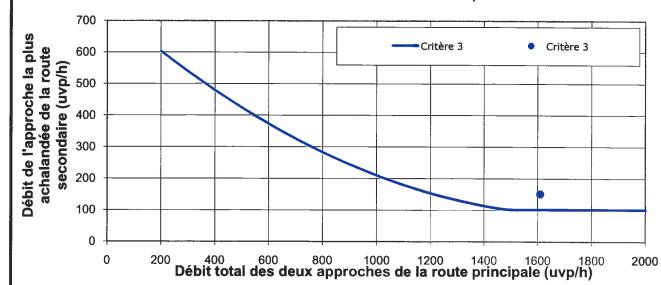

personnes km/h

Nombre de voies par approche:

Route Principale: 1

Route Seco	ondaire:	1
Route	Mouvement	Débit (u

Route	Mouvement	Débit (uvp/h)
	V1	2
Principale René-Lévesque	V2	868
ipal	V 3	0
rinc é-Le	V4	0
Ren	V 5	658
	V 6	81
	V7	0
e	V8	0
odai loire	V9	0
Secondaire Magloire	V10	121
ν̄ _ ·	V11	0
	V12	67



$$F_{V12} = \frac{0.5 (V4 + V6) + V5}{(V1 + V2 + V3 + V4 + V5 + V6)} = 0.43$$

$$x = V1 + V2 + V3 + V4 + V5 + V6 = 1609$$

$$y = MAX(V7 + V8 + F_{V9}(V9); V10 + V11 + F_{V12}(V12)) = 150.09$$

 $x < 1500 : y = 742 - 0.744 x + 0.00021 x^2$

Scénario 2 - prel. rev.

Préparé par

J-F Comeau, ing. Jr

Dossier

S04279A

Objet Justification de feux de circulation Vérifié par

Critère 3 Pointe PM

Date

26 octobre 2009

Page

1 de 1

V5 **V4**

Critère 3 : Débit minimal de véhicules durant une heure

Norme - Ouvrages routiers, MTQ, Signalisation Routière (Tome V), chapitre 8 - Révision Décembre 2005

1

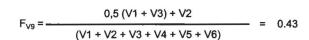
150 000 Population: 50 Vitesse:

 \geq

10 000 70

V12V11V10

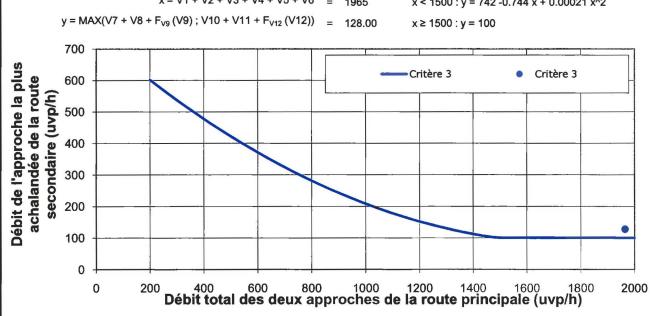
Magloire


personnes km/h

Nombre de voies par approche:

Route Principale: 1

Route Secondaire:


Route	Mouvement	Débit (uvp/h)
	V1	34
e due	V2	823
ipal	V3	0
rinc é-Lé	V4	0
Principale René-Lévesque	V5	937
	V6	171
	V7	0
وب	V8	0
loire	V9	0
Secondaire Magloire	V10	128
ος -	V11	0
	V12	0

$$F_{V12} = \frac{0.5 (V4 + V6) + V5}{(V1 + V2 + V3 + V4 + V5 + V6)} = 0.52$$

x = V1 + V2 + V3 + V4 + V5 + V6 = 1965

 $x < 1500 : y = 742 - 0.744 x + 0.00021 x^2$

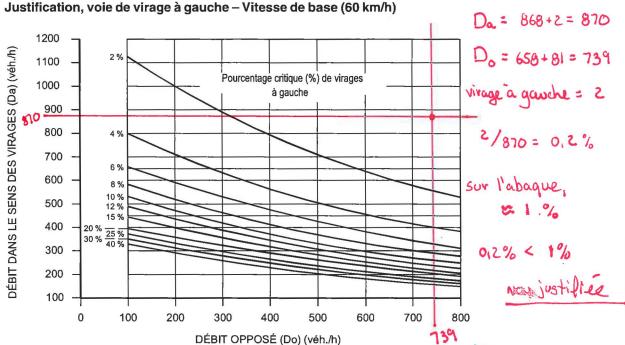
ANNEXE H JUSTIFICATION DES VOIES DE VIRAGE

504279B

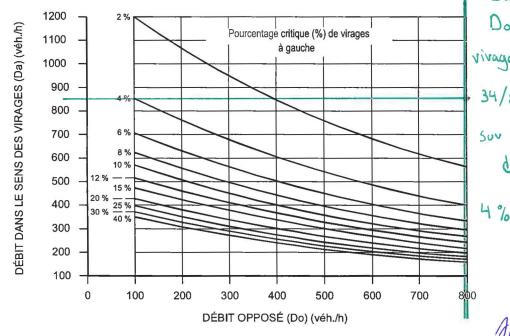
Transports Québec 🕶 🖼

CARREFOURS PLANS

int. Axe Revé-Léverque et Magloire


Tome I Chapitre 8 Page 27

2003 04 15


NORME

Sous-ministre adjointe Direction générale des infrastructures et des technologies

Abaque 8.8-6 Justification, voie de virage à gauche - Vitesse de base (50 km/h)

Da = 34 + 823 = 857

Do = 171+937= 1108

vivage à gauche = 34

34/857 = 4%

PM

Sur l'abaque, moins

de 2%

> moins de 2%

ANNEXE I ESTIMATIONS

Projet S04279	Pro	piet	S)42	79/	٩
----------------------	-----	------	---	-----	-----	---

SOMMAIRE DE L'ESTIMATION

AXE RENÉ LEVESQUE SCÉNARIO 1 SHERBROOKE

PRÉLIMINAIRE

ARTICLE No.	DESCRIPTION DES TRAVAUX	QUANTITÉ	UNITÉ	PRIX UNITAIRE	MONTANT \$
1.0	VOIRIE (incluant terrassement, excavation 2e classe et Roc, structure de chaussée, 2 couches enrobés bitumineux, bordures)				\$1 750 000.00
2.0	SIGNALISATION (incluant 2 feux de signalisation, marquage, panneaux de signalisation				\$350 000.00
	DRAINAGE (incluant drain de chaussée, puisards, regards et raccordements)				\$370 000.00
4.0	ÉCLAIRAGE (incluant lampadaires et filerie)				\$860 000.00
5.0	AMÉNAGEMENTS EXTÉRIEURS (incluant engazonnement,plantation d'arbres, piste cyclable, trottoirs de béton)				\$750 000.00
	IMPRÉVUS (25%)				\$1 020 000.00
	TOTAL				\$5 100 000.00

Projet 3	S04279A
----------	---------

SOMMAIRE DE L'ESTIMATION

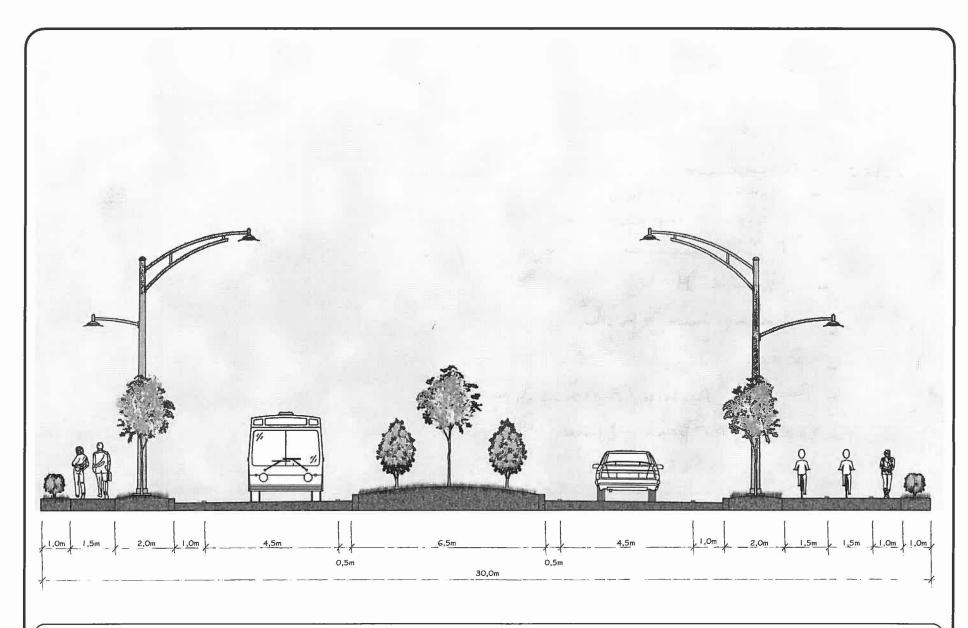
AXE RENÉ LEVESQUE SCÉNARIO 2 SHERBROOKE

PRÉLIMINAIRE

ARTICLE No.	DESCRIPTION DES TRAVAUX	QUANTITÉ	UNITÉ	PRIX UNITAIRE	MONTANT \$
1.0	VOIRIE (incluant terrassement, excavation 2e classe et Roc, structure de chaussée, 2 couches enrobés bitumineux. bordures)				\$1 500 000.00
2.0	SIGNALISATION (incluant 2 feux de signalisation, marquage, panneaux de signalisation				\$320 000.00
3.0	DRAINAGE (incluant drain de chaussée, puisards, regards et raccordements)				\$300 000.00
4.0	ÉCLAIRAGE (incluant lampadaires et filerie)				\$750 000.00
5.0	AMÉNAGEMENTS EXTÉRIEURS (incluant engazonnement,plantation d'arbres, piste cyclable, trottoirs de béton)				\$650 000.00
	IMPRÉVUS (25%)				\$880 000.00
	TOTAL				\$4 400 000.00

02.05-19

Projet S	04279A
----------	--------


SOMMAIRE DE L'ESTIMATION

AXE RENÉ LEVESQUE SCÉNARIO 2 - Option A SHERBROOKE

PRÉLIMINAIRE

ARTICLE No.	DESCRIPTION DES TRAVAUX	QUANTITÉ	UNITÉ	PRIX UNITAIRE	MONTANT \$
1.0	VOIRIE (incluant terrassement, excavation 2e classe et Roc, structure de chaussée, 2 couches enrobés bitumineux. bordures)				\$1 500 000.00
2.0	SIGNALISATION (incluant 1 feu de signalisation, marquage, panneaux de signalisation				\$170 000.00
3.0	DRAINAGE (incluant drain de chaussée, puisards, regards et raccordements)				\$300 000.00
4.0	ÉCLAIRAGE (incluant lampadaires et filerie)				\$750 000.00
5.0	AMÉNAGEMENTS EXTÉRIEURS (incluant engazonnement,plantation d'arbres, piste cyclable, trottoirs de béton)				\$650 000.00
	IMPRÉVUS (25%)				\$842 500.00
	TOTAL				\$4 200 000.00

ÉTUDE PRÉLIMINAIRE - CONCEPT D'AMÉNAGEMENT GÉOMÉTRIQUE DE L'AXE RENÉ-LÉVESQUE ET DU PROLONGEMENT DU BOUL. DE PORTLAND À SHERBROOKE

S04170A Avril 2008 CIMA

AXE RENÉ-LÉVESQUE

Vue en coupe-type Coupe Ra-Ra

Figure 2.2.3