

Maître de l'ouvrage Hydro-Québec Production

Responsable des études Hydro-Québec Équipement

Complexe de *la Romaine*

Annexes

Faune ichtyenne Habitats et production de poissons

Septembre 2007

Complexe de la Romaine Faune ichtyenne Habitats et production de poissons

Annexes

HYDRO-QUÉBEC ÉQUIPEMENT

UNITÉ ENVIRONNEMENT

et

GENIVAR SOCIÉTÉ EN COMMANDITE

SEPTEMBRE 2007

Liste des annexes

- Annexe 1. Données sur les habitats et la biologie des poissons du bassin versant de la Romaine (1969 à 2003).
- Annexe 2. Description de la méthode de caractérisation des habitats aquatiques par photointerprétation.
- Annexe 3. Liste des références employées pour établir les indices de préférence de profondeur des espèces cibles.
- Annexe 4. Méthodes statistiques utilisées pour déterminer les catégories de pentes jugées infranchissables par les poissons dans les tributaires non photointerprétés.
- Annexe 5. Définition des différentes classes de terres humides.
- Annexe 6. Estimation selon la méthode de Leslie de la densité et de la biomasse de poissons dans les tributaires.
- Annexe 7. Description des cours d'eau traversés par les routes d'accès.
- Annexe 8. Listes des obstacles identifiés dans la Romaine et ses tributaires photointerprétés.
- Annexe 9. Détermination d'un facteur de correction pour tenir compte de l'effet d'un changement de la température de l'eau sur la croissance et la production des poissons.
- Annexe 10. Simulations de Monte-Carlo sur la production de poissons dans les différents milieux du bassin de la Romaine.

Liste des cartes (EN POCHETTE)

- Carte 1 Couverture du domaine aquatique photointerprété
- Carte 2 (F1) Stations de pêches 2004 et 2005 Description des communautés de poissons
- Carte 2 (F2) Stations de pêches 2004 et 2005 Description des communautés de poissons
- Carte 3 (F1) Accessibilité des habitats pour les poissons en conditions actuelles et futures
- Carte 3 (F2) Accessibilité des habitats pour les poissons en conditions actuelles et futures

Données sur les habitats et la biologie des poissons du bassin versant de la Romaine (1969 à 2003)

Année	Engin	Espèce ¹	Données disponibles	Référence ²
1969-70	Seine de rivage Pêche sportive	SASA	Abondance numérique	Schiefer (1971)
			Poids Coefficient de condition Sexe Âge	
			Croissance Belation âge (mer) vs âge (smolt)	
1974	Filet maillant Pêche sportive	CACA CACO ESLU SAFO SANA SECO	Physico-chimie de l'eau Aire de répartition Rendement de pêche (CPUE) Abondance relative Longueur Poids Coefficient de condition Sexe Distribution de longueur	Bérubé et Guertin (1974)
1975	Non disponible	SASA	Relation longueur-poids Habitat de reproduction Habitats d'élevage des juvéniles Abondance relative Poids moyen Âge Croissance	Schiefer (1975)
1975	Filet expérimental	CACA CACO COCL COPL ESLU LOLO SAFO SANA SSAO	Rendement de pêche (CPUE) Distribution de longueur Relation longueur-poids	Fournier (1975)
1976	Filet maillant Pêche à la ligne	CACA CACO COCL COPL ESLU PRCY SAFO SANA SSAO	Habitat de reproductionHabitat d'alevinageAire de répartitionRendement de pêche (CPUE)Abondance relativeLongueurPoidsSexeÂgeCroissanceAlimentationCoefficient de conditionDistribution de longueurRelation longueur-poids	Hydro-Québec (1976)

ANNEXE 1. Données sur les habitats et la biologie des poissons du bassin versant de la Romaine (1969 à 2003).

ANNEXE 1 (suite). Données sur les habitats et la biologie des poissons du bassin versant de la Romaine (1969 à 2003).

Année	Engin	Espèce ¹	Données disponibles	Référence ²
1979	Filet expérimental	APQU	Physico-chimie de l'eau	LVLV (1979)
	Seine	CACA	Habitat de reproduction	
	Roténone	CACO	Habitat d'alevinage	
	Pêche à la mouche	COPL	Aire de répartition	
		ESLU	Abondance relative	
		GAAC	Longueur	
		LOLO	Poids	
		PECA	Coefficient de condition	
		PRCY	Âge	
		PUPU ?	Croissance	
		SAFO	Alimentation	
		SASA	Distribution de longueur	
		SASV ³	Relation longueur-poids	
		SECO		
		RHCA		
1980-82	Pêche sportive	SASA	Longueur	Bielak (1984)
	(Privé et publique)		Poids	
			Sexe	
			Âge en mer	
			Distribution d'âge	
			Relation années 1980-82 vs 1969-1971	
1984	Pêche expérimentale	APQU	Habitats reproduction	Marsan et associés,
	Pêche commerciale	CACA	Habitat d'alevinage	Lavalin (1984)
		CACO	Nombre de captures	
		COCL	Poids	
		COPL	Âge moyen	
		CUIN		
		GAAC		
		ESLU		
		LOLO		
		PECA		
		PRCY		
		RHCA		
		SAAP		
		SAFO		
		SANA		
		SASA		
		SECO		
		SSAO		
1986	N/A	SASA	Habitat d'élevage (juvéniles)	Gilles Shooner et
			Production de saumons (adultes)	Associés (1986)

Année	Engin	Espèce ¹	Données disponibles	Référence ²
2001	Filet maillant	ANRO	Abondance relative et numérique	GENIVAR (2002)
	Nasse	APQU	Distribution de longueurs	
	Trappe	CACA	Âge	
	Seine	CACO	Poids	
		COCL	Coefficient de condition	
		ESLU		
		LOLO		
		SAFO		
		SECO		
	Pêche électrique	SASA	Habitat de reproduction (saumon)	
	Pêche à la mouche		Habitat d'élevage (juvéniles)	
	Pêche au chalut		Densité/100 m ² (juvéniles)	
	Pêche sportive		Distribution de longueurs (smolts)	
			Taille de population (saumons adultes)	
			Production de saumons	
			Effort de pêche sportive (saumon)	
2001	Filet maillant	CACA	Habitat reproduction	Guay et coll. (2002)
	Filet-trappe	CACO	Rendement de pêche	
	Pêche électrique Seine	COPL	Abondance relative	
	de rivage	GAAC	Biomasse relative	
	Pêche à la ligne	LOLO	Longueur	
		PRCY	Poids	
		RHCA	Sexe	
		SAFO	Âge	
		SANA	Coefficient de condition	
		SECO		
		SSAO		
2003	Filet-trappe	CACA	Rendement de pêche (CPUE)	Belles-Isles et coll. (2004)
	Pêche à la mouche	CACO	Longueur	
	Filet maillant	COCL	Âge	
	Bourolle	ELSU	Sexe	
	Pêche électrique	GAAC	Habitat de reproduction (saumon)	
	Seine	LOLO		
		RHCA		
		SAFO		
		SASA		
		SECO		

ANNEXE 1 (suite). Données sur les habitats et la biologie des poissons du bassin versant de la Romaine (1969 à 2003).

La définition des codes d'identification des espèces de poissons est donnée au tableau 3-2.
Les références bibliographiques citées sont indiquées plus bas.

3 SASV : Salvelinus salvelinus, autre nom latin pour désigner l'omble chevalier (Salvelinus alpinus). ANNEXE 1(suite). Données sur les habitats et la biologie des poissons du bassin versant de la Romaine (1969 à 2003).

Références citées :

- BELLES-ISLES, M., PLOURDE, Y., PELLETIER, P., THÉBERGE, C. et THIBODEAU, P. 2004. Complexe de la Romaine – Aménagement intégral de la rivière Romaine. Étude préliminaire sur les débits réservés et la faune ichtyenne. Rapport de GENIVAR Groupe Conseil inc. pour Hydro-Québec. 134 p. et annexes.
- BÉRUBÉ, R. et GUERTIN, G. 1974. *Projets de centrales. Rapport préliminaire d'environnement. Rivière Romaine.* Hydro-Québec, Service hydraulique, Division des études spéciales et recherches. 38 p., planches et annexes.
- BIELAK, A. T. 1984. *Quebec North Shore Atlantic salmon stocks.* Ph D thesis. University of Waterloo, Waterloo, Ontario. 236 p.
- FOURNIER, H. 1975. *Inventaire ichtyologique des lacs de tête de la rivière Romaine*. Hydro-Québec, Direction Environnement. Dessau Environnement Ltée. R-5502-10. 24 p.
- GENIVAR. 2002. Aménagement hydroélectrique de la Romaine-1 Étude de la population de saumon atlantique de la rivière Romaine en 2001. Rapport de GENIVAR Groupe Conseil inc. pour Hydro-Québec. 119 p. et annexes.
- GILLES SHOONER ET ASSOCIÉS INC. 1986. *Fiche signalétique Saumon, rivière Romaine.* Rapport pour Hydro-Québec. 119 p. et annexes.
- GUAY, G., GENDRON, M. et BURTON, F. 2002. *Aménagement hydroélectrique de la Romaine-1. Étude de la faune ichtyenne*. Rapport d'Environnement Illimité inc. pour Hydro-Québec. 39 p. et annexes.
- HYDRO-QUÉBEC. 1976. Projet de dérivation Romaine-Churchill. Inventaires biophysiques préliminaires, été 1975. Rapport technique. Hydro-Québec, Direction Environnement, Groupe Écologie biophysique, Division inventaires et relevés. 183 p. et annexes.
- LALONDE, VALOIS, LAMARE, VALOIS ET ASS. INC. (LVLV). 1979. Étude intégrée d'environnement de la Romaine. Limnologie et ichtyofaune des bassins des rivières Saint-Jean et Romaine. Inventaires 1978 et 1979. Hydro-Québec, Direction Environnement, 125 p. et annexes.
- MARSAN ET ASSOCIÉS, LAVALIN. 1984. Étude intégrée d'environnement de la Romaine. Milieu aquatique. Répercussions de la variante préférentielle et mesures d'insertion correspondantes. Hydro-Québec, Vice-présidence Environnement.

- ANNEXE 1(fin). Données sur les habitats et la biologie des poissons du bassin versant de la rivière Romaine (1969 à 2003).
- SCHIEFER, K. 1971. Ecology of Atlantic salmon with special reference to occurrence and abundance of grilse, North Shore of St. Lawrence Rivers. Ph D. thesis, University of Waterloo. 129 p.
- SCHIEFER, K. 1975. *Atlantic salmon management study of the Romaine River.* A report for Quebec Iron and Titanium Corporation. Sorel, Quebec. Beak Consultants Ltd. 16 p.

Description de la méthode de caractérisation des habitats aquatiques par photointerprétation

ANNEXE 2. Description de la méthode de caractérisation des habitats aquatiques par photointerprétation.

La photointerprétation des habitats aquatiques dans les cours d'eau a consisté à subdiviser ces milieux fluviaux en unités ou segments homogènes d'habitats en fonction des faciès d'écoulement et de la granulométrie des substrats, tels que définis plus bas.

Cours principal de la Romaine

La photointerprétation du cours principal de la Romaine a été réalisée en subdivisant le milieu aquatique en unités homogènes d'habitats. Il a ainsi été possible d'identifier 12 habitats types (tableau 1), représentant chacun une combinaison d'un faciès d'écoulement donné (tableau 2) et d'une granulométrie particulière (tableau 3).

La méthode de subdivision en unités homogènes d'habitats s'effectue uniquement lorsque la taille d'un cours d'eau est suffisante pour distinguer plusieurs faciès d'écoulement et plusieurs compositions granulaires sur l'ensemble de la largeur du tronçon examiné. Une unité est généralement plus petite qu'un segment homogène et peut correspondre à des zones peu profondes situées près des rives, au thalweg ou, encore, à des hauts-fonds au centre de la rivière.

Habitat type	Code d'habitat	Faciès d'écoulement ¹	Substrat dominant ²	Substrat sous-dominant ²
Chute	Ct	Ct	R	B [×]
Cascade	Ca	Ca	R, B [×]	В
Rapide 1	Ra1	Ra	B, B ^{x,} , R	G
Rapide 2	Ra2	Ra	B, G	C, G, R
Seuil 1	Se1	Se	B, G	C, B [×] , R
Seuil 2	Se2	Se	G, C	B, V
Seuil 3	Se3	Se	C, V	G, S
Chenal 1	Ch1	Ch	B, G, B [×]	C, R
Chenal 2	Ch2	Ch	C, V	S, G, B
Chenal 3	Ch3	Ch	V, S	C, G
Bassin 1 ³	Ba1	Ва	V, C, G	S, R, B, B ^x
Bassin 2	Ba2	Ва	V, S	-

Tableau 1. Clé des habitats types photointerprétés dans la Romaine en 2004 et 2005.

1 Voir le tableau 2 plus bas pour la description des faciès d'écoulement.

2 Voir le tableau 3 plus bas pour les codes d'abréviation des classes granulométriques.

3 Le bassin 1 correspond généralement à la zone de transition entre une zone de rapides et une zone d'écoulement lent, tel un chenal, un bassin de type 2, etc.

ANNEXE 2 (suite). Description de la méthode de caractérisation des habitats aquatiques par photointerprétation.

Tributaires

Pour les tributaires, la subdivision des habitats a été réalisée par segments homogènes. Ceux-ci ont une forme plutôt rectangulaire et leur largeur correspond à celle du cours d'eau.

Faciès d'écoulement	Description
Chute (Ct)	Segment d'un cours d'eau où le lit présente une dénivellation brusque. Ce segment est alors constitué de roches en place avec quelques fois de très gros blocs. Il s'agit d'un obstacle souvent infranchissable pour les poissons qui se déplacent pour s'alimenter ou migrent pour se reproduire.
Cascade (Ca)	Rupture de pente en forme d'escalier où dominent les blocs et le roc comme composantes du lit. Ce type d'obstacle est habituellement franchissable quoiqu'il puisse être, à certains endroits, insurmontable par les poissons.
Rapide (Ra)	Légère rupture de pente où le courant est rapide et la surface de l'eau est brisée par la présence de matériaux grossiers qui affleurent. La granulométrie du lit s'échelonne généralement des galets aux gros blocs.
Seuil (Se)	Secteur peu profond constituant un haut-fond ou une légère rupture de pente du lit du cours d'eau. L'écoulement y est assez rapide et la granulométrie se situe habituellement dans la gamme des graviers, cailloux et galets.
Chenal (Ch)	Segment où la profondeur d'eau, d'environ 1 m et plus, est constante. Le courant varie de modéré à lent et la surface de l'eau demeure lisse. La granulométrie des matériaux varie du sable au galet.
Bassin (Ba)	Zone d'eau profonde localisée souvent au pied d'un obstacle et correspondant la plupart du temps à un élargissement du cours d'eau. Le courant y est lent, favorisant ainsi la sédimentation. Les bassins intercalés dans des sections de chutes et cascades font cependant exception à cette définition : de dimensions plus restreintes, ils sont constitués principalement de roc et de matériaux grossiers.
Lac (La)	Section lentique (eaux calmes) correspondant à un élargissement du cours d'eau.
Estuaire (Es)	Embouchure d'un cours d'eau, dessinant dans le rivage une sorte de golfe évasé et profond.

Tableau 2. Description des faciès d'écoulement utilisés pour caractériser les cours d'eau.

Source : Adapté de Boudreault (1984).

Tableau 3. Classes granulométriques utilisées pour la description du substrat.

Classe granulométrique	Code	Diamètre (mm)
Roc	R	Roche mère
Gros bloc	B ^x	> 1000
Bloc	В	250 à 1000
Galet	G	80 à 250
Caillou	С	40 à 80
Gravier	V	5 à 40
Sable	S	0,125 à 5
Limon	L	< 0,125

Source : Adapté de Boudreault (1984).

ANNEXE 2 (suite). Description de la méthode de caractérisation des habitats aquatiques par photointerprétation.

Référence citée :

BOUDREAULT, A. 1984. *Méthodologie utilisée pour la photointerprétation des rivières à saumon de la Côte-Nord*. Rapport de Gilles Shooner inc. au ministère des Loisirs, de la Chasse et de la Pêche. 64 p.

Liste des références employées pour établir les indices de préférence de profondeur des espèces cibles

- ANNEXE 3. Liste des références employées pour établir les indices de préférence de profondeur des espèces cibles.
- BEECHER, H. A., CARLETON J. P., JOHNSON T. H. 1995. Utility of depth and velocity preferences for predicting steelhead parr distribution at different flows. *Transaction of the American Fisheries Society*. Vol. 124 : pp. 935-938
- EDWARDS, E. A. 1983. Habitat suitability index models: Longnose sucker. U.S. Dept. Int., Fish Wildl. Serv. FWS/OBS-82/10.35. 21 pp.
- LAMOUREUX, N. SOUCHON, Y. 2002. Simple predictions of insream habitat model outputs for fish habitat guilds in large streams. *Freshwater Biology*. Vol. 47 : pp. 1531-1542.
- LAMOUREUX, N., CAPRA, H. 2002. Simple predictions of instream habitat model outputs for target fish populations. *Freshwater Biology.* Vol. 47 : pp. 1543-1556.
- LAMOUREUX, N., CAPRA, H., POUILLY, M., SOUCHON, Y. 1999. Fish habitat preferences in large streams of southern France. *Freshwater Biology*. Vol. 42 : pp. 673-687.
- RALEIGH, R. F. 1982. Habitat suitability index models: Brook trout. U.S. Fish and Wildlife Service. FWS/OBS-82/10.24. 50 pp.
- SABATON, C. 2002. Development and use of fish habitat and population dynamics models as management tools for hydropower plants: Overview of Électricité de France Expérience. *In* proceedings of the conference Fourth International Ecohydraulics Symposium, Cape Toxn, South Africa.
- SCRUTON, D. A., HEGGENES, J., VALENTIN, S., HARBY, A., BAKKEN, T. H. 1998. Field sampling design and spatial scale in habitat-hydraulic modelling: comparaison of three models. *Fisheries Management and Ecology*. Vol. 5 : pp. 225-240
- SCRUTON, D. A., S. C. RILEY, B. A. BENNET, F. T. BROWDRING and K. D. CLARKE. 2000. A review of habitat suitability criteria applicable to four salmonid species in Newfoudland, Canada. *Canadian Manuscript Report of Fisheries and Aquatic Sciences*. No. 2548: vi + 56 p + appendices
- TRIAL, J. G., WADE, C. S., STANLEY, J. G., NELSON, P. C. 1983. Habitat suitability information: Common shiner. U.S. Dept. Int., Fish Wildl. Serv. FWS/OBS-82/10.40. 22 pp.
- TWONEY, K. A., WILLIAMSON, K. L., and NELSON, P. C. 1984. Habitat suitability index models and instream flow suitability curves: White sucker. U.S. Fish Wildl. Serv. FWS/OBS-82/10.64. 56 pp.

Méthodes statistiques utilisées pour déterminer les catégories de pentes jugées infranchissables par les poissons dans les tributaires non photointerprétés

ANNEXE 4. Méthodes statistiques utilisées pour déterminer les catégories de pentes jugées infranchissables par les poissons dans les tributaires non photointerprétés.

Deux méthodes ont été utilisées pour déterminer la valeur seuil de la pente. D'abord à partir d'une description des valeurs mesurées, puis à partir d'une projection réaliste sur les autres obstacles non caractérisés.

La première méthode est celle des « Box-and-Whisker », laquelle consiste en une représentation graphique de la distribution des données observées (figure 4-A). Celles-ci sont d'abord divisées en quatre groupes égaux (quartile) et une boîte, dessinée au-dessus d'un axe et représentant les valeurs de pentes, couvre 50 % de celles observées. Une ligne verticale dans la boîte représente la médiane, valeur qui subdivise l'échantillon en deux parties égales. Un « X » dans la boîte représente la moyenne. Deux lignes horizontales de part et d'autre de la boîte et terminées par une petite marque verticale représentent les limites englobant 95 % des observations. Les données se situant au-delà de ces limites sont représentées individuellement par des carrés et peuvent être considérées comme des observations possiblement aberrantes parce que situées à plus de 1,5 fois la valeur d'un quartile (étendue des pentes divisée en quatre parties égales), de part et d'autre de la boîte.

Les données de pentes pour les obstacles infranchissables ont été comparées par cette méthode de représentation graphique avec celles des obstacles jugés franchissables, et ce, pour chaque espèce étalon séparément (ouananiche et omble de fontaine). C'est à partir de ces représentations que la valeur seuil limite de l'échantillon a été établie. Comme les deux « Boxand Whisker » se recoupent, la valeur retenue est celle qui permet de discriminer le mieux possible les chutes ou cascades franchissables ou non.

Le second traitement fait appel aux calculs des intervalles de confiance selon la méthode de comparaison multiple de Tukey dans le but d'estimer quelle est la valeur seuil limite pour les obstacles non caractérisés. Cette technique a été choisie parce que les données recueillies n'étaient pas destinées initialement à ce calcul. La méthode dite du « Least Significant Differences » (LSD) est habituellement plus appropriée pour ce faire. La méthode de Tukey demeure toutefois plus conservatrice.

On obtient ainsi deux valeurs moyennes, avec leurs intervalles de confiance à 95 % respectifs, pour les chutes (ou cascades) franchissables ou non. La valeur limite de pente est située entre les deux valeurs moyennes, équidistantes des limites des intervalles de confiance respectifs.

L'hypothèse à poser pour recourir à ces estimations moyennes et aux intervalles de confiance associés est à l'effet que l'échantillon des chutes ou cascades caractérisées est représentatif de l'ensemble des obstacles ailleurs dans les tributaires de la Romaine. On se place ainsi dans une situation d'analyse à facteurs fixés (un certain nombre de chutes sont caractérisées), alors que les facteurs sont plutôt aléatoires (on ne peut être sûr que les autres chutes sont similaires). Cette précision, bien que théorique, est nécessaire sur le plan pratique pour reconnaître les limites de l'exercice exécuté.

0344_ge_249_SH_f4-a_070911.fh10

Définition des différentes classes de terres humides (tirée de Lynch-Stewart et coll., 1996)

- ANNEXE 5. Définition des différentes classes de terres humides (tirée de Lynch-Stewart et coll., 1996).
- Eaux peu profondes : Il s'agit de milieux humides qui font la transition entre les terres humides normalement saturées d'eau ou imbibées d'eau de manière saisonnière (bog, fen, marais ou marécage) d'une part et le milieu lacustre, d'autre part, où la nappe d'eau a généralement une zone profonde développée. Les eaux peu profondes sont sujettes aux processus aquatiques qu'on trouve dans l'épilimnion ou dans la zone infralittorale des lacs : échange d'éléments nutritifs et de gaz, oxydation et décomposition. Elles sont souvent colonisées par des herbiers émergents, flottants ou submergés.
- Marais : Un marais est un milieu humide qui retient périodiquement une eau de surface peu profonde dont l'épaisseur peut fluctuer selon les jours, les saisons ou les années en raison des marées, des inondations, de l'évapotranspiration ou des pertes de suintement, ce qui expose souvent des battures et des vasières. Dans un marais, l'eau provient du captage de surface, des cours d'eau qui s'y déversent, des précipitations, des ondes de tempête, des arrivées d'eau souterraine et de l'action des marées.
- Bogs : Un bog est une tourbière dont la nappe phréatique se situe généralement au niveau ou près de la surface du bog, qui peut être surélevée ou au même niveau que les terres adjacentes, ne subissant pratiquement aucune influence des eaux souterraines riches en éléments nutritifs provenant des sols minéraux avoisinants et est donc généralement acide et pauvre en éléments nutritifs.
- Fens : Un fen est une tourbière où la nappe phréatique se situe généralement à la surface ou quelques centimètres au-dessous. L'eau qui atteint le fen a traversé un sol minéralisé et est donc enrichie en minéraux (elle est minérotrophe). La nappe phréatique n'est pas stagnante, mais s'écoule très lentement par suintement et, dans certains cas, dans des chenaux ouverts. Les matières dominantes sont les carex et de la mousse de tourbe brune d'épaisseur variable modérément décomposés. Les sols sont surtout des mésisols et des cryosols organiques.
- Marécages : Un marécage se défini comme une terre humide couverte de végétation ligneuse (arbres ou arbustes) influencée par les eaux souterraines minérotrophes et qui se trouve sur des sols soit minéraux soit organiques.

Référence citée :

LYNCH-STEWART, P., NEICE, P., RUBEC, C. et KESSEL-TAYLOR, I. 1996. La politique fédérale sur la conservation des terres humides. Guide de mise en œuvre à l'intention des gestionnaires des terres fédérales. Direction de la conservation de la faune, Service canadien de la faune, Environnement Canada. 37 p.

Estimation selon la méthode de Leslie de la densité et de la biomasse de poissons dans les tributaires

ANNEXE 6. Estimation selon la méthode de Leslie de la densité et de la biomasse de poissons dans les tributaires.

La méthode de Leslie consiste à mettre en relation les captures par unité d'effort (CPUE) durant l'intervalle de temps t (C_r/f_1) et les captures cumulatives au temps t (ΣC *ajusté*). La droite qui en résulte a une pente qui représente le potentiel de capture (q). Le point d'intersection de cette droite sur l'abscisse représente une estimation de la population initiale N_0 , soit la quantité totale de poissons qu'il est possible de pêcher dans une étendue d'eau.

Pour l'ensemble des parcelles fermées, l'analyse de régression a été effectuée sur le nombre de poissons capturés lors de quatre passages de pêche, permettant ainsi d'en estimer le nombre absolu (N_0). Le nombre de poissons capturés au premier passage est par la suite divisé par N_0 afin d'obtenir l'efficacité de pêche au premier passage. Par extrapolation, cette efficacité de pêche est affectée à l'ensemble des parcelles (ouvertes et fermées), afin de connaître la densité numérique, puis pondérale (densité numérique multipliée par la masse moyenne) de chacune des espèces de poissons présentes dans les tributaires.

Les droites de Leslie ayant servi à estimer la densité de poissons dans les tributaires sont présentées par espèce au tableau 1. Pour les espèces de poissons peu nombreux, dont la régression n'est pas significative (p < 0,05) et/ou qui explique difficilement la relation entre la CPUE et $\sum Cajusté$ (r² < 0,5), l'efficacité de pêche au premier passage de tous les poissons réunis a été retenue pour en estimer la densité. Le tableau 2 présente le sommaire des résultats obtenus au terme des analyses.

Tableau 1.	Analyses de régression effectuée selon la méthode de Leslie pour déterminer le
	nombre absolu de poissons capturés dans les parcelles fermées des tributaires
	échantillonnés en 2004 et 2005 dans le bassin de la Romaine.

Anguille à Amerique						
Superficie (m²)	Effort de pêche (h)	Passage (n)	Nombre total de captures (Ct)	CPUE (c/min)	Nombre de captures ajusté (∑C <i>ajusté</i>)¹	
4034	10,90	1	314	28,81	157	
4034	9,73	2	160	16,44	394	
4034	13,65	3	107	7,84	527,5	
4034	8,98	4	65	7,24	613,5	
1. \sum Cajusté = Ct _n /2 + Ct _{n-1} Paramètres de la régression						
Coefficient de détermination r ²	0,9767					
Erreur-type	1,8815					
Observations	4					
Analyse de variance						
	Degré	Somme	Moyenne	F	Valour oritiquo do E	
	de liberté	des carrés	des carrés	,	valeur chilique de r	
Régression	1,0000	297,1734	297,1734	83,9421	0,0117	
Résidus	2,0000	7,0804	3,5402	0,0000	0,0000	
Total	3,0000	304,2538	0,0000	0,0000	0,0000	
Statistiques						
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de co	onfiance 9
					Inférieure	Supérieu
Constante (B ₀)	36,2355	2,4933	14,5329	0,0047	25,5075	46,9635
Variable (B ₁)	-0,0500	0,0055	-9,1620	0,0117	-0,0735	-0,0265

Tableau 1 (suite).Analyses de régression effectuée selon la méthode de Leslie pour
déterminer le nombre absolu de poissons capturés dans les parcelles
fermées des tributaires échantillonnés en 2004 et 2005 dans le bassin de
la Romaine.

Meunier rouge						_
Superficie (m²)	Effort de pêche (h)	Passage (n)	Nombre total de captures (Ct)	CPUE (c/min)	Nombre de captures ajusté (∑C <i>ajusté</i>)¹	
4034 4034 4034	10,90 9,73 13,65 8,98	1 2 3	22 10 3 2	2,02 1,03 0,22 0,22	11 27 33,5 36	
1. $\sum Cajusté = Ct_1/2 + Ct_{n-1}$ Paramètres de la régression	0,90	4	2	0,22		_
Coefficient de détermination r ² Erreur-type Observations	0,9751 0,1650 4					
Analyse de variance						_
	Degré de liberté	Somme des carrés	Moyenne des carrés	F	Valeur critique de F	
Régression Résidus Total	1,0000 2,0000 3,0000	2,1309 0,0545 2,1853	2,1309 0,0272 0,0000	78,2435 0,0000 0,0000	0,0125 0,0000 0,0000	_
Statistiques						
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de co Inférieure	nfiance 95 % Supérieure
Constante (B ₀) Variable (B ₁)	2,8867 -0,0750	0,2422 0,0085	11,9164 -8,8455	0,0070 0,0125	1,8444 -0,1114	3,9290 -0,0385
Meunier noir Superficie (m²)	Effort de pêche	Passage (n)	Nombre total de captures (Ct)	CPUE (c/min)	Nombre de captures ajusté (∑C <i>ajusté</i>)¹	_
4034	10.90	1	33	3.03	16.5	
4034 4034 4034	9,73 13,65 8,98	2 3 4	10 11 1	1,03 0,81 0,11	38 48,5 54,5	
1. \sum Cajusté = Ct _n /2 + Ct _{n-1} Paramètres de la régression						_
Coefficient de détermination r ² Erreur-type Observations	0,9647 0,2880 4					
Analyse de variance						
	Degré de liberté	Somme des carrés	Moyenne des carrés	F	Valeur critique de F	_
Régression Résidus Total	1,0000 2,0000 3,0000	4,5369 0,1659 4,7028	4,5369 0,0829 0,0000	54,7072 0,0000 0,0000	0,0178 0,0000 0,0000	
Statistiques						
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de co Inférieure	nfiance 95 % Supérieure
Constante (B ₀) Variable (B ₁)	4,1416 -0,0736	0,4175 0,0100	9,9199 -7,3964	0,0100 0,0178	2,3452 -0,1164	5,9380 -0,0308
Tableau 1 (suite).Analyses de régression effectuée selon la méthode de Leslie pour
déterminer le nombre absolu de poissons capturés dans les parcelles
fermées des tributaires échantillonnés en 2004 et 2005 dans le bassin de
la Romaine.

eunier sp						_
Superficie (m²)	Effort de pêche (h)	Passage (n)	Nombre total de captures (Ct)	CPUE (c/min)	Nombre de captures ajusté (∑C <i>ajusté</i>)¹	
4034 4034 4034	10,90 9,73 13,65	1 2 3	55 20 32	5,05 2,05 2 34	27,5 65 91	_
4034	8,98	4	11	1,22	112,5	
1. $\sum Cajusté = Ct_n/2 + Ct_{n-1}$ Paramètres de la régression						-
Coefficient de détermination r ² Erreur-type Observations	0,8365 0,8197 4					
Analyse de variance						_
	Degré de liberté	Somme des carrés	Moyenne des carrés	F	Valeur critique de F	
Régression Résidus Total	1,0000 2,0000 3,0000	6,8749 1,3439 8,2188	6,8749 0,6720 0.0000	10,2310 0,0000 0,0000	0,0854 0,0000 0,0000	_
Statistiques	0,0000	0,2100	0,0000	0,0000	0,0000	-
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de cor	nfiance 95 9
Constante (B ₀) Variable (B,)	5,7297 -0,0414	1,0414 0,0129	5,5017 -3,1986	0,0315 0,0854	1,2487 -0,0970	10,2106 0,0143
Superficie (m²)	Effort de pêche	Passage (n)	Nombre total de captures	CPUE (c/min)	Nombre de captures ajusté	_
1001	(h)		(Ct)	((∑Cajusté)'	_
4034 4034	10,90 9 73	1	15 19	1,38 1,95	7,5 24.5	
4034	13,65	3	7	0,51	37,5	
4034	8,98	4	4	0,45	43	
1. $\sum Cajusté = Ct_n/2 + Ct_{n-1}$ Paramètres de la régression						
Coefficient de détermination r ² Erreur-type Observations	0,4911 0,6326 4					
Analyse de variance						
	Degré de liberté	Somme des <u>carré</u> s	Moyenne des carrés	F	Valeur critique de F	_
Régression	1,0000	0,7722	0,7722	1,9298	0,2992	
Residus Total	2,0000 3,0000	0,8003 1,5725	0,4001 0,0000	0,0000 0,0000	0,0000 0,0000	_
Statistiques						
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de cor Inférieure	nfiance 95 % Supérieu
Constante (B₀) Variable (B.)	1,9754 -0,0321	0,7234 0,0231	2,7306 -1,3892	0,1120 0,2992	-1,1373 -0,1317	5,0881 0,0674
- 1/	, -	, -	,	,	, -	,

Tableau 1 (suite). Analyses de régression effectuée selon la méthode de Leslie pour déterminer le nombre absolu de poissons capturés dans les parcelles fermées des tributaires échantillonnés en 2004 et 2005 dans le bassin de la Romaine.

Grand brochet						
Superficie (m ²)	Effort de pêche (h)	Passage (n)	Nombre total de captures (Ct)	CPUE (c/min)	Nombre de captures ajusté (∑C <i>ajusté</i>)¹	3
4034 4034 4034 4034	10,90 9,73 13,65 8,98	1 2 3 4	5 1 0 2	0,46 0,10 0,00 0.22	2,5 5,5 6 7	
1. \sum Cajusté = Ct _n /2 + Ct _{n-1} Paramètres de la régression	0,00	•	_	0,22	·	_
Coefficient de détermination r ² Erreur-type Observations	0,5447 0,1631 4					
Analyse de variance						
	Degré de liberté	Somme des carrés	Moyenne des carrés	F	Valeur critique de F	-
Régression Résidus Total	1,0000 2,0000 3,0000	0,0636 0,0532 0,1168	0,0636 0,0266 0,0000	2,3928 0,0000 0,0000	0,2620 0,0000 0,0000	_
Statistiques						
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de co Inférieure	onfiance 95 % Supérieure
Constante (B ₀) Variable (B ₁)	0,5909 -0,0752	0,2680 0,0486	2,2050 -1,5469	0,1583 0,2620	-0,5621 -0,2844	1,7440 0,1340
Épinoche à trois épines Superficie (m²)	Effort de pêche (h)	Passage (n)	Nombre total de captures (Ct)	CPUE (c/min)	Nombre de captures ajusté (∑C <i>ajusté</i>)¹	3
4034	10,90	1	4	0,37	2	_
4034 4034 4034	9,73 13,65 8,98	2 3 4	5 4 3	0,51 0,29 0,33	6,5 11 14,5	
1. ∑C <i>ajusté</i> = Ct _n /2 + Ct _{n-1} Paramètres de la régression						
Coefficient de détermination r ² Erreur-type Observations	0,1867 0,1061 4					
Analyse de variance						
	Degré de liberté	Somme des carrés	Moyenne des carrés	F	Valeur critique de F	-
Régression Résidus Total	1,0000 2,0000 3,0000	0,0052 0,0225 0,0277	0,0052 0,0113 0,0000	0,4591 0,0000 0,0000	0,5679 0,0000 0,0000	_
Statistiques						
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de co Inférieure	onfiance 95 % Supérieure
Constante (B ₀) Variable (B ₁)	0,4419 -0,0076	0,1096 0,0113	4,0326 -0,6776	0,0563 0,5679	-0,0296 -0,0562	0,9134 0,0409

Tableau 1 (suite).Analyses de régression effectuée selon la méthode de Leslie pour
déterminer le nombre absolu de poissons capturés dans les parcelles
fermées des tributaires échantillonnés en 2004 et 2005 dans le bassin de
la Romaine.

Lotte						
Superficie (m²)	Effort de pêche (h)	Passage (n)	Nombre total de captures (Ct)	CPUE (c/min)	Nombre de captures ajusté (∑C <i>ajusté</i>)¹	_
4034 4034 4034	10,90 9,73 13,65	1 2 3	59 19 7	5,41 1,95 0,51	29,5 68,5 81,5	
4034 1. ∑Cajusté = Ct _n /2 + Ct _{n-1} Paramètres de la régression	0,90	4	3	0,33	60,5	_
Coefficient de détermination r ² Erreur-type Observations	0,9971 0,1541 4					
Analyse de variance						
	Degré de liberté	Somme des carrés	Moyenne des carrés	F	Valeur critique de F	_
Hegression Résidus Total	1,0000 2,0000 3,0000	16,5785 0,0475 16,6260	16,5785 0,0237 0,0000	698,2843 0,0000 0,0000	0,0014 0,0000 0,0000	_
Statistiques						
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de con	nfiance 95 % Supérieure
Constante (B_0) Variable (B_1)	8,1105 -0,0911	0,2418 0,0034	33,5372 -26,4251	0,0009 0,0014	7,0699 -0,1059	9,1510 -0,0763
Épinoche à neuf épines Superficie (m²)	Effort de pêche (h)	Passage (n)	Nombre total de captures (Ct)	CPUE (c/min)	Nombre de captures ajusté (∑C <i>ajusté</i>)¹	_
4034	10,90	1	7	0,64	3,5	_
4034 4034 4034	9,73 13,65 8,98	2 3 4	5 6 2	0,51 0,44 0,22	9,5 15 19	
1. $\sum Cajusté = Ct_n/2 + Ct_{n-1}$ Paramètres de la régression				- ,		_
Coefficient de détermination r ^e Erreur-type Observations	0,9211 0,0605 4					
Analyse de variance						_
	Degré de liberté	Somme des carrés	Moyenne des carrés	F	Valeur critique de F	_
Régression Résidus Total	1,0000 2,0000 3,0000	0,0854 0,0073 0,0927	0,0854 0,0037 0,0000	23,3630 0,0000 0,0000	0,0402 0,0000 0,0000	_
Statistiques						
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de con Inférieure	nfiance 95 % Supérieure
Constante (B ₀)	0,7487	0,0680	11,0172	0,0081	0,4563	1,0411
Variable (B.)	-0.0250	0.0052	-4.8335	0.0402	-0.0473	-0.0027

Tableau 1 (suite). Analyses de régression effectuée selon la méthode de Leslie pour déterminer le nombre absolu de poissons capturés dans les parcelles fermées des tributaires échantillonnés en 2004 et 2005 dans le bassin de la Romaine.

Superficie (m²)	Effort de pêche (h)	Passage (n)	Nombre total de captures (Ct)	CPUE (c/min)	Nombre de captures ajusté (∑C <i>ajusté</i>)¹	
4034 4034 4034 4034	10,90 9,73 13,65 8,98	1 2 3 4	105 64 38 22	9,63 6,58 2,78 2,45	52,5 137 188 218	_
1. $\sum Cajusté = Ct_n/2 + Ct_{n-1}$ Paramètres de la régression	0,00	•		_,	2.0	-
Coefficient de détermination r ² Erreur-type Observations	0,9671 0,7573 4					
Analyse de variance						_
	Degré de liberté	Somme des carrés	Moyenne des carrés	F	Valeur critique de F	
Régression Résidus Total	1,0000 2,0000 3,0000	33,6991 1,1471 34,8462	33,6991 0,5736 0,0000	58,7532 0,0000 0,0000	0,0166 0,0000 0,0000	_
Statistiques						
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de cor	nfiance 95 %
Constante (B ₀)	12,2493	0,9753	12,5600	0,0063	8,0530	16,4455
	Effort	Passaga	Nombre total		Nombre de captures	_
(m ²)	de pêche (h)	(n)	de captures (Ct)	(c/min)	ajusté (∑C <i>ajusté</i>)¹	
4034	10,90	1	333	30,55	166,5	-
4034	9,73	2	160	16,44	413	
4034 4034	13,65	3	92 54	6,74 6.01	539	
1. $\sum Cajusté = Ct_n/2 + Ct_{n-1}$ Paramètres de la régression	0,00	Ŧ		0,01	012	_
Coefficient de détermination r ² Erreur-type Observations	0,9836 1,7969 4					
Analyse de variance						
	Degré de liberté	Somme des carrés	Moyenne des carrés	F	Valeur critique de F	-
Régression	1,0000	386,4397	386,4397	119,6865	0,0083	_
Résidus	2,0000	6,4575	3,2288	0,0000	0,0000	
Total	3,0000	392,8973	0,0000	0,0000	0,0000	-
Statistiques	Coofficients	Free we to re-	Ctatiotique t	Drobobilité	Limite ou equil de est	fiance OF %
Parametre	Coenicients	<i>⊏rreur-ιype</i>	Statistique t	Frodadiilte	Linite au seuil de cor	Supérieure
Constanta (D)	10 0465	2 4640	16 0465	0.0029	00 4400	50 0500
	40.0400	2.4049	10.2400	0.0030	29,4408	50.6522

Tableau 1 (suite).Analyses de régression effectuée selon la méthode de Leslie pour
déterminer le nombre absolu de poissons capturés dans les parcelles
fermées des tributaires échantillonnés en 2004 et 2005 dans le bassin de
la Romaine.

Saumon atlantique						
Superficie (m²)	Effort de pêche (h)	Passage (n)	Nombre total de captures (Ct)	CPUE (c/min)	Nombre de captures ajusté (∑C <i>ajusté</i>)¹	
4034 4034 4034	10,90 9,73 13,65	1 2 3	1 0 0	0,09 0,00 0,00	0,5 1 1	_
1. ∑Cajusté = Ct _n /2 + Ct _n . Paramètres de la régression	0,90	4	0	0,00	I	_
Coefficient de détermination r ² Erreur-type Observations	1,0000 0,0000 4					
Analyse de variance						_
	Degré de liberté	Somme des carrés	Moyenne des carrés	F	Valeur critique de F	_
Régression Résidus Total	1,0000 2,0000 3,0000	0,0063 0,0000 0,0063	0,0063 0,0000 0,0000	- 0,0000 0,0000	0,0000 0,0000	_
Statistiques						
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de co Inférieure	nfiance 95 % Supérieur
Constante (B _o) Variable (B ₁)	0,1835 -0,1835	0,0000 0,0000	65535,0000 65535,0000	#NOMBRE! #NOMBRE!	0,1835 -0,1835	0,1835 -0,1835
Duananiche Superficie (m²)	Effort de pêche (b)	Passage (n)	Nombre total de captures (Ct)	CPUE (c/min)	Nombre de captures ajusté (∑C <i>ajusté</i>)¹	_
4034	10.90	1	5	0.46	2.5	_
4034 4034 4034	9,73 13,65 8 98	2 3 4	1 0	0,10 0,00 0,00	5,5 6	
1. \sum Cajusté = Ct _n /2 + Ct _{n-1} Paramètres de la régression	0,00			0,00		_
Coefficient de détermination r ² Erreur-type Observations	0,9930 0,0223 4					
Analyse de variance						
	Degré de liberté	Somme des carrés	Moyenne des carrés	F	Valeur critique de F	_
Régression Résidus Total	1,0000 2,0000 3,0000	0,1412 0,0010 0,1422	0,1412 0,0005 0,0000	283,0025 0,0000 0,0000	0,0035 0,0000 0,0000	_
Statistiques						
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de co Inférieure	nfiance 95 % Supérieure
Constante (B ₀) Variable (B ₁)	0,7847 -0,1289	0,0399 0,0077	19,6684 -16,8227	0,0026 0,0035	0,6131 -0,1618	0,9564 -0,0959

Tableau 1 (fin).Analyses de régression effectuée selon la méthode de Leslie pour
déterminer le nombre absolu de poissons capturés dans les parcelles
fermées des tributaires échantillonnés en 2004 et 2005 dans le bassin de
la Romaine.

Salmonidae*						
Superficie (m²)	Effort de pêche	Passage (n)	Nombre total de captures (Ct)	CPUE (c/min)	Nombre de captures ajusté (ΣC <i>ajusté</i>) ¹	_
4024	(n) 10.00	1	220	21.10	160.5	_
4034	10,90	1	339	31,10	169,5	
4034	9,73	2	00	6 74	419,5	
4034	13,05	3	92	6,74	540	
$\frac{4004}{1 \sum c_{ijj} c_{ij} c_{ij}} = Ct/2 + Ct$	0,90	4	54	0,01	019	_
2 Paramètros de la régrossion						
$\frac{1}{2} \frac{1}{2} \frac{1}$	0.0830					
Erreur-type	1 8194					
Observations	4					
Analyse de variance						
	Degré	Somme	Moyenne	F	Valeur critique de F	
	de liberté	des carrés	des carrés			_
Régression	1,0000	403,9838	403,9838	122,0372	0,0081	
Residus	2,0000	6,6207	3,3103	0,0000	0,0000	
lotal	3,0000	410,6045	0,0000	0,0000	0,0000	_
Statistiques						
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de cor	nfiance 95 %
					Intérieure	Supérieure
Constante (B _o)	40,8806	2,5049	16,3203	0,0037	30,1029	51,6583
insemble des espèces					Nie wele wele were en	_
Superficie	Effort	Passage	Nombre total	CPUE	Nombre de captures	
(m²)	de pêche (h)	(n) ັ	de captures (Ct)	(c/min)	ajuste (∑C <i>ajusté</i>)¹	
4034	10,90	1	591	54,22	295,5	
4034	9,73	2	296	30,41	739	
4034	13,65	3	186	13,63	980	
4034	8,98	4	102	11,35	1124	_
1. ∑Cajusté = Ct /2 + Ct Paramètres de la régression						
Coefficient de détermination r ²	0,9864					
Erreur-type	2,8320					
Observations	4					
Analyse de variance						_
	Degré de liberté	Somme des carrés	Moyenne des carrés	F	Valeur critique de F	
Régression	1.0000	1159.5229	1159.5229	144,5743	0.0068	—
Résidus	2,0000	16.0405	8.0203	0.0000	0.0000	
Total	3,0000	1175,5634	0,0000	0,0000	0,0000	_
Statistiques						
Paramètre	Coefficients	Erreur-type	Statistique t	Probabilité	Limite au seuil de cor	nfiance 95 %
					Inférieure	Supérieure
Constante (B_0)	69,9318	3,8099	18,3551	0,0030	53,5390	86,3247
Variable (B,)	-0,0542	0,0045	-12,0239	0,0068	-0,0736	-0,0348

Paramètre estimé	ANRO	CACA	CACO	COPL	CUIN	ESLU	GAAC	LOLO	PUPU	RHCA	SAFO	SASA	SECO	SEMA	SSAO	Total
Masse moyenne (g)	22,86	24,29	3,06	6,17	0,65	6,26	0,36	12,18	1,16	2,80	14,21	11,99	25,3	4,23	279,97	
Capture au 1 ^{er} passage (n) ¹	5	33	120	24	2	11	34	97	55	268	896	8	1	3	5	1562
Densité au 1 ^{er} passage (n / 100m ²) ¹	0,04	0,29	1,07	0,21	0,02	0,10	0,30	0,87	0,49	2,39	8,00	0,07	0,01	0,03	0,04	13,95
Biomasse au 1 ^{er} passage (g / 100m ²)	1,02	7,16	3,28	1,32	0,01	0,62	0,11	10,55	0,57	6,71	113,72	0,86	0,23	0,11	12,50	158,78
Efficacité au 1 ^{er} passage	0,305	0,571	0,587	0,458 ²	0,458 ²	0,458 ²	0,458 ²	0,663	0,234	0,397	0,483	0,488 ³	0,458 ²	0,458 ²	0,821	0,458
Densité absolue (n / 100 m ²)	0,15	0,52	1,83	0,47	0,04	0,21	0,66	1,31	2,10	6,04	16,58	0,15	0,02	0,06	0,05	30,46
Biomasse absolue / ha (kg / ha)	0,33	1,25	0,56	0,29	0,00	0,13	0,02	1,59	0,24	1,69	23,56	0,18	0,05	0,02	1,52	34,66

 Tableau 2.
 Sommaire des résultats conduisant au calcul de la densité et de la biomasse absolue dans les tributaires.

1 L'effort de pêche et la superficie totale des placettes de l'analyse totalisent respectivement 29,4 heures et 1 194,34 m².

2 L'analyse de régression selon la méthode de Leslie effectuée sur toutes les espèces de poissons a été utilisée pour compenser le manque de données concernant ces espèces.

3 L'analyse de régression selon la méthode de Leslie effectuée sur tous les salmonidés (omble de fontaine, ouananiche et saumon atlantique) a été utilisée pour compenser le manque de données concernant cette espèce.

ANNEXE 7

Description des cours d'eau traversés par les routes d'accès

Secteur	Routed'accès	Point kilométrique	Numéro de traverse	Diamètre du tuyau (mm)	Longueur totale (m)	Largeur cours d'eau (LNHE) ⁴	Superficie empiétée (m²)
De la Romaine-1	Route principale	3+336	Tr1	1200	27,0	1,5	40,5
De la Romaine-1	Route principale	5+955	Tr3	1200	21,0	1,5	31,5
De la Romaine-1	Route principale	6+525	Tr4	900	18,0	0,5	9,0
De la Romaine-1	Route principale	9+065 À 9+145	Tr5	Pont de la Romaine (80 m)	•	•	0,0
De la Romaine-1	Route principale	11+645	Tr6	900	16,0	1,5	24,0
De la Romaine-1	Route principale	13+488	Tr7	900	17,0	1,5	25,5
De la Romaine-1	Route principale	13+564	Tr7	900	15,0	1,5	22,5
De la Romaine-1	Route principale	14+151	Tr8	1200	19,0	1,5	28,5
De la Romaine-1	Route principale	15+731	Tr9	1600	41,0	1,5	61,5
De la Romaine-1	Route principale	17+610	Tr13	900	34,0	1,5	51,0
De la Romaine-1	Route principale	17+962	Tr14	900	42,0	3	126,0
De la Romaine-1	Route principale	20+731	Tr15	900	34,0	3	102,0
De la Romaine-1	Route principale	23+611	Tr17	1600	52,0	4	208,0
De la Romaine-1	Route principale	24+715	Tr18	1400	60,0	8	480,0
De la Romaine-1	Route principale	27+570	Tr20	1400	60,0	3	180,0
De la Romaine-1	Route principale	28+613	Tr23	1400	37,0	3	111,0
De la Romaine-1	Route principale	29+550	Tr24-2	900	15,0	5	75,0
De la Romaine-1	Route principale	29+740	Tr24-1	1400	27,0	6	162,0
De la Romaine-1	Route principale	30+920	Tr25	1800	35,0	7	245,0
De la Romaine-1	Route principale	32+450	Tr26	900	20,0	3	60,0
De la Romaine-1	Route principale	34+560	Tr27	1000	35,0	0,5	17,5
De la Romaine-1	Route principale	35+360	Tr28	1400	53,0	6	318,0
De la Romaine-1	Route principale	37+670	Tr29	900	29,0	2,5	72,5
De la Romaine-1	Route principale	39+595	Tr30	900	29,0	4	116,0
Total partiel							2 567,0

Annexe 7 Description des cours d'eau traversés par les routes d'accès.

Annexe 7 (suite)	Description des cours d'eau traversés par les routes d'accès.	

Secteur	Routed'accès	Point kilométrique	Numéro de traverse	Diamètre du tuyau (mm)	Longueur totale (m)	Largeur cours d'eau (LNHE) ⁴	Superficie empiétée (m²)
De la Romaine-2	Route d'accès au canal de fuite RO-2	n/d	Tr204 ¹	n/d	34,4 ²	4,9 ³	168,6
De la Romaine-2	Route d'accès au canal de fuite RO-2	n/d	Tr205 ¹	n/d	34,4 ²	4,9 ³	168,6
De la Romaine-2	Route d'accès au canal de fuite RO-2	n/d	Tr206 ¹	n/d	34,4 ²	4,9 ³	168,6
De la Romaine-2	Route d'accès au barrage RO-2	n/d	Tr207 ¹	n/d	34,4 ²	4,9 ³	168,6
De la Romaine-2	Route d'accès au barrage RO-2	n/d	Tr208 ¹	n/d	34,4 ²	4,9 ³	168,6
De la Romaine-2	Route d'accès à la digue A2	n/d	Tr209 ¹	n/d	34,4 ²	4,9 ³	168,6
De la Romaine-2	Route d'accès à la digue A2	n/d	Tr210 ¹	n/d	34,4 ²	4,9 ³	168,6
De la Romaine-2	Route d'accès aux digues D2 et E2	n/d	Tr211 ¹	n/d	34,4 ²	4,9 ³	168,6
De la Romaine-2	Route principale	41+632	Tr31	900	29	4,9 ³	142,1
De la Romaine-2	Route principale	43+360	Tr200 ¹	n/d	20	4,9 ³	98,0
De la Romaine-2	Route principale	45+970	Tr201 ¹	n/d	19	4,9 ³	93,1
De la Romaine-2	Route principale	46+490	Tr202 ¹	n/d	20	4,9 ³	98,0
De la Romaine-2	Route principale	46+980	Tr203 ¹	n/d	75	4,9 ³	367,5
De la Romaine-2	Route principale	49+050	Tr34	900	48	5	240,0
De la Romaine-2	Route principale	50+325	Tr35	1200	35	3	105,0
De la Romaine-2	Route principale	52+950	Tr36	Pont de 20 m	•	•	0,0
De la Romaine-2	Route principale	55+100	Tr37	Pont de 30 m	•	•	0,0
De la Romaine-2	Route principale	57+850	Tr38	1400	80	4,9 ³	392,0
De la Romaine-2	Route principale	60+960	Tr39	900	19	2	38,0
De la Romaine-2	Route principale	63+240	Tr40	900	58	3	174,0
De la Romaine-2	Route principale	63+440	Tr41	900	21	3	63,0
De la Romaine-2	Route principale	67+040	Tr42	900	19	1	19,0
De la Romaine-2	Route principale	70+230	Tr43	900	32	4,9 ³	156,8
De la Romaine-2	Route principale	71+660	Tr44	2700	23	8	184,0
De la Romaine-2	Route principale	72+420	Tr45	1400	20	6	120,0
De la Romaine-2	Route principale	74+501	Tr46	1400	24	7	168,0
De la Romaine-2	Route principale	74+998	Tr48	900	15	0,8	12,0
De la Romaine-2	Route principale	77+230	Tr49	1400	38	8	304,0

Secteur	Routed'accès	Point kilométrique	Numéro de traverse	Diamètre du tuyau (mm)	Longueur totale (m)	Largeur cours d'eau (LNHE)⁴	Superficie empiétée (m ²)
De la Romaine-2	Route principale	80+700	Tr50	900	15	5	75,0
De la Romaine-2	Route principale	82+600	Tr51	900	27	5	135,0
De la Romaine-2	Route principale	83+875	Tr52	900	16	1,5	24,0
De la Romaine-2	Route principale	85+080	•	Pont de 10m R Bernard	•	•	0,0
De la Romaine-2	Route principale	87+035	Tr60	900	47	2,5	117,5
De la Romaine-2	Route principale	88+380	Tr62	900	18	1,5	27,0
De la Romaine-2	Route principale	90+040	Tr64	900	43	2,5	107,5
De la Romaine-2	Route principale	90+530	Tr65	900	18	3	54,0
De la Romaine-2	Route principale	92+475	Tr66	1600	24	8	192,0
De la Romaine-2	Route principale	94+690	Tr67	900	18	1,2	21,6
De la Romaine-2	Route principale	96+460	Tr68	2000	50	14	700,0
De la Romaine-2	Route principale	98+968	Tr69	900	16	5	80,0
De la Romaine-2	Route principale	100+340	Tr70	900	47	2	94,0
De la Romaine-2	Route principale	102+772	Tr71	900	42	0,8	33,6
De la Romaine-2	Route principale	103+500	Tr72	900	22	4,9 ³	107,8
De la Romaine-2	Route principale	105+580	Tr73	900	31	2,5	77,5
De la Romaine-2	Route principale	106+060	Tr74	900	36	4,9 ³	176,4
De la Romaine-2	Route principale	!06+668	Tr75	900	33	1,2	39,6
De la Romaine-2	Route principale	107+115	Tr76	900	28	0,5	14,0
De la Romaine-2	Route principale	107+440	Tr77	1200	29	15	435,0
De la Romaine-2	Route principale	109+550	Tr78	900	24	3,5	84,0
De la Romaine-2	Route principale	109+992	Tr79	900	27	10	270,0
De la Romaine-2	Route principale	112+455	tr80	1200	48	4,9 ³	235,2
De la Romaine-2	Route principale	114+110	Tr81	Pont de 20 m R.Mista	•	•	0,0
De la Romaine-2	Route principale	116+950	Tr82	900	15	1,5	22,5
Total partiel							7 246,2
De la Romaine-3	Route principale	118+045	Tr83	2400	32	6	192,0
De la Romaine-3	Route principale	119+028	Tr84	900	21	0,8	16,8
De la Romaine-3	Route principale	120+000	Tr85	900	17	3	51,0

Annexe 7 (suite) Description des cours d'eau traversés par les routes d'accès.

Secteur	Routed'accès	Point kilométrique	Numéro de traverse	Diamètre du tuyau (mm)	Longueur totale (m)	Largeur cours d'eau (LNHE) ⁴	Superficie empiétée (m ²)
De la Romaine-3	Route d'accès à la centrale RO-3	4,2 km à partir du PK 120+200	Tr212 ¹	•	34,4 ²	4,9	168,6
De la Romaine-3	Route principale	122+400	Tr86	1400	55	3	165,0
De la Romaine-3	Route principale	123+330	Tr88	1400	47	1,5	70,5
De la Romaine-3	Route principale	123+500	Tr88	900	38	1,5	57,0
De la Romaine-3	Route principale	124+565	Tr89	900	45	0,3	13,5
De la Romaine-3	Route principale	125+545	Tr90	900	29	0,8	23,2
De la Romaine-3	Route principale	126+820	Tr91	900	80	6	480,0
De la Romaine-3	Route principale	127+888	Tr92	1200	55	8	440,0
De la Romaine-3	Route principale	128+225	Tr93	900	32	18	576,0
De la Romaine-3	Route principale	128+900	Tr94	900	29	3	87,0
De la Romaine-3	Route principale	130+080	Tr95	900	57	80	4 560,0
De la Romaine-3	Route principale	130+884	Tr96	900	37	2	74,0
De la Romaine-3	Route principale	131+388	Tr97	900	35	10	350,0
De la Romaine-3	Route principale	132+910	Tr98	900	31	4,9 ³	151,9
De la Romaine-3	Route principale	134+950	Tr99	900	18	1,5	27,0
De la Romaine-3	Route principale	135+150	Tr100	900	30	2	60,0
De la Romaine-3	Route principale	137+040	Tr101	900	29	4,9 ³	142,1
De la Romaine-3	Route principale	138+238	Tr102	1400	77	12	924,0
De la Romaine-3	Route principale	140+040	Tr103	900	42	0,8	33,6
De la Romaine-3	Route principale	141+888	Tr104	1400	75	4	300,0
De la Romaine-3	Route principale	142+690	Tr105	900	28	1,5	42,0
De la Romaine-3	Route principale	143+110	Tr106	2200	76	10	760,0
De la Romaine-3	Route principale	146+800	Tr107	1600	50	1,5	75,0
De la Romaine-3	Route principale	147+800	Tr108	Pont de 10 m R. Glapion	•	•	0,0
De la Romaine-3	Route principale	150+070	Tr115	900	30	3	90,0
Total partiel							9 930,2
Total							19 743,3

Annexe 7 (suite) Description des cours d'eau traversés par les routes d'accès.

Numéro de travers attribué
 Longueur totale moyenne calculée selon les valeurs existantes.
 Largeur de cours d'eau moyenne calculée selon les valeurs existantes.
 LNHE = Limite naturelle des hautes eaux.
 N/d Données non disponibles.

ANNEXE 8

Listes des obstacles identifiés dans la Romaine et ses tributaires photointerprétés

Secteur	Point kilométrique	Substrat	Type d'obstacle ¹	Franchissabilité ouananiche ²	Franchissabilité omble de fontaine ²	Franchissabilité saumon atlantique	Hauteur de l'obstacle (m)	Localisation de la veine d'eau	Présence d'un bouillon	Superficie (m²)
Tronçon régularisé en aval de la centrale RO-1	0,2	R	Ct	n/a	INF	INF	n/d	À gauche	À droite	3 109,74
Tronçon régularisé en aval de la centrale RO-1	0,6	R	Ct	n/a	INF	INF	n/d	À droite	Au centre	613,65
Tronçon régularisé en aval de la centrale RO-1	0,5	R	Ct	n/a	INF	FR	n/d	n/d	n/d	10 944,27
Tronçon régularisé en aval de la centrale RO-1	0,7	R	Ct	n/a	INF	FR	n/d	À droite	Au centre	851,91
Tronçon régularisé en aval de la centrale RO-1	16	R	Ct	n/a	INF	FR	n/d	Au centre	Partout	7 087,36
Tronçon régularisé en aval de la centrale RO-1	16	R	Ct	n/a	INF	INF	n/d	n/d	n/d	7 281,82
Tronçon régularisé en aval de la centrale RO-1	33	R	Ct	n/a	INF	INF	n/d	À droite	n/d	3 105,02
Tronçon régularisé en aval de la centrale RO-1	35	R	Ct	n/a	INF	FR? ³	n/d	n/d	n/d	11 302,08
Tronçon régularisé en aval de la centrale RO-1	35	R	Ct	n/a	INF	INF ³	n/d	n/d	n/d	3 349,61
Tronçon court-circuité RO-1	52,3	R	Ct	n/a	INF	INF	n/d	n/d	n/d	1 601,61
Tronçon court-circuité RO-1	52,4	R	Ca	n/a	INF	INF	n/d	n/d	n/d	6 477,75
Réservoir RO-1	58,1	R	Ca	FR	FR	Non accessible	n/d	n/d	n/d	2 480,61
Réservoir RO-1	58,1	R	Ca	FR	FR	Non accessible	n/d	n/d	n/d	36 410,51
Réservoir RO-1	58,3	R	Ct	INF?	INF	Non accessible	3	Aucune	Partout	725,29
Réservoir RO-1	58,5	R	Ct	INF	INF	Non accessible	3	Aucune	Partout	878,42
Réservoir RO-1	58,6	R	Ca	FR	FR	Non accessible	n/d	n/d	n/d	18 207,00
Réservoir RO-1RO-1	58,6	R	Ct	INF	INF	Non accessible	4	Aucune	Partout	567,98
Réservoir RO-1	62,1	R	Ca	FR	INF?	Non accessible	n/d	n/d	n/d	5 203,38
Réservoir RO-1	62,1	R	Ct	INF?	INF	Non accessible	2	À droite	À gauche	305,76
Réservoir RO-1	62,4	R	Ct	INF	INF	Non accessible	2	Aucune	Partout	989,56
Réservoir RO-1	62,5	R,B*	Ca	INF	INF	Non accessible	n/d	n/d	n/d	2 653,85
Tronçon court-circuité RO-2	83,4	R	Ct	INF	INF	Non accessible	3	Aucune	Partout	641,59
Tronçon court-circuité RO-2	83,9	R,B*	Ca	INF	INF	Non accessible	n/d	n/d	n/d	10 304,37
Tronçon court-circuité RO-2	84,0	R	Ct	INF	INF	Non accessible	2,5	Aucune	Partout	856,99
Tronçon court-circuité RO-2	84,1	R	Ca	FR?	INF?	Non accessible	n/d	n/d	n/d	9 374,10
Tronçon court-circuité RO-2	84,2	R	Ct	INF?	INF	Non accessible	2,5	Gauche	Droite	722,47
Tronçon court-circuité RO-2	84,6	R,B*	Ca	FR?	INF?	Non accessible	n/d	n/d	n/d	15 931,54
Tronçon court-circuité RO-2	85,1	R	Ca	FR?	INF?	Non accessible	n/d	n/d	n/d	7 048,75
Tronçon court-circuité RO-2	87,1	R	Ct	FR	FR	Non accessible	0,5	n/d	n/d	257,53
Tronçon court-circuité RO-2	87,6	R	Ct	FR	FR	Non accessible	0,5	n/d	n/d	372,27
Troncon court-circuité RO-2	88.0	R	Ca	INF	INF	Non accessible	n/d	n/d	n/d	4 503,74

ANNEXE 8.1. Liste des obstacles identifiés dans le cours principal de la Romaine.

Secteur	Point kilométrique	Substrat	Type d'obstacle ¹	Franchissabilité ouananiche ²	Franchissabilité omble de fontaine ²	Franchissabilité saumon atlantique	Hauteur de l'obstacle (m)	Localisation de la veine d'eau	Présence d'un bouillon	Superficie (m²)
Tronçon court-circuité RO-2	88,0	R	Ct	FR?	INF?	Non accessible	1,5	À gauche	À droite	619,89
Tronçon court-circuité RO-2	88,0	R	Ct	INF	INF	Non accessible	2,5	Aucune	Partout	1 547,45
Tronçon court-circuité RO-2	89,0	R	Ca	FR?	INF?	Non accessible	n/d	n/d	n/d	2 817,99
Tronçon court-circuité RO-2	89,0	R	Ct	INF	INF	Non accessible	2,5	Aucune	Partout	409,90
Tronçon court-circuité RO-2	89,1	R	Ca	INF?	INF	Non accessible	n/d	À gauche	À droite	4 308,93
Tronçon court-circuité RO-2	89,1	R	Ca	FR?	FR?	Non accessible	n/d	n/d	n/d	4034,98
Tronçon court-circuité RO-2	89,2	R	Ca	FR?	INF?	Non accessible	n/d	À gauche	À droite	636,80
Tronçon court-circuité RO-2	89,2	R	Ca	FR	FR?	Non accessible	n/d	n/d	n/d	1 550,20
Tronçon court-circuité RO-2	89,3	R	Ca	FR	FR	Non accessible	n/d	n/d	n/d	3 208,39
Réservoir RO-2	105,3	R	Ca	INF?	INF	Non accessible	n/d	À droite	Partout	1 953,50
Réservoir RO-2	152,0	R	Ca	INF	INF	Non accessible	n/d	À gauche	À droite	6 662,98
Réservoir RO-2	152,1	R	Ca	FR	FR?	Non accessible	n/d	À gauche	À droite	11 868,49
Réservoir RO-2	152,6	R	Ca	INF	INF	Non accessible	n/d	n/d	n/d	134,81
Réservoir RO-2	152,6	R	Ca	INF	INF	Non accessible	2	À droite	n/d	1 018,58
Réservoir RO-2	152,6	R,B*	Ca	FR	INF?	Non accessible	n/d	n/d	n/d	152,73
Réservoir RO-2	152,6	R	Ct	FR	FR	Non accessible	0,5	Gauche,droite	Centre	395,67
Réservoir RO-2	152,6	R	Ct	INF?	INF	Non accessible	1,5	n/d	n/d	89,10
Réservoir RO-2	153,1	R	Ca	FR	FR	Non accessible	n/d	n/d	n/d	950,41
Réservoir RO-2	153,1	R	Ct	FR	FR	Non accessible	0,5	À gauche	À droite	146,81
Réservoir RO-2	153,2	R,B*,B	Ca	FR	FR?	Non accessible	n/d	n/d	n/d	258,20
Réservoir RO-2	153,2	R	Ct	FR	FR?	Non accessible	0,5	À gauche	À droite	415,14
Réservoir RO-2	154,6	R	Ct	FR	FR	Non accessible	0,5	À gauche	À droite	833,49
Réservoir RO-2	154,7	R	Ct	FR	FR	Non accessible	0,5	À gauche	Centre	88,86
Réservoir RO-2	154,8	R	Ca	FR	FR	Non accessible	n/d	n/d	n/d	161,70
Réservoir RO-2	154,8	R	Ct	FR	FR	Non accessible	0,5	À droite	À gauche	125,47
Tronçon court-circuité RO-3	155,1	R	Ca	FR	FR	Non accessible	n/d	n/d	n/d	350,58
Tronçon court-circuité RO-3	155,4	R,B*,B	Ca	INF	INF	Non accessible	n/d	n/d	n/d	11 152,40
Tronçon court-circuité RO-3	155,4	R	Ct	INF	INF	Non accessible	2,5	Aucune	Partout	1 123,78
Tronçon court-circuité RO-3	155,7	R	Ct	INF	INF	Non accessible	1,5	Aucune	Partout	1 989,78
Tronçon court-circuité RO-3	155,7	R	Ct	INF?	INF	Non accessible	1	Aucune	Partout	306,36
Tronçon court-circuité RO-3	155,8	R	Ca	FR	FR?	Non accessible	n/d	n/d	n/d	7 093,69
Troncon court-circuité RO-3	155,9	R	Са	FR?	INF?	Non accessible	n/d	n/d	n/d	422,64

ANNEXE 8.1 (suite). Liste des obstacles identifiés dans le cours principal de la Romaine.

Secteur	Point kilométrique	Substrat	Type d'obstacle ¹	Franchissabilité ouananiche ²	Franchissabilité omble de fontaine ²	Franchissabilité saumon atlantique	Hauteur de l'obstacle (m)	Localisation de la veine d'eau	Présence d'un bouillon	Superficie (m²)
Tronçon court-circuité RO-3	155,9	R	Ct	FR?	INF	Non accessible	1	Aucune	Partout	256,08
Tronçon court-circuité RO-3	155,9	R	Ct	INF?	INF	Non accessible	1,5	À droite	À gauche	200,78
Tronçon court-circuité RO-3	156,0	R	Ca	FR?	INF?	Non accessible	n/d	n/d	n/d	1 128,69
Tronçon court-circuité RO-3	156,0	R	Ca	FR?	INF?	Non accessible	n/d	n/d	n/d	1 839,07
Tronçon court-circuité RO-3	156,2	R	Ca	FR	FR	Non accessible	n/d	n/d	n/d	111,35
Tronçon court-circuité RO-3	157,2	R,B*'B	Ca	INF?	INF	Non accessible	n/d	n/d	n/d	10 206,13
Réservoir RO-3	159,9	R	Ca	INF	INF	Non accessible	n/d	n/d	n/d	8 294,23
Réservoir RO-3	160	R	Ca	INF	INF	Non accessible	n/d	n/d	n/d	884,04
Réservoir RO-3	160	R	Ct	INF	INF	Non accessible	4	Aucune	Partout	128,79
Réservoir RO-3	160	R	Ct	INF?	INF	Non accessible	1,5	Aucune	Partout	427,19
Réservoir RO-3	160,1	R	Ca	INF	INF	Non accessible	n/d	n/d	n/d	100,46
Réservoir RO-3	160,2	R	Ca	INF?	INF	Non accessible	n/d	n/d	n/d	45,96
Réservoir RO-3	160,2	R	Ct	INF	INF	Non accessible	2,5	Aucune	Partout	583,21
Réservoir RO-3	160,3	R	Ca	INF	INF	Non accessible	n/d	n/d	n/d	79,76
Réservoir RO-3	176,3	R	Ca	FR	FR	Non accessible	n/d	n/d	n/d	4 049,69
Réservoir RO-3	176,6	R	Ct	INF	INF	Non accessible	n/d	n/d	n/d	5 542,67
Réservoir RO-3	184,1	R	Ca	FR	FR?	Non accessible	n/d	n/d	n/d	2 638,88
Réservoir RO-3	184,5	R,B*	Ca	FR	FR	Non accessible	n/d	n/d	n/d	26 880,25
Réservoir RO-3	184,8	R	Ct	INF	INF	Non accessible	3	Aucune	Partout	2 708,76
Réservoir RO-3	185	R,B*,B	Ca	FR	FR	Non accessible	n/d	n/d	n/d	14 938,55
Réservoir RO-3	185,4	R	Ca	FR	INF?	Non accessible	n/d	n/d	n/d	1 974,94
Réservoir RO-3	187,1	R	Ct	FR	FR	Non accessible	0,5	Centre	Gauche, Droite	e 2017,15
Réservoir RO-3	187,2	R	Ct	FR?	INF	Non accessible	1	Aucune	Partout	1 040,43
Réservoir RO-3	190,3	R,B*	Ca	INF?	INF	Non accessible	n/d	n/d	n/d	16 285,55
Tronçon court-circuité RO-4	190,7	R	Ca	INF	INF	Non accessible	n/d	n/d	n/d	3 386,65
Tronçon court-circuité RO-4	190,8	R	Ct	INF	INF	Non accessible	2,5	Aucune	Partout	1 104,54
Réservoir RO-4	261,8	R	Ct	FR?	INF?	Non accessible	1	Aucune	Partout	712,67

n/a Non applicable.

n/d Non disponible. 1 Ca = Cascade Ct = Chute

2

FR = franchissable en tout temps.
 FR? = franchissable avec réserve (franchissable la plupart du temps, sauf lors d'évènements hydrologiques extrêmes).

INF = infranchissable avec réserve (infranchissable la plupar du temps, sau fois devenements hydrologiques extremes). INF = infranchissable avec réserve (infranchissable la plupart de temps, sauf durant certaines conditions hydrologiques particulières). Évaluation de la franchissabilité basée sur l'étude de télémétrie (Belles-Isles et coll., 2004).

3

		D · · ·	-		Franchise	sabilité ²	Hauteur de		Présence	Distance de
Secteur	Nom de rivière	Point	I ype	Substrat		Omble de	l'obstacle	Localisation	d'un	l'embouchure
		Kilometrique	U ODSIACIE		Ouananiche	fontaine	(m)	de veine d'eau	bouillon	(m)
Réservoir RO-1	Anonyme	59,0	Ca	B,B*	FR?	INF?	0	n/d	n/d	100
Réservoir RO-1	Anonyme	59,0	Ct	R	INF	INF	2	Aucune	Partout	200
Réservoir RO-1	Anonyme	59,0	Bc	n/d	FR	FR	n/d	n/d	n/d	370
Réservoir RO-1	Anonyme	63,1	Bc	n/d	FR	FR	n/d	n/d	n/d	275
Réservoir RO-1	Anonyme	63,1	Bc	n/d	FR	FR	n/d	n/d	n/d	325
Réservoir RO-2	Anonyme	92,1	Ca	R,B*,B	INF	INF	0	n/d	n/d	3 290
Réservoir RO-2	Anonyme	92,1	Ca	B*,R,	INF	INF	0	n/d	n/d	1 075
Réservoir RO-2	Anonyme	92,1	Bc	n/d	FR	FR	n/d	n/d	n/d	780
Réservoir RO-2	Anonyme	92,1	Bc	n/d	FR	FR	n/d	n/d	n/d	1 270
Réservoir RO-2	Anonyme	92,1	Bc	n/d	FR?	FR?	n/d	n/d	n/d	2 280
Réservoir RO-2	Anonyme	92,1	Bc	n/d	FR	FR	n/d	n/d	n/d	1 300
Réservoir RO-2	Anonyme	95,1	Ca	R,B*,	FR	FR?	0	n/d	n/d	1 630
Réservoir RO-2	Anonyme	95,1	Ca	R,B*	FR?	INF?	0	n/d	n/d	3 010
Réservoir RO-2	Anonyme	95,1	Ca	R,B*	INF	INF	0	n/d	n/d	3 300
Réservoir RO-2	Anonyme	95,1	Ca	B*,R,	INF	INF	0	n/d	n/d	520
Réservoir RO-2	Anonyme	95,1	Ca	R	INF	INF	0	n/d	n/d	3 400
Réservoir RO-2	Anonyme	95,1	Ct	R	INF	INF	2	Aucune	Partout	3 580
Réservoir RO-2	Anonyme	95,1	Ct	R	INF	INF	5	Aucune	Partout	1 660
Réservoir RO-2	Anonyme	95,1	Ct	R	INF?	INF	1	Aucune	Partout	3 220
Réservoir RO-2	Anonyme	98,6	Ca	B*,B,	FR?	INF?	0	n/d	n/d	200
Réservoir RO-2	Anonyme	98,6	Ca	R,B*,	INF	INF	0	n/d	n/d	1 300
Réservoir RO-2	Anonyme	98,6	Ct	R	INF	INF	90	Aucune	Partout	1 400
Réservoir RO-2	Anonyme	103,1	Ca	B*,B,	INF	INF	0	n/d	n/d	140
Réservoir RO-2	Anonyme	104,1	Ca	B*,R,	INF	INF	0	n/d	n/d	75
Réservoir RO-2	Anonyme	106,2	Ca	R,B*,	INF	INF	0	n/d	n/d	0
Réservoir RO-2	Anonyme	110	Ca	B*,R,B	INF	INF	0	n/d	n/d	180
Réservoir RO-2	Anonyme	113,8	Ca	R,B*	FR	FR	0	n/d	n/d	1 280
Réservoir RO-2	Anonyme	113,8	Ca	B*,R,	FR	FR?	0	n/d	n/d	830
Réservoir RO-2	Anonyme	113,8	Ca	R,B*	INF	INF	0	n/d	n/d	2 720
Réservoir RO-2	Anonyme	113,8	Ct	R,B*	FR	FR?	1	Gauche	Droite	800
Réservoir RO-2	Anonyme	113,8	Ct	R	INF?	INF	2,5	Droite	Gauche	1 380
Réservoir RO-2	Anonyme	115,2	Ca	R,B*	INF	INF	0	n/d	n/d	1 900
Réservoir RO-2	Anonyme	115,2	Ca	B*,B	INF?	INF	0	n/d	n/d	1 500

ANNEXE 8.2. Liste des obstacles identifiés dans les tributaires photointerprétés des futurs réservoirs.

		Delat	Tura		Franchissabilité ²		Hauteur de	, Localization	Présence	Distance de
Secteur	Nom de rivière	Point kilométrique	l ype d'obstacle ¹	Substrat	Ouananiche	Omble de	l'obstacle	de veine d'eau	d'un bouillon	l'embouchure
Réservoir RO-2	Anonyme	115.2	Са	B*.B	INF?	INF	0	n/d	n/d	1 500
Réservoir RO-2	Anonyme	121	Са	R	INF?	INF	0	n/d	n/d	460
Réservoir RO-2	Anonyme	121	Ct	R	INF	INF	130	Aucune	Partout	600
Réservoir RO-2	Anonyme	122.4	Ca	B*.R	INF	INF	0	n/d	n/d	225
Réservoir RO-2	Anonyme	122.4	Са	B*.R.	INF	INF	0	n/d	n/d	75
Réservoir RO-2	Anonyme	122.4	Ca	B.B*.	INF	INF	0	n/d	n/d	20
Réservoir RO-2	Anonyme	122,4	Ct	R	INF	INF	5	Aucune	Partout	200
Réservoir RO-2	Anonyme	122.4	Ct	R	INF?	INF	1.5	Aucune	Partout	70
Réservoir RO-2	Anonyme	125,3	Ca	R,B*	INF	INF	0	n/d	n/d	100
Réservoir RO-2	Anonyme	126,1	Ct	R	INF	INF	100	Aucune	Partout	100
Réservoir RO-2	Rivière Abbé-Huard	131	Ca	B*,B	INF	INF	0	n/d	n/d	16 600
Réservoir RO-2	Anonyme	135,4	Ca	R,B*	INF	INF	0	n/d	n/d	4 660
Réservoir RO-2	Rivière Mista	148,9	Ca	R,B*	FR	FR	0	n/d	n/d	650
Réservoir RO-2	Rivière Mista	148,9	Ca	R	FR	FR	0	n/d	n/d	0
Réservoir RO-2	Rivière Mista	148,9	Ct	R	FR?	INF?	0,5	Aucune	Partout	630
Réservoir RO-3	Anonyme	161,2	Ca	B,B*,G	FR?	INF?	0	n/d	n/d	300
Réservoir RO-3	Anonyme	161,2	Ca	B*,B	INF	INF	0	n/d	n/d	1 280
Réservoir RO-3	Anonyme	161,2	Ct	R	FR	FR?	0	n/d	n/d	280
Réservoir RO-3	Anonyme	161,2	Ct	R	INF	INF	300	Aucune	Partout	1 590
Réservoir RO-3	Anonyme	166,1	Ca	B,B*	INF?	INF	0	n/d	n/d	1 240
Réservoir RO-3	Anonyme	168,6	Ct	R	INF	INF	3	Aucune	Partout	550
Réservoir RO-3	Anonyme	172,4	Ca	R	INF	INF	0	n/d	n/d	2 840
Réservoir RO-3	Anonyme	181	Ca	R,B*	INF?	INF	0	n/d	n/d	1 450
Réservoir RO-3	Rivière Garneau	181,3	Ca	B*,B	FR	FR?	0	n/d	n/d	2 600
Réservoir RO-3	Rivière Garneau	181,3	Ca	R,B*,B	INF	INF	0	n/d	n/d	580
Réservoir RO-3	Rivière Garneau	181,3	Ca	R,B*,R	INF	INF	0	n/d	n/d	400
Réservoir RO-3	Rivière Garneau	181,3	Ca	R,B*,B	INF	INF	0	n/d	n/d	480
Réservoir RO-3	Rivière Garneau	181,3	Ca	R	INF	INF	0	n/d	n/d	350
Réservoir RO-3	Rivière Garneau	181,3	Ct	R	INF	INF	2,5	Aucune	Partout	2 950
Réservoir RO-3	Rivière Garneau	181,3	Ct	R,B*	INF	INF	3	Aucune	Partout	2 800
Réservoir RO-3	Rivière Garneau	181,3	Ct	R,B*	INF?	INF	1	Aucune	Partout	2 570

ANNEXE 8.2 (suite). Liste des obstacles identifiés dans les tributaires photointerprétés des futurs réservoirs.

ANNEXE 8.2 (fir	n). Liste des	obstacles	identifiés da	ns les tributaires	photointerp	rétés des t	iuturs réservoirs
	1). LISIC 005	00010000		no ico tributarico	priotornitorpi	0100 000	

		Deint	Tuno		Franchissabilité ²		Hauteur de	Localization	Présence	Distance de
Secteur	Nom de rivière	kilométrique	d'obstacle ¹	Substrat	Ouananiche Omble de fontaine		l'obstacle (m)	(m)		l'embouchure (m)
Réservoir RO-3	Rivière Glapion	187,7	Ca	R,B*,B	INF	INF	0	n/d	n/d	50
Réservoir RO-3	Anonyme	189,5	Ca	B*,R,B	INF	INF	0	n/d	n/d	0
Réservoir RO-4	Rivière Baubert	198,2	Ca	R,B*,B	INF	INF	0	n/d	n/d	4 400
Réservoir RO-4	Rivière Baubert	198,2	Ca	R, B*	INF?	INF	0	n/d	n/d	4 130
Réservoir RO-4	Anonyme	203,9	Ca	B,G,C	FR?	INF?	0	n/d	n/d	1 150
Réservoir RO-4	Anonyme	207,7	Ca	G,B,C	FR?	FR?	0	n/d	n/d	5
Réservoir RO-4	Ruisseau Katahtaushupunan	230	Ca	R,B*	INF	INF	0	n/d	n/d	4 800
Réservoir RO-4	Rivière Touladis	233,5	Ct	R	FR?	INF?	1	Gauche	Partout	8 300
Réservoir RO-4	Rivière Touladis	233,5	Ct	R	INF	INF	4	Aucune	Partout	8 500
Réservoir RO-4	Rivière Touladis	233,5	Ct	R	INF	INF	4	Aucune	Partout	8 950
Réservoir RO-4	Rivière Touladis	233,5	Ct	R	INF	INF	2	Aucune	Partout	8 380
Réservoir RO-4	Anonyme	244,6	Bc	n/d	FR	FR	n/d	n/d	n/d	700
Réservoir RO-4	Anonyme	244,6	Bc	n/d	FR?	FR?	n/d	n/d	n/d	2 990
Réservoir RO-4	Anonyme	250,7	Ct	R	FR	FR	0,5	n/d	n/d	2 500

n/d Non disponible. 1 Ca = Cascade

Ct = Chute

 Ct = Onute

 Bc = Barrage de castor

 2
 FR = franchissable en tout temps.

 FR? = franchissable avec réserve (franchissable la plupart de temps, sauf lors d'évènements hydrologiques extrêmes).

 INF = infranchissable en tout temps.

 INF? = infranchissable avec réserve (infranchissable la plupart de temps, sauf durant certaines conditions hydrologiques particulières).

ANNEXE 9

Détermination d'un facteur de correction pour tenir compte de l'effet d'un changement de la température de l'eau sur la croissance et la production des poissons

ANNEXE 9. Détermination d'un facteur de correction pour tenir compte de l'effet d'un changement de la température de l'eau sur la croissance et la production des poissons.

Introduction

Le développement d'un indice de production pondéré (IPP) a permis d'estimer la différence entre la capacité de production de poissons en conditions actuelles et futures de la Rupert, ce cours d'eau devant subir une réduction de débit au profit de la centrale Eastmain-1-A. L'IPP utilise comme intrant le rendement pondéral (BPUE) des poissons capturés à l'aide de la pêche expérimentale au filet maillant dans différents types d'habitats, un bon estimateur de la production de poissons lorsque les régimes de température demeurent relativement stables dans le temps.

Toutefois, lorsque la transformation du régime hydrique est de l'ampleur de celle qui est prévue dans le projet de la Romaine, l'état d'équilibre naturel risque d'être rompu pour donner un nouveau rapport de forces entre les différentes espèces de poissons. Ceci s'explique par la variation de la température de l'eau, qui s'ajoute à celles de l'habitat, pour remodeler la structure de la communauté fluviale.

Pour tenir compte de cette nouvelle variable, un modèle complémentaire à l'IPP a été développé. Il vise essentiellement à déterminer un facteur de correction pour ajuster le gain ou la perte en capacité de production qui résultent de la différence en pourcentage des IPP calculés en conditions actuelles et futures. Ce modèle utilise la réponse physiologique des poissons à la température de l'eau en période de croissance. Sa description fait l'objet de la présente annexe.

Problématique

L'utilisation d'un indice de production pondéré (IPP) a pour objectif de déterminer la contribution de différents types d'habitat sur le potentiel de production de poissons d'une rivière. L'IPP multiplie l'indice de fréquentation durant la période de croissance annuelle (S) par la superficie d'habitat auquel il se rapporte, et ce, en conditions naturelles et modifiées. La différence entre ces deux conditions, en termes de pourcentage, est équivalente à la perte ou au gain de la capacité de production pour une espèce de poisson donnée.

Différents milieux aquatiques ont été caractérisés dans le cadre du projet hydroélectrique de l'Eastmain-1-A, afin de déterminer l'impact de la réduction de débit sur la capacité de production halieutique de la rivière Rupert, dont une partie des eaux sera détournée au profit de la nouvelle centrale (GENIVAR, 2004). En tenant compte des paramètres qui façonnent ces milieux (profil, pente, profondeur, vitesse de courants), des habitats types ont été identifiés en prenant soin d'en décrire la granulométrie du substrat. Ces habitats types apparaissent au tableau 1.

Pour évaluer la production piscicole au moyen de l'approche par mésohabitat et de l'IPP, GENIVAR (2006) avait estimé S en utilisant les données de pêche expérimentale au filet maillant, à l'aide de la relation suivante :

 $S = BPUE_i / BPUE_{max}$

 $BPUE_i = la biomasse par unité d'effort dans un habitat type pour l'espèce de poisson$ *i*BPUE_{max} = la biomasse par unité d'effort maximale de l'espèce*i*parmi tous les habitats types

Description	Code	Substrat dominant ¹	Substrat sous-dominant ¹
Bassin 1	Ba1	V, S	B, G, C
Bassin 2	Ba2	V, S	Aucun
Bassin 2 avec végétation	Ba2v	V, S	Aucun
Chenal 1	Ch1	G, B	С
Chenal 1 avec végétation	Ch1_v	G, B	С
Chenal 2	Ch2	C, V	S, G
Chenal 2 avec végétation	Ch2_v	C, V	S, G
Chenal 3	Ch3	V, S	С
Chenal 3 avec végétation	Ch3_v	V, S	С
Lac	La	V, S	B, G, C
Lac avec végétation	La_v	V, S	B, G, C
Rapide 1	Ra1	B, B [×]	G, R
Rapide 2	Ra2	G	C, G, R
Seuil 1	Se1	G, B	G, B
Seuil 2	Se2	G, C	G, C
Seuil 3	Se3	C, V	C, V

 Tableau 1.
 Codes et description des habitats types de la rivière Rupert.

1 S = sable, V = gravier, C = caillou, G = galet, B = bloc, B^x = gros bloc, R = Roc.

Ce modèle intègre la variable la plus importante en termes de production de poissons à l'état d'équilibre, soit la biomasse. Par conséquent, il se montre efficace pour évaluer la capacité de production d'un grand cours d'eau à l'état naturel.

Dans les grands projets hydroélectriques, la transformation du régime hydrique engendrée par la création de grands réservoirs et la réduction de débit des grands cours d'eau au moyen de barrages risquent de perturber le rapport d'équilibre entre les espèces de poissons des communautés présentes en rivière. Or, dans sa forme actuelle, le modèle d'IPP est incapable de détecter la nature cette transformation outre que par les changements d'habitats types et de leur superficie.

Pour palier à cette lacune, un modèle complémentaire a été développé pour ajuster la variation de l'IPP en conditions futures. Cette approche possède l'avantage d'utiliser la température de l'eau comme intrant, une variable dont le régime est modélisé de façon précise et sur de longues périodes, dans le cadre des grands projets hydroélectriques.

Méthode

Le modèle visant l'ajustement de l'IPP d'une rivière en conditions futures, après transformation de son régime hydrique, s'inspire des études norvégiennes qui établissent la relation entre les réponses physiologiques du poisson, en termes de croissance, à différents niveaux de température.

où :

Le modèle de Ratwosky (Elliott et Hurley, 2003; Elliott et Hurley, 2000; Elliott et Hurley, 2001; Forseth et coll., 2001; Elliott et Hurley, 1998) utilise à cet égard une courbe prédictive pour déterminer la croissance de masse spécifique (Ω %), tel que :

 $\Omega \% = d (T - T_{L})^{*} (1 - eg^{(T - T_{U})})$ (équation 1)

où g et d sont des constantes qui sont obtenues par la résolution des équations 2 et 3 (lorsque les variables de température sont connues) :

 $ln(1 + g(T_{M} - T_{L})) = -g(T_{M} - T_{U})$ (équation 2) $d = c / [(T - T_{L})^{*}(1 - e^{g(T - T_{U})})]$ (équation 3)

Dans lesquelles :

 $\begin{array}{l} T = température \ de \ l'eau \\ T_{_M} = température \ optimale \ de \ croissance \\ T_{_L} = température \ à la limite \ inférieure \ de \ croissance \\ T_{_U} = température \ à la limite \ supérieure \ de \ croissance \\ c = croissance \ d'un \ poisson \ de \ 1 \ g \ à la \ température \ optimale \ de \ croissance \end{array}$

Les différentes variables de température sont habituellement obtenues par l'étude physiologique des poissons en laboratoire et ne sont disponibles que pour certaines espèces, par exemple le saumon atlantique et l'omble chevalier. Pour déterminer celles des autres espèces, ces données doivent provenir d'autres sources.

Par ailleurs, l'équation 1 est quelque peu transformée afin d'obtenir une proportion de la température optimale en pourcentage, afin de l'appliquer directement à l'IPP calculé en conditions futures. Cette équation s'écrit comme suit :

$$G_{out} = d(T - T_{L})^{*}(1 - e^{g(T - T_{U})})$$
 (équation 4)

où $G_{_{opt}}$ est la température optimale en pourcentage, soit 100 %. Cet artifice permet de déterminer la constante d, tel que :

$$d = 100/[(T - T_{L})^{*}(1 - e^{g(T - T_{U})})]$$
 (équation 5)

Dès lors, la portion la plus difficile du travail consiste à récolter les données de température. Si les variables de température requises pour le modèle sont connues pour certaines espèces de poissons, il en va tout autrement pour d'autres. Dans certains cas, ces variables doivent être estimées en s'inspirant d'autres données, par exemple les températures préférentielles ou létales.

Application de la méthode au projet du complexe de la Romaine

Les températures optimales et de limites de croissance des poissons présents dans la Romaine sont présentées au tableau 2. Elles sont accompagnées des équations qui découlent de leur intégration dans l'équation 5, permettant ainsi d'obtenir les courbes de croissance pour chacune des espèces (figure 9-A). Dans ce modèle, les valeurs plus petites ou égales à zéro sont simplement considérées comme nulles en termes de croissance. Elles n'auront donc pas d'effet sur l'IPP.

	Croissance								
Fanàna		Température (℃)		Équation					
Lspece	Limite inférieure	Optimum	Limite supérieure	G _{opt}					
	(T _L)	(T _{opt})	(T _u)	(%)					
Anguille d'Amérique ^{1,6}	10,0	25,0	35,0	$G_{ont} = 12,5015(T - T_1)^*(1 - e^{0.0762(T - T_1)})$					
Meunier rouge ^{1,2,7}	0,0	12,0	25,0	$G_{oot} = 805,4559(T - T_L)^*(1 - e^{0,0008(T - T_L)})$					
Meunier noir ^{1,2}	12,0	24,0	30,0	$G_{opt} = 11,6470(T - T_L)^*(1 - e^{0.2095(T-T_L)})$					
Grand corégone ^{1,5}	9,0	15,5	20,0	$G_{opt} = 30,7876(T - T_L)^*(1 - e^{0.1539(T - T_L)})$					
Méné de lac ²	11,2	28,0	34,0	$G_{opt} = 7,1354(T - T_L)^*(1 - e^{0.2995(T - T_L)})$					
Grand brochet ¹	10,0	19,0	23,0	$G_{opt} = 14,5162(T - T_L)^*(1 - e^{0.3625(T - T_L)})$					
Épinoche à trois épines ¹	3,0	19,0	26,6	$G_{opt} = 8,4629(T - T_L)^*(1 - e^{0.1765(T - T_L)})$					
Lotte ^{1,2,4}	6,8	17,0	23,5	$G_{opt} = 17,4994(T - T_L)^*(1 - e^{0,1260(T-T_L)})$					
Ménomini rond ^{1,2}	7,0	17,5	24,5	$G_{opt} = 17,8437(T - T_L)^*(1 - e^{0.1090(T - T_L)})$					
Naseux des rapides ^{1,2,9}	5,4	16,0	22,7	$G_{opt} = 16,4078(T - T_L)^*(1 - e^{0.1277(T-T_L)})$					
Omble de fontaine ^{1,2}	9,8	14,6	17,9	$G_{opt} = 41,0673(T - T_L)^*(1 - e^{0.2145(T - T_L)})$					
Touladi ^{1,2}	4,0	16,5	19,4	$G_{opt} = 8,7587(T - T_L)^*(1 - e^{0.8435(T - T_L)})$					
Saumon atlantique ^{2,3}	7,8	18,0	24,6	$G_{opt} = 17,5885(T - T_L)^*(1 - e^{0.1235(T - T_L)})$					
Ouitouche ^{1,8}	2,0	15,0	28,0	$G_{opt} = 194,7481(T - T_L)^*(1 - e^{0.0031(T-T_L)})$					
1 Wismer and Christie (198	87)								

Tableau 2.	Paramètres et équations descriptives de la croissance en longueur des poissons
	en fonction de la température de l'eau dans la Romaine.

Wismer and Christie (1987).

2 Coker et coll. (2001).

3 Elliott et Hurley (2003).

4

5

Roy (2001). Dexter et O'Neal (2004). Facey et Van Den Avyle (1987). Edwards (1983). 6

7

Trial et coll. (1983). 8

Edwards et coll. (1983). 9

120 Pourcentage de la température optimale (%) 0 0 0 8 00 00 Anguille d'Amérique -_ _ Épinoche à trois épines Grand brochet Grand corégone Lotte Méné de lac Ménomini rond Meunier noir Meunier rouge Naseux des rapides Omble de fontaine 40 Ouitouche - Saumon atlantique - Touladi 20 -0 5 10 15 20 25 30 35 1 Température (°C) 0344_ge_493_SH_f9-a_070205.fh10

Figure 9-A. Modélisation de la croissance des poissons en fonction de la température de l'eau.

Exemple de travail

Dans la Romaine, les habitats types ont été caractérisés de la même façon que dans la rivière Rupert (tableau 1), à la seule différence que les milieux d'eau peu profonde (\leq 1,5 m) ont été séparés de ceux dont la strate dépasse les 1,5 m. À titre d'exemple, considérons l'indice S de deux espèces, le meunier rouge et le meunier noir, calculé à l'aide de la BPUE de pêche au filet maillant pour la strate d'eau la plus profonde, soit celle de 1,5 m et plus (tableau 3).

Tableau 3.	Indice S du meunier rouge et du meunier noir de la Romaine dans la strate d'eau
	plus profonde que 1,5 m (adapté de GENIVAR, 2006).

	p.e.e p.e.e		.,• (,					
Habitat type	Ba1	Ba2	Ch1	Ch2	Ch3_v	Ch3	Ra1	Ra2	Se1	Se2	Se3
Meunier rouge											
BPUE (kg/f-j)	1,06	0,86	0,69	0,46	0,07	0,20	-	0,43	1,15	0,14	0,63
Indice S	0,93	0,75	0,60	0,40	0,06	0,17	0,00	0,38	1,00	0,13	0,55
Meunier rouge											
BPUE (kg/f-j)	0,35	0,14	0,02	0,03	0,78	0,28	-	-	-	0,14	-
Indice S	0,45	0,18	0,03	0,03	1,00	0,36	0,00	0,00	0,00	0,18	0,00

Posons comme hypothèse qu'un tronçon de rivière possède les 11 habitats types du tableau 3, que chacun d'eux présente une superficie de 10 ha en conditions d'avant projet et de 5 ha en conditions d'après projet. La perte en pourcentage de la capacité de production qui en résulte, considérant l'IPP (tableau 4), est de l'ordre de 50 % dans les deux cas.

Tableau 4. IPP calculés pour le meunier rouge et le meunier noir de la Romaine dans la strate d'eau plus profonde que 1 m considérant une perte en superficie de 5 ha dans chaque habitat type.

uu	no onaque	indonte	a ypo	•								
Habitat type	Ba1	Ba2	Ch1	Ch2	Ch3_v	Ch3	Ra1	Ra2	Se1	Se2	Se3	Total
Meunier rouge												
IPP ¹ avant	9,30	7,50	6,00	4,00	0,60	1,70	0,00	3,80	10,00	1,30	5,50	49,70
IPP ² après	4,65	3,75	3,00	2,00	0,30	0,85	0,00	1,90	5,00	0,65	2,75	24,85
Meunier noir												
IPP ¹ avant	4,50	1,80	0,30	0,30	10,00	3,60	0,00	0,00	0,00	1,80	0,00	22,30
IPP ² après	2,25	0,90	0,15	0,15	5,00	1,80	0,00	0,00	0,00	0,90	0,00	11,15
4 100 401*0/	(+											

1 IPP = 10 ha * S (tableau 3).

2 IPP = 5 ha * S (tableau 3).

Considérons maintenant qu'une baisse de température de l'eau de 3°C est envisagée dans la rivière. Si la modélisation du régime thermique prévoit que la température moyenne en période de production halieutique passera de 12,0°C à 9,0°C, la différence entre G_{opt} en conditions futures et actuelles donnera un facteur de correction permettant d'ajuster la valeur de la perte de capacité de production. Pour les deux espèces de notre exemple, la variation de G_{opt} se calcule comme suit :

 Δ Gopt (meunier rouge) = 92,20 % - 99,99 % = -7,79 %

 Δ Gopt (meunier noir) = n/a (valeurs nulles ou négatives)

Ainsi, la capacité de production du meunier rouge subit une perte de 57,79 % au lieu de 50,0 %, alors que celle du meunier noir n'est pas influencée par la température et demeure la même, soit 50 %.

Conclusion

Un modèle décrivant la réponse physiologique du poisson à des variations de la température de l'eau a été adapté pour corriger les valeurs de la perte ou du gain de la capacité de production de poissons calculée à l'aide de l'IPP. Ce modèle exprime en pourcentage le taux de croissance des différentes espèces en fonction de la température de l'eau.

Le calcul de la différence entre le pourcentage du taux croissance optimal (G_{opt}) en conditions futures (situation d'après projet) et celui en conditions actuelles (situation d'avant-projet) permet ainsi d'ajuster à la hausse ou à la baisse, selon le cas, le pourcentage de la perte ou du gain de la capacité de production calculée à l'aide de l'aide de l'IPP. L'ajout de la température de l'eau au type d'habitat, à titre de variable explicative des impacts, permet d'atteindre une plus grande précision quant aux répercussions du projet sur la communauté de poissons.

Références citées :

- COKER, G.A, C.B.PORTT and C.K. MINNS. 2001. Morphological and ecological characteristics of canadian freshwater fishes. *Canadian Manuscrit Report of Fisheries and Aquatic Sciences*. 2554: iv + 89 pp.
- DEXTER, J.L. and R.P. O'NEIL. 2004. Michigan fish stocking guidelines II: with periodic updates. Michigan Department of Natural Resources. *Fisheries Special Report 32*. Ann Arbor.
- EDWARDS, E.A. 1983. Habitat suitability index models: Longnose sucker. *United State Department of Interior, Fisheries and Wildlife Services. Biol. FWS/0BS-82/10.35.* 21 pp.
- EDWARDS, E.A., H. LI and C.B. SCHREK. 1983. Habitat Suitability Index models : Longnose dace. United State Department of Interior, Fisheries and Wildlife Services. FWS/OBS-82/10.33. 13 pp.
- ELLIOTT, J.M. and M.A. HURLEY. 2003. Variation in the temperature preference and growth rate of individual fish reconciles differences between two growth models. *Freshwater Biology*. 48: 1793-1798.
- ELLIOTT, J.M. and M.A. HURLEY. 2001. Modelling growth of brown trout (*Salmo trutta*) in terms of weight and energy units. *Freshwater Biology*. 46: 679-692.
- ELLIOTT, J.M. and M.A. HURLEY. 2000. Optimum energy intake and gross efficiency of energy conversion for brown trout (*Salmo trutta*) feeding on invertebrates or fish. *Freshwater Biology*. 44: 605-615.

- ELLIOTT, J.M. and M.A. HURLEY. 1998. A new functional model for estimating the maximum amount of invertebrate food consumed per day by brown trout (*Salmo trutta*). *Freshwater Biology*. 39: 339-349.
- FACEY, D.E. and M.J. VAN DEN AVYLE. 1987. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (North Atlantic) – American eel. United State Fisheries and Wildlife Services Biological Report. 82(11-74). U.S. Army Corps of Engineers, TR EL-82-4. 28 pp.
- FORSETH, T., M.A. HURLEY, A.J. JENSEN and J.M. ELLIOTT. 2001. Functional models for growth and food consumption of Atlantic salmon parr (*Salmo salar*), from a Norwegian river. *Freshwater biology*. 46: 173-186.
- GENIVAR. 2004 Projet de centrale Eastmain-1-A et dérivation Rupert. Caractérisation des habitats du poisson. Rapport sectoriel. Beauchamp, G., Belzile, L., Lévesque, F. et Guay, J.C. Rapport de GENIVAR Groupe Conseil inc. pour la Société d'énergie de la Baie James et Hydro-Québec. 128 p. et annexes.
- GENIVAR. 2006. Centrale de l'Eastmain-1-A et dérivation Rupert. Caractérisation des communautés et de la production de poissons : Revue et corrigée. Rapport sectoriel. 2^e édition. GENIVAR Société en commandite pour la Société d'énergie de la Baie James et Hydro-Québec. 179 p. et annexes.
- ROY, S.A. 2001. Burbot management plan. Department of Inland Fisheries and Wildlife Division Fisheries and Hatcheries. *Great Lakes Fisheries Commission Special Publication*. 26 pp.
- TRIAL, J.G, C.S. WADE, J.G. STANLEY and P.C. NELSON. 1983. Habitat suitability information: Fall fish. *United State Department of Interior, Fisheries and Wildlife Services. FWS/OBS-*82/10.48. 15 pp.
- WISMER, D.A. and A.E. CHRITIE. 1996. A model temperature of Great Lakes fishes. A data compilation. *Great Lakes Fisheries Commission Special Publication*. 87-3. 165 pp.

ANNEXE 10

Simulations de Monte-Carlo sur la production de poissons dans les différents milieux du bassin de la Romaine

Simulation Results for P rivière (>1,5m) / H89

Summary Information			
Workbook Name	Calcul Risk.xls		
Number of Simulations	1		
Number of Iterations	10000		
Number of Inputs	43		
Number of Outputs	20		
Sampling Type	Latin Hypercube		
Simulation Start Time	2006-11-23 09:50		
Simulation Stop Time	2006-11-23 09:50		
Simulation Duration	00:00:50		
Random Seed	684217364		

Summary Statistics					
Statistic	Value	%tile	Value		
Minimum	1,03	5%	7,28		
Maximum	2258,06	10%	10,05		
Mean	75,18	15%	12,62		
Std Dev	125,38	20%	15,06		
Variance	15720,64925	25%	17,63		
Skewness	5,487881611	30%	20,33		
Kurtosis	49,85636794	35%	23,19		
Median	34,89	40%	26,81		
Mode	14,82	45%	30,59		
Left X	7,28	50%	34,89		
Left P	5%	55%	40,63		
Right X	274,85	60%	47,01		
Right P	95%	65%	55,41		
Diff X	267,57	70%	66,32		
Diff P	90%	75%	79,84		
#Errors	0	80%	97,21		
Filter Min		85%	126,52		
Filter Max		90%	167,78		
#Filtered	0	95%	274,85		

Sensitivity					
Rank	Name	Regr	Corr		
#1	Masse communauté / \$B\$543	-0,392	-0,861		
#2	NP / ESLU / \$Q\$87	0,165	0,201		
#3	Masse moyenne / CACA / \$K\$90	0,104	0,175		
#4	NP / SAFO / \$X\$87	-0,083	-0,119		
#5	Masse moyenne / ESLU / \$Q\$90	0,081	0,096		
#6	NP / SANA / \$Y\$87	0,075	0,082		
#7	NP / CACA / \$K\$87	-0,062	-0,108		
#8	Masse moyenne / CACO / \$L\$90	0,059	0,121		
#9	CPUE / SAFO / \$AO\$60	0,058	0,072		
#10	CPUE / ESLU / \$AJ\$60	-0,047	-0,083		
#11	Masse pondérée / ESLU / \$AJ\$63	-0,043	-0,085		
#12	Masse moyenne / SANA / \$Y\$90	0,042	0,061		
#13	Masse pondérée / CACO / \$AF\$63	-0,039	-0,043		
#14	Masse pondérée / CACA / \$AE\$63	-0,036	-0,060		
#15	Masse moyenne / SAFO / \$X\$90	0,033	0,057		
#16	Masse moyenne / COCL / \$O\$90	0,028	0,032		

Simulation Results for P rivière (>1,5m) / H89*

Summary Information				
Workbook Name	Calcul Risk.xls			
Number of Simulations	1			
Number of Iterations	10000			
Number of Inputs	43			
Number of Outputs	20			
Sampling Type	Latin Hypercube			
Simulation Start Time	2006-11-23 10:05			
Simulation Stop Time	2006-11-23 10:05			
Simulation Duration	00:00:48			
Random Seed	1429216884			

Summary Statistics					
Statistic	Value	%tile	Value		
Minimum	2,57	5%	10,33		
Maximum	173,36	10%	12,51		
Mean	28,88	15%	14,41		
Std Dev	16,47	20%	16,03		
Variance	271,2933792	25%	17,62		
Skewness	1,805440468	30%	19,04		
Kurtosis	8,829513331	35%	20,49		
Median	25,07	40%	21,96		
Mode	20,95	45%	23,55		
Left X	10,33	50%	25,07		
Left P	5%	55%	26,83		
Right X	60,33	60%	28,65		
Right P	95%	65%	30,87		
Diff X	50,00	70%	33,08		
Diff P	90%	75%	35,82		
#Errors	0	80%	39,26		
Filter Min		85%	43,60		
Filter Max		90%	49,69		
#Filtered	0	95%	60,33		

Sensitivity						
Rank	Name	Regr	Corr			
#1	NP / ESLU / \$Q\$87	0,441	0,436			
#2	Masse moyenne / CACA / \$K\$90	0,326	0,340			
#3	NP / SAFO / \$X\$87	-0,255	-0,274			
#4	Masse moyenne / CACO / \$L\$90	0,207	0,216			
#5	Masse moyenne / ESLU / \$Q\$90	0,206	0,199			
#6	NP / CACA / \$K\$87	-0,196	-0,223			
#7	CPUE / ESLU / \$AJ\$60	-0,154	-0,174			
#8	NP / SANA / \$Y\$87	0,148	0,159			
#9	Masse pondérée / CACA / \$AE\$63	-0,143	-0,142			
#10	Masse pondérée / ESLU / \$AJ\$63	-0,124	-0,134			
#11	Masse moyenne / SANA / \$Y\$90	0,110	0,122			
#12	CPUE / SAFO / \$AO\$60	0,106	0,107			
#13	Masse moyenne / SAFO / \$X\$90	0,099	0,105			
#14	Masse pondérée / CACO / \$AF\$63	-0,087	-0,091			
#15	NP / COPL / \$P\$87	-0,073	-0,071			
#16	Masse moyenne / COCL / \$O\$90	0,072	0,075			

* Désactivation de la fonction de probabilité sur la masse moyenne communauté.
Simulation Results for P rivière (<1,5m) / H83

Summary Information		
Workbook Name	Calcul Risk.xls	
Number of Simulations	1	
Number of Iterations	10000	
Number of Inputs	46	
Number of Outputs	20	
Sampling Type	Latin Hypercube	
Simulation Start Time	2006-11-23 10:13	
Simulation Stop Time	2006-11-23 10:14	
Simulation Duration	00:00:48	
Random Seed	1168064240	

	Summary Statistics			
Statistic	Value	%tile	Value	
Minimum	0,30	5%	7,66	
Maximum	257888,86	10%	12,21	
Mean	416,61	15%	16,19	
Std Dev	3374,03	20%	21,25	
Variance	11384094,15	25%	26,19	
Skewness	52,2454313	30%	32,44	
Kurtosis	3614,905331	35%	39,60	
Median	71,34	40%	48,32	
Mode	15,81	45%	58,24	
Left X	7,66	50%	71,34	
Left P	5%	55%	86,72	
Right X	1276,30	60%	107,52	
Right P	95%	65%	133,72	
Diff X	1268,63	70%	167,77	
Diff P	90%	75%	215,13	
#Errors	14	80%	282,57	
Filter Min		85%	400,99	
Filter Max		90%	627,40	
#Filtered	0	95%	1276,30	

	Sensitivity			
Rank	Name	Regr	Corr	
#1	Masse moyenne / ESLU / \$Q\$82	0,107	0,051	
#2	Masse communauté / \$B\$885	-0,099	-0,074	
#3	NP / ESLU / \$Q\$79	0,077	0,048	
#4	Masse moyenne / PRCY / \$U\$82	0,045	-0,008	
#5	NP / RHCA / \$V\$79	-0,037	-0,031	
#6	NP / SECO / \$Z\$79	-0,022	-0,006	
#7	CPUE / ESLU / \$AH\$47	0,022	-0,010	
#8	NP / CATO / \$M\$79	-0,020	-0,033	
#9	CPUE / CACO / \$AE\$47	0,000	0,000	
#10	CPUE / CATO / \$AF\$47	0,000	0,021	
#11	CPUE / COPL / \$AG\$47	0,000	0,008	
#12	CPUE / GAAC / \$AI\$47	0,000	-0,004	
#13	CPUE / INTE / \$AJ\$47	0,000	-0,002	
#14	CPUE / LOLO / \$AK\$47	0,000	-0,001	
#15	CPUE / PRCY / \$AL\$47	0,000	-0,006	
#16	CPUE / RHCA / \$AM\$47	0,000	-0,007	

Simulation Results for P rivière (<1,5m) / H83*

Summary Information			
Workbook Name	Calcul Risk.xls		
Number of Simulations	1		
Number of Iterations	10000		
Number of Inputs	46		
Number of Outputs	20		
Sampling Type	Latin Hypercube		
Simulation Start Time	2006-11-23 10:18		
Simulation Stop Time	2006-11-23 10:18		
Simulation Duration	00:00:46		
Random Seed	2087560458		

Summary Statistics			
Statistic	Value	%tile	Value
Minimum	0,37	5%	9,27
Maximum	3874,95	10%	12,68
Mean	95,09	15%	16,00
Std Dev	153,10	20%	19,10
Variance	23438,87684	25%	22,25
Skewness	5,689186451	30%	25,49
Kurtosis	66,72394455	35%	29,36
Median	45,68	40%	34,08
Mode	18,81	45%	39,55
Left X	9,27	50%	45,68
Left P	5%	55%	52,60
Right X	339,95	60%	61,45
Right P	95%	65%	71,81
Diff X	330,68	70%	84,90
Diff P	90%	75%	102,56
#Errors	4	80%	127,04
Filter Min		85%	162,20
Filter Max		90%	217,33
#Filtered	0	95%	339,95

	Sensitivity				
Rank	Name	Regr	Corr		
#1	Masse moyenne / ESLU / \$Q\$82	0,474	0,088		
#2	NP / ESLU / \$Q\$79	0,452	0,088		
#3	NP / RHCA / \$V\$79	-0,189	-0,055		
#4	NP / CATO / \$M\$79	-0,167	-0,034		
#5	CPUE / RHCA / \$AM\$47	0,069	0,004		
#6	CPUE / CACO / \$AE\$47	-0,050	-0,028		
#7	Masse pondérée / RHCA / \$AM\$50	-0,040	0,001		
#8	NP / INTE / \$S\$79	-0,037	0,008		
#9	Masse pondérée / CACA / \$AF\$50	-0,036	-0,006		
#10	NP / SECO / \$Z\$79	-0,032	-0,002		
#11	CPUE / CATO / \$AF\$47	0,027	0,006		
#12	Masse moyenne / CACO / \$L\$82	0,027	0,020		
#13	CPUE / ESLU / \$AH\$47	-0,023	-0,030		
#14	Masse pondérée / CACO / \$AE\$50	-0,022	-0,006		
#15	Masse pondérée / ESLU / \$AH\$50	-0,019	-0,009		
#16	Masse pondérée / SAFO / \$AO\$50	-0,018	-0,019		

Désactivation de la fonction de probabilité sur la masse moyenne communauté.

Lac	Nt	o espèces	Production	duction Simulation Mon			0 000 fois)	
				Moyenne	Minimum (IC95%)	Maximum (IC95%)	Minimum absolu	Maximum absolu
	1	1	7,74	8,56	4,25	12,48	0,00	130,64
	3	5	6,15	5,72	0,42	10,69	0,00	33,05
	4	4	9,52	9,05	1,57	18,66	0,00	25,09
	5	2	11,96	11,93	0,02	18,41	0,00	26,77
	6	6	8,24	5,23	0,07	11,86	0,00	38,98
	7	1	7,39	6,72	1,87	13,06	0,00	24,69
	8	1	0,00	0,00	0,00	0,00	0,00	0,00
	102	1	0,00	0,00	0,00	0,00	0,00	0,00
	103	3	5,52	4,62	0,70	12,22	0,00	42,62
	104	1	7,74	7,38	0,05	11,75	0,00	22,15
Total			6,43	5,92	0,00	18,66	0,00	130,64

Simulation Results for P L01 (>4m) / S7

Sensitivity					
Rank	Name	Regr	Corr		
#1	Masse / SAFO / \$AC\$3	-0,655	0,001		
#2					
#3					
#4					
#5					
#6					
#7					
#8					
#9					
#10					
#11					
#12					
#13					
#14					
#15					
#16					

Simulation Results for P L03 (>4m) / S18

Simulation Results for P L04 (>4m) / S25

Summary Information		
Workbook Name	Calcul Risk.xls	
Number of Simulations	1	
Number of Iterations	10000	
Number of Inputs	6	
Number of Outputs	20	
Sampling Type	Latin Hypercube	
Simulation Start Time	2006-11-23 10:45	
Simulation Stop Time	2006-11-23 10:45	
Simulation Duration	00:00:41	
Random Seed	1489122080	

	Summary Statistics			
Statistic	Value	%tile	Value	
Minimum	1,41	5%	2,94	
Maximum	24,29	10%	3,42	
Mean	9,04	15%	3,85	
Std Dev	5,02	20%	4,31	
Variance	25,22926684	25%	4,77	
Skewness	0,692070158	30%	5,31	
Kurtosis	2,562390998	35%	5,87	
Median	7,92	40%	6,52	
Mode	3,72	45%	7,20	
Left X	2,94	50%	7,92	
Left P	5%	55%	8,71	
Right X	18,70	60%	9,58	
Right P	95%	65%	10,50	
Diff X	15,76	70%	11,47	
Diff P	90%	75%	12,47	
#Errors	0	80%	13,78	
Filter Min		85%	14,94	
Filter Max		90%	16,60	
#Filtered	0	95%	18,70	

Simulation Results for P L05 (>4m) / S31

#10

#12

#13

#14 #15 #16

Masse / COCI/W3 #11

1

0,75

0,5

-.058

Std b Coefficients

0

0,25

-0,25

-0,75

-0,5

-1

Simulation Results for P L06 (>4m) / S42

Simulation Results for P L07 (>4m) / S45

20

5%

Summary Information			
Workbook Name	Calcul Risk.xls		
Number of Simulations	1		
Number of Iterations	10000		
Number of Inputs	1		
Number of Outputs	20		
Sampling Type	Latin Hypercube		
Simulation Start Time	2006-11-23 10:53		
Simulation Stop Time	2006-11-23 10:54		
Simulation Duration	00:00:47		
Random Seed	1064501011		

Summary Statistics			
Statistic	Value	%tile	Value
Minimum	1,87	5%	2,40
Maximum	26,93	10%	2,86
Mean	6,72	15%	3,30
Std Dev	3,35	20%	3,71
Variance	11,21017993	25%	4,11
Skewness	0,910169611	30%	4,51
Kurtosis	3,797032593	35%	4,91
Median	6,14	40%	5,31
Mode	4,71	45%	5,72
Left X	2,40	50%	6,14
Left P	5%	55%	6,59
Right X	13,06	60%	7,05
Right P	95%	65%	7,55
Diff X	10,66	70%	8,10
Diff P	90%	75%	8,71
#Errors	0	80%	9,41
Filter Min		85%	10,25
Filter Max		90%	11,35
#Filtered	0	95%	13,06

(graph unavailable for this simulation and output)

10

13,0595

0,200-

_<u>5%</u> 2,3965

Sensitivity					
Rank	Name	Regr	Corr		
#1	Masse / SAAP / \$AB\$3	0,974	1,000		
#2					
#3					
#4					
#5					
#6					
#7					
#8					
#9					
#10					
#11					
#12					
#13					
#14					
#15					
#16					

Simulation Results for P L103 (>4m) / S54

Simulation Results for P L104 (>4m) / S57

Summary Information				
Workbook Name	Calcul Risk.xls			
Number of Simulations	1			
Number of Iterations	10000			
Number of Inputs	1			
Number of Outputs	20			
Sampling Type	Latin Hypercube			
Simulation Start Time	2006-11-23 10:58			
Simulation Stop Time	2006-11-23 10:59			
Simulation Duration	00:00:44			
Random Seed	93958015			

Summary Statistics					
Statistic	Value	%tile	Value		
Minimum	0,13	5%	3,36		
Maximum	20,26	10%	4,22		
Mean	7,38	15%	4,80		
Std Dev	2,55	20%	5,26		
Variance	6,494249631	25%	5,66		
Skewness	0,285428199	30%	6,01		
Kurtosis	3,298246371	35%	6,34		
Median	7,28	40%	6,66		
Mode	7,12	45%	6,97		
Left X	3,36	50%	7,28		
Left P	5%	55%	7,59		
Right X	11,75	60%	7,90		
Right P	95%	65%	8,24		
Diff X	8,39	70%	8,60		
Diff P	90%	75%	8,99		
#Errors	123	80%	9,44		
Filter Min		85%	9,97		
Filter Max		90%	10,67		
#Filtered	0	95%	11,75		

Sensitivity					
Rank	Name	Regr	Corr		
#1	Masse / SAFO / \$AC\$3	0,961	0,009		
#2					
#3					
#4					
#5					
#6					
#7					
#8					
#9					
#10					
#11					
#12					
#13					
#14					
#15					
#16					

Simulation Results for P tributaire / E43

Workbook Name

Number of Inputs

Sampling Type

Number of Outputs

Simulation Start Time

Simulation Stop Time

Number of Simulations

Number of Iterations

0,600-

0,400-

0,200

0.000 L 20

25,3341 42,4497

	Simulation Duration		
	Random Seed		8
		Summary Statistics	
100 14	⁴⁰ Statistic	Value	%tile
6	0 Simulation Duration Random Seed Statistic Minimum Maximum Mean Std Dev Variance Skewness Kurtosis Median Mode Left X Left P Right X Right P Diff X Diff P #Errors Filter Min Filter Max	24,47	
	Maximum	132,23	
	Mean	29,58	
ire/F43	Std Dev	7,44	:
III e/ E 43	Variance	55,36653205	:
	Skewness	4,619381993	:
	Kurtosis	33,51124908	:
	Median	27,23	
	Mode	26,28	
	Left X	25,33	
	Left P	5%	
	Right X	42,45	
	Right P	95%	
	Diff X	17,12	
	Diff P	90%	
	#Errors	0	
100 14	Filter Min		
	Filter Max		
	#Filtered	0	

5%

60

Sensitivity					
Rank	Name	Regr	Corr		
¥1	Masse moyenne (g) / SAFO / \$L\$22	0,928	0,798		
¥2	Masse moyenne (g) / SSAO / \$P\$22	0,258	0,099		
#3	Masse moyenne (g) / CACO / \$D\$22	0,139	0,158		
¥4	Masse moyenne (g) / CACA / \$C\$22	0,077	0,267		
¥5	Masse moyenne (g) / ANRO / \$B\$22	0,028	0,096		
#6	Masse moyenne (g) / RHCA / \$K\$22	0,022	0,101		
¥7	Masse moyenne (g) / PUPU / \$J\$22	0,021	0,054		
¥8	Masse moyenne (g) / COPL1 / \$E\$22	0,016	0,057		
¥9	Nb Captures / SSAO / \$P\$23	0,011	0,012		
¥10	Masse moyenne (g) / ESLU1 / \$G\$22	0,008	0,026		
¥11	Nb Captures / CACA / \$C\$23	0,007	0,019		
¥12	Nb Captures / ANRO / \$B\$23	0,006	0,029		
¥13	Nb Captures / SECO / \$N\$23	0,006	0,028		
¥14	Nb Captures / PUPU / \$J\$23	0,006	0,011		
¥15	Nb Captures / SASA / \$M\$23	0,005	0,030		
¥16	Masse moyenne (g) / GAAC1 / \$H\$22	0,000	0,011		

Summary Information

Calcul Risk.xls

1

10000

41

20

Latin Hypercube

2006-11-23 10:22

2006-11-23 10:22

00:00:44

806476626

5%

10%

15%

20%

25%

30%

35%

40%

45%

50% 55%

60%

65%

70%

75%

80%

85%

90%

95%

Value

25,33

25,59

25.80

25.99

26,18

26,36 26.56

26,77

26,99

27.23

27,49

27,80 28 23

28,81

29,53

30.61

32,31

35,50

42,45

Lac	Nb espèces	Production	Simulation Monte Carlo (10 000 fois)				
			Moyenne	Minimum (IC95%)	Maximum (IC95%)	Minimum absolu	Maximum absolu
1	1	8,56	8,28	0,17	12,52	0,00	22,54
3	5	3,16	3,06	0,13	5,74	0,00	12,63
4	4	3,24	3,30	0,02	6,79	0,00	16,66
5	2	2,30	2,27	0,96	3,42	0,00	9,13
6	6	5,61	5,57	0,01	7,54	0,00	9,47
7	1	0,00	0,00	0,00	0,00	0,00	0,00
8	1	3,78	4,43	1,52	7,29	0,00	132,21
102	1	3,78	3,60	0,01	6,64	0,00	18,65
103	3	2,83	2,83	0,25	5,71	0,00	11,20
104	1	8,56	8,28	0,12	12,53	0,00	22,61
Total		4,18	4,16	0,00	12,53	0,00	132,21

Simulation Results for P L01 (<4m) / S7

Summary mormation			
Workbook Name	Calcul Risk.xls		
Number of Simulations	1		
Number of Iterations	10000		
Number of Inputs	1		
Number of Outputs	20		
Sampling Type	Latin Hypercube		
Simulation Start Time	2006-11-23 11:13		
Simulation Stop Time	2006-11-23 11:14		
Simulation Duration	00:00:41		
Random Seed	1068009075		

Summary Statistics				
Statistic	Value	%tile	Value	
Minimum	0,17	5%	4,16	
Maximum	22,54	10%	5,09	
Mean	8,28	15%	5,70	
Std Dev	2,54	20%	6,18	
Variance	6,468211793	25%	6,59	
Skewness	0,12941647	30%	6,95	
Kurtosis	3,254366171	35%	7,29	
Median	8,24	40%	7,62	
Mode	8,08	45%	7,93	
Left X	4,16	50%	8,24	
Left P	5%	55%	8,55	
Right X	12,52	60%	8,87	
Right P	95%	65%	9,20	
Diff X	8,36	70%	9,55	
Diff P	90%	75%	9,93	
#Errors	66	80%	10,36	
Filter Min		85%	10,87	
Filter Max		90%	11,52	
#Filtered	0	95%	12.52	

Sensitivity				
Rank	Name	Regr	Corr	
#1	Masse / SAFO / \$AB\$2	0,970	0,004	
#2				
#3				
#4				
#5				
#6				
#7				
#8				
#9				
#10				
#11				
#12				
#13				
#14				
#15				
#16				

Simulation Results for P L03 (<4m) / S18

#15 #16

Simulation Results for P L04 (<4m) / S25

#14

#15 #16

Std b Coefficients

Simulation Results for P L05 (<4m) / S31

-0,75

-0,5

-0,25

0

Std b Coefficients

0,25

0,5

0,75

#13 #14

#15 #16

-1

Simulation Results for P L06 (<4m) / S42

Summary Information			
Workbook Name	Calcul Risk.xls		
Number of Simulations	1		
Number of Iterations	10000		
Number of Inputs	11		
Number of Outputs	20		
Sampling Type	Latin Hypercube		
Simulation Start Time	2006-11-23 11:26		
Simulation Stop Time	2006-11-23 11:26		
Simulation Duration	00:00:44		
Random Seed	1694088890		

	Summary Statistics					
Statistic	Value	%tile	Value			
Minimum	0,01	5%	2,90			
Maximum	9,47	10%	3,58			
Mean	5,57	15%	4,02			
Std Dev	1,41	20%	4,40			
Variance	2,001197571	25%	4,69			
Skewness	-0,585280521	30%	4,95			
Kurtosis	3,025972984	35%	5,18			
Median	5,80	40%	5,39			
Mode	5,17	45%	5,62			
Left X	2,90	50%	5,80			
Left P	5%	55%	5,97			
Right X	7,54	60%	6,14			
Right P	95%	65%	6,30			
Diff X	4,64	70%	6,46			
Diff P	90%	75%	6,61			
#Errors	4	80%	6,78			
Filter Min		85%	6,96			
Filter Max		90%	7,20			
#Filtered	0	95%	7,54			

Simulation Results for P L08 (<4m) / S45

Sensitivity			
Rank	Name	Regr	Corr
#1	Masse / ESLU / \$Z\$2	-0,466	-0,011
#2			
#3			
#4			
#5			
#6			
#7			
#8			
#9			
#10			
#11			
#12			
#13			
#14			
#15			
#16			

Simulation Results for P L102 (<4m) / S50

Summary Information		
Workbook Name	Calcul Risk.xls	
Number of Simulations	1	
Number of Iterations	10000	
Number of Inputs	1	
Number of Outputs	20	
Sampling Type	Latin Hypercube	
Simulation Start Time	2006-11-23 11:28	
Simulation Stop Time	2006-11-23 11:28	
Simulation Duration	00:00:43	
Pandom Sood	2071777475	

- 11	Summary Statistics			
	Statistic	Value	%tile	Value
	Minimum	0,01	5%	1,20
	Maximum	18,65	10%	1,63
	Mean	3,60	15%	1,94
	Std Dev	1,70	20%	2,20
	Variance	2,876650595	25%	2,43
	Skewness	0,925831172	30%	2,63
	Kurtosis	5,183646996	35%	2,83
	Median	3,41	40%	3,02
	Mode	3,20	45%	3,22
	Left X	1,20	50%	3,41
	Left P	5%	55%	3,61
	Right X	6,64	60%	3,81
	Right P	95%	65%	4,04
	Diff X	5,45	70%	4,28
	Diff P	90%	75%	4,55
	#Errors	412	80%	4,86
	Filter Min		85%	5,25
	Filter Max		90%	5,78
	#Filtered	0	95%	6,64

Sensitivity			
Rank	Name	Regr	Corr
#1	Masse / ESLU / \$Z\$2	0,932	0,011
#2			
#3			
#4			
#5			
#6			
#7			
#8			
#9			
#10			
#11			
#12			
#13			
#14			
#15			
#16			

Simulation Results for P L103 (<4m) / S59

-0,75

-0,5

-0,25

0

Std b Coefficients

0,25

0,5

0,75

#13

#14 #15 #16

-1

Simulation Results for P L104 (<4m) / S62

Summary Information		
Workbook Name	Calcul Risk.xls	
Number of Simulations	1	
Number of Iterations	10000	
Number of Inputs	1	
Number of Outputs	20	
Sampling Type	Latin Hypercube	
Simulation Start Time	2006-11-23 11:33	
Simulation Stop Time	2006-11-23 11:34	
Simulation Duration	00:00:40	
Random Seed	1105099335	

	Summary Statistics			
	Statistic	Value	%tile	Value
N	1inimum	0,12	5%	4,16
N	laximum	22,61	10%	5,09
N	lean	8,28	15%	5,70
s	itd Dev	2,54	20%	6,18
V	ariance	6,469303657	25%	6,59
s	kewness	0,129708254	30%	6,96
ĸ	urtosis	3,258172113	35%	7,29
N	ledian	8,24	40%	7,62
N	lode	8,08	45%	7,93
L	eft X	4,16	50%	8,24
L	eft P	5%	55%	8,55
R	light X	12,53	60%	8,87
R	light P	95%	65%	9,20
D	oiff X	8,37	70%	9,55
D	iff P	90%	75%	9,93
#	Errors	66	80%	10,36
F	ilter Min		85%	10,87
F	ilter Max		90%	11,52
#	Filtered	0	95%	12,53

Sensitivity			
Rank	Name	Regr	Corr
#1	Masse / SAFO / \$AB\$2	0,970	0,018
#2			
#3			
#4			
#5			
#6			
#7			
#8			
#9			
#10			
#11			
#12			
#13			
#14			
#15			
#16			