

Étude hydrogéologique du projet d'agrandissement du lieu d'enfouissement technique de Saint-Nicéphore

05-12210

Étude hydrogéologique du projet d'agrandissement du lieu d'enfouissement technique de Saint-Nicéphore

Volume 1 de 2

Rapport final

Janvier 2005

Index des rapports

Volume 1

1	INTROD	DUCTION	1-1
1.1 1.2		et contextes de l'étude	
2	DESCRI	PITION GÉNÉRALE DU SITE	2-1
3	ÉTUDES	S ANTÉRIEURES	3-1
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Foratek Géoroch Hydrogé Laborato Dessau- Golder A Golder A	International (1981). International (1984). International (1984). International (1984). International (1984). International (1985). International (1988). International (1988). International (1988). International (1988). International (1988). International (1988). International (1981). International (1984).	
4	GÉOLO(GIE ET HYDROGÉOLOGIE RÉGIONALE	4-1
4.1 4.2 4.3	Géologie 4.2.1 4.2.2	e régionale e locale	4-2 4-2 4-2
5	DESCRI	PTION DES TRAVAUX DE TERRAIN ET DE LABORATOIRE	5-1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Forages Sondage Essais d Aménag Échantill Échantill Essais e 5.8.1 5.8.2	et puits d'observation es au piézocône e perméabilité. ement d'un puits de pompage et essai de pompage onnage de l'eau souterraine onnage de l'eau de surface t analyses en laboratoire Analyses physico-chimiques Programme d'assurance-qualité	5-1 5-4 5-6 5-7 5-8 5-9 5-9
5.9 5.10 5.11	Mesure o	Essais géotechniquesdes niveaux d'eaudes pressions et des concentrations de gazhydrologiques	5-14 5-14
6	CARACT	ÉRISATION GÉOTECHNIQUE	6-1
6.1 6.2		ratigraphiques	6-3

	6.3.2	Lentilles de sable	. 6-8
6.4	Propriéte	és du dépôt de till glaciaire	. 6-8
	6.4.1	Essais en laboratoire	. 6-8
0.5	6.4.2	Essais de pénétration standard (SPT).	. 6-9
6.5	Qualite o	du socie rocheux	6-10
7	HYDRO	GÉOLOGIE	. 7-1
7.1	Interpréta	ation des données de terrain	. 7-1
	7.1.1	Propriétés hydrauliques	. 7-1
	7.1.2	Patrons d'écoulement de l'eau souterraine	. 7-2
7.2	Unités hy	ydrogéologiques	. 7-3
7.3	Propriété	es hydrauliques	. 7-3
	7.3.1	Aquifère à nappe libre	. 7-3
	7.3.2	Aquitard	. 7-5
	7.3.3	Aquifère confiné	. 7-6
7.4	Patron d'	écoulement de l'eau souterraine	. 7-6
	7.4.1	Aquifère de surface	. 7-7
	7.4.2	Aquifère confiné	. 7-9
- -	7.4.3	Gradients verticaux	7-11
7.5	Classifica	ation et vulnérabilité de l'eau souterraine	7-13
	7.5.1	Aquifère de surface	7-14
7.0	7.5.2	Aquifère confiné	7-14
7.6	Hespect	des exigences de l'article 14 du PREMR	7-14
8	HYDROL	OGIE	8-1
8.1	Hydrolog	ie régionale et locaie	8-1
	8.1.1	Délimitation des bassins versants et réseau de drainage régional	8-1
	8.1.2	Drainage de surface local	8-2
8.2	Bilan hyd	rologique	8-3
	8.2.1	Mesures hydrologiques	8-3
	8.2.2	Résultats	8-5
9	CARACT	ÉRISATION ENVIRONNEMENTALE	
9.1		e l'eau souterraine	
0.1	9.1.1	Bruit de fond	9-1
	9.1.2	Qualité de l'eau de l'aquifère de surface	9-1
	9.1.3	Qualité de l'eau souterraine de l'aquifère confiné.	8-0 144
9.2		surfaceg	}~ { 1 4 ~7
9.3	Condition	s de gaz	1-17 1-01
9.4	Contrôle	de qualité 9	FZ↓ 2-04
	9.4.1	Automne 2003	
	9.4.2	Printemps 2004	-21 -22
		· · · · · · · · · · · · · · · · · · ·	

10	CONC	CLUSIONS ET RECOMMANDATIONS10-1
	Considérations géotechniques	
11	RÉFÉ	RENCES11-1
Annexe	e A	Rapports de forage
Annexe	∍B	Essais de perméabilité et essai de pompage
Annexe	e C	Rapport sur les investigations au piézocône (Cogemat)
Annexe	D D	Profils géotechniques et résultats des essais en laboratoire
<u>Volume</u>	<u>e 2</u>	
Annexe	Ε	Certificats d'analyses physico-chimiques (Maxxam Analytique)
Annexe	F	Calcul de l'indice DRASTIC
Annexe	G	Dossier photographique

Liste des tableaux

Tableau 5.1	Essais géotechniques	5-13
Tableau 7.1	Essais de perméabilité réalisés dans l'aquifère de surface	
Tableau 7.2	Essais de perméabilité réalisés dans l'aquitard	
Tableau 7.3	Essais de perméabilité réalisés dans l'aquifère confiné	
Tableau 7.4	Niveau d'eau mesurés (24 novembre 2003 et 4 juin 2004)	
Tableau 7.5	Gradients hydrauliques verticaux	
Tableau 8.1	Résultats des mesures de débit	
Tableau 9.1	Concentrations du bruit de fond dans les eaux souterraines de l'aquifère de surface (automne 2003 et printemps 2004)	9-3
Tableau 9.2	Concentrations du bruit de fond dans les eaux souterraines de l'aquifère confiné (automne 2003 et printemps 2004)	
Tableau 9.3	Qualité des eaux souterraines de la nappe de surface – Échantillonnage de novembre 2003	
Tableau 9.4	Qualité des eaux souterraines de la nappe de surface – Échantillonnage de juin 2004	
Tableau 9.5	Qualité des eaux souterraines de la nappe profonde – Échantillonnage de novembre 2003	
Tableau 9.6	Qualité des eaux souterraines de la nappe confinée- Échantillonnage de juin 2004	
Tableau 9.7	Qualité des eaux de surface – Échantillonnage de novembre 2003 et juin 2004	
Tableau 9.8	Concentrations et pressions de gaz dans les puits d'observation	

Liste des figures (présentées à la fin du rapport)

Figure 1.1	Localisation générale du site
Figure 1.2	Configuration du site
Figure 2.1	Environs du site
Figure 4.1	Géologie régionale
Figure 5.1	Localisation des sondages
Figure 5.2	Stations d'échantillonnage des eaux de surface
Figure 6.1	Coupe A-A
Figure 6.2	Coupe B-B
Figure 6.3	Coupe C-C
Figure 6.4	Coupe D-D
Figure 6.5	Coupe E-E
Figure 6.6	Coupe F-F
Figure 6.7	Coupe G-G
Figure 6.8	Isocontours de l'épaisseur du dépôt de sable de surface
Figure 6.9	Isocontour de l'épaisseur du dépôt d'argile silteuse
Figure 6.10	Isocontours de l'épaisseur de till glaciaire
Figure 6.11	Isocontours de l'élévation du roc
Figure 6.12	Granulométrie du dépôt de sable de surface
Figure 6.13	Granulométrie du dépôt d'argile silteuse
Figure 6.14	Granulométrie du dépôt de till glaciaire
Figure 7.1	Carte piézométrique de l'aquifère du sable de surface – Automne 2003
Figure 7.2	Carte piézométrique de l'aquifère du sable de surface – Printemps 2004
Figure 7.3	Carte piézométrique de l'aquifère confiné – Automne 2003
Figure 7.4	Carte piézométrique de l'aquifère confiné – Printemps 2004

Figure 8.1	Localisation et limites des bassins versants				
Figure 8.2	Réseau d'écoulement de surface - mesure des débits				
Figure 9.1	Qualité des eaux souterraines de l'aquifère du sable de surface - Novembre 2003				
Figure 9.2	Qualité des eaux souterraines de l'aquifère du sable de surface - Juin 2004				
Figure 9.3	Qualité des eaux souterraines de l'aquifère confiné – Novembre 2003				
Figure 9.4	Qualité des eaux souterraines de l'aquifère confiné - Juin 2004				
Figure 9.5	Qualité des eaux de surface - Novembre 2003				
Figure 9.6	Qualité des eaux de surface - Juin 2004				

1 INTRODUCTION

1.1 Mandat et contexte

En septembre 2003, TECSULT Inc. (TECSULT) a été mandatée par INTERSAN Inc. (INTERSAN) afin de réaliser une étude hydrogéologique et géotechnique en vue de procéder à l'agrandissement du lieu d'enfouissement sanitaire (LES) de Saint-Nicéphore. Un plan de localisation général du site est présenté sur la figure 1.1¹.

INTERSAN désire procéder à l'agrandissement de son site existant sur un terrain d'une superficie de 106 hectares qui est localisé au nord² et à l'est du site existant. Le futur site d'enfouissement technique (LET) sera conçu et opèrera selon les exigences du «*Projet de Règlement sur l'élimination des matières résiduelles* (PREMR)» préparé par le Ministère de l'environnement du Québec (MENV). Le PREMR a été publié dans la gazette officielle du Québec en octobre 2000 et remplacera éventuellement l'actuel *Règlement sur les déchets solides (RDS)* qui est en vigueur depuis 1978. Tant le PREMR que la directive spécifique du MENV (2000) pour la réalisation d'une étude d'impact sur l'environnement, définissent les exigences de conception et d'opération des LET.

Le site existant de Saint-Nicéphore, qui est montré à la figure 1.2, est en opération depuis les années '80. La Phase 1 du LES avait été construite dans la partie est du site, près des lagunes de traitement du lixiviat. La Phase 1 était opérée selon le principe d'atténuation naturelle. Les cellules d'enfouissement était excavées jusqu'à une profondeur d'environ 14 à 15 mètres. Un écran périphérique d'étanchéité constitué d'un mélange sol-bentonite, ancré dans l'argile sous-jacente, était alors aménagé de manière à prévenir la contamination des eaux souterraines de surface. Le lixiviat de la Phase 1 était et est encore collecté à la base des cellules, via des drains perforés, mis en place dans des tranchées de drainage en matériaux granulaire, et plusieurs stations de pompage.

Le site a ensuite été agrandi vers l'ouest en Phase 2 (cellules 1 à 4) au cours des années '90. Un réseau de puits pour le suivi de l'eau souterraine a dès lors été aménagé en périphérie du

Les figures sont présentées à la fin du rapport
 Dans le but de faciliter la compréhension de ce rapport, le nord du projet est fixé arbitrairement à une direction approximativement parallèle à la route 143.

site en vue de veiller à l'évolution de la qualité de l'eau souterraine. L'écran périphérique d'étanchéité a alors été prolongé vers l'ouest. Le site a de nouveau été agrandi vers l'ouest, en 2002 et 2003, suit à la construction des cellules 5 et 6.

À l'heure actuelle, les cellules 1 et 2 sont complètement remplies et un couvert final a été mis en place. Les cellules 3 et 4 ont récemment atteint leurs élévations finales et un recouvrement est en voie d'y être installé. Les cellules 5 et 6 ont été en partie aménagées durant l'été et l'automne 2003. Des matières résiduelles ont d'ailleurs commencé à y être enfouies dès l'automne 2003. Les cellules 7 et 8, qui seront localisées près de la limite ouest du site, constitueront les deux dernières cellules du site d'enfouissement actuel.

Les cellules 5 et 6 sont munies d'un système d'étanchéité à double géomembranes PEHD et sont équipées d'un système de collecte du lixiviat et d'un système de détection des fuites. Un écran d'étanchéité sol-bentonite, dont la construction a été complétée dans les années '90, ceinture les cellules. Les cellules 7 et 8 seront conçues de la même façon. Présentement, tout le lixiviat produit est collecté de ces cellules et est acheminé vers les lagunes de traitement à l'est du site pour ensuite être recirculé dans le site d'enfouissement.

1.2 Objectifs de l'étude

À l'automne 2003, TECSULT a entrepris d'importants travaux d'investigation sur le site visé par l'agrandissement en vue d'établir les caractéristiques détaillées du site. Le programme de travail a été élaboré de manière à rencontrer les exigences du PREMR ainsi que les exigences spécifiques de la Directive pour la réalisation d'une étude d'impact sur l'environnement d'un projet de lieu d'enfouissement.

Les principaux objectifs de l'étude sont d'établir :

- une connaissance approfondie des unités stratigraphiques;
- l'épaisseur de la couche d'argile et sa conductivité hydraulique;
- le potentiel de l'aquifère du sable de surface (débit spécifique);
- les principales caractéristiques géotechniques des dépôts meubles pour la conception future du site d'enfouissement;
- les conditions hydrogéologiques qui prévalent en vue d'établir le régime d'écoulement des eaux souterraines;

la qualité initiale des eaux souterraines en vue de protéger leur détérioration le cas échéant.

La présente étude montre donc tous les résultats des travaux d'investigation de même que l'interprétation des conditions géologiques, géotechniques, hydrogéologiques et environnementales qui ont été observées sur le terrain de l'agrandissement projeté à Saint-Nicéphore. En plus des résultats des investigations réalisées en 2003, le rapport présente un résumé des résultats pertinents obtenus au cours des travaux antérieurs réalisés par d'autres consultants.

Ce rapport comporte dix (10) chapitres. Le chapitre 1 décrit le mandat de TECSULT et présente une mise en contexte de l'étude. Le chapitre 2 présente une description générale des principales caractéristiques physiques de la propriété d'INTERSAN. Le chapitre 3 résume les résultats des différentes études antérieures qui ont été réalisées sur la propriété d'INTERSAN à Saint-Nicéphore depuis 1981. Le chapitre 4 présente une description de la géologie et de l'hydrogéologie locale et régionale. Tous les travaux d'investigation qui ont été réalisés au site durant la campagne de l'automne 2003 sont décrits au chapitre 5. Les conditions géotechniques et hydrogéologiques qui prévalent sur le terrain de l'agrandissement projeté sont décrites respectivement aux chapitres 6 et 7. Le chapitre 8 décrit l'hydrologie régionale et locale. Le chapitre 9 présente la caractérisation environnementale des eaux de surface et des eaux souterraines. Finalement, les conclusions et les recommandations sont formulées au chapitre 10.

		٠

2 DESCRPITION GÉNÉRALE DU SITE

Le site d'enfouissement d'INTERSAN est localisé sur le territoire de la MRC de Drummond, plus spécifiquement dans la municipalité de Saint-Nicéphore, approximativement trois kilomètres au sud-ouest de l'agglomération. L'accès au site s'effectue via la route 143 qui relie Drummondville à Grandby.

Le terrain visé par le projet d'agrandissement consiste en une bande de terrains d'une superficie d'environ 106 hectares qui est localisée directement au nord et à l'est des limites de l'actuel site d'enfouissement.

Ce terrain est bordé au nord et à l'est par des boisés et des terres en friche et à l'ouest par des bâtiments résidentiels qui sont érigés le long de la route 143. Trois autres secteurs résidentiels sont situés dans les environs du site, soit le Club-du-Faisan et le Domaine-Quatre-Saisons qui sont respectivement localisés à 700 m et 900 m au sud de la propriété d'INTERSAN, et les résidences qui bordent le boulevard Allard (qui longe la rivière Saint-François) à environ 500 m à l'est du site.

L'agrandissement projeté sera aménagé sur les lots 68 Ptie, 69 Ptie, 70 Ptie et 128 Ptie du cadastre officiel du Canton de Wickham. La configuration de la propriété d'INTERSAN est montrée à la figure 1.2 tandis qu'une vue aérienne du site et de ses environs est montrée à la figure 2.1.

On peut diviser le terrain de l'agrandissement en trois secteurs qui présentent des caractéristiques distinctes. Le premier secteur est localisé directement au nord du site existant et forme une bande de terrain d'environ 1 400 m de long et de 450 m de largeur. Ce secteur est couvert par un boisé constitué approximativement à 50% de conifères et 50% de feuillus. Le niveau du terrain naturel y varie entre 117 m dans la partie ouest et 115 m dans la partie est (à l'exception d'une pile de sols organiques qui atteint une dizaine de mètres de hauteur et qui est localisées à l'extrémité sud-est du secteur). La pente naturelle du terrain est donc d'environ 0,13% vers la rivière Saint-François.

Le deuxième secteur a une dimension approximative de 400 m x 450 m et est localisé dans la partie nord-est du terrain de l'agrandissement. Il est marqué par la présence de deux piles de matériaux d'excavation provenant du site existant et qui atteignent près de 17 m de hauteur chacune. Ces deux piles occupent pratiquement toute la superficie du secteur. Les sols qui s'y empilent sont composés de sable, de sable silteux et de silt qui proviennent de l'excavation des cellules du site existant.

Le troisième secteur est localisé à l'est du site existant. Il mesure approximativement 550 m X 550 m et est couvert d'un boisé composé d'environ 50% de conifères et de 50% de feuillus. Le relief du terrain y est assez prononcé. On y retrouve en effet plusieurs petites collines et dépressions. L'élévation du terrain naturel y varie entre 113 m et 105 m dont une pente orientée vers le ruisseau Paul-Boisvert qui est localisé à sa limite sud.

Le terrain de l'agrandissement projeté est accessible via un réseau de chemins non-pavés qui est relié à celui qui dessert le site existant. Un de ces chemins relie le secteur des piles de matériaux d'excavation à la rue du Cordeau qui est orientée est-ouest et borde la limite nord du terrain de l'agrandissement. Deux autres chemins dont l'accès s'effectue dans le secteur des lagunes de traitement du lixiviat permettent d'accéder à la partie sud-ouest du terrain visé par l'agrandissement.

Le drainage du terrain est assuré par un réseau de fossés et de ruisseaux de faibles dimensions. Le ruisseau Oswald-Martel qui se déverse dans la rivière Saint-François approximativement 3,2 km au nord-est prend sa source sur le terrain visé par l'agrandissement et draine sa partie nord-ouest. Le ruisseau Paul-Boisvert qui est localisé au sud de la propritété d'INTERSAN draine le fossé principal qui sépare le site existant de la zone de l'agrandissement projeté au sud-est. Le drainage de la partie nord-est du terrain de l'agrandissement s'effectue via un ensemble de marécages et atteint ultimement la rivière Saint-François via un ruisseau sans nom.

Le terrain ne possède aucune infrastructure. Les seules infrastructures existantes sont localisés sur le terrain du site existant et y desservent ses activités. Elles consistent en quatre lagunes de traitement du lixiviat qui sont localisées au sud-est; une torchère située au sud de la limite de la zone d'expansion; un garage destiné à l'entretien de la machinerie, des bureaux administratifs, et un poste de pesée, tous situés dans la partie sud-ouest du site existant.

3 ÉTUDES ANTÉRIEURES

Depuis 1981, plusieurs études comportant de l'information hydrogéologiques, géotechniques et environnementales ont été réalisées au site de Saint-Nicéphore. Les principaux résultats de ces études sont présentés dans les sections qui suivent.

3.1 Foratek International (1981)

L'étude la plus ancienne a été réalisée par Foratek International en 1981 et était intitulée « Étude hydrogéologique d'un terrain situé sur une partie des lots 129 et 130, Rang III à Saint-Nicéphore, comté de Wickham et proposé comme site d'enfouissement sanitaire ».

Cinq (5) forages ont été réalisés sur le site à des profondeurs variant entre 3,1 m et 18,3 m. Des échantillons de sol ont été prélevés en cours de forage et soumis à des analyses granulométriques en laboratoire. Tous les forages ont été aménagés en puits d'observation installés dans l'aquifère de sable de surface. Des essais de perméabilité y ont aussi été réalisés.

Les principales interprétations de cette étude sont les suivantes:

- le mort-terrain est composé d'une couche de sable fin dont l'épaisseur varie entre 3 m et 6 m. Le sable fin devient plus silteux avec la profondeur. Sous cet horizon, on retrouve un dépôt de d'argile silteuse qui surmonte un dépôt de till glaciaire. Le socle rocheux a été intercepté à des profondeurs variant entre 18 m et 20 m.
- > la profondeur de la nappe de surface varie entre 0,5 m et 1,5 m;
- ➢ la conductivité hydraulique moyenne du dépôt de sable de surface est de l'ordre 4,7 x 10⁻³ cm/s;
- ➤ l'écoulement de la nappe de surface s'effectue en direction de l'est, vers un ruisseau qui se jette dans la rivière Saint-François. La vitesse d'écoulement de l'eau souterraine varie entre 25 et 40 mètres par année. Dans la portion est du site, la vitesse d'écoulement atteint 60 mètres par année.

Cette étude recommandait de procéder à l'imperméabilisation des parois en périphérie du site existant, d'installer un système de collecte du lixiviat et de traiter ce dernier, le cas échéant.

3.2 Foratek International (1984)

Foratek International a réalisé une étude complémentaire intitulée « Saint-Nicéphore: complément aux relevés hydrogéologiques pour l'étude d'un site d'enfouissement sanitaire, Comté de Wickham ».

Douze (12) tranchées d'exploration ont été excavées sur le site à des profondeurs variant entre 2,4 m et 5,0 m. Des échantillons de sols ont été prélevés et soumis à des analyses granulométriques et des essais de perméabilité en laboratoire (en utilisant des échantillons reconstitués). Les objectifs spécifiques de cette étude étaient, d'une part, de vérifier que les unités stratigraphiques qui avaient été identifiées dans l'étude précédente étaient présentes sur l'ensemble du site, et d'autre part, de vérifier la conductivité hydraulique du dépôt de sable silteux présent dans les premiers cinq mètres du site.

Les données recueillies ont confirmé la présence d'un dépôt de sable fin uniforme en surface du site, lequel devient du silt en profondeur. La conductivité hydraulique moyenne de ce sable fin silteux obtenue en laboratoire était de 3,3 X 10⁻⁵ cm/s.

3.3 Géoroche (1985)

Ce rapport, préparé par la firme GÉOROCHE en septembre 1985 était intitulé « Expertise hydrogéologique, Site d'enfouissement sanitaire Saint-Nicéphore, Québec », pour le Ministère de l'environnement du Québec.

Le but de cette étude était de clarifier certains aspects reliés à la nature du sol au droit du LES. Sept (7) tranchées d'exploration ont été réalisées au fond et sur les parois de la cellule d'enfouissement en opération à ce moment. Des échantillons de sols ont été prélevés et soumis à des analyses granulométriques et des essais de perméabilité en laboratoire (avec des échantillons reconstitués). Des essais de densité *in situ* ont également été réalisés à même les tranchées d'exploration.

Les objectifs de cette étude étaient de vérifier le respect des exigences réglementaires du site à l'égard de la conductivité hydraulique des sols (résultats de laboratoire de 7.6 x 10⁻⁶ cm/s), la vitesse de migration des lixiviats (évaluée à 2,4 m/an) et d'établir les pentes d'excavation (recommandation d'utiliser des pentes de 2H: 1V). Les résultats des mesures de conductivité hydraulique ont cependant été jugés non représentatifs des conditions *in situ* en raison des

limites évidentes de la méthode d'essai en laboratoire qui consistait à tester des échantillons reconstitués dans des moules Proctor.

3.4 Hydrogéo Canada (1992-1993)

L'étude réalisée en 1992-1993 par Hydrogéo Canada (filiale de SNC-Lavalin) était intitulée « Les Entreprises de Rébuts Sanipan inc. – Étude hydrogéologique complémentaire du lieu d'enfouissement sanitaire à Saint-Nicéphore ».

Les objectifs de cette étude étaient de compléter l'information recueillie dans les rapports hydrogéologiques antérieurs et de caractériser une nouvelle zone du LES à exploiter.

Sept (7) forages ont été réalisés à des profondeurs variant entre 7,45 m et 23,35 m, lesquels ont été convertis en puits d'observation. Cinq (5) de ces puits ont été aménagés dans l'aquifère confiné (socle rocheux) et deux (2) dans l'aquifère de surface. Des essais de perméabilité en bout de tubage ont été réalisés en cours de forage de même que dans les puits d'observation. Des échantillons d'eau souterraine ont été prélevés et soumis à un laboratoire pour fins d'analyses physico-chimiques. Des échantillons de sols représentatifs ont aussi été prélevés et testés en laboratoire afin d'établir leur granulométries et teneurs en eau de même que leur résistance au cisaillement (sur un nombre limité d'échantillons).

Ces travaux ont permis de mieux définir les caractéristiques de l'aquifère du sable de surface de même que celles de l'aquifère confiné. Les principales conclusions de cette étude sont les suivantes :

- le mort-terrain est composé, à partir de la surface, d'un dépôt de sable fin, silteux qui a une épaisseur variant entre 6,5 m et 8,5 m. Ce dépôt surmonte un silt gris dont l'épaisseur varie entre 3,0 m et 12,5 m qui surmonte à son tour un dépôt de till glaciaire dont l'épaisseur varie entre 0,5 m et 6,0 m et qui est composé de sable, de silt, de gravier, de quelques cailloux et de traces d'argile. Le socle rocheux a été intercepté à des profondeurs variant entre 17 m et 21 m;
- deux systèmes hydrogéologiques ont été identifiés sur le site, soit un aquifère en nappe libre dans le dépôt de sable de surface (à des profondeurs variant entre 0,5 m et 2,3 m de la surface du sol) et un aquifère profond dans le roc fracturé. Les gradients hydrauliques horizontaux sont de 0,0032 m/m pour l'aquifère de surface et varient entre 0,001 m/m et 0,013 m/m pour l'aquifère du roc;

- les essais de perméabilité réalisés en cours de forage et dans les puits d'observation ont permis d'établir la conductivité hydraulique moyenne de chaque unité stratigraphique qui est de 1,3 x 10⁻³ cm/s pour le dépôt de sable de surface et de 3,9 x 10⁻⁶ cm/s pour le silt sous-jacent. La conductivité hydraulique du socie rocheux varie quant à elle entre 2,2 x 10⁻⁵ cm/s et 5,9 x 10⁻³ cm/s;
- la vitesse d'écoulement de l'eau souterraine dans l'aquifère de surface est évaluée à 5 m/an. Dans le socle rocheux, la vitesse d'écoulement de l'eau souterraine varie entre 0,07 m/an et 18 m/an. Ces vitesses respectent les exigences du Règlement sur les déchets solides du Ministère de l'environnement (Q-2.r.14) qui spécifient un déplacement maximal des eaux souterraines de 300 m sur une période de 5 ans.
- les résultats des analyses physico-chimiques sur les échantillons d'eau souterraine indiquent que les concentrations des paramètres d'intérêt y sont généralement inférieures aux exigences du *Règlement sur l'eau potable* (Q-2, r.4.1). Cependant, les concentrations en coliformes totaux, en fer, en manganèse et en phosphore total excèdent les normes québécoises ou canadiennes pour l'eau potable pour la majorité des échantillons analysés.

Finalement, il était recommandé dans le rapport d'aménager un écran d'étanchéité imperméable ancré dans la couche de silt pour l'exploitation des futures cellules d'enfouissement.

3.5 Laboratoires Shermont (1998)

L'étude des Laboratoires Shermont qui a été réalisée en 1998 avec le support de la firme HGE était intitulée « Étude hydrogéologique – Lieu d'enfouissement sanitaire Intersan Inc., Saint-Nicéphore (Québec) ».

Seize (16) forages ont été complétés sur le site à des profondeurs variant entre 3,20 m et 26,06 m. Tous les forages ont été aménagés en puits d'observation. Huit (8) puits d'observation ont été installés dans l'aquifère du sable de surface et huit (8) dans l'aquifère confiné. Le programme de travail comprenait également la réalisation d'essais de perméabilité *in situ*, ainsi que la collecte et la description d'échantillons de sols et de roc.

L'étude confirme la présence de deux aquifères. La différence entre les conductivités hydrauliques de l'aquifère de surface et celle de l'aquifère confiné est estimée à environ deux ordres de grandeurs. La direction d'écoulement de l'eau souterraine de même que les gradients sont similaires pour les deux aquifères identifiés.

3.6 Dessau-Soprin (2000)

Le rapport préparé par DESSAU-SOPRIN en 2000 était intitulé « Intersan Inc. – Lieu d'enfouissement technique Saint-Nicéphore – Carte piézométrique (25 mai 2000) » et contenait les résultats des mesures de niveaux d'eau relevées sur seize (16) puits d'observation aménagés dans l'aquifère de surface et quinze (15) puits d'observations aménagés dans l'aquifère confiné.

À la lumière des niveaux d'eau mesurés dans les puits d'observation, des cartes piézométriques ont été préparées pour les deux aquifères en présence, Les gradients horizontaux et verticaux ont aussi été établis. Dans l'aquifère de surface, le gradient hydraulique horizontal moyen est estimé à 0,011 m/m alors que la direction d'écoulement s'effectue du nord-ouest vers le sud-est. Dans l'aquifère confiné, le gradient hydraulique horizontal moyen est de 0,013 m/m alors que l'écoulement s'effectue de l'ouest vers l'est. Le gradient hydraulique vertical observé varie entre 0,003 m/m et 0,859 m/m et induit un écoulement de l'aquifère de surface vers l'aquifère confiné. Un gradient hydraulique vertical de 0,18 m/m est observé au puits d'observation PZ-98-03, lequel induit un écoulement vers le haut, de l'aquifère confiné vers l'aquifère de surface.

Il est à noter que des différences significatives sont observées entre les cartes piézométriques proposées par HGE en 1998 et celles de Dessau-Soprin en 2000.

3.7 Golder Associés (Juin 2002)

Le rapport préparé par Golder Associés intitulé "Review of Piezometric Data – St. Nicéphore Engineered Landfill" a été réalisé suite au soulèvement produit le 4 février 2002 au fond de la cellule 6 à l'époque de sa construction.

Les données piézométriques du site ont été réinterprétées en considérant tous les puits installés dans chacune des unités stratigraphiques. Quatorze (14) puits d'observation ont ainsi été considérés pour établir le niveau piézométrique aux conditions statiques de l'aquifère de surface, tandis que seulement six (6) puits ont été utilisés pour établir la piézométrie de l'aquifère confiné. Les dix (10) puits d'observation aménagés dans la couche imperméable (silt et sable silteux) n'ont pas été considérés dans cette analyse. Ces considérations ont permis

d'obtenir une nouvelle image des données piézométriques au site en vue d'évaluer le potentiel de soulèvement du fond des cellules excavées, en considérant le soulèvement observé et le pompage subséquent, de même que la réinterprétation des niveaux piézométriques obtenus en mai 2000. Le rapport présente également une interprétation de la qualité des eaux souterraines selon les diagrammes de Stiff et Piper.

3.8 Golder Associés (Novembre 2002)

Le rapport préparé par Golder Associés était intitulé « Hydrogeological Study - INTERSAN Engineered Landfill – St. Nicéphore, Quebec (November 2002). Ce rapport visait à répondre aux préoccupations qui ont été soulevées suite au soulèvement du fond de la cellule 6 lors de son aménagement. Il visait également à améliorer la connaissance des conditions hydrogéologiques et géotechniques qui prévalent dans le secteur des cellules 7 et 8 pour améliorer leur conception et ainsi éviter les soulèvements potentiels à leur base.

Cinq (5) puits d'observation et sept (7) puits de pompage ont été aménagés dans le cadre de cette étude. Des échantillons de sol ont été prélevés durant le forage des puits et des analyses granulométriques en laboratoire ont été effectuées sur des échantillons de sol représentatifs. Des essais de perméabilité ont été réalisés sur les puits d'observation et les puits de pompage. Aussi, des essais de pompage sur deux (2) puits ont été menés.

Des échantillons d'eau souterraine ont été prélevés et analysés en laboratoire pour les paramètres analytiques exigés dans le PREMR. Le rapport présente une réinterprétation des conditions hydrogéologiques du site et définit l'aquifère confiné qui correspond à la partie supérieure du socle rocheux et aux chenaux de sable et gravier présents dans certaines portions du dépôt de till glaciaire. Plusieurs considérations sont alors prises en compte afin d'évaluer le potentiel de soulèvement du fond des cellules excavées (cellules 5 et 6) et des cellules en voie de l'être (cellules 7 et 8) en évaluant la nécessité de pomper l'aquifère confiné pour réduire ces risques.

4 GÉOLOGIE ET HYDROGÉOLOGIE RÉGIONALE

4.1 Géologie régionale

La propriété d'INTERSAN est située dans la province géologique des Basses-terres du Saint-Laurent. Dans la région de Drummondville, le mort-terrain est typiquement constitué, à partir du toit du socle rocheux jusqu'au terrain naturel, de dépôts de till (till de Gentilly) et de sédiments de type glaciaire, lesquels sont surmontés par une succession de sédiments d'origine glacio-lacustre, marin et fluviatile. Localement, ces sédiments ont été remaniés par les courant littoraux, l'action des vagues et du vent. Au droit de la propriété d'INTERSAN, l'arrivée et le retrait progressif de la Mer de Champlain ont permis l'accumulation de silt et d'argile d'origine marine de même que de sable de la même origine. La granulométrie des sables marins est généralement fine à moyenne et leur couleur varie de jaune-brun en surface à gris dans les couches les plus profondes (Tremblay, 1975).

Les sédiments de contact glaciaire ont une orientation générale du nord-ouest au sud-est (Warren B. et Bouchard M., 1976).

Le socle rocheux au droit de la propriété d'INTERSAN appartient à la Formation de Bulstrode dont l'âge maximal atteint l'Ordovicien Moyen à Supérieur. Cette formation est composée de d'ardoises calcareuses avec des interlits de calcaire argileux. Les ardoises calcareuses sont de couleur gris-brun dans la zone de surface altérée et de couleur gris foncé dans la zone de surface non altérée. Dans plusieurs cas, ces ardoises sont interceptées par de nombreuses veinules de calcite qui sont orientées parallèlement à un réseau de diaclases. Ces veinules sont minéralisées par de la pyrite et localement par du graphite. Leurs épaisseurs varient entre 1 cm et 10 cm. L'épaisseur des interlits de calcaire varie entre 5 cm et 60 cm. Dans la zone de surface non altérée, la couleur du calcaire varie entre gris et gris foncé alors qu'en surface altérée, sa couleur varie entre gris pâle et gris-brun (Globensky, 1978).

La géologie régionale est présentée à la figure 4.1

4.2 Géologie locale

4.2.1 <u>Dépôts meubles</u>

La description de la stratigraphie des dépôts meubles obtenue à partir des forages réalisés sur le terrain visé par le projet d'agrandissement au site de Saint-Nicéphore est présentée sur les rapports de forages qui sont fournis à l'annexe A. Les résultats des travaux d'investigation au piézocône, qui constituent une façon plus précise de définir la stratigraphie d'un site, sont présentés à l'annexe C. L'ensemble des travaux de terrain qui ont été réalisés sur le site à l'automne 2003 est décrit au chapitre 5. La description détaillée des unités stratigraphiques identifiées sur le site est présentée au chapitre 6.

Les travaux d'investigation ont permis d'identifier trois unités stratigrahiques distinctes sur le terrain visé par le projet d'agrandissement. À partir de la surface du terrain naturel, ces unités sont :

- un dépôt de sable fin à sable silteux dont l'épaisseur varie entre 2,1 m et 12,0 m;
- > un dépôt d'argile silteuse dont l'épaisseur varie entre 1,0 m et 11,0 m;
- Un dépôt discontinu de till glaciaire qui est composé de sable, de silt, de gravier, de cailloux et de traces d'argile dont l'épaisseur varie entre 0 m et 14,4 m.

4.2.2 Socie rocheux

Le socle rocheux est constitué d'un shale calcareux dont la couleur varie entre le gris foncé et le noir et qui contient des fractures calcifiées avec des traces de pyrite. Le socle rocheux a été intercepté à des profondeurs qui varient entre 13,9 m et 26,5 m. L'élévation du toit du roc varie entre 87,7 m et 100,3 m.

4.3 Hydrogéologie régionale

Le site du futur projet d'agrandissement à Saint-Nicéphore est couvert par le rapport « Étude hydrogéologique du bassin versant de la Rivière Saint-Francois » qui a été produit par la Direction générale des eaux du ministère des richesses naturelles en 1979.

Lieu d'enfouissement technique de Saint-Nicéphore

Le bassin versant de la rivière Saint-François est localisé sur la rive sud du fleuve Saint-Laurent et occupe une superficie de plus de 10 230 km² dont 86% est localisé au Québec, la partie amont étant localisée aux États-Unis.

Au droit de la propriété d'INTERSAN, la plupart des dépôts meubles sont classifiés comme des formations de faible perméabilité. Cependant, il est possible de retrouver des dépôts sableux et graveleux sous ces dépôts moins perméables. Selon les données disponibles au moment de la réalisation de cette étude en 1979, 37% de la population du bassin versant de la rivière Saint-François (100 000 personnes) s'approvisionnait en eau potable à partir de l'eau souterraine, soit à partir de réseaux locaux d'aqueduc ou à partir de puits privés. Ces utilisateurs de l'eau souterraine se retrouvent dans 89 municipalités, ce qui représente 77% du nombre total de municipalités du bassin versant.

Les dépôts glaciaires granulaires sont classés comme d'excellents aquifères en raison de leur grande conductivité hydraulique, leurs épaisseurs et leurs étendues. Plusieurs municipalités s'approvisionnent en eau potable dans ces formations.

Le socie rocheux du bassin de la rivière Saint-François est classé comme une zone de perméabilité modérée. La propriété d'INTERSAN est localisée dans la Zone II du bassin versant qui correspond à une zone où la capacité des puits individuels pourrait s'avérer supérieure à 5,5 m³/h. La Zone II correspond aux environs de Drummondville qui est marqué par la présence de la faille Logan. Cette faille a généré des failles secondaires qui pourraient avoir augmenté la perméabilité du socle rocheux.

Les sédiments de contact glaciaire de même que le socle rocheux présentent une orientation du nord-ouest au sud-est (Warren B. et Bouchard M., 1976, BAPE, 1998), dans la direction de la rivière Saint-François. Selon ces mêmes sources, la direction d'écoulement de l'eau souterraine la plus vraisemblable dans l'aquifère profond serait en direction du sud-est (par rapport au nord arbitraire fixé dans ce rapport).

Sefon Golder Associés, (novembre 2002), l'aquifère du sable de surface et l'aquifère confiné sont tous les deux susceptibles de servir d'approvisionnement en eau potable dans le secteur de la propriété d'INTERSAN. Des représentants de la municipalités de Saint-Nicéphore ont par ailleurs confirmé que certains résidants utilisaient des puits privés pour leur approvisionnement.

Parmi les résidants qui s'approvisionnent en eau potable à partir de l'eau souterraine, on retrouve les résidants du Domaine Quatre-Saisons (voir figure 2.1) et ceux situés le long du boulevard Allard. Ces résidants ne sont pas alimentés par l'aqueduc municipal qui alimente à la fois Drummondville et Saint-Nicéphore, lequel se termine dans le secteur de l'aéroport municipal (BAPE, 1998). La prise d'eau municipale est localisée dans la rivière Saint-François, à environ 10 km en aval de la propriété d'INTERSAN.

5 DESCRIPTION DES TRAVAUX DE TERRAIN ET DE LABORATOIRE

Les travaux d'investigation sur le terrain de l'agrandissement projeté ont été réalisés entre le 14 octobre et le 28 novembre 2003. Ces travaux ont été précédés par le déboisement des sites d'investigation durant la semaine du 6 octobre afin d'en permettre l'accès.

Quelques-unes des photographies qui ont été prises durant les travaux sont fournies à l'annexe G.

5.1 Arpentage

L'arpentage des nouveaux puits d'observations et des sondages au piézocône a été effectué les 17 et 28 novembre 2003 par une équipe de TECSULT. Les mesures ont été prises à l'aide d'un appareil GPS de grande précision. Les données ont été rattachées au système de coordonnées géodésiques MTM NAD83. La borne de référence officielle (87KM948) est localisée à l'endroit du Domaine-du-Faisan, plus précisément à l'intersection de la rue des Sables et de la 2^{ième} Avenue. Les coordonnées de la borne sont 5 074 901,386 Nord et 392 278,186 Est, alors que son élévation est de 121,03 m.

Pour chaque site d'investigation, le niveau du terrain naturel et du sommet du tubage en PVC ont été relevés. Des puits existants ont également été relevés afin de s'assurer de la cohérence des données.

La localisation exacte des puits d'observation, incluant les nouveaux puits de même que tous les puits existant sur la propriété d'INTERSAN, de même que les sondages au piézocône est présentée à la figure 5.1.

5.2 Forages et puits d'observation

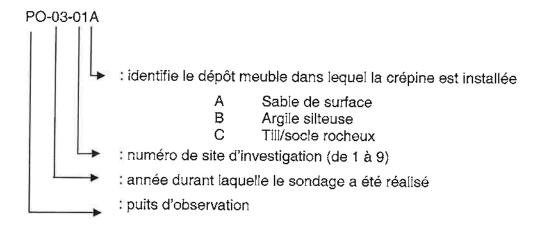
Les forages ont été réalisés par Forages Comeau entre le 14 octobre et le 21 novembre 2003 sous la supervision constante des professionnels de TECSULT. Un total de 20 forages a été réalisé à l'endroit de neuf (9) différents sites d'investigation. Les forages ont été réalisés avec une foreuse sur remorque de type Mobildrill P-31 et avec une foreuse de type Diedrich D-50 montée sur un chenillard.

Le sable de surface et les dépôts d'argile silteuse ont été forés par rotation à l'aide d'un tubage de calibre HW muni à sa base d'un sabot de rotation serti de diamants. De la boue de forage injectée dans le tubage permettait de refroidir et de lubrifier la couronne de diamants, de faire remonter les débris de forage à la surface et de stabiliser les parois du forage. Lorsque le dépôt de till glaciaire était intercepté, la proportion de cailloux ne permettait pas de conserver la même méthode de forage. Le forage était donc poursuivi à l'aide d'un carottier (wire-line) de calibre HQ en y injectant de l'eau de refroidissement jusqu'à une profondeur d'environ 1,5 m dans le socle rocheux.

L'eau de refroidissement qui a été utilisée pour le forage provenait de l'aqueduc municipal et était acheminée sur les sites d'investigation à l'aide de réservoirs en plastique. Des échantillons d'eau ont été prélevés dans ces réservoirs, lesquels ont été utilisés jusqu'à la fin des travaux, et analysés pour les mêmes paramètres analytiques que ceux retenus pour l'eau souterraine afin de confirmer que les réservoirs et l'eau qu'ils contenaient n'étaient pas contaminés.

À l'endroit de chaque site d'investigation, les travaux débutaient par le forage suivi de l'aménagement d'un puits profond qui était crépiné dans le socie rocheux et le till. Ensuite, la foreuse était déplacée de quelques mètres et un puits d'observation était aménagé à la base du sable de surface. Deux puits d'observation (PO-03-03B et PO-03-09B) ont également été aménagés dans le dépôt d'argile silteuse.

L'échantillonnage des sols a été réalisés dans le forage profond à tous les 1,5 m à l'aide d'une cuillère fendue dans le dépôt de sable et le dépôt d'argile silteuse, tandis que les échantillons ont été prélevés par carottage en continu dans le till et le socle rocheux. Quelques échantillons non remaniés ont également été prélevés dans l'argile silteuse avec des tubes à parois minces de type Shelby. Des essais de pénétration standard ont également été réalisés en parallèle avec la prise d'échantillons à la cuillère fendue.


Les échantillons de sols qui ont été prélevés ont été décrits soigneusement par les professionnels de TECSULT à l'aide d'un guide de terrain basé sur la classification USGS et ensuite acheminés au *Laboratoire d'Expertise de Québec Ltée* (LEQ) pour réaliser un programme d'essais géotechniques en laboratoire. Le RQD (Rock Quality Designation) a été mesuré sur les carottes fraîchement retirées du carottier. Les carottes étaient ensuite placées

dans des boîtes de cartons pour être acheminées vers les bureaux de TECSULT pour y être décrites par un géologue.

Chaque puits d'observation est constitué d'un tubage en PVC de calibre 40 de 51 mm de diamètre, équipé à sa base d'une crépine d'ouverture de 0,25 mm d'une longueur variant entre 1,5 m et 3,0 m. Une lanterne de sable de silice était ensuite placée autour de la crépine. Un sable de grade 1 a été utilisé pour les puits aménagés dans le till et le socie rocheux, un sable grade 0 a été utilisé pour les puits aménagés dans le sable de surface et un sable grade 00 a été utilisé pour les puits aménagés dans le dépôt d'argile. Un bouchon de bentonite de 0,6 m était ensuite placé au-dessus de la lanterne de sable. Ensuite, le puits était scellé jusqu'à la surface du sol à l'aide d'un coulis de ciment-bentonite. Un tubage protecteur en acier de 1,8 m de longueur et de 150 mm de diamètre muni d'un couvercle et d'un cadenas était ensuite placé à environ 0,9 au-dessus de la surface du terrain naturel.

Tous les puits d'observation qui ont été aménagés durant les travaux d'investigation ont été développés dans le but de retrouver la conductivité hydraulique naturelle des dépôts meubles. Le développement s'est effectué à l'aide d'une pompe submersible Redi-Flo connecté à un tubage Waterra dédié.

Les puits d'observation qui ont été aménagés dans la cadre de cette étude (de même que la plupart des puits d'observation existants au site) sont identifiés en utilisant la convention suivante :

5.3 Sondages au piézocône

En vue d'obtenir des informations additionnelles suite à celles obtenues par la réalisation du programme de forages conventionnel, un programme d'investigation au piézocône a été réalisé.

Les sondages au piézocône sont réalisés en enfonçant un cône cylindrique dans le sol à l'aide d'une pression statique. Le piézocône est principalement composé d'une pointe (cône) dont la surface est de 10 cm² avec un angle de 60°, un manchon de friction localisé au-dessus du cône et dont la surface est de 150 cm², et un capteur de pression interstitielle situé entre le cône et le manchon. Durant l'enfoncement, la résistance en pointe, la friction et la pression interstitielle sont mesurées en continu. Les mesures sont relevées automatiquement et électroniquement par un ordinateur qui est relié au train de tige.

L'objectif principal de l'essai au piézocône est d'obtenir de l'information en continu sur la stratigraphie des dépôts meubles et de mesurer les variations des propriétés du sol en fonction de la profondeur. Le graphique de l'essai présente la résistance en pointe, la friction et la pression interstitielle en fonction de la profondeur. La mesure en continu de la résistance en pointe, de la friction et de la pression interstitielle permet de détecter les différents types de matériaux (matériaux raide et mou) ainsi que les changements subtils à l'intérieur du dépôt (Lunne et al., 1997). La classification des sols s'effectue en comparant les variations dans les ratios de friction et de la résistance en pointe.

Des chartes de classification ont été utilisées pour corréler les données mesurées au piézocône et le comportement typique des sols. Les chartes ont été établies à partir d'une banque de données très exhaustives.

Pour le présent projet, les données obtenues du piézocône ont été interprétées à partir des chartes de classification de Roberston. Ces chartes prennent en considération l'ensemble des trois données mesurées au piézocône (résistance en pointe, friction et pression interstitielle) et permettent de diviser les caractéristiques des sols en neuf (9) zones distinctes :

Zone 1 : Sensible, matériau à granulométrie fine;

Zone 2: Sol organique, tourbe;

Zone 3: Argiles : argile à argile silteuse;

Zone 4: Mélange de silt, silt argileux à argile silteuse;

Zone 5 : Mélange de sable : sable silteux à silt sableux;

Zone 6: Sables: sable propre à sable silteux;

Zone 7: Sable graveleux à sable;

Zone 8: Sable très raide à sable argileux;

Zone 9: Matériaux à granulométrie fine, très raide.

Il a été mentionné que ces chartes ne permettent pas d'obtenir de façon précise le type de sol selon sa distribution granulométrique (les zones définies préalablement sont très larges d'un point de vue granulométrique), mais fournissent un guide qui permet de définir le type de comportement des sols. Plusieurs facteurs tels que les changements de contraintes historiques, les contraintes in-situ, la sensibilité, la raideur, la configuration des grains, la minéralogie et les vides vont également influencer la classification (Lunne et al., 1997). Des références sur les essais de pénétration au piézocône sont fournies à l'annexe C.

Au total, 15 sondages au piézocône ont été réalisés entre le 16 octobre et le 5 novembre 2003 par la firme Cogemat, sous la supervision des professionnels de TECSULT. Les sondages ont été effectués à l'aide d'une sonde de type Hogentogler d'une capacité de 10 tonnes enfoncée par une foreuse. La vitesse de pénétration de la sonde a été maintenue à environ 120 cm/min. Au cours de la pénétration, la résistance en pointe (qc), la friction du manchon (fs) et la pression intertitielle (u₂) ont été relevées à des intervalles de 10 mm.

Pour plusieurs sondages³ où des remblais ou du sable dense ont été rencontrés, il a été nécessaire de forer au préalable et d'utiliser un tubage de façon à éviter de surcharger le piézocône. Tous les sondages au piézocône ont été arrêtés une fois le dépôt de till atteint. À l'exception de la vitesse de pénétration, les sondages sont réalisés conformément aux standards développés par le « Technical Committee on Penetration Testing of Soils, ISSMEE (1989) » et aux prescriptions de l'ouvrage de référence « Cone Testing Penetration » par Lunne et al. (1997).

³ PZC-03-02, PZC-03-03, PZC-03-04, PZC-03-05, PZC-03-06, PZC-03-08, PZC-03-10, PZC-03-12.

Les détails concernant les sondages au piézocône sont consignés dans le rapport préparé par Cogemat (Cogemat, janvier 2004) pour TECSULT qui est fourni à l'annexe C.

5.4 Essais de perméabilité

Des essais de perméabilité ont été réalisés dans les 20 puits d'observation aménagés dans le cadre de cette étude de même que dans huit puits d'observation existants (PZ-92-01A et C, PZ-98-06A et C, PZ98-03A et C, F2A et C).

Les niveaux statiques de l'eau souterraine ont été mesurés avant de réaliser les essais de perméabilité⁴. Les essais à niveau descendant ont été réalisés à l'aide d'un cylindre plein (slug) de 1,7 m de longueur et de 45 mm de diamètre qui était descendu rapidement dans le puits d'observation, sous le niveau statique de l'eau souterraine afin d'y créer une remontée (inverse d'un rabattement). Les niveaux d'eau étaient ensuite mesurés jusqu'à ce qu'au moins 80% de la différence de charge induite soit dissipée. Des essais à niveau ascendant ont également été effectués dans les puits où le niveau d'eau statique s'avérait trop élevé pour permettre d'insérer le cylindre sans que de l'eau ne s'écoule à l'extérieur du puits d'observation et dans les cas où le niveau statique de l'eau souterraine était inférieur au sommet de la crépine. Dans ces cas, le cylindre était descendu dans le puits d'observation sous le niveau statique et laissé en place suffisamment longtemps pour permettre au puits de recouvrer son niveau statique initial. Le cylindre était ensuite retiré rapidement du puits d'observation et les niveaux d'eau mesurés jusqu'à ce que 80% de la remontée soit complétée.

Deux essais à niveau descendant de type Lefranc ont également été complétés dans le dépôt d'argile silteuse durant le forage afin de mieux définir la conductivité hydraulique de cette unité.

L'interprétation des essais de perméabilité est présentée en détails à l'annexe B.

TECSULT =

⁴ Ces niveaux statiques peuvent être sensiblement différents de ceux qui ont été mesurés durant le relevé ultérieur des niveaux d'eau sur l'ensemble du site effectué le 24 novembre 2003 puisqu'ils ont été mesurés jusqu'à un mois auparavant.

5.5 Aménagement d'un puits de pompage et essai de pompage

Un puits de 150 mm de diamètre (PP-03-01) a été aménagé dans l'aquifère de surface dans le but d'y réaliser un essai de pompage de 72 heures. Les objectifs principaux de cet essai étaient de déterminer les propriétés hydrauliques de l'aquifère et d'évaluer le débit de pompage permanent qui pourrait être maintenu dans cet aquifère, ceci afin d'y vérifier le respect des exigences de l'article 14 du PREMR. Cet article stipule qu'il est interdit d'aménager un site d'enfouissement (LET) sur un terrain dont l'aquifère à nappe libre possède un potentiel aquifère élevé. Un potentiel aquifère élevé est défini lorsque des essais de pompage démontrent qu'il peut être soutiré en permanence, à partir d'un même puits de captage, au moins 25 m³ d'eau par heure.

Après avoir revu les résultats préliminaires des travaux d'investigation réalisés pour les fins de cette étude (conductivités hydrauliques, épaisseur de l'aquifère, niveau de la nappe, etc.), il a été établi que le secteur nord-ouest, à proximité du puits d'observation PO-03-01A était celui qui possédait le meilleur potentiel aquifère dans la zone d'agrandissement projetée. Le puits de pompage y a donc été aménagé, à une distance de 10,15 m du puits d'observation PO-03-01A.

Les travaux d'aménagement du puits de pompage ont été exécutés par Forage Métropolitain entre le 17 et le 20 novembre 2003. Le forage a été réalisé à l'aide d'une foreuse à câbles par le fonçage d'un tuyau d'acier de 300 mm de diamètre muni d'un sabot d'enfoncement jusqu'à ce que la base du dépôt de sable de surface soit atteinte, à 9,15 m de profondeur. Une écope a été utilisée pour retirer le matériel à l'intérieur du tuyau d'acier. Un puits en acier de 150 mm de diamètre a ensuite été inséré au centre du tuyau d'acier. La lanterne de sable de silice a ensuite été placée graduellement dans l'espace annulaire entre le puits et le tuyau pendant que le tuyau était lui-même retiré.

La base de la crépine du puits de pompage est placée à 9,15 de profondeur, ce qui correspond également à la base du dépôt de sable de surface. La crépine dont l'ouverture est de 0,25 mm fait 2,15 m de longueur alors que la lanterne de sable de silice se prolonge jusqu'à 2,14 m de la surface du sol. Un bouchon de bentonite de 0,3 m d'épaisseur est placé au-dessus de la lanterne alors qu'un coulis de ciment-bentonite scelle le puits jusqu'à la surface du terrain

naturel. Un fois les travaux d'aménagement complétés, le puits a été développé par surpompage afin de restaurer les propriétés hydrauliques naturelles de l'aquifère.

Le 21 novembre 2003, un essai de pompage par paliers a été réalisé dans le puits afin de déterminer le débit optimal qui pourrait être soutenu durant l'essai de pompage de 72 heures, essai qui a été lui-même réalisé entre le 25 et le 28 novembre 2003. Durant ces essais, les niveaux d'eau ont été relevés dans le puits de pompage et dans le puits d'observation (PO-03-01A) adjacent à l'aide de sonde à niveau d'eau électrique alors que les débits de pompage ont été mesurés à l'aide d'un seau de 22 litres.

L'essai de pompage par paliers a permis de déterminer que le débit de pompage optimal pour la réalisation de l'essai de pompage longue durée était de 31,8 litres par minute (1,9 m³/h).

Les détails concernant l'aménagement du puits de pompage et les résultats des essais sont présentés à l'annexe B et au chapitre 7.

5.6 Échantillonnage de l'eau souterraine

Des échantillons d'eau souterraine ont été prélevés dans les 20 puits d'observation aménagés sur le terrain visé par le projet d'agrandissement entre le 11 et le 27 novembre 2003. Un second échantillonnage a été mené entre le 31 mai et le 3 juin 2004 afin, d'une part de confirmer les résultats obtenus suite au premier échantillonnage, et d'autre part de créer une banque de données historiques sur la qualité des eaux souterraines dans la zone d'agrandissement.

Tous les puits d'observation ont été purgés et échantillonnés à l'aide d'une pompe submersible Redi-Flo reliée à une tubulure de type Waterra dédiée. La prise d'eau de la pompe était placée directement au-dessus de la partie crépine. Le débit de pompage était maintenu très faible de manière à minimiser les turbulences dans le puits de même que le rabattement. Le pH, la température et la conductivité étaient mesurés fréquemment durant la purge et l'échantillon prélevé lorsqu'au moins une fois le volume du puits avait été purgé et que les mesures de pH, température et conductivité étaient stabilisées.

Les échantillons ont été placés dans des récipients fournis par le laboratoire, lesquels contenaient les préservatifs requis. Les échantillons prélevés pour les métaux ont été filtrés sur place à l'aide de filtres dédiés de 0,45 µm. Les échantillons ont été placés dans des glacières

contenant soit un sac de glace ou encore un contenant réfrigérant et acheminés au laboratoire Maxxam Analytique à Montréal pour y réaliser le programme d'analyses chimiques.

La pompe Redi-Flo a été nettoyée entre chaque échantillonnage conformément aux directives du Guide d'échantillonnage à des fins d'analyses environnementales (MENV, 1995).

5.7 Échantillonnage de l'eau de surface

Quatre (4) échantillons d'eau de surface ont également été prélevés sur la propriété d'Intersan dans le cadre de cette étude. L'emplacement des stations d'échantillonnage a été établi de manière à définir la qualité initiale de l'eau de surface en amont et en aval de la zone de l'agrandissement projeté. La localisation des stations d'échantillonnage est montrée à la figure 5.2

Les échantillons ont été prélevés aussi près que possible du centre des cours d'eau en émergeant les récipients fournis par le laboratoire. Les échantillons ont été placés dans des glacières contenant soit un sac de glace ou encore un contenant réfrigérant et acheminés au laboratoire Maxxam Analytique à Montréal pour y réaliser le programme d'analyses chimiques.

5.8 Essais et analyses en laboratoire

5.8.1 Analyses physico-chimiques

Les analyses physico-chimiques ont été exécutées par le Laboratoire Maxxam Analytique à Montréal. Le programme d'analyse retenu pour l'eau souterraine et l'eau de surface est le suivant:

Métaux

Aluminium	
Bore	
Cuivre	

Arsenic Cadmium Baryum Chrome

Magnesium Nickel

Fer

Manganèse

Plomb Mercure

Sélénium

Sodium

Zinc

Calcium (juin 2004)

Potassium (juin 2004)

Autres paramètres inorganiques

Chlorures

Nitrates/Nitrites

Azote ammoniaca!

Cyanures totaux

Phosphore total

Sulfates

Sulfures totaux

Bicarbonate (juin 2004)

Carbonate (juin 2004)

Composés organiques volatils

Benzène

Éthylbenzène

Toluène

Xylènes totaux

Paramètres bactériologiques

Coliformes fécaux

Coliformes totaux

Autres paramètres

DBO₅

DCO

Composés phénoliques

рΗ

Solides en suspension

Huiles et graisses totales

Alcalinité (juin 2004)

(Eau de surface seulement)

Ce programme a été établi de manière à satisfaire aux mises à jour les plus récentes (juillet 2002) des articles 45 et 49 du PREMR.

5.8.2 Programme d'assurance-qualité

Le laboratoire Maxxam détient une accréditation délivrée par le MENV pour toutes les analyses qui ont été réalisées dans le cadre de cette étude. Cette accréditation est subordonnée à l'application d'un programme d'assurance-qualité conforme au Programme d'assurance-qualité ou de contrôle de la qualité du MENV et qui comprend un ensemble de procédures qui couvrent :

- > la réception, la conservation et le cheminement des échantillons au laboratoire;
- > l'étalonnage des méthodes analytiques;
- > les analyses de contrôle intégrées, d'échantillons témoins, d'échantillons de référence, de blancs de procédure et d'échantillons répliqués;
- > la compilation et la validation des résultats;
- la participation à des études interlaboratoires.

En plus du programme d'assurance-qualité interne du laboratoire, des duplicata de chantier ont été prélevés et soumis au laboratoire afin de s'assurer de la fiabilité et de la reproductivité des résultats d'analyse.

Les résultats des analyses physico-chimiques en laboratoire sont discutés au chapitre 9 de ce document tandis que les certificats d'analyses sont fournis à l'annexe E.

5.8.3 Essais géotechniques

Les essais géotechniques visaient à définir les propriétés géotechniques des différentes unités stratigraphiques identifiées sur le terrain visé par le projet d'agrandissement. Le programme comprenait les essais suivants :

- analyses granulométriques;
- > sédimentométries;
- > teneurs en eau naturelles;
- limites d'Atterberg:
- > densité spécifique des grains;
- > essai consolidé et drainé (CID) sur le sable en cellule triaxiale;
- > essai consolidé non drainé (CIU) sur l'argile en cellule triaxiale;
- > essai Proctor Standard sur le sable.

Un total de 46 échantillons de sol a été soumis à des essais géotechniques en laboratoire. Ces essais ont été réalisés par les LABORATOIRES D'EXPERTISES DE QUÉBEC (LEQ) à Québec, ou par leurs sous-traitants. Le tableau 5.1 présente en détails le programme d'essais.

Les analyses granulométriques et les limites d'Atterberg (pour les sols cohérents) ont permis d'établir leur classification USCS et de corréler ces résultats avec les descriptions réalisées sur le terrain.

Les teneurs en eau naturelles ont été presque systématiquement mesurées sur les échantillons sélectionnés. Connaissant la densité spécifique des grains et en assumant que les échantillons de sols prélevés étaient saturés⁵, les propriétés volumétriques des sols, telles que la densité, la porosité, l'indice des vides, ont été estimées.

Les angles de frottement interne du sable et de l'argile (ϕ ') ont été évalués par des essais en cellule triaxiale. Des essais consolidés isotropes et drainés (CID) ont été exécutés sur des échantillons de sable reconstitués avec des indices des vides similaires à ceux qui avaient été calculés à partir des résultats des autres essais. Des essais consolidés isotropes et non drainés (CIU) ont été exécutés sur des échantillons non remaniés d'argile silteuse provenant des tubes Shelby prélevés au chantier.

Pour les dépôts de sable et d'argile silteuse respectivement, trois échantilions de sol, qui ont été prélevés à des profondeurs et des localisation différentes, ont été soumis à l'essai en cellule triaxiale sous des conditions similaires aux conditions in situ (pression vertical et/ou indice des vides). En assumant que les deux dépôts ont une cohésion effective (c') égale à 0 (ce qui est typiquement observé pour le sable et l'argile normalement consolidée), trois (3) angles de frottement interne différents ont été obtenus. Ceci a permis de définir une fourchette de valeurs pour les angles de frottement interne de chacun des dépôts.

L'hypothèse que les sols sont saturés est vraisemblable puisque les niveaux d'eau souterraine mesurés indiquent que ceux-ci sont proches de l'élévation du terrain naturel et que le sable fin peut aisément retenir l'eau par capillarité.

Tableau 5.1 Essais géotechniques

		Table	eau 5.1	ssais ge	otechniques			
S	Échantillon	Classifica	tion	Propriétés volumétriques		Angle de frottememer interne (voir note)		
Forage #	#	Analyse granulo- métrique	Limites d'Atterberg	Densité spécifique, Gs	Teneur en eau naturelle, w _N (%)	Proctor standard	CID	CIU
PO-03-01	SS-02			•	•			
	SS-06	•			•		•	
	SS-08	•			•			
	SH-10	•	•	•	•			
	SS-12B	•			•			
PO-03-02	SS-03	•			•			
	SS-07B	•			•			ļ — — —
	SH-09	•			•			
	SS-10		•					
PO-03-03	SS-02B	•						
	SS-04	•			•			
	SS-05A	•						
	SH-06	•					-	
	SS-09	•	•					
	SS-10	•						
PO-03-04	SS-01							
	SS-03							
	SH-08							
	SS-10		-:-				-	•
	RC-12				•			
PO-03-05	SS-02				•			
0-03-03	SS-02 SS-04				•			
	SS-05B	(e)) (a)			•		•	
	SH-08	•			•			
	RC-11	•	•		•			•
		•	•		•			
20 00 00	RC-16	•			•			
PO-03-06	SS-09	•			•			
	SS-11	•						
	SS-12	•			•			
	RC-13c	•			•			
	RC-17	•		•	•			
PO-03-07	SS-02	•			•		•	
	SS-03B	•			•			
	SS-05	•			•			
	SS-08	•			•			
1	SS-09	•			•			
	RC-12	•	•		•			
O-03-08	SS-01	•			((*			
	SS-02	•			()			
	SS-05	•	•	•	•			
	RC-11	•			•			
PO-03-09	SS-02	•			•			
	SS-04	•		•	•			
	SS-06	•	•		•			
	SS-08		•		•			
	SS-10		100	•				
P-03-01								
Sable de	surface	16	0	2	15		3	0
Arg		19	12	2	19		0	3
Till gla		11	2	2	11		0	0
Tot		46	14	6	46	1	3	3

Note : CID = Essai triaxial drainé - consolidé isotropiquement ; CIU = Essai triaxial non-drainé - consolidé isotropiquement

Étant donné que l'aménagement du futur LET impliquera l'excavation de volumes importants de sable de surface et que ce matériau pourrait être réutilisé pour plusieurs applications, un essai Proctor standard a également été réalisé sur un échantillon représentatif afin d'en connaître les propriétés de compactage.

5.9 Mesure des niveaux d'eau

Les niveaux d'eau ont été mesurés le 24 novembre 2003 et le 4 juin 2004 dans les 20 puits aménagés dans le cadre de ce mandat de même que dans tous les puits existants sur la propriété d'Intersan qui étaient accessibles. Un total de 51 et de 55 puits a ainsi été relevé à l'automne 2003 et au printemps 2004 respectivement. Les mesures ont ensuite été utilisées pour établir des cartes piézométriques pour l'aquifère de surface et l'aquifère confiné, ainsi que pour évaluer le gradient vertical entre les deux aquifères.

Les détails concernant les résultats de ces mesures sont discutés au chapitre 7.

5.10 Mesure des pressions et des concentrations de gaz

Une fois leur aménagement complété, les puits d'observation ont fait l'objet de mesure de pression et de concentration de gaz. Les concentrations en gaz ont été mesurées à l'aide d'un appareil de détection de type Crowcon Custodian qui détecte les concentrations de O₂, CO, H₂S et CH₄. Les mesures de pression ont été effectuées à l'aide d'un manomètre.

Les détails concernant les résultats des mesures de pression et de concentration de gaz sont présentés au chapitre 9.

5.11 Mesures hydrologiques

Une analyse détaillée du réseau hydrographique local qui comprenait la mesure des niveaux d'eau et la mesure du débit instantané a été réalisée à 12 stations afin d'établir la condition hydrologique en amont, en aval et sur le site visé par le projet d'agrandissement.

De manière qualitative, les observations visuelles qui ont été réalisées sur le terrain montrent que seul le fossé de drainage se déversant dans le ruisseau Paul-Boisvert au droit de la station ES-2 (point 2 sur la figure 8.2) contient une proportion importante de sédiments en suspension. Les photographies présentées à l'annexe G permettent de constater cette différence de turbidité

entre l'eau du ruisseau Paul-Boisvert (point No 1) sur la figure 8.2 et les eaux significativement turbides du tributaire au point de confluence. La turbidité était faible pour tous les autres cours d'eau de la zone d'étude, soit à l'endroit du site actuel et la zone d'agrandissement.

Les détails concernant l'hydrologie dans le secteur du futur projet d'agrandissement sont présentés au chapitre 8.

6 CARACTÉRISATION GÉOTECHNIQUE

6.1 Unités stratigraphiques

Quatre unités stratigraphiques ont été identifiées dans la zone visée par le projet d'agrandissement. De la surface vers le bas, ces unités stratigraphiques sont :

- > un dépôt de sable fin à sable silteux d'une épaisseur variant entre 2,1 m et 12 m;
- un dépôt d'argile silteuse d'une épaisseur variant entre 1 m et 11 m;
- > un dépôt discontinu de till glaciaire qui est composé de sable, de silt, de gravier, de cailloux et de traces d'argile dont l'épaisseur varie entre 0 m et 14,4 m;
- ➢ le socle rocheux, un shale calcareux qui contient des fractures remplies de calcite et qui contient des traces de pyrite. Celui-ci a été intercepté à des profondeurs variant entre 13,9 m et 26,5 m.

Les rapports de forage, qui ont permis d'obtenir une meilleure compréhension de la stratigraphie du site à l'étude, sont présentés à l'annexe A. Les détails des résultats des travaux d'investigation au piézocône sont présentés au rapport préparé par Cogemat qui est fourni à l'annexe C. En se basant sur ces résultats de même que sur les résultats des études antérieures par d'autres consultants, TECSULT a préparé un total de sept coupes stratigraphiques (A-A à G-G) du site existant et du terrain visé par le projet d'agrandissement. Ces coupes sont présentées aux figures 6.1 à 6.7. La localisation exacte de ces coupes est quant à elle montrée sur la figure 5.1.

Les coupes A-A à C-C (figure 6.1 à 6.3) sont dans l'axe nord-sud et interceptent la partie nord du terrain visé par le projet d'agrandissement de même que le site existant. La coupe D-D (figure 6.4) est dans l'axe est-ouest et intercepte à la fois le site existant et la partie est de l'agrandissement projeté. Les sections E-E et G-G (figures 6.5 et 6.7) sont également orientée dans la direction est-ouest et interceptent la partie nord et la partie nord-est de l'agrandissement projeté. Finalement, la coupe F-F (figure 6.6) est orientée nord-sud et est localisée dans la partie est de l'agrandissement projeté.

L'élévation du terrain naturel sur le terrain de l'agrandissement projeté varie entre 107 m dans la partie sud-est et 120 m dans la partie nord-ouest. L'épaisseur des dépôts meubles y varie entre 13,9 m au droit du puits d'observation PO-03-06C et 26,5 au droit du puits d'observation PO-03-05C.

Le dépôt de sable fin à sable silteux montre une épaisseur qui varie entre 2,1 m (PZC-03-12) et 12,0 m (PZC-03-02). Le dépôt de sable atteint sont épaisseur la plus grande dans la partie nord du site tandis que son épaisseur est minimale près de la limite est de l'agrandissement projeté. Les travaux d'investigation montrent que le dépôt de sable est généralement lâche en surface et devient dense à très dense à sa base. La carte des isocontours de l'épaisseur du dépôt de sable de surface du terrain visé par le projet d'agrandissement est présentée à la figure 6.8.

Le dépôt d'argile silteuse dans la zone d'agrandissement projetée montre une épaisseur qui varie irrégulièrement entre 1,0 m (PZC-03-07) et 11,0 m (F-1C). Le dépôt est le plus mince dans le secteur nord-est et dans un petit secteur au voisinage des lagunes de traitement du lixiviat. Les résultats des travaux d'investigation indiquent que l'argile silteuse est généralement molle et de faible plasticité. La figure 6.9 illustre les isocontours de l'épaisseur du dépôt d'argile silteuse sur le terrain visé par le projet d'agrandissement. Les secteurs dans lesquels l'épaisseur d'argile silteuse est inférieure à 3 m y sont également indiqués.

L'épaisseur du dépôt de till glaciaire atteint 14,4 m au droit du puits d'observation F-2C. Son épaisseur est maximale dans la partie nord-est et dans la partie sud-est alors que l'épaisseur la plus faible a été observée dans la partie nord-ouest (on note également que le till était absent du forage W-02-07) et à la limite est du site de l'agrandissement projeté. Le till est généralement composé de sable, de silt, de gravier, de cailloux et de traces d'argile et est très dense. De nombreux cailloux et blocs ont été interceptés, principalement dans la partie nord-est de l'agrandissement projeté. L'élévation du dépôt de till varie entre 99,3 et 101,7 m sur tout le terrain visé par le projet d'agrandissement, à l'exception du secteur nord-est, ce qui indique que le toit du dépôt est relativement plat. La carte des isocontours de l'épaisseur du dépôt de till glaciaire est présentée à la figure 6.10.

Le socle rocheux consiste en un shale calcareux gris foncé à noir qui contient des fractures remplies de calcite et des traces de pyrite. Le socle rocheux a été intercepté à des profondeurs qui varient entre 13,9 m (PO-03-06C) et 26,5 m (PO-03-05C). L'élévation du toit du roc varie entre 87,7 m (PO-03-05C) et 100,3 m (PZ-92-01C). La carte des isocontours de l'élévation du roc est présentée à la figure 6.11. La pente du toit du roc est d'environ 1,5% en direction ouest-est, de la limite ouest à la limite est du terrain visé par le projet d'agrandissement. Au contraire, la pente du roc est orientée est-ouest dans le secteur est de l'agrandissement projeté. Les élévation, du toit du roc les plus faibles sont observées dans une bande orientée nord-sud qui longe la limite est du site existant.

6.2 Propriétés du dépôt de sable de surface

6.2.1 Essais en laboratoire

Le tableau 6.1 fournit les principales propriétés géotechniques du dépôt de sable de surface alors que la figure 6.12 présente son fuseau granulométrique. L'ensemble des propriétés géotechniques qui ont été mesurées sur le sable est présenté sur les profils géotechniques qui sont illustrées sur les figures D.1 à D.9 (annexe D).

Tableau 6.1 Dépôt de sable de surface – Principales propriétés géotechniques

Propriété	Norme	Vale	eurs
Classification	USCS	SP-SN	là SM
Contenu en fines (% < 80 μm)	NQ 2501-025 M87	Minimum Moyenne Maximum	8,2 23,7 49,2
Densité spécifique des grains	CAN/BNQ 2501-070 M86	Moyenne	2,697
Teneur en eau naturelle (%)	CAN/BNQ 2501-170 M86	Minimum Moyenne Maximum	16,4 21,0 25,3
Poids volumétrique saturé (kN/m³)	Calculé	Minimum Moyenne Maximum	19,7 20,5 21,4

Tableau 6.1 Dépôt de sable de surface - Principales propriétés géotechniques (suite)

Propriété	Norme	Vale	urs
Indice des vides (e)	Calculé	Minimum Moyenne Maximum	0,44 0,57 0,68
Angle de frottement interne, φ' (CID) (indices des vides entre 0,48 et 0,54)	ASTM D4767	Au Minimum Moyenne Maximum Résid Minimum moyenne Maximum	39,7 41,2 43,2 uelle
Essai Proctor standard - Teneur en eau optimale (%) - Densité sèche maximale (kg/m³)	CAN/BNQ 2501-250		14,4 1 710

Le dépôt de sable de surface peut être décrit comme un sable fin avec un contenu en fines (% passant le tamis de 80 µm) qui varie entre 8% et 49% (voir la figure 6.12). Puisque ce dépôt ne présente pas de cohésion, il est classifié comme étant un sable mal gradué avec du silt (SP-SM) jusqu'à un sable silteux (SM).

La teneur en eau naturelle de même que les mesures de densité spécifique des grains ont été utilisées pour estimer le poids volumétrique saturé et les indices de vide (voir le tableau 6.1 et les figures D.1 à D.9). En ce basant sur ces résultats, on constate que le dépôt de sable de surface est à un état relativement dense.

Trois essais isotropiquement consolidés et drainés ont été réalisés en cellule triaxiale sur des échantillon prélevés dans les forages PO-03-01, PO-03-05 et PO-03-07. Ces échantillons ont été reconstitués en laboratoire avec des indices des vides respectifs de 0,48, 0,51, et 0,54 et consolidés sous des contraintes effectives respectives de 83 kPa, 55 kPa et 35kPa (voir les résultats à l'annexe D). Des angles de frottement internes à la rupture qui variant entre 40° et 43° ont été ainsi calculés en assumant que le sable ne présentait aucune cohésion effective (c' = 0) (voir tableau 6.1). Il a également été observé que le sable tend à se dilater durant le

cisaillement, ce qui est un comportement typique d'un sable dense qui est soumis à une pression de confinement relativement faible.

6.2.2 <u>Essais de pénétration standard (SPT)</u>

Lieu d'enfouissement technique de Saint-Nicéphore

Les figures D.1 à D.9 montrent la variation des indices de pénétration standard (SPT) avec la profondeur. Étant donné que ce paramètre est influencé par de nombreux facteurs (contrainte effective verticale, longueur des tiges, type d'échantillonneur, type de marteau, diamètre du forage), l'indice de pénétration corrigé ($(N_1)_{60}$) selon les prescriptions du Manuel canadien d'ingénierie des fondations (1994) et les recommandations de Youd et al. (2001) est également présenté.

En se basant sur les profils des indices de pénétration corrigés, on constate que le dépôt de sable est généralement à l'état lâche à modérément dense près de la surface du sol et qu'il devient dense à très dense à la base du dépôt.

6.3 Propriétés du dépôt d'argile silteuse

6.3.1 Essais en laboratoire

Le tableau 6.2 fournit les principales propriétés géotechniques du dépôt d'argile silteuse alors que la figure 6.13 présente le fuseau granulométrique du dépôt. Les propriétés géotechniques du dépôt d'argile sont présentées en détails sur les profils géotechniques des figures D.1 à D.9 (Annexe D).

Tableau 6.2 Dépôt d'argile silteuse – Principales propriétés géotechniques

Propriété	Norme	Val	eurs
Classification	USCS	ML, CL-	ML & CL
Contenu en argile (% < 2µm)	NQ 2501-025 M87	Minimum	11.0
		Moyenne	21.1
		Maximum	47.5
Contenu en fines (% < 80µm)	NQ 2501-025 M87	Minimum	83.8
		Moyenne	92.4
		Maximum	96.6
Indice d'activité	Calculé	Minimum	0.34
		Moyenne	0.46
		Maximum	0.64
Densité spécifique des grains	CAN/BNQ 2501-070 M86	Moyenne	2.735
Teneur en eau naturelle (%)	CAN/BNQ 2501-170 M86	Minimum	16.2
		Moyenne	23.6
		Maximum	34.5
Limite de plasticité (%)	CAN/BNQ 2501-092 M86	Minimum	13.3
		Moyenne	15.2
		Maximum	16.9
Limite de liquidité (%)	CAN/BNQ 2501-092 M86	Minimum	22.0
		Moyenne	25.5
		Maximum	34.1
Indice de liquidité	Calculé	Minimum	0.3
		Moyenne	0.9
		Maximum	1.1

Tableau 6.2 Dépôt d'argile silteuse - Principales propriétés géotechniques (suite)

Propriété	Norme	Vale	eurs
Poids volumétrique saturé (kN/m³)	Calculé	Minimum	18.6
		Moyenne	20.2
	n	Maximum	21.6
Indice des vides (e)	Calculé	Minimum	0.44
		Moyenne	0.65
		Maximum	0.94
Angle de frottement interne, φ' (CIU)	ASTM D4767	Au	pic
,		Minimum	33.6
		Moyenne	34.6
		Maximum	35.5
		A 13 % de d	déformation
		Minimum	31.8
		Moyenne	32.6
(4		Maximum	33.2

Les limites d'Atterberg de même que les analyses granulométriques (voir la figure 6.13) montrent que ce dépôt est principalement composé d'argile-silteuse (CL-ML) ou d'argile de faible plasticité (CL). Par ailleurs, du silt sableux (ML) a été également intercepté au forage PO-03-06C, à un endroit où l'épaisseur de ce dépôt est relativement faible.

Le dépôt d'argile silteuse présente plusieurs caractéristiques typiques des argiles de la Mer de Champlain (Leroueil et al. ,1983) qui sont :

- indice d'activité entre 0,25 et 0,75;
- > limite de plasticité entre 17% et 34%;
- > indice de liquidité près de 1.

Les indices de liquidité obtenus, qui sont des valeurs typiques d'argiles structurées normalement consolidées (Bowles, 1988), impliquent que la résistance au cisaillement de ce dépôt pourrait diminuer significativement après remaniement.

Trois essais isotropiquement consolidés non-drainés ont été réalisés en cellule triaxiale sur des échantillons non remaniés prélevés dans les forages PO-03-02, PO-03-04 et PO-03-05. Ces échantillons ont été consolidés à la contrainte effective verticale retrouvée *in situ*. L'allure de la courbe de contrainte-déformation des échantillons est typique des argiles normalement consolidées. Étant donné que la cohésion effective (c') pour ce type d'argile est généralement considéré égale à zéro, on constate que l'angle de frottement interne au pic varie entre 34° et 36°.

6.3.2 Lentilles de sable

Les résultats des investigations au piézocône indiquent que le dépôt d'argile silteuse contient parfois des lentilles de sable perméables. Ces lentilles ont été observées dans les sondages PZC-03-01, PZC-03-05, PZC-03-08 et PZC-03-11 de même que, dans une moindre mesure au sondage PZC-03-02. Une lentille de sable a également été observée dans le forage PO-03-01 à l'élévation 103,8 m.

On constate que ces lentilles se retrouvent principalement dans les secteurs ouest et sud-est du terrain visé par le projet d'agrandissement, entre l'élévation 101 m et 105 m. De telles lentilles ne sont pas problématiques tant qu'elle ne sont pas connectées hydrauliquement avec un des deux aquifères.

6.4 Propriétés du dépôt de till glaciaire

6.4.1 Essais en laboratoire

Le tableau 6.3 fournit les principales propriétés géotechniques du dépôt de till glaciaire tandis que la figure 6.14 présente son fuseau granulométrique. L'ensemble des propriétés géotechniques du till glaciaire est présenté aux figures D.1 à D.9 (annexe D).

Tableau 6.3 Dépôt de till glaciaire - Principales propriétés géotechniques

Propriété	Norme	Vale	ırs
Classification	USCS	ML, SM, GM-	GC, cailloux
Contenu en argile (% < 2µm)	NQ 2501-025 M87	Minimum	5.9
	**	Moyenne	11.5
		Maximum	16.2
Contenu en fines (% < 80µm)	NQ 2501-025 M87	Minimum	7.1
		Moyenne	32.8
		Maximum	54.8
Densité spécifique des grains	CAN/BNQ 2501-070 M86	Moyenne	2.71
Teneur en eau naturelle (%)	CAN/BNQ 2501-170 M86	Minimum	4.1
		Moyenne	8.3
		Maximum	12.3
Poids volumétrique saturé (kN/m³)	Calculé	Minimum	22.5
,		Moyenne	23.6
		Maximum	25.0
ndice des vides (e)	Calculé	Minimum	0.11
		Moyenne	0.22
		Maximum	0.34

Le dépôt de till glaciaire est de composition très variable. Il est composé de sable silteux (SM), de silt sableux (ML), de gravier silteux à gravier silteux-argileux (GM, GM-GC) avec des cailloux et/ou des blocs. La figure 6.14 indique que le pourcentage d'argile (% $<2 \,\mu m$) dans le till atteint plus de 16 % mais n'indique aucune cohésion significative.

6.4.2 Essais de pénétration standard (SPT)

Les essais SPT réalisés dans la couche de till ont été limités en raison de son contenu important en gravier et de sa densité élevée. Selon les valeurs de SPT corrigées (N_1) 60, le till silteux et sableux est caractérisé en une densité moyenne à élevée.

6.5 Qualité du socle rocheux

Les mesures de qualité du roc dans les premiers 3 m variant de 12% à 78% avec une moyenne de l'ordre de 50 %. La qualité du roc varie de médiocre à bonne et peut être décrite comme moyenne sur l'ensemble du site. De façon générale, les fissures ont des espacements faibles à modérément faibles. Les discontinuités sont typiquement orientées de façon paralièle à la stratification, laquelle varie de 45° à 60° par rapport à l'axe de la carotte prélevée. Finalement, il est observé qu'en général l'altération du roc diminue avec la profondeur.

7 HYDROGÉOLOGIE

7.1 Interprétation des données de terrain

7.1.1 Propriétés hydrauliques

Les propriétés hydrauliques ont été déterminées à partir des résultats des essais de perméabilité et de l'essai de pompage qui ont été réalisés dans le cadre de cette étude. Les tableaux 7.1 à 7.3 résument les résultats des essais de perméabilité. Les détails de l'interprétation des essais de perméabilité et de l'essai de pompage sont présentés à l'annexe B. Un sommaire des résultats des essais de perméabilité antérieurs est également fourni à l'annexe B.

7.1.1.1 Résultats des essais de perméabilité

Les essais de perméabilité ont été interprétés en conformité avec les exigences des normes BNQ 2501-130 et 2501-135 (Sols – Détermination de la perméabilité au bout d'un tubage et Sols – Détermination de la perméabilité – Type Lefranc). Ces normes ont été élaborées en prenant en compte la correction pour le niveau piézométrique.

Pour les puits à pénétration totale dans l'aquifère du sable de surface, le facteur de forme utilisé est celui développé par le NAVFAC (1986). Pour les puits à pénétration partielle dans l'aquifère du sable de surface (PZ-92-01-A, PZ-98-03A et PZ-98-06A), le facteur de forme développé par Bouwer et Rice (1976) a été retenu.

7.1.1.2 Résultats de l'essai de pompage

Il n'existe pas de solution mathématiquement exacte pour interpréter les courbes de rabattement d'un essai de pompage à débit constant dans un aquifère à nappe libre. Néanmoins, il est possible d'obtenir une solution approximative en interprétant la partie initiale de la courbe de rabattement (qui n'est pas encore influencée par l'écoulement dans la zone non-saturée) par la méthode de Cooper-Jacob. Les courbes de rabattement du puits de

pompage et du puits d'observation ont été interprétées de cette manière. On estime cependant que la courbe de rabattement du puits d'observation est plus représentative de la conductivité hydraulique réelle de l'aquifère de surface puisque celle-ci n'est pas influencée par la capacité du puits, comme pour le puits de pompage. Une surface de suintement pourrait également exister entre l'aquifère et le puits de pompage, ce qui impliquerait que le niveau d'eau mesuré dans le puits serait significativement plus bas que le niveau réel de l'aquifère durant le pompage.

Mentionnons également que la remontée de la nappe a été suivie pendant une période de 120 minutes après l'interruption du pompage. À ce moment, plus de 90% du rabattement final avait été recouvré (on ne fournit pas d'interprétation du suivi de la remontée puisqu'il n'existe pas de solution mathématique pour la remontée d'un aquifère à nappe libre).

7.1.2 Patrons d'écoulement de l'eau souterraine

Les patrons d'écoulement de l'eau souterraine ont été établis à partir des niveaux d'eau mesurés respectivement le 24 novembre 2003 et le 4 juin 2004. Les cartes piézométriques ont été créées à l'aide du logiciel Surfer 8.0. Les isocontours ont été générés par krigeage en utilisant un variogramme linéaire. Le krigeage peut cependant générer des résultats non représentatifs le long des bordures des cartes (par exemple, l'arrangement des isocontours pourrait laisser croire qu'un puits de pompage est présent en bordure de la carte alors qu'un tel puits est inexistant). Pour cette raison, les isocontours ont été ajustés manuellement en bordure des cartes pour mieux refléter le patron d'écoulement réel.

De plus, l'effet de drainage de la tranchée qui est présente dans la partie nord-ouest du lieu d'enfouissement existant a vraisemblablement un impact important sur le patron d'écoulement de l'aquifère confiné. C'est pour cette raison que, même si le niveau d'eau exact dans la tranchée de drainage n'était pas connu, un niveau arbitraire y a été fixé à 101,24 m afin de générer un patron d'écoulement plus réaliste dans ce secteur. Ce niveau a été déterminé en extrapolant à partir du puits d'observation W-02-7, localisé à proximité de la tranchée.

7.2 Unités hydrogéologiques

Trois unités hydrgéologiques ont été identifiées sur le terrain visé par l'agrandissement, soit (du haut vers le bas) :

- > un aquifère à nappe libre qui est constitué par le dépôt de sable fin à sable fin, silteux que l'on retrouve en surface du site;
- > un aquitard qui est constitué par le dépôt d'argile silteuse. Cet horizon de faible conductivité hydraulique confine les eaux souterraines sous-jacentes;
- > un aquifère confiné qui est constitué par le dépôt de till glaciaire et par la partie fracturée du socle rocheux.

L'écoulement des eaux souterraines est donc contrôlé par un aquifère à nappe libre et un aquifère confiné qui regroupe deux unités hydrostratigraphiques, soit le till glaciaire et le socle rocheux. Le till et le socle rocheux présentent des conductivités hydrauliques moyennes du même ordre de grandeur et la même grande variabilité. L'écoulement dans l'aquifère confiné s'effectue vraisemblablement entre le till et le roc dans des chenaux plus perméables. Cependant, la vitesse d'écoulement peut varier significativement entre ces deux unités hydrostratigraphiques puisque leur porosité effective sont différentes.

7.3 Propriétés hydrauliques

7.3.1 Aquifère à nappe libre

Les résultats des essais de perméabilité qui ont été réalisés dans l'aquifère du sable de surface (tableau 7.1) indiquent une conductivité hydraulique qui varie entre 2,0x10⁻⁵ cm/s et 2,9x10⁻³ cm/s avec une moyenne géométriques⁶ de 3,6x10⁻⁴ cm/s.

⁶ La moyenne géométrique est généralement considérée plus représentative pour estimer la conductivité hydraulique moyenne d'un matériau donné.

L'interprétation de la courbe de rabattement de l'essai de pompage du puits d'observation PO-03-01A par la méthode de Cooper-Jacob indiquent une transmissivité de 1,25X10⁻⁴ m²/s (voir l'annexe B pour plus de détails). La conductivité hydraulique peut être obtenue ensuite en divisant la transmissivité par l'épaisseur saturée de l'aquifère, ce qui donne un résultat de 1,4X10⁻³ cm/s.

Ce résultat est légèrement supérieur au résultat de l'essai de perméabilité réalisé au puits d'observation PO-03-01A (2.5x10⁻⁴ cm/s). Ceci pourrait est dû au fait qu'un essai de pompage met en cause un volume d'eau beaucoup plus important de l'aquifère qu'un essai de perméabilité. De plus, la crépine du puits d'observation PO-03-01A est positionnée à la base de l'aquifère, à un niveau qui contient généralement plus de particules fines qu'en surface. On peut donc supposer que l'essai de perméabilité est plus représentatif de la partie inférieure (qui contient plus de particules fines) de l'aquifère tandis que le résultat de l'essai de pompage met également en cause la partie supérieure de l'aquifère qui est plus perméable.

Tableau 7.1 Essais de perméabilité réalisés dans l'aquifère de surface

Puits d'observation	Stratigraphie	Conductivité hydraulique (cm/s)
PO-03-01A	Sable fin, un peu de silt	2,2 X 10 ⁻⁴
PO-03-02A	Sable fin, un peu de silt	1,2 X 10 ⁻⁴
PO-03-03A	Sable fin, un peu de silt	1,1 X 10 ⁻⁴
PO-03-04A	Sable fin, traces de silt	6,0 X 10 ⁻⁵
PO-03-05A	Sable fin, un peu de silt	1,5 X 10 ⁻³
PO-03-06A	Sable fin, un peu de silt	1,3 X 10 ⁻⁴
	Sable fin, traces de silt/	
PO-03-07A ¹	Argile silteuse, traces de sable	2,0 X 10 ⁻⁵
PO-03-08A	Sable fin, traces de silt	1,3 X 10 ⁻³
PO-03-09A	Sable fin, un peu de silt	4,9 X 10 ⁻⁴
PZ-92-01A	Sable silteux	2,9 X 10 ⁻³
	Sable silteux/	
PZ-98-03A ¹	Sable graveleux, silteux (till)	5,0 X 10 ⁻⁵
PZ-98-06A	Sable, un peu de silt	3,3 X 10 ⁻⁴
F-2A	Sable, traces à un peu de silt	6,3 X 10 ⁻⁴

Minimum	2,0 X 10 ⁻⁵
Maximum	2,9 X 10 ⁻³
Moyenne arithmétique	7,1 X 10 ⁻⁴
Moyenne géométrique	3,6 X 10 ⁻⁴

La crépine de ces puit d'observation n'est pas totalement aménagée dans le dépôt de sable de surface. Ces résultats ne sont pas pris en compte pour le calcul de la conductivité hydraulique moyenne.

Finalement, le résultat de l'essai de pompage peut paraître surprenant étant donné la proportion tout de même importante de particules fines que contient le sable de surface (de 20% à 40%). Cependant, les résultats des analyses granulométriques et sédimentométriques montrent que les particules fines sont constituées principalement de silt et ne contiennent pratiquement pas d'argile.

7.3.2 Aquitard

La conductivité hydraulique du dépôt d'argile silteuse (tableau 7.2) a été déterminée par cinq (5) essais de perméabilité. Les résultats indiquent que celle-ci varie entre 7,9x10⁻⁷ cm/s et 2,7x10⁻⁵ cm/s avec une moyenne géométrique de 5,8x10⁻⁶ cm/s. Ces résultats sont cohérents avec ceux des études antérieures menées au site existant qui montrent des valeurs variant entre 7,8x10⁻⁷ cm/s et 2,1x10⁻⁵ cm/s, avec une moyenne géométrique de 4,1x10⁻⁶ cm/s.

Tableau 7.2 Essais de perméabilité réalisés dans l'aquitard

Puits d'observation	Stratigraphie	Conductivité hydraulique (cm/s)
PO-03-03B	Argile, traces de sable	5,0X10 ⁻⁶
PO-03-09B	Argile, traces de sable	2,7X10 ⁻⁵
PZ-98-06C	Silt argileux/ Argile silteuse	1,2X10 ⁻⁵
PO-03-04C ¹	Argile silteuse, traces de sable	5,3X10 ⁻⁶
PO-03-07C ¹	Argile, trace de sable	7,9X10 ⁻⁷

Minimum	7,9X10 ⁻⁷
Maximum	2,7X10 ⁻⁵
Moyenne arithmétique	9,9X10 ⁻⁶
Moyenne géométrique	5,8X10 ⁻⁶

¹ Essai Lefranc réalisé en cours de forage

7.3.3 Aquifère confiné

Les résultats des essais de perméabilité dans l'aquifère confiné (tableau 7.3) varient entre un minimum de 2,9x10⁻⁶ cm/s jusqu'à un maximum de 1,7x10⁻³ cm/s, avec une moyenne géométrique de 1,9x10⁻⁴ cm/s, La grande variabilité des résultats obtenus est compatible avec les résultats antérieurs pour le site existant qui varient entre 1,1x10⁻⁶ cm/s à 6,8x10⁻³ cm/s avec une moyenne géométrique de 2,9x10⁻⁴ cm/s. Cette grande variabilité des résultats est due à la nature hétérogène du roc dont la conductivité hydraulique est contrôlée par le réseau de fractures et celle du dépôt de till glaciaire qui peut contenir des particules fines telles des argiles ou du silt, ainsi que des blocs.

Tableau 7.3 Essais de perméabilité réalisés dans l'aquifère confiné

Puits d'observation	Stratigraphie	Conductivité hydraulique (cm/s)
PO-03-01C	Till et socle rocheux	2,0X10 ⁻⁴
PO-03-02C	Till et socle rocheux	1,7X10 ⁻³
PO-03-03C	Till et socle rocheux	3,7X10 ⁻⁴
PO-03-04C	Sable et gravier (till)	6,6X10 ⁻⁴
PO-03-05C	Till et socle rocheux	1,2X10 ⁻⁴
PO-03-06C	Till et socle rocheux	1,2X10 ⁻⁴
PO-03-07C	Till et socle rocheux	9,3X10 ⁻⁴
PO-03-08C	Till et socle rocheux	1,0X10 ⁻⁴
PO-03-09C	Till et socle rocheux	7,2X10 ⁻⁴
PZ-92-01C	Till et socle rocheux	1,4X10 ⁻⁴
PZ-98-03C	Sable silteux, traces de gravier (till)	2,9X10 ⁻⁶
F-2C	Till et socle rocheux	7,7X10 ⁻⁵

Minimum	2,9X10 ⁻⁶
Maximum	1,7X10 ⁻³
Moyenne arithmétique	4,3X10 ⁻⁴
Moyenne géométrique	1,9X10 ⁻⁴

7.4 Patron d'écoulement de l'eau souterraine

Les niveaux d'eau mesurés le 24 novembre 2003 et le 4 juin 2004 dans la zone d'agrandissement projeté ainsi qu'au site existant sont présentés au tableau 7.4. Les figures 7.1 et 7.2 de même que les figures 7.3 et 7.4 présentent les cartes piézométriques qui ont été établies respectivement pour l'aquifère de surface et l'aquifère confiné.

7.4.1 Aquifère de surface

On peut distinguer deux secteurs distincts sur les cartes piézométriques de l'aquifère de surface tel qu'illustré aux figures 7.1 et 7.2. D'abord, dans la partie nord du site, l'écoulement s'effectue en direction est, sous un faible gradient hydraulique. La direction d'écoulement est approximativement parallèle à l'écran d'étanchéité périphérique qui ceinture le site existant. À la lumière de ces résultats, l'écran périphérique de sol-bentonite qui est ancré dans le dépôt d'argile sous-jacent au sable, s'avère une barrière efficace pour empêcher l'écoulement de l'eau souterraine à l'intérieur du site existant. Les deux cartes piézométriques (automne 2003 et printemps 2004) montrent que l'écoulement des eaux souterraines est similaire dans la zone d'agrandissement projeté.

Tableau 7.4 Niveau d'eau mesurés (24 novembre 2003 et 4 juin 2004)

Puits d'observation	Niveau d'eau (m)		Puits d'observation	Niveau d'eau (m)		Puits d'observation		Niveau d'eau (m)	
Aquifère de surface		Aquifè	re confin	é	Aquitard				
	Nov. 2003	Juin 2004		Nov. 2003	Juin 2004		Nov. 2003	Juin 2004	
F-1A	114,26	114,72							
F-2A	112,71	113,47	F-2C	112,02	112,14	F-2B	112,24	112,90	
F-3A	111,54	111,862	F-3C	111,29	111,46	F-3B	111,41	111,71	
PO-03-01A	116,72	116,70	PO-03-01C	111,13	111,16				
PO-03-02A	115,43	115,42	PO-03-02C	113,09	113,17				
PO-03-03A	111,40	111,22	PO-03-03C	112,75	112,79	PO-03-03B	111,72	111,73	
PO-03-04A	116,96	116,93	PO-03-04C	112,00	111,56				
PO-03-05A	114,06	114,06	PO-03-05C	113,80	113,84				
PO-03-06A	112,90	113,07	PO-03-06C	112,31	112,37				
PO-03-07A ¹	111,06	111,04	PO-03-07C	108,34	108,26				
PO-03-08A	105,31	105,53	PO-03-08C	102,80	102,74				
PO-03-09A	114,92	114,77	PO-03-09C	110,91	111,05	PO-03-09B	113,18	113,19	
PZ-92-01A	115,30	115,27	PZ-92-01C	108,82	108,41				
PZ-92-06A	118,10	117,88	PZ-92-06C	106,31	105,44				
PZ-98-01A	114,75		PZ-98-01C	123,22					
PZ-98-02A	118,30	118,62	PZ-98-02C	117,76	118,09				
PZ-98-03A ¹	104,36		PZ-98-03C	104,82	104,86				
PZ-98-04A	114,13	114,24				PZ-98-04C	113,71	113,86	
PZ-98-05A	113,83	113,61				PZ-98-05C	113,82	113,23	

Tableau 7.4	Niveau d'eau mesurés (24 novembre 2003 et 4 juin 2004) (suite)
-------------	--

Puits d'observation	Niveau d'eau (m)		Puits d'observation	Niveau d'eau (m)		Puits d'observation	Niveau d'eau (m)	
Aquifère de surface		Aquifè	re confin	é	Aquitard			
	Nov. 2003	Juin 2004		Nov. 2003	Juin 2004		Nov. 2003	Juin 2004
PZ-98-06A	112,52	112,78				PZ-98-06C	113,16	113,03
PZ-98-07A	118,59	118,49				PZ-98-07C	116,42	116,07
PZ-98-08A	119,72	119,65				PZ-98-08C	115,32	112,12
			W-02-1	105,57	104,96			
			W-02-2	110,68	109,67			
			W-02-4		105,05			
			W-02-5		104,64			
			W-02-6	109,70	109,67			
			W-02-7	102,39	101,75			

¹ La crépine de ces puits d'observation est partiellement installée dans l'aquifère concerné.

Le gradient hydraulique horizontal calculé pour les données piézométriques du 24 novembre 2003 (entre les isocontours de 116 m et de 114 m) est estimé à 2,5x10⁻³ m/m. La porosité totale moyenne pour le dépôt de sable de surface (calculée à partir des mesures de teneur en eau) est de 36%. La porosité effective a été évaluée à 30 %. La vitesse d'écoulement moyenne dans la partie nord du terrain visé par l'agrandissement varierait donc approximativement entre 1 et 4 mètres par année (m/an) en considérant respectivement la moyenne géométrique des essais de perméabilité (3,6x10⁻⁴ cm/s) dans le dépôt de sable et le résultat de l'essai de pompage (1,4x10⁻³ cm/s).

Le deuxième secteur est constitué de la partie nord-est et sud-est du terrain visé par l'agrandissement, dans lequel l'écoulement de l'eau souterraine s'effectue dans la direction du ruisseau Paul-Boisvert, localisé au sud-est. La vitesse d'écoulement de l'eau souterraine dans ce secteur augmente progressivement du nord au sud et est maximale au voisinage des lagunes de traitement du lixiviat. L'écoulement y est également influencé par la présence d'un fossé de drainage dont la profondeur atteint 6 m dans le secteur du puits d'observation PO-03-03.

Le gradient hydraulique horizontal calculé pour les données piézométriques du 24 novembre 2003 (entre l'isocontour 112 m et 106 m) est estimé à 1,8x10⁻² m/m. En

considérant les mêmes conductivités hydrauliques et la même porosité effective, la vitesse d'écoulement de l'eau souterraine dans ce secteur varierait entre 6 m/an et 25 m/an.

7.4.2 Aquifère confiné

7.4.2.1 Patron d'écoulement en condition de pompage

On peut distinguer deux secteurs distincts sur les cartes piézométriques de l'aquifère confiné présentées aux figures 7.3 et 7.4. Le premier secteur comprend la partie nord du terrain visé par le projet d'agrandissement de même que la totalité de la superficie du site existant. Le patron d'écoulement y est fortement influencé par le drainage qui est effectué dans la tranchée, laquelle est localisée dans la partie nord-ouest du site existant (cellules 5 et 8). L'objectif visé par ce drainage est de rabattre le niveau d'eau de l'aquifère confiné, d'une part pour maintenir à sec le fond de l'excavation durant la construction et d'autre part, de prévenir le soulèvement du fond de l'excavation. Selon les représentants d'INTERSAN, un débit de pompage de 125 m³/h y est maintenu pour atteindre ces deux objectifs.

Comme il est possible d'observer aux figures 7.3 et 7.4, la zone d'influence du pompage s'étend à l'est jusqu'à la limite du site existant où une ligne de partage des eaux est observée. L'écoulement dans ce secteur s'effectue ainsi vers la tranchée de drainage du site existant. Il est cependant important de noter que les niveaux d'eau réels de l'aquifère confiné à l'intérieur des limites du site existant peuvent être significativement différents de ceux qui sont présentés sur les cartes piézométriques puisque aucun puits d'observation n'y est présent.

Le deuxième secteur est localisé à l'est de la ligne de partage des eaux, à l'extérieur de la zone d'influence de la tranchée de drainage où l'écoulement s'effectue vers le sud-est.

Le gradient hydraulique horizontal dans les deux secteurs visibles sur la carte piézométrique du 24 novembre 2003 (calculé entre les isocontours 112 m et 106 m) est estimé à 1,6x10⁻² m/m. La porosité totale moyenne du dépôt de till glaciaire (calculée à partir des teneurs en eau) est de 17 %. Pour le socie rocheux, une porosité de 1% est utilisée est représente une valeur typique d'un shale. La vitesse moyenne d'écoulement résultante dans les deux secteurs (partie nord et

est du terrain visé par le projet d'agrandissement) varierait donc entre 6 m/an et 96 m/an en considérant une conductivité hydraulique moyenne de 1,9x10⁻⁴ cm/s.

Il est cependant important de noter que localement, la vitesse d'écoulement pourrait dépasser significativement cette valeur moyenne dans des chenaux de forte conductivité hydraulique qui pourraient être présents dans le till et le socle rocheux.

7.4.2.2 Carte piézométrique en condition post-pompage

Tel qu'il a été mentionné précédemment, les activités de drainage de l'aquifère confiné à l'endroit du site existant ont débuté dans le but de prévenir le soulèvement du fond de l'excavation de la cellule 6, qui a été récemment excavée. Lorsque le drainage du till et du socle rocheux sera arrêté, les niveaux d'eau à l'intérieur de la zone d'influence du pompage remonteront vers leurs niveaux initiaux et le patron d'écoulement de l'eau souterraine sera significativement différent du patron actuel. Bien qu'il n'y ait pas de données disponibles sur les niveaux d'eau avant le début du pompage dans la zone visée par le projet d'agrandissement, il existe tout de même des données qui ont été obtenues pour le site existant en mai 2000 (Golder, 2002). Ces données permettent d'établir grossièrement la direction générale d'écoulement de l'eau souterraine de l'aquifère confiné une fois les activités de drainage interrompues.

L'annexe B présente une carte piézométrique (Golder, 2002) de l'aquifère confiné à l'intérieur des limites du site existant avant le début du pompage. On peut observer que la direction générale de l'écoulement de l'eau souterraine est vers l'est et a tendance à tourner vers le sud dans la partie est du site existant. On peut supposer que la direction générale d'écoulement dans la zone visée par le projet d'agrandissement serait similaire à celle montrée sur cette carte.

Il est donc anticipé que l'eau souterraine s'écoulera vers l'est dans la partie nord de la zone visée par le projet d'agrandissement et changera graduellement vers le sud-est dans les zones est et sud-est. Les gradients hydrauliques horizontaux devraient être du même ordre de grandeur que ceux qui ont été observés sur le terrain du site existant en 2000 qui étaient d'environ 1,2 %. Ceci impliquerait des vitesses d'écoulement de l'ordre de 5 m/an à 72 m/an. On peut également supposer que l'augmentation des niveaux d'eau de l'aquifère confiné aurait

pour effet de réduire l'écoulement vertical vers le bas entre l'aquifère de surface et l'aquifère confiné.

7.4.3 Gradients verticaux

Le tableau 7.5 montre les gradients hydrauliques verticaux, selon les données piézométriques du 24 novembre 2004, entre les deux aquifères et l'aquitard à l'endroit du terrain visé par le projet d'agrandissement. On constate qu'il existe un écoulement vertical vers le bas sur presque la totalité de la zone à l'étude, à l'exception de deux secteurs.

Le premier secteur où l'on observe un écoulement vertical vers le haut est localisé dans le voisinage des puits d'observation de la série PO-03-03 et PZ-98-06 qui sont localisés de part et d'autre d'un fossé de drainage qui atteint près de 6 m de profondeur. Ce fossé de drainage induit vraisemblablement un rabattement sur les niveaux d'eau de l'aquifère de surface, ce qui cause cet écoulement vertical vers le haut.

Un écoulement vertical vers le haut est également observé dans le secteur des puits d'observation de la série PZ-98-03. Ce secteur est localisé au sud des lagunes de traitement du lixiviat, près du ruisseau Paul-Boisvert. La présence de ce ruisseau a vraisemblablement un effet de rabattement similaire sur les niveaux d'eau de la nappe de surface dans ce secteur.

On constate également que les gradients sont plus élevés aux puits d'observation des séries PO-03-01, PO-03-02, PO-03-04, PO-03-09 et PZ-92-01. Ceci est le résultat du rabattement de l'aquifère confiné engendré par les activités de drainage du site existant. Les gradients verticaux devraient diminuer significativement lorsque ces activités de drainage seront interrompues.

Tableau 7.5 Gradients hydrauliques verticaux

	Élévation	Élévation du centre de la lanterne	a lanterne		Niveau d'eau		Gradi	Gradient vertical (m/m)	n)
Puits d'observation	Aquifère de surface	Aquitard	Aquifère confiné	Aquifère de surface	Aquitard	Aquifère confiné	Aquifère de surface vers Aquitard	Aquitard vers aquifère confiné	Aquifère de surface vers aquifère confiné
PO-03-01*	109.004		98.711	116.721		111.131			0.54
PO-03-02*	108.142		99.54	115.433		113.092			0.27
PO-03-03	106.781	101.077	91.44	111.395	111.724	112.749	-0.06	-0.11	-0.09
PO-03-04*	109.081		98,373	116.959		112.002			0.46
PO-03-05	109.843		88.342	114.06		113.802			0.01
PO-03-06	110.726		97.601	112.9		112.313			0.04
PO-03-07	107.342		95.886	111.064		108.335			0.24
PO-03-08	104.8975		94.329	105.307		102.803			0.24
PO-03-09*	110.702	103.707	98.813	114.922	113.175	110.914	0.25	0.46	0.34
PZ-92-01*	114,655		97.28	115.3		108.815			0.37
PZ-98-03	102.908		98.03	104.36		104.82			-0.09
PZ-98-06	110.9475	100.715		112.52	113.155		-0.06		
F-2	110.5075	107.565	88.383	112.71	112.505	112.015	0.07	0.03	0.03

Les valeurs positives du gradient hydraulique indiquent un écoulement vertical vers le bas tandis que les valeurs négatives indiquent un écoulement vers le haut. Écoulement vers le haut. Les niveaux d'eau dans ces puits d'observation sont fortement influencés par les activités de drainage au site existant Note:

05 12210 - Janvier 2005 - Rapport final

7.5 Classification et vulnérabilité de l'eau souterraine

La classification de l'eau souterraine a été réalisée conformément aux directives du «Guide de classification des eaux souterraines du Québec» (MENV, 1998). L'objectif visé par cette classification est de concilier les usages du territoire avec ceux de la ressource en eau souterraine. Le système de classification comprend trois classes qui sont :

- l: Formation hydrogéologique aquifère qui constitue une source irremplaçable d'alimentation en eau (source unique d'alimentation en eau).
- Il: Formation hydrogéologique aquifère qui constitue une source courante ou potentielle d'alimentation en eau (qualité acceptable et quantité suffisante).
- III: Formation hydrogéologique qui, bien que saturée d'eau, ne peut constituer une source d'alimentation en eau (qualité médiocre, quantité insuffisante ou extraction non économique).

La vulnérabilité de l'aquifère de surface et de l'aquifère confiné a été évaluée en utilisant l'indice DRASTIC. L'indice DRASTIC a été développé par la *National Water Well Association* (Aller et al., 1987) pour l'Agence américaine «*Environmental Protection Agency* (EPA)». C'est un système qui permet d'évaluer le potentiel de contamination de l'eau souterraine qui est basé sur l'évaluation de sept paramètres qui sont connus pour influencer la migration et l'atténuation des contaminants. Ces paramètres sont :

- D: Profondeur de la nappe d'eau souterraine (Depth to Water)
- R: Recharge ((Net) Recharge)
- A: Aquifère (Aquifer Media)
- S: Type de sol (Soil Media)
- T: Topographie (pente) (Topography (Slope))
- I: Impact de la zone Vadose (Impact of the Vadose Zone Media)
- C: Conductivité hydraulique de l'aquifère (Conductivity (Hydraulic) of the Aquifer)

Chaque paramètre reçoit un pointage et un poids. Le total de ces pointages pondérés donne le niveau de vulnérabilité de l'eau souterraine. L'indice DRASTIC peut prendre des valeurs qui varient entre 23 (niveau de vulnérabilité très faible) et 226 (niveau de vulnérabilité très élevé).

Les détails des calculs de l'indice DRASTIC sont présentés à l'annexe F.

7.5.1 Aquifère de surface

Selon le guide de classification, l'aquifère de surface appartient à la classe II parce qu'il constitue une source potentielle d'eau potable avec une transmissivité supérieure à 1 m²/j et des valeurs de conductivité inférieures à 2 500 µS/cm (selon les mesures réalisées sur le terrain durant l'échantillonnage des puits d'observation).

L'évaluation de l'indice DRASTIC pour l'aquifère du sable de surface donne un pointage de 170 (ou 72%) qui correspond à un degré de vulnérabilité élevé.

7.5.2 Aquifère confiné

Selon le Guide de classification, l'aquifère confiné appartient à la classe I puisqu'il constitue une source irremplaçable d'alimentation en eau (en supposant que le coût, pour relier à l'aqueduc municipal les résidences localisées en aval de la propriété d'INTERSAN, serait prohibitif).

L'évaluation de l'indice DRASTIC pour l'aquifère confiné donne un total de 103 (ou 39%), ce qui correspond à un degré de vulnérabilité faible.

7.6 Respect des exigences de l'article 14 du PREMR

Tel que discuté à la section 5.7, l'article 14 du PREMR stipule qu'il est interdit de construire un lieu d'enfouissement technique (LET) sur un site en dessous duquel existe un potentiel aquifère élevé. Un potentiel aquifère élevé existe lorsque des essais de pompage indiquent qu'il est possible de soutirer en permanence 25 m³/h à parti d'un seul puits.

L'essai de pompage par paliers qui a été réalisé au puits de pompage PP-03-01 a montré que la capacité spécifique du puits était d'environ 0,45 m³/h/m et que le débit de pompage optimal qui pouvait être soutenu serait d'environ 31,8 l/min (1,9 m³/h). L'essai de pompage longue durée a permis de vérifier que ce puits pouvait soutenir en permanence ce débit de pompage. Après 72 heures de pompage, le rabattement au puits de pompage atteignait 4,56 m, ce qui

représente la moitié de l'épaisseur de l'aquifère. De plus, un régime d'écoulement permanent n'était pas encore atteint et le rabattement augmentait encore régulièrement.

En se basant sur ces résultats, le débit de pompage maximal qui pourrait être soutenu en permanence dans un même puits dans la zone la plus favorable du terrain visé par le projet d'agrandissement serait largement inférieur à 25 m³/h. On peut donc conclure que le terrain visé par le projet d'agrandissement ne possède pas un potentiel aquifère élevé et respecte les exigences de l'article 14 du PREMR.

8 HYDROLOGIE

Une analyse du réseau de drainage de l'eau de surface et du bassin versant pour le LES existant de même que pour le terrain visé par le projet d'agrandissement a été réalisée. Les deux objectifs principaux de cette analyse étaient (1) d'identifier les limites physiques et les caractéristiques du bassin versant qui englobe la propriété d'INTERSAN et (2) d'identifier le réseau de drainage de surface qui consiste en des fossés de drainage et des cours d'eau naturels.

8.1 Hydrologie régionale et locale

8.1.1 <u>Délimitation des bassins versants et réseau de drainage régional</u>

Du point de vue hydrographique et à l'échelle régionale, la propriété d'INTERSAN est localisée dans le bassin versant de la rivière Saint-François. Au niveau local, la propriété d'INTERSAN est englobée par trois petits bassins versants qui sont : celui du ruisseau Paul-Boivert, celui du ruisseau Oswald-Martel et celui d'un ruisseau sans nom qui est localisé entre les deux autres. La figure 8.1 illustre la localisation et les limites des bassins versants.

Localisée sur la rive sud du fleuve Saint-Laurent, la rivière Saint-François est l'une des plus importantes de la région centrale du Québec. Elle prend sa source dans le lac Saint-François, qui est localisé dans les montagnes appalaches, aux Etats-Unis, et se déverse dans le fleuve Saint-Laurent, plus spécifiquement à la hauteur du lac Saint-Pierre. La surface totale du bassin versant de la rivière Saint-François est de 10 230 km², dont 14% est située aux Etats-Unis. Plusieurs tributaires importants alimentent cette rivière : Aux-Vaches, St-Germain, Ulverton, Au Saumon (Lac Brompton), Watopeka, Des Indiens, Aux Bleuets, Au Saumon (Lac Moffat), Maskinongé, Eaton, Au Canard, De la Clef, Magog et Massawippi (Lac Massawippi). Le bassin versant de la rivière Saint-François couvre trois régions administratives (Estrie, Centre-du-Québec et Chaudières-Appalache) et 119 municipalités dont les plus populeuses sont Sherbrooke, Drummondville, Coaticook, Magog, Windsor, Richmond et Disraeli. Près de 320 000 habitants (4,5% de la population québécoise) vivent sur ce bassin versant. Cette forte densité de population se traduit par la présence de plus de 40 barrages, 53 systèmes de traitement des eaux usées, 130 industries et plus de 3 100 fermes. Selon les évaluations du

MENV, la condition de l'écosystème de la rivière Saint-François varie significativement le long de son cours. Bien que la partie amont de la rivière soit en bonne condition, la rivière est sujette à des impacts négatifs importants dans les secteurs industriels tel que East Angus, Sherbrooke, Bromptonville et Drummondville. Cependant, l'état de la rivière a tendance à s'améliorer sous l'effet de la dilution ou dans les zones forestières qui ne contiennent ni population, ni industrie. Ainsi, l'état des écosystèmes s'améliore et retrouve un certain équilibre.

Plusieurs autres petits bassins versants ou rivières sont tributaires de la rivière Saint-François. La propriété d'INTERSAN est majoritairement localisée à l'intérieur des limites des trois petits bassins versants identifiés précédemment et qui sont représentés sur la figure 8.1. La surface du bassin versant du ruisseau Paul-Boisvert qui est le bassin versant le plus important des trois atteint 29,5 km² et un périmètre de 29,2 km. L'altitude de ce bassin varie entre 181 m et 99 m. La pente moyenne y est de l'ordre de 0,95%. Le couvert végétal y est composé d'approximativement 75% de boisés, de 20% de terres agricoles, le reste étant occupé par des bâtiments. Le bassin versant du ruisseau Paul-Boisvert traverse quelques lacs artificiels et naturels dont les plus importants sont les lacs Gendron, Fourchu, Creux et Croche.

Le bassin versant du ruisseau Oswald-Martel occupe quant à lui une superficie de 5,3 km² avec un périmètre de 12,0 km. Son altitude varie entre 119 m et 98 m et sa pente moyenne est de l'ordre de 0,26%.

La surface du bassin versant du ruisseau sans nom est de 2,9 km² et son périmètre est de 7,5 km avec une pente moyenne de 0,32%.

8.1.2 <u>Drainage de surface local</u>

Le réseau de drainage de surface de la propriété d'INTERSAN est formé de cours d'eau naturels (un nombre relativement élevé de petits ruisseaux), de même que des fossés de drainage qui ont été aménagés dans le but d'éliminer l'excès d'eau dû (1) aux précipitations et (2) aux résurgences naturelle de l'eau souterraine.

Les travaux de terrain qui ont été réalisés au début du mois de novembre 2003 sur une période de deux jours ont permis d'identifier les principaux cours d'eau sur le territoire de l'actuel site d'enfouissement et du futur terrain de l'agrandissement projeté. Le but de ces travaux était

Lieu d'enfouissement technique de Saint-Nicéphore

d'identifier tous les éléments du réseau de drainage, d'y réaliser des mesures de vitesse et d'y établir des profils transversaux. Onze (11) stations de mesures ont été retenues à cette fin. L'objectif final de ces travaux était d'évaluer le débit d'écoulement à ces 11 stations et d'estimer la distribution de l'écoulement (bilan hydrologique) et son influence sur le réseau hydrographique.

Le réseau de drainage de surface est présenté sur la figure 8.2. La direction d'écoulement y est spécifiée avec des flèches. On constate que la majorité du volume d'eau de surface généré sur le site existant se déverse directement dans le ruisseau Paul-Boisvert en trois points identifiés par les numéros 2, 8 et 9 sur la figure 8.2. En ce qui a trait au terrain visé par le projet d'agrandissement, le drainage s'effectue vers la rivière Saint-François principalement via le ruisseau Oswald-Martel et le ruisseau sans nom de même que, dans une plus faible proportion via le ruisseau Paul-Boisvert. La direction d'écoulement générale est vers l'est et est cohérente avec la topographie naturelle.

8.2 Bilan hydrologique

8.2.1 Mesures hydrologiques

Le but des travaux de terrain était d'obtenir un aperçu général du réseau de drainage de la propriété d'INTERSAN. Bien que plusieurs éléments ont été établis quantitativement (vitesses d'écoulement, caractéristiques géométriques des ruisseaux et des fossés), l'objectif final en était de fournir un estimé qualitatif des caractéristiques hydrologique du site à l'étude. Les deux principaux objectifs qui étaient visés par les travaux de terrain sont les suivants :

- ldentifier les éléments du réseau de drainage de surface, les directions d'écoulements de même que d'autres caractéristiques physiques. Sélectionner les points de mesures des débits les plus pertinents;
- Mesurer les vitesses d'écoulement et établir les profils transversaux aux points de mesure sélectionnés en vue de calculer les débits d'écoulement.

Le territoire à l'étude présente un réseau dense de petits ruisseaux lesquels convergent vers la rivière Saint-François, soit directement ou via trois (3) petits ruisseaux : le ruisseau Paul-Boisvert, le ruisseau Oswald Martel et un ruisseau sans nom. Au cours de la visite du site et

suite à la consultation des cartes topographiques existantes, onze (11) stations de mesures ont été identifiées et jugées importantes pour estimer les débits des eaux de surface.

Les stations de mesure ont été sélectionnées de manière à fournir un estimé représentatif des volumes d'eau de surface qui sont générés sur la propriété d'INTERSAN et qui rejoignent finalement la rivière Saint-François. Ainsi, sept stations de mesure se retrouvent sur le bassin versant du ruisseau Paul-Boisvert (stations 1, 2, 3, 4, 8, 9 et 10), une station (station 7) se trouve sur le bassin versant du ruisseau Oswald-Martel et trois (3) stations sont situées à l'intérieur du bassin versant du ruisseau sans nom (stations 5, 6 et 11).

Les trois mesures de débits (stations 1, 2 et 10) qui ont été réalisées directement dans le ruisseau Paul-Boisvert, lesquelles ont été corroborées par les autres mesures prises dans le même bassin versant (stations 2, 8 et 9), ont permis d'estimer l'impact du drainage des eaux de surface, à l'intérieur du site existant et de son futur agrandissement, sur le réseau hydrographique local. La même stratégie a été adoptée pour estimer le débit d'écoulement vers le ruisseau sans nom. Dans le cas du ruisseau Oswald-Martel, puisque l'impact du drainage des eaux de surface en provenance du site existant et de l'agrandissement projeté a été jugé négligeable, seulement une station de mesure a été considérée pour les mesures de vitesse et les mesures subséquentes de débit.

Les travaux de terrain ont été réalisés au début du mois de novembre (les 6 et 7) 2003, après une saison de précipitations abondantes, selon les observations d'Environnement Canada. On peut donc assumer que les niveaux d'eau et les débits d'écoulement correspondants sont représentatifs de conditions hydrologiques supérieures à la moyenne. Dans ce sens et en se basant sur les observations locales (marques laissées par l'eau sur les berges des cours d'eau), les observations sur le terrain ont confirmé que les niveaux d'eau étaient moyens ou plus élevés que la moyenne.

Tel que mentionné précédemment, les mesures sur le terrain ont consisté d'abord à établir les caractéristiques géométriques des profils transversaux aux points de mesure. À ces mêmes points, des mesures de la vitesse d'écoulement ont été réalisées. À partir de ces deux informations (vitesse d'écoulement et géométrie du profil transversal), il est possible de caiculer le débit d'écoulement à l'endroit de chacune des stations de mesure.

Les vitesses d'écoulement ont été mesurées en utilisant un appareil de mesure électromagnétique (March-McBirney 2000 Flo-Mate). Cet appareil permet d'atteindre un degré de précision de l'ordre de ± 1cm/s. La méthodologie de mesure utilisée est basée sur la méthode de la profondeur moyenne. En fonction de la largeur et de la profondeur du cours d'eau, chaque section a été divisée en segments également distribués (un plus grand nombre de segments pour les cours d'eau plus larges et vice-versa). De plus, en fonction de la profondeur pour chaque segment, des mesures de la vitesse d'écoulement ont été prises à différentes profondeurs. L'appareil de mesure a été positionné à ces profondeurs à l'aide d'un ruban à mesurer. Conformément à la méthode, la vitesse a été mesurée à une profondeur correspondant à 0,2, 0,6 et 0,8 fois la profondeur totale de l'eau mesurée dans chaque segment.

L'annexe A présente une série de photographies qui ont été prises durant les travaux sur le terrain.

8.2.2 Résultats

Les résultats des mesures sur le terrain et les débits d'écoulements résultants pour chaque profil transversal sont présentés au tableau 8.1.

Tableau 8.1 Résultats des mesures de débit

Station de mesure	Nombre de mesures de vitesse dans chaque section	Débit (m³/s)
1	21	0,518
2	10	0,013
3	24	0,530
4	3	0,012
5	10	0,035
6	3	0,011
7	10	0,028
8	1	0,003
9	10	0,023
10	12	0,651
11	18	0,047

En se basant sur ces résultats, le débit total provenant de la propriété d'INTERSAN qui converge vers le ruisseau Paul-Boisvert est constitué par la somme des débits mesurés aux stations 2, 8 et 9 ce qui correspond à un débit d'environ 0,066 m³/s. Ce débit représente environ 12,5% du débit total du ruisseau Paul-Boisvert à la station 3 (0,53 m³/s). Ce pourcentage devrait demeurer constant dans le temps puisque, en raison de sa taille et de sa localisation, le bassin versant du ruisseau Paul-Boisvert est soumis aux mêmes conditions climatiques (que ce soit en période de crue ou d'étiage). En ce qui concerne le ruisseau sons nom, qui se déverse directement dans la rivière Saint-François, l'écoulement à la station 5 (0,035 m³/s), qui est localisée à la sortie des limites du futur projet d'agrandissement, représente 75% du débit mesuré à la station 11 (0,047 m³/s) qui est localisée près du point de décharge à la rivière Saint-François. En ce qui a trait au ruisseau Oswald-Martel, étant donné que les débits d'eau qui proviennent du drainage de surface de la propriété d'INTERSAN sont relativement petits en comparaison du débit total qui se déverse dans la rivière Saint-François, il n'y a pas eu d'analyses dans ce sens.

Le débit total d'eau de ruissellement qui est généré par le LES et le terrain visé par le projet d'agrandissement est de 0,101 m³/s, valeur qui est négligeable dans le bassin hydrographique de la rivière Saint-François. En conséquence, l'impact et l'influence de ce débit sur le bilan hydrique de la zone sont considérés négligeable. Puisque la campagne de mesures a suivi une période pluvieuse, on assume que les débits enregistrés sont plus élevés que les débits moyens.

9 CARACTÉRISATION ENVIRONNEMENTALE

9.1 Qualité de l'eau souterraine

L'échantillonnage des puits d'observation aménagés dans l'aquifère de surface et l'aquifère confiné a été réalisé en novembre 2003 et en juin 2004 dans tous les puits d'observation aménagés dans le cadre de cette étude. Un total de 20 puits d'observation ont ainsi soumis à un échantillonnage et à des analyses en laboratoire afin d'évaluer la qualité de l'eau souterraine. Neuf (9) de ces puits sont aménagés dans l'aquifère de surface, deux (2) sont aménagés dans l'aquitard (argile silteuse) et neuf (9) sont aménagés dans l'aquifère confiné (till et/ou socle rocheux).

Les échantillons d'eau souterraine ont été acheminés au laboratoire Maxxam Analytique qui est accrédité par le MENV. Le programme analytique qui a été élaboré comprend tous les paramètres qui sont exigés à l'article 49 du PREMR de même que ceux qui sont recommandés par le MENV dans la Directive pour la réalisation d'une étude d'impact sur l'environnement d'un projet de lieu d'enfouissement sanitaire.

Deux duplicata de chantier ont également été prélevés dans le cadre de ces travaux (DC-1 et DC-2), lesquels ont été acheminés au laboratoire et soumis au même programme analytique afin de vérifier la qualité et la reproductivité des résultats analytiques.

9.1.1 Bruit de fond

Plusieurs puits d'observation ont été aménagés en amont hydraulique du site existant. Les concentrations qui ont été mesurées en 2003 dans ces puits d'observation permettent d'établir le bruit de fond local de l'aquifère de surface et de l'aquifère confiné.

Pour chaque aquifère, six (6) puits d'observation ont été retenus pour établir la qualité des eaux du bruit de fond. Ces puits sont localisés le long de la limite ouest et nord du terrain visé par le projet d'agrandissement (PO-03-01A et C, PO-03-02A et C, PO-03-04A et C, PO-03-05A et C, PO-03-06A et C et PO-03-09A et C). Les puits de la série A ont été retenus pour établir le bruit de fond de l'aquifère de surface tandis que ceux de la série C ont servi à établir le bruit de fond

de l'aquifère confiné. Tous ces puits sont localisés dans des secteurs pour lesquels aucune activité antérieure n'aurait pu affecter la qualité de l'eau souterraine⁷.

Les concentrations qui ont été mesurées aux puits retenus pour établir le bruit de fond sont présentées aux tableaux 9.1 et 9.2, respectivement. On remarque que selon les données compilées dans ces tableaux, les concentrations du bruit de fond peuvent varier de près de deux ordres de grandeurs entre les valeurs minimales et maximales pour certains paramètres. Ceci témoigne des importantes variations dans les concentrations qui existent naturellement dans l'eau souterraine, en amont hydraulique du site existant. En conséquence, pour chaque paramètre qui a été analysé durant les travaux de l'automne 2003, le bruit de fond a été établi en utilisant la concentration maximale qui a été mesurée dans ces puits (en absence de données suffisantes pour établir ce bruit de fond par une analyse statistique). On peut conclure que, pour un paramètre donné, une concentration qui est mesurée en amont est susceptible d'être mesurée en avail.

Pour plusieurs paramètres analytiques, on observe que le bruit de fond excède les exigences qui sont stipulées à l'article 49 du PREMR. C'est le cas pour l'azote ammoniacal, le fer, le manganèse et le nickel dans l'aquifère de surface, et pour l'azote ammoniacal, le fer, le manganèse, le sodium et les coliformes fécaux dans l'aquifère confiné.

En ce qui a trait à la présence de coliformes fécaux dans l'aquifère confiné à l'automne 2003, celle-ci est considérée surprenante et peu probable. La campagne d'échantillonnage menée au printemps 2004 a effectivement montré l'absence de coliformes fécaux dans l'aquifère confiné.

On considère que l'entreposage des matériaux d'excavation au voisinage des puits d'observation de la série PO-03-06 n'a pas eu d'impact sur la qualité de l'eau souterraine.

Site de l'agrandissement de Saint-Nicéphore - Concentrations du bruit de fond dans les eaux souterraines de l'aquifère de surface (Automne 2003 et Printemps 2004) Tableau 9.1

Paramètres	Règlements	nents					Stations d'éch	Stations d'échantillonnage (Bruit de fond)	Bruit de fond,	_					Concentrations du bruft de fond	ions du brult de fond
(mg/L)	PREMR ¹	HDS ²	PO-03-01A		PO-0	PO-03-02A	PO-03	PO-03-04A	PO-03-05A	1-05A	PO-03	PO-03-06A	PO-03-09A	3-09A		11.
	3		Autom. 2003	Print, 2004	Autom. 2003	Autom. 2003 Print. 2004	Autom, 2003	Print, 2004	Autom. 2003	Print. 2004	Autom. 2003	Print 2004	Autom. 2003	Print. 2004	CIE	Max
Ha C		•	7,5	4.7	7,6	7	9	8,4	5,8	7,1	5,8	5,7	7,3	7,9	5,7	10
Sodium (Na)	500	N.	κν κν	2,7	11	6,3	90	81	2,7	2,3	8,7	7.2	8.0	7.3	2.3	30
Azote ammoniacal (NH ₄ -N)	1.5	3	0,85	0,62	-	0,91	2,8	3,4	0,16	0.24	0.42	61.0	0.	2 -	0.12	9 6
Cyanures totaux	0.2	0.1	0,005	0,005	0,005	0.005	0.005	0.005	0.005	50.00	0.005	3000	2 8		1000	1000
Phosphore total	,	ī	0,1	0.2	0.4	0.3	0.8	14	500	2000	2000	con'n	200	c)003	0,000	con'n
Sulfates totaux	200	1 500	3,1	1,7	1,7) (4) o	<u>,</u> 0	8,6	7.4	98	0,03	5 G	2 0	8 6	4, L
Métaux												2	2	25	n'o	2
Aluminium (Al)	91	(2)	0,015	0,015	0,015	0,015	90'0	0,015	0,015	0,015	0,03	0.015	0.015	0.015	0.015	900
Arsenic (As)	6:	5 22	0,064	0,05	0,078	0,058	0,14	0,15	0,001	0,004	0,001	0.001	0.062	0.054	100.0	300
Bore (B)	ις		0,025	0,025	90'0	0,0025	0,19	0,23	0,025	0,025	0,025	0.025	0.1	900	0.0025	233
Baryum (Ba)		*	0,015	0,015	0,015	0,015	0,015	0,015	0,015	0.015	70.0	000	0.015	5000	5,000	200
Cadmium (Cd)	0.005	0.1	0,0005	\$000'0	0,0005	0,0005	0,0005	0,0005	0,0005	0.0005	0,0005	0.0005	0.0005	0.000	90009	0,000
Chrome (Cr)	0,05	0.5	0,015	0,015	0,015	0,015	0,015	0.015	0,015	0.015	0.015	0.015	0.015	0.015	51010	9000
Cuivre (Cu)	91	-	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0.0015	0.0015	0,003	0.0015	5100.0	0.0015	0,013
Fer (Fe)	0.3	17	2,7	3,2	9'0	1,5	0,05	90'0	5,0	8,6	9.0	100	603	200	2005	3 4
Magnésium (Mg)	e d	*	2,2	4,4	6,5	4,2	5,1	7,9	8.	2.4	19	7 42	5 5	4		} 4
Manganèse (Mn)	0.05	9.	16,0	0,34	0,14	0,18	0,012	9500	0,27	0,3	31.0	19.0	0.21	61.0	2100	? ;
Mercure (Hg)	0.001	0.001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0.0001	0.0001	0.0001	0.0001	0.000	0.000	5000
Nickel (Ni)	0.02	-	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,006	0,05	0.2	0.005	0.005	0000	200
Plomb (Pb)	10.0	0.1	9000'0	0,0005	0,0005	0,0005	0,0005	0,0005	0.0005	0.0005	0.0005	0.0005	00000	0.0005	5000	3,000
Selénium (Se)	(10)	0	0,0005	0,0005	0,0005	0,0005	0,0005	0.0005	0.0005	0.0005	0.0005	0,000	50000	0,000	50000	2000
Zinc (Zn)	2	1	900'0	10,0	0,0015	900'0	0,0015	0,0015	0.007	0.0025	0.017	0.053	0.0015	2000	20000	0,000
Biologiques												2000	Clook	2000	cionó	orara orara
Coliformes totaux (U.F.C./100 ml)	i.	2 400	15	0,5	220	67	-	4	01	0.5	-	,-	σ	-	0.5	220
Coliformes fécaux (U.F.C./100 ml)	0	200	0,5	0,5	-	5,0	-	0,5	-	0,5	-	0.5	0.5	. c	0,5	-
DBOs	ill.	\$	-	-	-	-	-	-	,-		5,7		2.8	ď	-	5.7
DCO	×	100	ιń	15	18	15	G	13	ъ	10	4	25	40	; c	· ut	
Anions Chlorures	250	1 500	27	0.71	0.89	22.0	4	7.0	2	0	c	c	C T		, ;	,
Nitrates et Nitrites (NO ₂ -NO ₃)	10		0.005	20.0	0.06	0.08	0.1	r ec	5 0	0,00	. 5	2 6	, c	D	7,0	
Sulfures totaux	0.05	121	10,0	0.0	10,0	8 5	0.01	0.00	.00	200	5 6	5000	700	10,0	500'0	L, 6
Organiques Hulles et graisses totales	192	5	, (1)	1.5	5	1.5	٠. در	c u	0	- u	- 4 - 7	100	i i	2 ,	000	ia'a
Benzène	0.005	X	0.0001	0.0001	0.0001	1000	0.0001	10000	1000	500	5000	c, 0	0.00	6,1	0,000	5,2
Toluène	0.024	*	0,00005	0,0019	0,00005	0.00005	0,0008	0.00005	0,003	00000	0,000	100000	1,000,0	0,0001	0,000	0,003
Ethylbenzène	0.0024	×	0,00005	0,00005	0,00005	0,00005	0,00005	0.00005	0.002	0,00005	0,00005	0,00005	0,00003	0,00008	500000	- 000
Xylènes totaux	0.3		0,0002	0,0012	0.0002	0,0002	0,0002	0,0002	0,010	0.0002	0.0002	0.0015	0.0002	0,0000	0,000	0,002
Phenois										10000	10000		200000	No.	20000	מימימ
Phénols totaux		0.02	Q	2	QN	QV	Q	Ñ	Q	Q	QN	QN	QV	0,0011	Q	0.0011

¹: PREMR: Projet de Règlement sur l'élimination des matteres résiduelles (Article 49 publié le 24 juillet 2002)
 ²: Réglement sur les déchets solides (Article 30)
 ND: Non détecté

11 Dépassement du PREMR (94) Dépassement du RDS Note: Pour les concentrations de la moité de la valeur de la limite de détection a été utilisée pour établir les concentrations du bruit de fond

Tableau 9.2 Site de l'agrandissement de Saint-Nicéphore - Concentrations du bruit de fond dans les eaux souterraines de l'aquifère confiné (Automne 2003 et Printemps 2004)

Paramètres	Règlements	nents					Stations d'échantillonnage (Bruit de fond)	antillonnage ()	Bruit de fond)						Concentration	Concentrations du bruit de
(mg/L)	ODEMD1	Phc2	PO-03-01C	ote	PO-03-02C	1-02C	PO-03-04C	-04c	PO-03-05C	-05C	PO-04	PO-03-06C	0-0d	PO-03-09C	M.	200
	LI LI	200	5003	Print, 2004	Autom. 2003	Print. 2004	Autom. 2003	Print. 2004	Autom. 2003	Print, 2004	Autom. 2003	Print. 2004	Autom. 2003	Print. 2004		YPM
E C	į.	(*)	0,8	7,8	8,0	7,8	8,2	6,7	8,8	8.5	8,7	89.2	8.2	5.8	8	œ œ
Sodium (Na)	200	* 1:	35	28	28	21	23	50	250	230	78	74	44	30	20.	250
Azote ammoniacal (NH ₄ -N)	1.5	œ	4,10	3,50	2,40	2,50	3,30	3,20	0,48	0.35	76'0	0.48	2.60	200	35	7 4
Cyanures totaux	0.2	0.1	0,005	0,005	0,005	0,005	0.005	0.005	0.005	2000	5000	2000	2000	2000	200	1000
Phosphore total	,	9	0.8	6.0	=	00	0.7	000	900	0,00	2025	500.0	0000	chu,u	600,0	0,005
Sulfates totaux	200	1 500	0,2	0.2	- 1.	0.2	20	0.05	10.0	0 0	2 -4 4 0	7,0	17.0	/ o o	4,0	9, 1
Metaux										2		0,12		25	60,0	1/
Aluminium (Al)	•	(1)	0,015	0,015	0,015	0,015	0,015	0,015	÷	0.015	0.015	0.015	0.04	2100	0.015	
Arsenic (As)	Œ.	38	0,02	0,018	0,041	0,036	0,003	10,0	0,004	0.004	0.007	2000	0.003	200	5,013	- 60
Bore (B)	νņ	(N	0,21	0,22	0,13	0.13	0,14	0,15	0,53	0.86	0.23	0.22	0.18	010	13	, d
Baryum (Ba)	î	я	60'0	0,12	0,11	0.16	0,13	0,14	60'0	0.04	0.04	700	0.08	000	200	9,0
Cadmium (Cd)	0.006	0.1	0,0005	\$000'0	0,0005	0,0005	9000'0	0,0005	0,0005	0,0005	0,0005	0.0005	0.0005	00005	0.0005	0000
Chrome (Cr)	0,05	0.5	0,015	0,015	0,015	0,015	0,015	0,015	0,015	0,015	0,015	0.015	0.015	0.015	0.015	0.015
Cuivre (Cu)	ñ	-	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	900'0	0,0015	0,0015	0.0015	0.0015	0.0015	0.0015	9000
Fer (Fe)	6,0	17	0,2	0.2	0,1	0,3	0,1	0,2	2,1	0,05	0,05	0.05	0.2	200	0.05	27
Magnesium (Mg)	•		£	57	12	1	<u>ත</u> ්	9,6	2,7	9,1		3.6	9	! =	16	7
Manganese (Mn)	0.05		0,033	0,035	950'0	0,055	0,035	0.035	0,1	0,004	0,014	0.0015	0.029	0.022	0.0015	2 5
Mercure (Hg)	0.001	0.001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	1,000,0	0,0001	0,0001	0.0001	0.0001	0.0001	0.0001	0000
Nickel (Ni)	0.02	-	500'0	0,005	0,005	900'0	0.005	0,005	0,005	0,005	0,005	0.005	0.005	0.005	0.005	2000
Plomb (Pb)	0.01	0.1	0,0005	0,0005	5000'0	0,0005	0,0005	0,0005	0,003	0,0005	0,0005	0.0005	0.0005	0.0005	0.0005	5000
Selenium (Se)	78		0,0005	0,0005	9000'0	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	0.0005	00005	0,0005	2000
Zinc (Zn)	2	1	0,007	0.007	0,004	0,005	900'0	0,0015	0,015	0.015	0.005	0.011	0.005	810.0	0.0016	2000
Biologiques											200	100	2000	0,0,0	01000	2000
Coliformes totaux (U.F.C./100 ml)		2 400	40	÷	\$ 100	2,0	10	-	120	.4	-	0.5	330	50	4	2400
Coliformes (Scaux (U.F.C./100 ml)	0	200	-	6,0	10	0,5	-	0,5	-	-	-	0.5	=	0 0	50	5 -
DBO ₌	, e	40	7,9	7.9	,-	-	(-	6.3	-	-	-	! -	28	, t	} -	. 80
DC0		100	5	24	ഗ	18	2	.0	14	- 61	4	· w	e e	100	• ц	3 2
Anions Chlorures	250	1 500	2.5	6	er)	F.	v:	C	0	((ç	8	<			
Nitrates et Nitrites (NO2-NO3)	10	. 10	0,005	100	0.01	600	0.01	100	500	4 6	3 6	0 1	n 6	n o	2,00	58
Sulfures totaux	0.02	۲3	10,0	0.0	0,01	0.01	10.0	10.0	100	5 6	700	98.0	N 0	0,005	500,0	0,56
Organiques Huiles et graisses totales		45	1.00	ų.	4	4	u ·	i u	, .	1000	i Ain	100	100	100	000	ro'n
Benzene	0.005	5	10000	5.00	2000	2000	- 0	0.00	0,000	<u>0</u>	a i	n i	ر. در	'n	5,5	rō.
Toluène	0.024	13.0	0.00005	0,000	50000	50000	00000	0,000	0,0001	0,0001	1,000,0	0,0001	0,0001	0,0001	0,0001	0,0001
Ethylbenzène	0.0024	10 41	0.00005	0.00005	0.00005	0,0000	0.00005	500000	0,0000	500000	0,00005	0,00005	0,00005	90000'0	9,00005	0,00005
Xylènes totaux	0.3	\$10	0,0002	0,0002	0,0002	0.0002	0,0002	0.0002	0.0002	0.0002	0.0002	connon	0,0000	0,00005	9000000	0,00005
Prienois										and and a	70000	Shoots	20000	מיחחחק	0,0002	o'nnn's
Phénois totaux		0.02	QN	R	9	9	Q	0,002	Q	Ñ	9	9	2	6100.0	S	0000

†: PREMR: Projet de Règlement sur l'élimination des matières résiduelles (Article 49 publié le 24 juillet 2002)

R: Règlement sur les déchets solides (Article 30)

ND: Non détecté

10 Dépassement du PREMR

5100 Dépassement du PDS

9.1.2 Qualité de l'eau de l'aquifère de surface

Les tableaux 9.3 et 9.4 présentent respectivement les résultats analytiques de la qualité des eaux souterraines de l'aquifère de surface pour les campagnes d'échantillonnage de 2003 et 2004. Tous les certificats d'analyses chimiques du laboratoire sont fournis à l'annexe E.

Les résultats analytiques ont été comparés aux critères de qualité de l'eau souterraine recommandées à l'article 49 du PREMR (MENV, juillet 2002) de même qu'à ceux stipulés au Règlement sur les déchets solides (RDS). Les figures 9.1 et 9.2 présentent respectivement pour chaque campagne d'échantillonnage (novembre 2003 et juin 2004), les paramètres qui ont été mesurés en excès des critères de l'article 49 du PREMR et/ou du bruit de fond déterminé précédemment, et ce pour chacun des puits d'observation aménagées dans l'aquifère de surface.

9.1.2.1 Dépassements de l'article 49 du PREMR

Comme on peut l'observer aux figures 9.1 et 9.2, presque tous les puits d'observation situés dans la zone d'agrandissement montrent des dépassements des exigences du PREMR (article 49). Les paramètres qui dépassent les critères de qualité sont l'azote ammoniacal, le fer, le manganèse et le nickel.

9.1.2.2 Dépassements du bruit de fond

Les figures 9.1 et 9.2 montrent que seul le puits d'observation PO-03-03A indique un dépassement du bruit de fond pour le fer, et ce, seulement au cours de la campagne de novembre 2003. Selon une approche conservatrice, ce puits n'a pas été considéré à l'amont du site existant puisqu'il est localisé trop proche. Il est néanmoins surprenant que l'aquifère de surface à cet endroit soit affecté par le LES puisqu'un fossé de 6 m de profond est situé entre le site existant et le puits d'observation. Ce fossé draine l'eau souterraine avant qu'elle n'atteigne le puits.

Aucun autre puits d'observation situé dans la zone d'agrandissement ne montre de dépassements du bruit de fond local.

	8	

Tableau 9.3 Site de l'agrandissement de Saint-Nicéphore - Qualité des eaux souterraines de la nappe de surface - Échantillonnage de Novembre 2003

Paramètre	Règle	ments			7		Stations d'éc	hantillonnage				
(mg/L)	PREMR ¹	RDS ²	PO-03-01A	PO-03-02A	PO-03-03A	PO-03-04A		5A (DC-1)	PO-03-06A	PO-03-07A ³	PO-03-08A	PO-03-09A
рН	-		7.5	7.6	7	10	6.7	6.8	5.8	7.8	6.7	7.3
Sodium (Na)	200	-	5.5	11	22	30	2.7	2.6	8.7	8	4.6	9.9
Azote ammoniacal (NH ₄ -N)	1.5		0.85	1	1.2	2.8	0.16	0.12	0.42	0.38	0.22	1
Cyanures totaux	0.2	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			'
Phosphore total	-	0.1	0.1	0.4	1.8	0.8	<0.01	<0.01	<0.01	<0.01	0.01	<0.01
Sulfates totaux	500	1 500	3.1	1.7	120	3.9	8.4	8.6	86	0.6 14	<0.1 14	0.3
Métaux	- 000	. 000			120	5.8	0.4	0.0	00	14	14	0.8
Aluminium (AI)	2	_	<0.03	<0.03	<0.03	0.06	<0.03	<0.03	0.03	<0.03	<0.03	< 0.03
Arsenic (As)	=	-	0.064	0.078	0.036	0.14	<0.002	<0.002	<0.002	<0.03	<0.03	<0.03 0.062
Bore (B)	5		<0.05	0.06	0.06	0.19	< 0.05	<0.05	< 0.05	<0.002	<0.02	0.062
Baryum (Ba)	-	-	<0.03	<0.03	0.04	<0.03	<0.03	<0.03	0.04	<0.03	<0.03	<0.03
Cadmium (Cd)	0.005	0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chrome (Cr)	0.05	0.5	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.001
Cuivre (Cu)	-	1	<0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.003	<0.003	<0.003	0.024	<0.003
Fer (Fe)	0.3	17	2.7	0.6	9.1	<0.1	4.9	5	0.8	<0.1	<0.1	0.3
Magnésium (Mg)	-	_	5.2	6.5	21	5.1	0.3	1.8	16	6.4	14	5.1
Manganèse (Mn)	0.05	-	0.31	0.14	1.6	0.012	0.27	0.27	31	0.22	0.11	0.21
Mercure (Hg)	0.001	0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Nickel (Ni)	0.02	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	<0.002	<0.002	< 0.01
Plomb (Pb)	0.01	0.1	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.01
Sélénium (Se)	345	a	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc (Zn)	5	1	0.006	< 0.003	0.012	<0.003	0.007	0.005	0.017	0.006	0.04	<0.001
Biologiques				10.000	0.012	10.000	0.007	0.003	0.017	0.000	0.04	<0.003
Coliformes totaux (U.F.C./100 ml)	- 1	2 400	15	220	23	<2	10	<10	<2	1 000	<10	9
Coliformes fécaux (U.F.C./100 ml)	0	200	<1	<2	<2	<2	<2	<10	<2	<1	<1	<i>s</i> <1
DBO₅	_	40	<2	<2	8.2							
DCO		100	<10	18	6.2 29	<2 <10	<2 <10	<2	5.7	<2	2.2	2.8
Anions		, , , ,	<u></u>	10	23	<10	<10	<10	41	<10	<10	15
Chlorures	250	1 500	1.2	0.89	5	1.4	0.76	0.81	2	10	000	
Nitrates et Nitrites (NO ₂ -NO ₃)	1				1	1			3	1.3	0.99	1.9
Sulfures totaux	10 0.05	-	<0.01	0.06	0.44	0.1	0.09	0.1	0.01	0.07	1.5	0.02
Odnards (Otaux	0.05	2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02

 ^{1 :} PREMR : Projet de Règlement sur l'élimination des matières résiduelles (Article 49 publié le 24 juillet 2002)
 2 : Règlement sur les déchets solides (Article 30)
 3 : Puits d'observation installé dans les dépôts de sable de surface et d'argile silteuse

ND : Non détecté

¹¹ Dépassement du PREMR 94 Dépassement du RDS

Tableau 9.3 Site de l'agrandissement de Saint-Nicéphore - Qualité des eaux souterraines de la nappe de surface - Échantillonnage de Novembre 2003

Paramètre	Règle	ments					Stations d'éc	hantillonnage	 }			
(mg/L)	PREMR ¹	RDS ²	PO-03-01A	PO-03-02A	PO-03-03A	PO-03-04A		5A (DC-1)	PO-03-06A	PO-03-07A ³	PO-03-08A	PO-03-09A
<u>Organiques</u>								1 1			1000000	10-00-037
Huiles et graisses totales		15	<3	<3	<3	<3	3.2	<3	<3	<3	<3	<3
Benzène	0.005	:≥:	<0.0002	<0.0002	<0.0002	<0.0002	0.003	-	<0.0002	<0.0002	<0.0002	<0.0002
Toluène	0.024	327	<0.0001	<0.0001	<0.0001	0.0008	0.011	_	<0.0002	<0.0002	<0.0002	<0.0002
Ethylbenzène	0.0024	-	<0.0001	< 0.0001	<0.0001	<0.0001	0.002	·	<0.0001	<0.0001	<0.0001	<0.0001
Xylènes totaux	0.3	:51:	<0.0004	< 0.0004	<0.0004	<0.0004	0.01	=	<0.0004	<0.0004	<0.0004	<0.0001
<u>Phénols</u>						10.000	0.01		40.000	<u> </u>	<u> </u>	₹0.0004
2,4-Diméthylphénol	-	(4).	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006
2,4-Dinîtrophénol	2	- P	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010	<0.010	<0.000	<0.0006
2-Méthyl-4,6-dinitrophénol		4	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
4-Nitrophénol	-		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.010	<0.010	<0.010
Phénol	-	*	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.001	<0.001
2-Chlorophénol	-	*	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0006
3-Chlorophénol	-	¥	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
4-Chlorophénol	YE	=	<0.0004	<0.0004	<0.0004	<0.0004	<0.0003	<0.0003	<0.0003	<0.0003	<0.0005	<0.0005
2,3-Dichlorophénol	~	¥	<0.0005	<0.0005	<0.0005	<0.0005	<0.0004	<0.0005	<0.0004	<0.0004	<0.0004	<0.0004
2,4 + 2,5-Dichlorophénol	9€	-	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0005	<0.0005	<0.0005	<0.0005
2,6-Dichlorophénoi	3=3		<0.0004	< 0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0008	<0.0006
3,4-Dichlorophénol	(e)	=:	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
3,5-Dichlorophénol	140	2	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
Pentachlorophénol	1 - 1	· ·	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2,3,4,6-Tetrachlorophénol		-	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	
2,3,5,6-Tétrachlorophénol		(O li t)	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004 <0.0004
2,4,5-Trichlorophénol	<u>:=:</u>	o = :	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2,4,6-Trichlorophénol	(#);	8 4 5	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	
2,3,5-Trichlorophénol	120	7 2	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004 <0.0004
2,3,4-Trichlorophénol	E		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	
2,3,6-Trichlorophénol	-		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004		<0.0004
2,3,4,5-Tétrachlorophénol	-		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004 <0.0004	<0.0004
3,4,5-Trichlorophénoi	:-	1 4 1	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004 <0.0004
o-Crésol	-	:	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.004	<0.0004	<0.0004	
p-Crésol	<u> </u>	3	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001
Phénols Totaux		0.02	ND ND	ND ND	<0.001 ND	<0.001 ND	<0.001 ND	<0.001 ND				

 ^{1 :} PREMR : Projet de Règlement sur l'élimination des matières résiduelles (Article 49 publié le 24 juillet 2002)
 2 : Règlement sur les déchets solides (Article 30)
 3 : Puits d'observation installé dans les dépôts de sable de surface et d'argile silteuse

ND : Non détecté

¹¹ Dépassement du PREMR

94 Dépassement du RDS

Tableau 9.4 Site de l'agrandissement de Saint-Nicéphore - Qualité des eaux souterraines de la nappe de surface - Échantillonnage de Juin 2004

Paramètre	Règle	ements					Stations d'éc	hantillonnage				
(mg/L)	PREMR ¹	RDS ²	PO-03-O	1A (DC-1)	PO-03-02A	PO-03-03A	PO-03-04A	PO-03-05A	PO-03-06A	PO-03-07A ³	PO-03-08A	PO-03-09A
рН	1 .	-	7,3	7,4	7	7,4	8,4	7,1	5,7	7.8	6,9	7,9
Sodium (Na)	200	V=	2,7	2,6	6,3	38	22	2,3	7,2	7,7	1,8	7,3 7,3
Azote ammoniacal (NH ₄ -N)	1.5	100	0,54	0,62	0,91	2,7	3,4	0,24	0,12	0.38	0,23	7,5 1,1
Alcanité (total en CaCO ₃ - pH 4.5)	-		100	100	94	180	120	49	200	84	72	110
Bicarbonate (HCO ₃ en CaCO ₃)		-	100	100	94	180	120	49	200	84	72	110
Carbonate (CO ₃ en CaCO ₃)	(= 0)	-	<20	<20	<20	<20	<20	<20	<20 <20	<20	<20	<20
Cyanures Totaux	0.2	0.1	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phosphore Totaux	-		0,2	0,2	0,3	1,4	1,4	<0.1	<0.1	<0.1	0,1	0,4
Sulfates Totaux	500	1 500	1,6	1,7	2	67	1,9	7,4	110	11	22	0,4
Métaux					<u> </u>		.,0		110	1 +		0,0
Aluminium (AI)	-	5 = 0	<0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	< 0.03	<0.03	0,03	< 0.03
Arsenic (As)	2	-	0,049	0,05	0,058	0,099	0,15	0,004	<0.002	0,003	<0.002	0,054
Bore (B)	5	-	<0.05	<0.05	<0.05	0,3	0,23	<0.05	<0.05	<0.05	< 0.05	0,054
Baryum (Ba)	9	-	< 0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	0.04	<0.03	<0.03	<0.03
Cadmium (Cd)	0.005	0.1	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.03
Calcium (Ca)	-	:00:	33	33	28	28	17	25	29	34	36	31
Chrome (Cr)	0.05	0.5	< 0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03
Cuivre (Cu)	_	1	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0,003	0,006	<0.003	<0.03
Fer (Fe)	0.3	17	3,2	3,1	1,5	1,2	<0.1	8,6	1,5	<0.1	<0.1	0.3
Magnésium (Mg)	-	-	4,4	4,3	4,2	11	7,9	2,4	15	6	9,7	6,4
Manganèse (Mn)	0.05	_	0,34	0,34	0,18	0,34	0,056	0,3	19	0,28	<0.003	0,19
Mercure (Hg)	0.001	0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
Nickel (Ni)	0.02	1	< 0.01	<0.01	<0.01	<0.002	<0.002	<0.002	0,0002	<0.0002	<0.0002	<0.0002 <0.01
Plomb (Pb)	0.01	0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
Potassium (K)	000	-	1,7	1,7	2,6	8,9	10	1	1,6	<0.001 <0.1	<0.001	<0.001
Sélénium (Se)	-	.	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.01	0,9 <0.001	3,6
Zinc (Zn)	5	1	0,01	<0.003	0,006	0.004	<0.003	0,005	0,053	0,009		<0.001
Biologiques			0,0.	VO.00 0	0,000	0,004	<0.003	0,003	0,053	0,009	0,006	0,012
Coliformes totaux (U.F.C./100 ml)		2 400	<1	<1	2	<1	4	<1	1	40	- 00	
Coliformes fécaux (U.F.C./100 ml)	0	200	<1	<1 <1	<1	<1	<1	<1	<1	46 <1	>80	1
DBO ₅						-				.,	<1	<1
DCO		40	<2	<2	<2	<2	<2	<2	<2	<2	2.2	2,5
Anions	2	100	12	15	15	<10	13	10	25	10	10	16
Chlorures	050											
Nitrates et Nitrites (NO ₂ -NO ₃)	250	1 500	0,65	0,71	0,77	3,1	2,4	0,93	3	0,97	0,82	1,6
	10	S26	0,02	0,02	0.06	<0.01	0,06	0,01	<0.01	0,03	1,9	0,01
Sulfures totaux	0.05	2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02

PREMR : Projet de Règlement sur l'élimination des matières résiduelles (Article 49 publié le 24 juillet 2002)
 Règlement sur les déchets solides (Article 30)
 Puits d'observation installé dans les dépôts de sable de surface et d'argile silteuse

ND : Non détecté

¹¹ Dépassement du PREMR 94 Dépassement du RDS

Tableau 9.4 Site de l'agrandissement de Saint-Nicéphore - Qualité des eaux souterraines de la nappe de surface - Échantillonnage de Juin 2004

Constitution PREMR* RDS* PO-03-01A (DC-1) PO-03-02A PO-03-03A PO-03-06A PO-03-06A PO-03-07A* PO-03-08A P	Paramètre	Règle	ments					Stations d'éc	hantillonnage				
Draniques	(mg/L)	PREMR1	RDS ²	PO-03-O	1A (DC-1)	PO-03-02A	PO-03-03A				PO-03-07A3	PO-03-08A	PO-03-09A
Benzène	Organiques								. 5 00 00K	1 G 00 00K	7 0 00 077	1000000	T O-03-03A
Benzène	Huiles et graisses totales	•	15	<3	<3	<3	<3	5.2	-3	-3	-3	-3	-3
Tolleine	Benzène	0.005	.(# 8						1				
Ethylbenzéne	Toluène	0.024	0#1	1				1					
Sylènes totaux 0.3	Ethylbenzène	0.0024	-										
Phénals	Xylènes totaux		-	1									
2.4-Dinitrophénol	Phénois			1010001	0,00,2	40.0004	0,0010	V0.0004	~0.0004	0,0013	₹0.0004	<0.0004	<0.0004
2.4-Dinitrophénol	2,4-Diméthylphénol	-	-	<0.0006	<0.0006	<0.0006	<0.0006	~0.000e	~0.000e	-0.000e	-0.0006	-0.0006	-0.0006
2-Méthyl-4,6-dinitrophénoi	· ·	-	2 - 0	1									
A-Nitrophénol	2-Méthyl-4,6-dinitrophénol	-	: <u>-</u> :										
Phénol		<u> </u>	-										
2-Chlorophénol		9	(=)	1						II. I			
3-Chlorophénol	2-Chlorophénol	_											
4-Chlorophénol		_						11					
2,3-Dichlorophénol													
2,4 + 2,5-Dichlorophénol	· ·	-	:										
2,6-Dichlorophénol		2	-										
3,4-Dichlorophénol	, · · · · · · · · · · · · · · · · · · ·	=	-										
3,5-Dichlorophénol	n	-	-										
Pentachlorophénol	·	V -	-		IV U								
2,3,4,6-Tétrachlorophénol	l ·	nee:	¥										
2,3,5,6-Tétrachlorophénoi	•	344	2										
2,4,5-Trichlorophénol - <0.0004	· ·	- €	2										
2,4,6-Trichlorophénol - <0.0004			-										
2,3,5-Trichlorophénol -			-										
2,3,4-Trichlorophénol		5. - 2	_										
2,3,6-Trichlorophénol	·	-	<u>=</u>										
2,3,4,5-Tétrachiorophénol		1 - 1	2										
3,4,5-Trichlorophénol -			-										
o-Crésol - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.00	· · · · · · · · · · · · · · · · · · ·		-										
p-Crésol													
Phénole Tetevus		-											
THE DOSTOLOUS IN THE PROPERTY OF THE PROPERTY	Phénois Totaux	-	0.02	ND	ND	<0.001 ND	<0.001 ND	<0.001 ND	<0.001 ND	<0.001 ND	<0.001 ND	<0.001 ND	<0.001 0,0011

 ^{1 :} PREMR : Projet de Règlement sur l'élimination des matières résiduelles (Article 49 publié le 24 juillet 2002)
 2 : Règlement sur les déchets solides (Article 30)
 3 : Puits d'observation installé dans les dépôts de sable de surface et d'argile silteuse

ND : Non détecté

94 Dépassement du RDS

_11 Dépassement du PREMR

9.1.2.3 Récepteurs potentiels

En raison des niveaux d'eau élevés qui sont observés dans la nappe de surface et de la présence d'un réseau de fossés et ruisseaux pour le drainage des eaux de surface en aval du site existant (notamment le ruisseau Paul-Boisvert), il est anticipé qu'à l'endroit de l'agrandissement projeté, les eaux souterraines de l'aquifère de surface fassent résurgence dans le ruisseau Paul-Boisvert, lequel achemine les eaux vers la rivière Saint-François, sise à quelques kilomètres en aval.

Pour l'instant, il n'est pas possible de confirmer qu'il n'y a aucun récepteur potentiel, en aval du site d'INTERSAN, qui utilise les eaux souterraines de l'aquifère de surface à titre d'approvisionnement en eau potable. Un inventaire exhaustif des utilisateurs potentiels dans la zone devra être réalisé afin d'avoir une meilleure connaissance de la situation. Toutefois, selon la piézométrie de l'aquifère de surface et la présence de plusieurs fossés et ruisseaux en aval du site, il est plus probable que l'aquifère de surface se draine dans ces fossés et ruisseaux plutôt qu'il n'atteigne les puits d'approvisionnement en eau potable potentiellement situés en aval du site.

9.1.3 Qualité de l'eau souterraine de l'aquifère confiné

Les résultats analytiques de la qualité des eaux souterraines de l'aquifère confiné sont présentés aux tableaux 9.5 et 9.6 pour respectivement les campagnes de 2003 et 2004. Les certificats d'analyses fournis par le laboratoire sont présentés à l'annexe E.

Les résultats analytiques ont été comparés aux valeurs limites fixées par l'article 49 du PREMR de même qu'à celles du *Règlement sur les déchets solides* (RDS). Les paramètres qui montrent des dépassements des valeurs limites du PREMR et du bruit de fond, pour les deux campagnes d'échantillonnage (novembre 2003 et juin 2004) sont indiqués aux figures 9.3 et 9.4.

	~			
		P		

Tableau 9.5 Site de l'agrandissement de Saint-Nicéphore - Qualité des eaux souterraines de la nappe profonde - Échantillonnage de Novembre 2003

Paramètre	Règle	ements						Station d'éch	nantillonnage					
(mg/L)	PREMR ¹	RDS ²	PO-03-01C	PO-03-02C	PO-03-03B ³	PO-03-03C	PO-03-04C	PO-03-05C	PO-03-06C	PO-03-07C	PO-03-08C	PO-03-09B ³	DO 02 0	00 (00 0)
pН	-	-	8	8	7.4	7.9	8.2	8.8	8.7	8.3	8	7.4	8.2	9C (DC-2)
Sodium (Na)	200	-	32	28	47	41	23	250	78	92	15	46	o.∠ 38	8.2 44
Azote ammoniacał (NH ₄ -N)	1.5		4.1	2.4	3.7	2.4	3.3	100700				1		
Cyanures totaux	0.2	0.1	<0.01	<0.01	<0.01	<0.01		0.48	0.97	1.2	1.7	2.4	2.5	2.6
Phosphore total		"."	0.8	1.1	2.4	3.6	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sulfates totaux	500	1 500	0.0	4.1	2.4	7.9	0.7 0.2	0.6	0.4	1.2	0.3	0.4	1.3	1.2
Métaux			V.E	7.1		7.9	0.2	10	4.9	6.5	1.2	17	9.5	17
Aluminium (A!)	· ·	14	<0.03	<0.03	< 0.03	< 0.03	<0.03	-	<0.03	.0.00	0.00		0.04	
Arsenic (As)	-	. 	0.02	0.041	0.002	0.002	0.003	0.004	0.007	<0.03 0.009	<0.03	0.81	0.04	0.04
Bore (B)	5	E=:	0.21	0.13	0.3	0.44	0.003	0.53	0.007	0.009	0.006 0.14	0.018	0.003	0.003
Baryum (Ba)	: = :	::#:	0.09	0.11	0.03	0.1	0.13	0.09	0.23	0.18	0.14	0.15	0.17	0.18
Cadmium (Cd)	0.005	0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.05 <0.001	0.08	0.07
Chrome (Cr)	0.05	0.5	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	<0.001	<0.001	<0.001
Cuivre (Cu)	-	1	<0.003	< 0.003	< 0.003	< 0.003	<0.003	0.006	<0.003	<0.003	<0.003	0.004	<0.03 0.003	<0.03
Fer (Fe)	0.3	17	0.2	0.1	<0.1	<0.1	0.1	2.1	<0.1	<0.1	0.7	0.004	0.003	<0.003 <0.1
Magnésium (Mg)		:=:	13	12	8,0	6.2	9.9	2.7	3.5	9.6	13	5.3	9.6	
Manganèse (Mn)	0.05	= 0	0.033	0.056	0.56	0.23	0.035	0.1	0.014	0.007	0.018	0.21	0.022	8 0.029
Mercure (Hg)	0.001	0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.002	<0.0002	<0.002	
Nickel (Ni)	0.02	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.00	<0.002	<0.002	<0.0002	<0.0002	<0.0002
Plomb (Pb)	0.01	0.1	<0.001	<0.001	<0.001	<0.001	<0.001	0.003	<0.001	<0.001	<0.001	0.002	<0.01	<0.01 <0.001
Sélénium (Se)	- 1		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001
Zinc (Zn)	5	1	0.007	0.004	< 0.003	0.005	0.008	0.015	0.005	0.01	0.012	0.006	0.005	<0.001
<u>Biologiques</u>									0.000	0.01	0.012	0.000	0.003	20.003
Coliformes totaux (U.F.C./100 ml)	-	2 400	40	5 100	23	23	10	120	<2	>1600	<2	20	330	<20
Coliformes fécaux (U.F.C./100 ml)	0	200	<2	10	<2	<2	<2	<2	<2	2	<2	<2	11	<20
DBO ₅		40	7.9	<2	3.4			_		_				
DCO	_	100	7.9 <10	<10	29	3.6 32	<2 <10	<2	<2	<2	<2	4.4	28	10
· PREMR · Projet de Règlement sur l'éliminat						NZ	<10	14	14	<10	<10	65	30	33

^{1 :} PREMR : Projet de Règlement sur l'élimination des matières résiduelles (Article 49 publié le 24 juillet 2002)

 ^{2 :} Règlement sur les déchets solides (Article 30)
 3 : Puits d'observation installé dans les dépôts de sable de surface et d'argile silteuse ND : Non détecté

_11 Dépassement du PREMR 94 Dépassement du RDS

Tableau 9.5 Site de l'agrandissement de Saint-Nicéphore - Qualité des eaux souterraines de la nappe profonde - Échantillonnage de Novembre 2003

Paramètre	Règle	ments						Station d'éci	nantillonnage					
(mg/L)	PREMR1	RDS ²	PO-03-01C	PO-03-02C	PO-03-03B ³	PO-03-03C	PO-03-04C	PO-03-05C	7	BO 00 070	BO 00 000	DO 00 00D3		
Anions			1 0 00 010	1 0 05 020	1.0.00-000	FO-03-03C	PO-03-04C	PO-03-05C	PO-03-06C	PO-03-07C	PO-03-08C	PO-03-09B ³	PO-03-0	9C (DC-2)
Chlorures	250	1 500	2.5	3.3	3.9	29	e c	0.7						
Nitrates et Nitrites (NO2-NO3)	1					l .	5.5	2.7	23	92	8.0	6.7	6.9	6.5
Sulfures totaux	10	-	<0.01	0.01	<0.01	<0.01	0.01	0.05	0.02	0.02	0.01	0.35	0.15	0.21
Organiques	0.05	2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02
Huiles et graisses totales		J-												
Benzène	0.005	15	3.1	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Toluène	0.005	(*)	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	<0.0002
Ethylbenzéne	0.024	₹	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001
	0.0024	(<u>a</u>	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001
Xylènes totaux	0.3	15	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
<u>Phénols</u>												10.0001	₹0.000∓	10.0004
2.4-Diméthylphénol		: * :	<0.0006	< 0.0006	<0.0006	<0.0006	<0.0006	< 0.0006	<0.0006	<0.0006	<0.0006	<0.0006	< 0.0006	<0.0006
2.4-Dinitrophénol	1#8		<0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010	<0.000
2-Méthyl-4.6-dinitrophénol	:=7:	*	<0.010	< 0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
4-Nitrophénol	**	•	<0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.010	
Phénol	*	-	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.001	<0.0006		<0.001
2-Chlorophénol		=	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0006	<0.0006
3-Chlorophénoi		:=0	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0005	<0.0005
4-Chlorophénol		140	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0003	<0.0003			<0.0005	< 0.0005	<0.0005
2.3-Dichlorophénol	-	· ·	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.4 + 2.5-Dichlorophénoi	1 - 1	#	<0.0006	<0.0006	<0.0006	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	< 0.0005	<0.0005
2.6-Dichlorophénol	.	-	<0.0004	<0.0004	<0.0004	<0.0008	<0.0006		<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006
3.4-Dichlorophénol		-	<0.0004	<0.0004	<0.0004	<0.0004		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004	<0.0004
3.5-Dichlorophénol			<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004	<0.0004
Pentachlorophénol	_	_	<0.0004	<0.0004	<0.0004		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.3.4.6-Tétrachiorophénol	2	_	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.3.5.6-Tétrachlorophénol	12	_	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.4.5-Trichlorophénol			<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004	< 0.0004
2.4.6-Trichlorophénoi	7.5		<0.0004			<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.3.5-Trichlorophénol		-		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.3.4-Trichlorophénol		-	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004	<0.0004
2.3.6-Trichlorophénoi		-	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.3.4.5-Tétrachlorophénol		-	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004
3.4.5-Trichlorophénol	(₹)	-	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004
o-Crésol		-	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004	< 0.0004
p-Crésol	3 €	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
		-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Phénols Totaux : PREMR : Proiet de Règlement sur l'élim		0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND

 ^{1 :} PREMR : Projet de Règlement sur l'élimination des matières résiduelles (Article 49 publié le 24 juillet 2002)
 2 : Règlement sur les déchets solides (Article 30)

³ : Puits d'observation installé dans les dépôts de sable de surface et d'argile silteuse ND : Non détecté

¹¹ Dépassement du PREMR

94 Dépassement du RDS

Tableau 9.6 Site de l'agrandissement de Saint-Nicéphore - Qualité des eaux souterraines de la nappe confiné - Échantillonnage de Juin 2004

Paramètre	Règle	ments						Station d'éch	nantillonnage					
(mg/L)	PREMR ¹	RDS ²	PO-03-01C	PO-03-02	C (DC-2)	PO-03-03B ³	PO-03-03C	PO-03-04C	PO-03-05C	PO-03-06C	PO-03-07C	PO-03-08C	PO-03-09B ³	PO-03-09C
pH	-	19	7,8	7,8	7,8	7,8	7.9	7,9	8,5	8,2	7,8	7,4	8,2	8,5
Sodium (Na)	200	#	28	21	21	55	69	20	230	74	100	14	41	30
Azote ammoniacal (NH ₄ -N)	1.5	¥ .	3,5	2,2	2,5	3,6	2,8	3,2	0,35	0,48	0,9	1.7	3,8	2,9
Alcanité (total en CaCO ₃ - pH 4.5)			160	150	150	160	160	120	450	140	120	120	200	
Bicarbonate (HCO ₃ en CaCO ₃)			160	150	150	160	160	120	430	140	120	120		130
Carbonate (CO ₃ en CaCO ₃)			<20	<20	<20	<20	<20	<20	28	<20	<20		200	130
Cyanures Totaux	0.2	0.1	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<20	<20	<20
Phosphore Totaux	- 1	×	0,9	0,9	0,9	1	0,7	0,9	1,6	0,7		<0.01	<0.01	< 0.01
Sulfates Totaux	500	1 500	0.2	0,2	0,2	6,1	<0.1	<0.1	6,3	2,5	0,5	0,4	2	0,7
Métaux				0,2	V,E	0,1		70.1	0,3	2,5	8,5	0,1	0,8	0,3
Aluminium (AI)	140	_	<0.03	< 0.03	< 0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	0.00	0.00	0.05	
Arsenic (As)		-	0,018	0,036	0,035	0,03	<0.002	<0.03	0.004	0.007	<0.03	< 0.03	0,05	< 0.03
Bore (B)	5	_	0,22	0,12	0,13	0,39	0,36	0,15	0.004	0.007	<0.02	0,005	0,078	<0.002
Baryum (Ba)	8#8	_	0,12	0,16	0,16	<0.03	0,11	0,13	0,04	0,22	0,21	0,2	0,32	0,19
Cadmium (Cd)	0.005	0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0,11	0.19	<0.03	0,09
Calcium (Ca)	(a)	-	17	23	23	12	13	19	3		<0.001	<0.001	<0.001	<0.001
Chrome (Cr)	0.05	0.5	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	5,8	19	22	14	15
Cuivre (Cu)		1	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Fer (Fe)	0.3	17	0,2	0,3	0,3	<0.005	0,4	0,2	<0.003	<0.003 <0.1	<0.003	<0.003	<0.003	<0.003
Magnésium (Mg)	4	-	12	11	11	6,7	6,8				<0.1	0,9	0,2	0.2
Manganèse (Mn)	0.05	-	0,035	0,055	0,054	0,16	0,035	9,6	1,6	3,6	12	14	10	11
Mercure (Hg)	0.001	0.001	<0.0002	<0.0002	<0.0002	<0.0002		0.035	0,004	<0.003	0,017	0,017	0,054	0.022
Nickel (Ni)	0.02	1	<0.002	<0.002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002
Plomb (Pb)	0.02	0.1	<0.001	<0.001	<0.01	0,02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Potassium (K)	0.01	0.1	14	10	10	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sélénium (Se)	_		<0.001	<0.001		12	8	11	1,5	4,1	6,8	8,7	16	12
Zinc (Zn)	5	1	0,007	0,005	<0.001 0,003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
Biologiques			0,007	0,005	0,003	0,003	0,009	<0.003	0,015	0,011	0,019	0,056	0,011	0,018
Coliformes totaux (U.F.C./100 ml)	_	2 400	ä	<1	,		,		. 1					
Coliformes fécaux (U.F.C./100 ml)	0	200	<1	<1	2	<1	<1	1	4	<1	<1	<1	240	<1
DBO ₅	٦			<1	<1	<1	<1	<1	<2	<1	<1	<1	2	<1
· ·	-	40	2,7	<2	<2	<2	<2	4,3	<2	<2	<2	2,8	5,1	5,4
DCO : PREMB : Projet de Bèglement sur l'élimination		100	24	18	15	16	<10	10	19	<10	<10	10	28	10

^{1 :} PREMR : Projet de Règlement sur l'élimination des matières résiduelles (Article 49 publié le 24 juillet 2002)

²: Règlement sur les déchets solides (Article 30)

³ : Puits d'observation installé dans les dépôts de sable de surface et d'argile silteuse ND : Non détecté

¹¹ Dépassement du PREMR

94 Dépassement du RDS

Tableau 9.6 Site de l'agrandissement de Saint-Nicéphore - Qualité des eaux souterraines de la nappe confiné - Échantillonnage de Juin 2004

Paramètre	Règle	glements Station d'échantillonnage												
(mg/L)	PREMR ¹	RDS ²	PO-03-01C	PO-03-02	2C (DC-2)	PO-03-03B ³	PO-03-03C	PO-03-04C	PO-03-05C	PO-03-06C	PO-03-07C	PO-03-08C	PO-03-09B ³	DO 00 000
Anions					10 (20 2)	. 0 00 002	1 0 00-000	7 0-03-040	FO-03-03C	FO-03-06C	PO-03-07C	PO-03-08C	PO-03-09B	PO-03-09C
Chlorures	250	1 500	4,6	4,3	4,2	5,1	38	6,2	2,2	28	140	0.00	0.7	
Nitrates et Nitrites (NO ₂ -NO ₃)	10		0,01	0,02			l			IV.	140	0,69	8,7	8,9
Sulfures totaux	0.05	2	<0.02	<0.02	0,01 <0.02	0,01 <0.02	<0.01 <0.02	0.01	0,01	0,56	0,01	<0.01	0,01	<0.01
Organiques	0.00		10.02	V0.02	₹0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Huiles et graisses totales	_	15	<3	<3	<3	<3	3,9	<3		0				
Benzène	0.005	"	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<3	<3	<3	<3	<3	<3
Toluène	0.024	_	<0.0002	< 0.0002	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Ethylbenzène	0.0024	_	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0,0004	<0.0001
Xylènes totaux	0.3	_	<0.0004	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Phénois	0.0		<u> </u>	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.4-Diméthylphénot	2	2	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	.0.000	0.0000	0.0000				
2.4-Dinitrophénol		2	<0.010	<0.000	<0.000	<0.000	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006
2-Méthyl-4.6-dinitrophénol	_	7.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
4-Nitrophénol	_	-	<0.001	<0.001	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Phénoi	_	200	<0.0006	<0.0006	<0.000	<0.0006		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
2-Chlorophénol		2	<0.0005	<0.0005	<0.0005	<0.0005	<0.0006	0,002	<0.0006	<0.0006	<0.0006	<0.0006	0,0019	0,0019
3-Chlorophénol		-	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005 <0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
4-Chlorophénol			<0.0004	<0.0003	<0.0003	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2.3-Dichlorophénol	5=X	5#5	<0.0005	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.4 + 2.5-Dichlorophénol	-:	2=5	<0.0006	<0.0003	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2.6-Dichiorophénol	_		<0.0004	<0.0004	<0.0004	<0.0008	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006
3.4-Dichlorophénol	<u> -</u>	2 2 0	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
3.5-Dichlorophénol			<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004 <0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
Pentachlorophénol	_	-	<0.0004	<0.0004	< 0.0004	<0.0004	<0.0004		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.3.4.6-Tétrachlorophénol		·	<0.0004	<0.0004	<0.0004	<0.0004		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.3.5.6-Tétrachlorophénol	_		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004 <0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.4.5-Trichlorophénol	2	20	<0.0004	<0.0004	<0.0004	<0.0004		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.4.6-Trichlorophénol	2	_	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004 <0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.3.5-Trichlorophénol	-	_	<0.0004	<0.0004	<0.0004	<0.0004		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.3.4-Trichlorophénol		_	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004 <0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.3.6-Trichlorophénol		_	<0.0004	<0.0004	<0.0004			<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
2.3.4.5-Tétrachlorophénol			<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
3.4.5-Trichlorophénol			<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
o-Crésol			<0.0004	<0.0004		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
p-Crésol		-	<0.007		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Phénois Totaux	100	0.02	<0.001 ND	<0.001 ND	<0.001 ND	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
· DDEMD : Broist do Bàglamant aux littlimi		0.02	NU	MD	ND	ND	ND	0,002	ND	ND	ND	ND	0,0019	0,0019

^{1:} PREMR : Projet de Règlement sur l'élimination des matières résiduelles (Article 49 publié le 24 juillet 2002)

² : Règlement sur les déchets solides (Article 30)

³ : Puits d'observation installe dans les dépôts de sable de surface et d'argile silteuse

ND : Non détecté

__11 Dépassement du PREMR

9.1.3.1 Dépassements de l'article 49 du PREMR

Les résultats illustrés aux figures 9.3 et 9.4 indiquent que presque tous les puits d'observation présentent des dépassements des valeurs limites du PREMR (article 49). Les paramètres qui dépassent ces valeurs limites sont l'azote ammoniacal, le fer, le manganèse, le sodium et les coliformes fécaux.

Tel que discuté auparavant, ces paramètres ont également été détectés au-delà des valeurs limites du PREMR en amont de la propriété d'INTERSAN.

9.1.3.2 Dépassements du bruit de fond

Selon les figures 9.3 et 9.4, seul le puits d'observation PO-03-03C montre des dépassements du bruit de fond pour le manganèse, et ce seulement lors de la campagne de novembre 2003.

Aucun autre puits d'observation localisé à l'intérieur des limites de l'agrandissement projeté ne montre de dépassement du bruit de fond.

9.1.3.3 Récepteurs potentiels

Comme l'eau souterraine de l'aquifère confiné s'écoule vers la limite sud-est de la propriété, les récepteurs potentiels qui utilisent l'eau souterraine de l'aquifère confiné comme source d'approvisionnement en eau potable sont localisés dans le Domaine-Quatre-Saisons de même que le long du boulevard Allard, près des berges de la rivière Saint-François. Un inventaire exhaustif des utilisateurs de l'eau souterraine permettrait d'obtenir une meilleure connaissance de la situation. Selon la géologie et l'hydrogéologie régionale, il est anticipé que l'eau souterraine de l'aquifère confiné s'écoule plutôt vers la rivière Saint-François.

9.2 Eaux de surface

L'échantillonnage des eaux de surface, en novembre 2003 et en juin 2004, a été réalisé à l'endroit de quatre (4) stations d'échantillonnage localisées en amont et en aval du LES existant

et du terrain visé par le projet d'agrandissement. Les échantillons prélevés ont été analysés en laboratoire afin d'évaluer la qualité de ces eaux.

Tous les échantillons d'eau de surface ont été acheminés au laboratoire Maxxam Analytique qui est accrédité par le MENV. Le programme analytique comprenait tous les paramètres de l'article 45 du PREMR de même que ceux recommandés par le MENV dans la *Directive pour la préparation d'une étude d'impact sur l'environnement d'un projet de lieu d'enfouissement sanitaire.*

Les résultats analytiques de la qualité des eaux de surface pour les deux campagnes d'échantillonnage (novembre 2003 et juin 2004) sont présentés au tableau 9.7. Les certificats d'analyses sont quant à eux présentés à l'annexe E.

Les résultats analytiques ont été comparés aux valeurs limites de l'article 45 du PREMR (MENV, juillet 2002) de même qu'à celles du *Règlement sur les déchets solides (RDS)*. Les paramètres qui dépassent les valeurs limites du PREMR et/ou du RDS sont indiqués aux figures 9.5 et 9.6.

Tel que l'indique le tableau 9.7, les échantillons d'eau de surface prélevés en novembre 2003 ne montrent aucun dépassement des valeurs limites du PREMR (article 45). En ce qui a trait à la campagne du printemps 2004, les résultats analytiques indiquent que les dépassements observés concernent les coliformes totaux et fécaux, tel qu'illustré à la figure 9.6.

À la station d'échantillonnage ES-7 située dans le ruisseau Oswal-Martel, sis à l'amont du site existant et de la zone d'agrandissement projetée, les concentrations en coliformes fécaux et totaux dépassent les critères du RDS et du PREMR. À la station ES-8, située en avai des deux fossés qui drainent respectivement les secteurs ouest du site existant et la zone d'agrandissement projetée, les mêmes concentrations ont été mesurées. Ceci indique que la présence de coliformes fécaux et totaux n'origine pas de la propriété d'INTERSAN mais plutôt d'une source de contamination à l'amont du site.

La station d'échantillonnage ES-5 montre qu'il y a dépassement des critères du PREMR et du RDS pour les coliformes fécaux.

Tableau 9.7
Site de l'agrandissement de Saint-Nicéphore - Qualité des eaux de surface Échantillonnages de Novembre 2003 et Juin 2004

Paramètre	Règle	ements Sta					ion d'échantillonnage					
(mg/L)	PREMR ¹	RDS ²	E	S-5	ES-6 (DC-3)		ES-6		S-7	ES-8		
		nDo	Autom.2003	Print. 2004	Auton	ne 2003	Print. 2004	Autom.2003	Print. 2004	Autom.2003	Print. 2004	
pH	6.0-9.5	<u> </u>	7.6	7,8	6.7	6.6	7	7	7,1	7.1	7,3	
Sodium (Na)	E	0.57	15	15	2.6	2.5	3,3	23	36	18	27	
Azote ammoniacal (NH ₄ -N)	25	· -	1.7	3,3	0.26	0.23	0,11	0.34	0,25	0.6	0,44	
Alcanité (total en CaCO ₃ - pH 4.5)	_	3₩:		200	-		40		86		100	
Bicarbonate (HCO ₃ en CaCO ₃)	-	(2)		200			40		86	(555)		
Carbonate (CO ₃ en CaCO ₃)	22	120	211	<20			<20		1		100	
Cyanures totaux	74	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<20 <0.01	<0.01	<20 <0.01	
Phosphore totaux		:•:	<0.1	0,1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.01	
Sulfates totaux		1 500	90	95	6.8	7	4,2	13	11	34	30	
Solides en suspension	90		26	27	<10	<10	<10	<10	<10	<10		
Métaux					110	<u> </u>	<u> </u>	<10	<10	<10	<10	
Aluminium (AI)	1.2	22	0.22	1,2	0.16	0.15	0,22	0.12	0.4	0.00		
Arsenic (As)	120	2	0.002	0,004	<0.002	<0.002	0,004	0.002	0,4	0.22	0,4	
Bore (B)	228	-	0.06	0,004	<0.002	<0.002	<0.05		0,006	0.003	0,006	
Baryum (Ba)			0.05	0,06	<0.03			<0.05	<0.05	<0.05	<0.05	
Cadmium (Cd)	140	0.1	<0.001			<0.03	<0.03	<0.03	<0.03	<0.03	0,04	
Calcium (Ca)	250			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Chrome (Cr)		-	0.00	79			14	-11E	34	705	43	
Cuivre (Cu)	- 1	0.5	<0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	
Fer (Fe)		1	0.007	0,004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	
, ,		17	2.6	6,2	2.1	2	3,9	0.6	2	1.3	2,1	
Magnésium (Mg)		5	20	19	2.6	2.5	2.6	4.5	4.5	8.1	7,3	
Manganèse (Mn)			1.3	1,7	0.17	0.16	0,48	0.07	0,61	0.17	0,57	
Mercure (Hg)	· ·	0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
Nickel (Ni)	-	1	0.01	0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	
Plomb (Pb)	-	0.1	<0.001	0,002	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	
Potassium (K)	=	<u> </u>		8	575	S 400 5	0,3		1,4		2,5	
Sélénium (Se)	ž l	ĕ	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	
Zinc (Zn)	0.17	1	0.004	0,012	0.008	0.007	0,005	0.006	0,008	0.008	0,014	
<u>Biologiques</u>							0,000	0.000	0,000	0.000	0,017	
Coliformes totaux (U.F.C./100 ml)	-	2 400	800	1 900	590	410	120	320	5 000	400	5 100	
Coliformes fécaux (U.F.C./100 ml)	275	200	100	420	1	<10	60	20	690	10	450	
DBO ₅	150											
DCO	150	40 100	2.1 30	9,1 80	<2	<2	7,7	<2	3,5	<2	4,5	
Anions		100	30	80	48	45	62	36	37	33	31	
Chlorures	5 7 5	1 500	6.6	40	4.0							
Nitrates et Nitrites (NO ₂ -NO ₃)		1 500		13	1.6	1.5	5,2	26	62	19	45	
Sulfures totaux		2	0.13	0,18	0.05	0.06	0,03	0.14	0,05	0.13	<0.01	
Organiques		2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Huiles et graisses totales		45			_	_						
Benzène		15	<3	<3	<3	<3	<3	<3	<3	<3	<3	
	5 7 5	*	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	
Toluène	(2)	(# 2)	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	
Ethylbenzène	(#)	·= 0	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	
Xylènes totaux)¥:	≔ 0	<0.0004	<0.0004	< 0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	

^{1:} PREMR : Projet de Règlement sur l'élimination des matières résiduelles (Article 45 publié le 24 juillet 2002)

²: Règlement sur les déchets solides (Article 30)

ND : Non détecté

Dépassement du PREMR
Dépassement du RDS

Tableau 9.7 Site de l'agrandissement de Saint-Nicéphore - Qualité des eaux de surface Échantillonnages de Novembre 2003 et Juin 2004

Paramètre	Règle	Règlements		Station d'échantillonnage									
(mg/L)	PREMR ¹	RDS ²	ES-5		ES-6 (DC-3)		ES-6	ES-7		ES-8			
	1 16716111		Autom.2003	Print. 2004	Autom	ne 2003	Print. 2004	Autom.2003	Print, 2004	Autom.2003	Print, 2004		
Phénols Phénols							7 111111 200 1	Adtottitizooo	1 111111. 2004	Autom.2003	Pillit, 2004		
2,4-Diméthylphénol	2	3.5	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		
2,4-Dinitrophénol	-	:: : :::::::::::::::::::::::::::::::::	<0.010	< 0.010	<0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.000		
2-Méthyl-4,6-dinitrophénol		2 0 2	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010			
4-Nitrophénol			<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.010		<0.010		
Phénol	-	540	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.001	<0.0001	<0.001	<0.001		
2-Chlorophénol		12	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			<0.0006	<0.0006		
3-Chlorophénol	32		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005 <0.0005	<0.0005	<0.0005	<0.0005		
4-Chlorophénol		:=:	<0.0004	<0.0003	<0.0003	<0.0003	<0.0005		<0.0005	<0.0005	<0.0005		
2,3-Dichlorophénol			<0.0005	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004		
2,4 + 2,5-Dichlorophénol		=0	<0.0006	<0.0005	<0.0006	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005		
2,6-Dichlorophénol	-	2:	<0.0004	<0.0004	<0.0008	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006		
3,4-Dichlorophénol		EV.	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004		
3,5-Dichlorophénol	125	4	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004		
Pentachlorophénol	120	_	<0.0004	<0.0004	<0.0004	1	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004		
2,3,4,6-Tétrachlorophénol	-	_	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004		
2,3,5,6-Tétrachlorophénol		_	<0.0004	<0.0004		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004		
2,4,5-Trichlorophénol		-	<0.0004	<0.0004	<0.0004 <0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004		
2,4,6-Trichlorophénol	_		<0.0004	<0.0004		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004		
2,3,5-Trichlorophénol		2	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004		
2,3,4-Trichlorophénoi	2	=	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004		
2,3,6-Trichlorophénol		-	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004		
2,3,4,5-Tétrachlorophénol	-		<0.0004		<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004		
3,4,5-Trichlorophénol		_	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004		
o-Crésol		- -	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004		
p-Crésol	, ,			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Phénois totaux	0.085	0.02	<0.001 ND	<0.001 ND	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
· PREMR : Projet de Règlement sur l'áli					ND	ND	ND	ND	ND	ND	ND		

^{† :} PREMR : Projet de Règlement sur l'élimination des matières résiduelles (Article 45 publié le 24 juillet 2002)

Dépassement du PREMR
Dépassement du RDS

² : Règlement sur les déchets solides (Article 30) ND : Non détecté

9.3 Conditions de gaz

Les résultats des mesures de pression et de concentration de gaz dans les puits d'observation sont présentés au tableau 9.8. Les pressions de gaz mesurées dans tous les puits d'observation se sont avérées nulles. Les concentrations en méthane (CH₄) se sont également avérées nulles, à l'exception de six (6) puits d'observation (PO-03-02A et C, PO-03-04C, PO-03-05C, PO-03-07C et PO-03-09B) où une concentration de 1% LIE (limite inférieure d'explosivité) a été détecté. Ces résultats sont cependant jugés négligeables puisque le détecteur de gaz qui a été employé pour la prise des mesures avait une précision de 1% LIE. Les concentrations en sulfure d'hydrogène (H₂S) et en monoxyde de carbone (CO) se sont avérées nulles alors que les concentrations en oxygène (O₂) étaient normales (les concentrations normales dans l'air ambiant sont près de 20,95%). En vertu de ces résultats, il n'a pas été jugé nécessaire de procéder à des investigations plus poussées avec des méthodes de mesure plus précises.

Aucune pression de gaz et aucune concentration de gaz n'a été mesurée au cours des relevés effectués en 2003. Il est donc vraisemblable qu'il n'y a pas de présence de gaz (que ce soit d'origine naturelle ou de biogaz migrant depuis le LES existant) dans la zone visée par le projet d'agrandissement.

9.4 Contrôle de qualité

9.4.1 <u>Automne 2003</u>

Trois (3) échantillons duplicata ont été préparés sur le terrain au cours de la campagne de l'automne 2003. L'échantillon d'eau souterraine DC-1 est un duplicata de l'échantillon PO-03-05A prélevé dans l'aquifère de surface. L'échantillon d'eau souterraine DC-2 est un duplicata de l'échantillon PO-03-09C prélevé dans l'aquifère confiné. Finalement, l'échantillon de surface DC-3 est un duplicata de l'échantillon ES-6 prélevé dans l'un des ruisseaux présents sur la propriété d'INTERSAN.

Tous les échantillons duplicata ont été soumis au laboratoire pour le même programme analytique que les échantillons originaux. L'analyse de ces échantillons duplicata a permis de vérifier la qualité des résultats fournis par le laboratoire.

Selon les résultats analytiques fournis par Maxxam sur les échantillons duplicata, il a été confirmé que pour tous les paramètres analysés, les résultats analytiques sont fiables. Un seul duplicata (PO-03-09C et DC-2) montre des résultats très différents pour les coliformes totaux. Ce paramètre est très sensible et l'échantillon original peut avoir été contaminé par le technicien au cours de l'échantillonnage.

9.4.2 Printemps 2004

Pour la campagne d'échantillonnage du printemps 2004, l'échantillon d'eau souterraine DC-1 est le duplicata de l'échantillon PO-03-01A prélevé dans l'aquifère de surface. L'échantillon DC-2 est le duplicata de l'échantillon PO-03-01C prélevé dans l'aquifère confiné.

Les résultats analytiques des échantillons duplicata confirment que pour tous les paramètres d'analyses, les résultats analytiques sont fiables.

Tableau 9.8 Concentrations et pressions de gaz dans les puits d'observation

Puits	Pression	CH ₄	H ₂ S	СО	O ₂
d'observation	(PSI)	(%LIE	(ppm)	(ppm)	(%)
PO-03-01A	0	0	0	0	20.7
PO-03-01C	0	0	0	0	20.7
PO-03-02A	0	1	0	0	20.9
PO-03-02C	0	1	0	0	20.9
PO-03-03A	0	0	0	0	20.9
PO-03-03B	0	0	0	0	20.8
PO-03-03C	0	0	0	0	20.7
PO-03-04A	0	0	0	0	20.9
PO-03-04C	0	1	0	0	20.9
PO-03-05A	0	0	0	0	20.9
PO-03-05C	0	1	0	0	20.9
PO-03-06A	0	0	0	0	20.8
PO-03-06C	0	0	0	0	20.8
PO-03-07A	0	0	0	0	20.5
PO-03-07C	0	1_	0	0	20.5
PO-03-08A	0	0	0	0	20.8
PO-03-08C	0	0	0	0	20.8
PO-03-09A	0	0	0	0	20.9
PO-03-09B	0	1	0	0	20.7
PO-03-09C	0	0	0	0	20.8
PZ-92-01A	0	0	0	0	20.7
PZ-92-01C	0	0	0	0	20.8
PZ-98-03A	- 0	0	0	0	20.7
PZ-98-03C	0	0	0	0	20.6
PZ-98-06A	0	0	0	0	20.7
PZ-98-06C	0	0	0	0	20.8
F-2A	0	0	0	0	20.7
F-2C	0	0	0	0	20.9

Note : LIE = limite inférieure d'explosivité

*		

10 CONCLUSIONS ET RECOMMANDATIONS

Lieu d'enfouissement technique de Saint-Nicéphore

Ce rapport présente les résultats des travaux investigations hydrogéologiques et géotechniques qui ont été réalisés par TECSULT à Saint-Nicéphore, sur le terrain pour lequel INTERSAN projette d'agrandir son lieu d'enfouissement technique. Les travaux sur le terrain ont eu lieu durant les mois d'octobre et novembre 2003.

L'étude comporte trois principaux objectifs : Le premier objectif consiste à déterminer les caractéristiques géotechniques des dépôt meubles afin d'établir les critères de conception du futur LET.

Le deuxième objectif concerne l'étude hydrogéologique du site. Cet aspect a été étudié à la lumière des exigences du projet de Règlement sur l'élimination des matières résiduelles (PREMR) de même que de la Directive pour la réalisation d'une étude d'impact sur l'environnement d'un projet de lieu d'enfouissement sanitaire publié par le MENV. Les conditions hydrogéologiques du site ont été déterminées à partir des caractéristiques des différentes unités hydrostratigraphiques identifiées sur le site.

Le troisième objectif de cette étude est d'établir la qualité des eaux de surface et des eaux souterraines afin, d'une part, de connaître la condition environnementale initiale du site et d'autre part de déterminer, si requis, le mode de gestion de ces eaux durant l'exploitation du futur LET. Cet objectif a été étudié à la lumière des exigences des articles 45 et 49 du PREMR (version juillet 2002) de même que de la Directive pour la réalisation d'une étude d'impact sur l'environnement d'un projet de lieu d'enfouissement sanitaire.

10.1 Considérations géotechniques

Les travaux d'investigation ont permis d'identifier quatre (4) unités stratigraphiques sur le site à l'étude. Depuis la surface du sol vers le bas, ces unités sont:

un dépôt de sable fin à sable silteux de 2,1 m à 12,0 m d'épaisseur. L'épaisseur maximale se retrouve généralement dans le secteur nord alors que l'épaisseur minimale se retrouve dans le secteur est. Le dépôt de sable peut être décrit comme un sable mal gradué avec du silt (SP-SM) jusqu'à un sable silteux (SM). Le dépôt est normalement

dans un état lâche à moyennement dense près de la surface du sol et devient dense à très dense à sa base. L'angle de frottement interne (au pic) varie entre 40° et 43° (en assumant que la cohésion est nulle).

- un dépôt d'argile silteuse dont l'épaisseur varie irrégulièrement entre 1 m et 11 m. L'épaisseur la plus faible se retrouve dans le secteur nord-est du site à l'étude de même que dans un petit secteur localisé près des lagunes de traitement du lixiviat. Le dépôt est constitué principalement d'argile silteuse (CL-ML) de faible plasticité et d'argile (CL). Son indice de liquidité qui est près de 1 est typique des argiles structurées normalement consolidées et sa résistance au cisaillement pourrait diminuer significativement après remaniement. L'angle de frottement interne au pic varie entre 34°et 36° (en assumant que la cohésion est nulle). Des lentilles de sable perméable ont été interceptées à l'intérieur de ce dépôt dans six sondages. Ces lentilles de sable ont été interceptées entre les élévations 101 m et 105 m et se concentrent dans la partie ouest et sud-est de l'agrandissement projeté.
- un dépôt de till glaciaire de composition très variable entre le sable silteux (SM), le silt sableux (ML), le gravier silteux jusqu'au gravier silteux argileux (GM, GM-GC) avec des cailloux et des blocaux et dont l'épaisseur maximale atteint 14,4 m. Ce dépôt est plus épais dans les secteurs nord-ouest et est, et est généralement dans un état moyennement dense à dense. Plusieurs cailloux et blocaux ont été interceptés dans ce dépôt, principalement dans la partie nord-est du site à l'étude.
- le socle rocheux, un shale calcareux qui contient des fractures remplies de calcite et des traces de pyrite. Le socle a été atteint à des profondeurs qui varient entre 13,9 m et 26,5 m. Les mesures du RQD dans les premiers trois mètres du roc varient entre 12% et 78%. La qualité du roc pourrait être décrite comme très mauvaise à bonne. Les observations montrent qu'en général, le degré d'altération du roc diminue avec la profondeur.

10.2 Conditions hydrogéologiques

Trois unités hydrogéologiques ont été identifiées sur le terrain visé par le projet d'agrandissement, soit:

- un aquifère à nappe libre qui se retrouve dans le dépôt de sable fin à sable silteux présent à la surface du site;
- un aquitard qui est constitué par le dépôt d'argile silteuse. Cet horizon de faible conductivité hydraulique agit comme une couche de confinement;
- un aquifère confiné qui est constitué par le dépôt de till glaciaire et par la partie supérieure du socle rocheux fracturé.

Aquifère de surface

Dans le secteur nord du terrain visé par le projet d'agrandissement, l'écoulement de l'eau souterraine de l'aquifère de surface s'effectue vers l'est sous un faible gradient hydraulique horizontai. Dans les secteurs nord-est et sud-est, l'écoulement de l'eau souterraine s'effectue en direction du ruisseau Paul-Boisvert qui est localisé au sud-est. La vitesse d'écoulement de l'eau souterrain varie entre 1 et 4 mètres par année (m/an) en considérant la moyenne géométrique des conductivités hydrauliques des essais de perméabilité (3,6x10⁻⁴ cm/s) et celle obtenue à partir des résultats de l'essai de pompage (1,4x10⁻³ cm/s), respectivement. Dans les secteurs nord-est et sud-est, la vitesse moyenne d'écoulement varie entre 6 m/an et 25 m/an, en considérant les mêmes conductivités hydrauliques.

En vertu des résultats de l'essai de pompage qui a été réalisé dans l'aquifère de surface, le débit maximal qui pourrait être soutenu par un même puits de captage dans le secteur le plus favorable du terrain visé par le projet d'agrandissement est largement inférieur à 25 m³/h. On peut donc conclure que ce terrain ne possède pas un potentiel aquifère élevé et respecte les exigences de l'article 14 du PREMR.

En vertu du *Guide de classification des eaux souterraines du Québec*, l'aquifère de surface appartient à la classe II puisqu'il constitue une source potentielle d'approvisionnement en eau potable, possède une transmissivité supérieure à 1m³/j et que la conductivité de l'eau y est inférieure 2 500 µS/cm. L'évaluation de l'indice DRASTIC de cet aquifère indique un degré élevé de vulnérabilité à la pollution.

Aquitard

La conductivité hydraulique du dépôt d'argile silteuse varie de 7,9 x10⁻⁷ cm/s à 2,7 x10⁻⁵ cm/s avec une moyenne géométrique de 5,8 x10⁻⁶ cm/s. Un écoulement des eaux souterraines vers le bas est observé sur presque la totalité du site projeté pour l'agrandissement. Toutefois, un écoulement vers le haut a été observé aux environs du fossé de drainage principal et du ruisseau Paul-Boisvert, lequel résulte de l'effet de rabattement, créé par ces fossés et ruisseaux, des niveaux d'eau de l'aquifère de surface.

Également, les gradients verticaux sont plus importants dans le secteur ouest du site de l'agrandissement projeté. Ceci est une conséquence du rabattement de la nappe confinée suite au drainage du fond de l'excavation à l'endroit du site existant. Quand le drainage sera arrêté, les gradients verticaux dans ce secteur s'abaisseront de façon significative.

Aquifère confiné

L'aquifère confiné présente deux patrons d'écoulement dans des secteurs distincts. Dans la partie nord du terrain visé par le projet d'agrandissement et dans le LES existant, l'écoulement est fortement influencé par le rabattement de l'aquifère confiné via une tranchée de drainage aménagée dans la partie nord-ouest du LES existant (cellules 5 et 8). L'objectif visé par la tranchée de drainage est de rabattre le niveau de la nappe confinée, d'une part afin de maintenir le fond de l'excavation des cellules en construction à sec et, d'autre part, de prévenir le soulèvement du fond de l'excavation. La zone d'influence de ce rabattement s'étend jusqu'à la limite est du LES existant où l'on peut observer une ligne de partage des eaux. Au-delà de cette ligne de partage des eaux, on retrouve un second patron d'écoulement, qui n'est pas sous l'influence de la tranchée de drainage, où l'écoulement s'effectue vers le sud-est. Les vitesses d'écoulement dans ces deux secteurs peuvent varier entre 6 m/an et 96 m/an en considérant une conductivité hydraulique moyenne de 1,9x10⁻⁴ cm/s et les porosités différentes du dépôt de till glaciaire et du socle rocheux.

Après l'interruption des conditions de rabattement, on s'attend à ce que l'écoulement de l'eau souterraine de l'aquifère confiné s'effectue en direction est pour la partie nord du terrain visé par le projet d'agrandissement, et tourne graduellement en direction sud-est pour les parties est et sud-est du terrain. En conditions statiques, on s'attend à ce que la vitesse d'écoulement soit de l'ordre de 5 m/an à 72 m/an.

L'aquifère confiné appartient à la classe I du guide de classification puisqu'il constitue une source irremplaçable d'approvisionnement en eau potable. L'indice DRASTIC de l'aquifère confiné correspond à un faible degré de vulnérabilité à la pollution.

Récepteurs potentiels

Puisque l'écoulement de l'eau souterraine des deux aquifères en présence s'effectue en direction est et sud-est, les puits privés des résidences qui sont localisées le long du boulevard Allard et dans le Domaine-Quatre-Saisons sont les seuls qui se retrouvent en aval hydraulique de la propriété d'INTERSAN.

10.3 Qualité des eaux souterraines et des eaux de surface

La qualité des eaux de surface et des eaux souterraines du terrain visé par le projet d'agrandissement a été évaluée à la lumière des exigences des articles 45 et 49 du projet de Règlement sur les l'élimination des matières résiduelles (PREMR, juillet 2002).

Eaux de surface

Les résultat analytiques sur les eaux de surface obtenus en 2003 et 2004 indiquent quelques dépassements des valeurs limites de l'article 45 du PREMR, notamment pour les coliformes fécaux et totaux. Ces dépassements ne sont toutefois observés qu'au printemps 2004. La présence de coliformes a aussi été relevée en amont de la propriété d'INTERSAN. Ainsi, il est fort probable que les coliformes totaux et fécaux présents dans le fossé sur la propriété d'INTERSAN proviennent d'une source de contamination amont.

Aquifère de surface

Presque tous les puits d'observation situés dans la zone d'agrandissement projetée indiquent des dépassements des critères de qualité du PREMR (article 49). Ces paramètres qui excèdent les critères sont l'azote ammoniacal, le fer, le manganèse et le nickel. L'azote ammoniacal, le fer et le manganèse ont été trouvés en concentrations supérieures au PREMR dans les zones bruit de fond, en amont de la propriété d'INTERSAN.

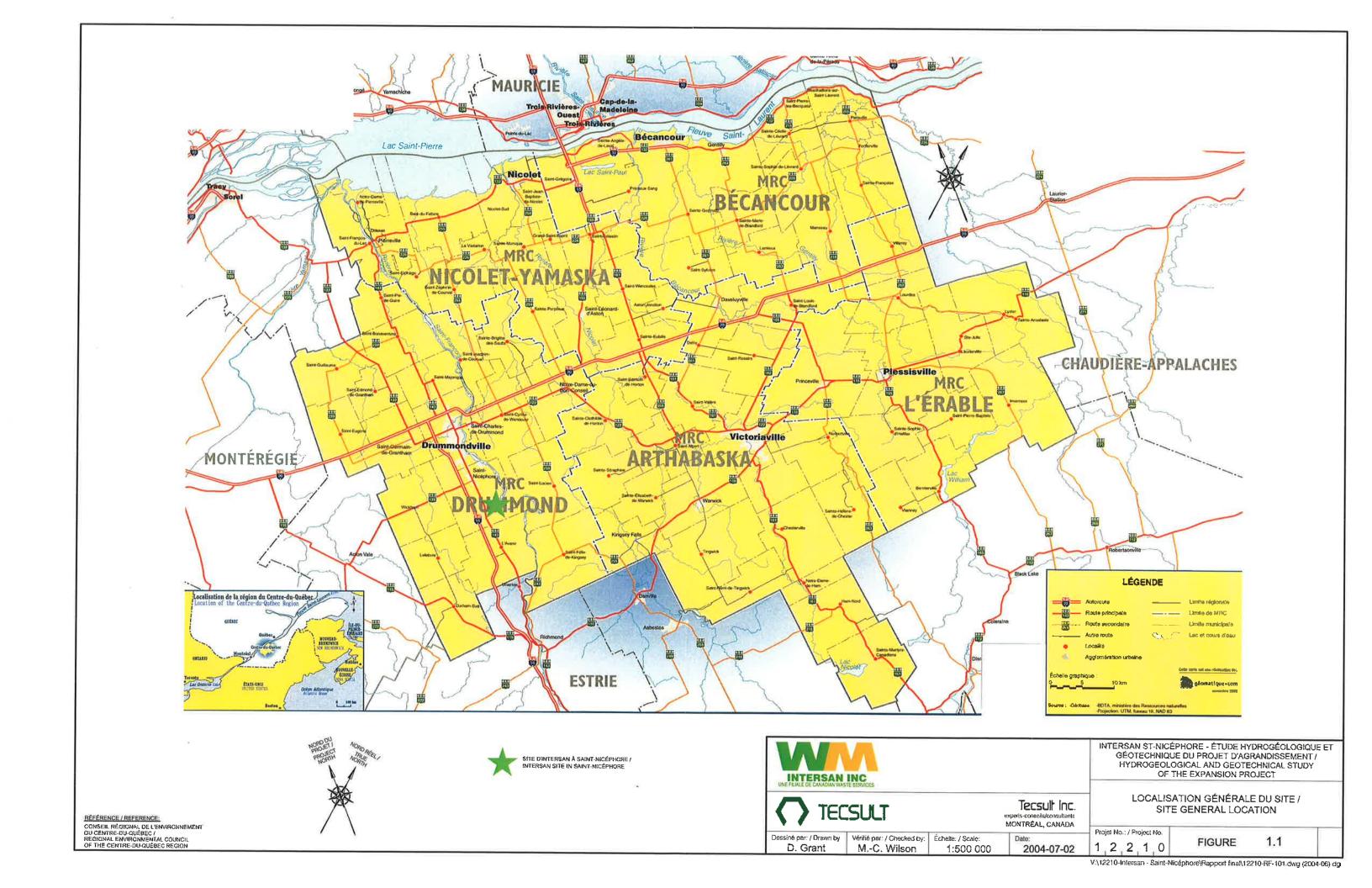
En raison des niveaux piézométriques élevés de l'aquifère de surface et de la présence de fossés et de ruisseaux de drainage localisés en aval du LES existant (particulièrement le

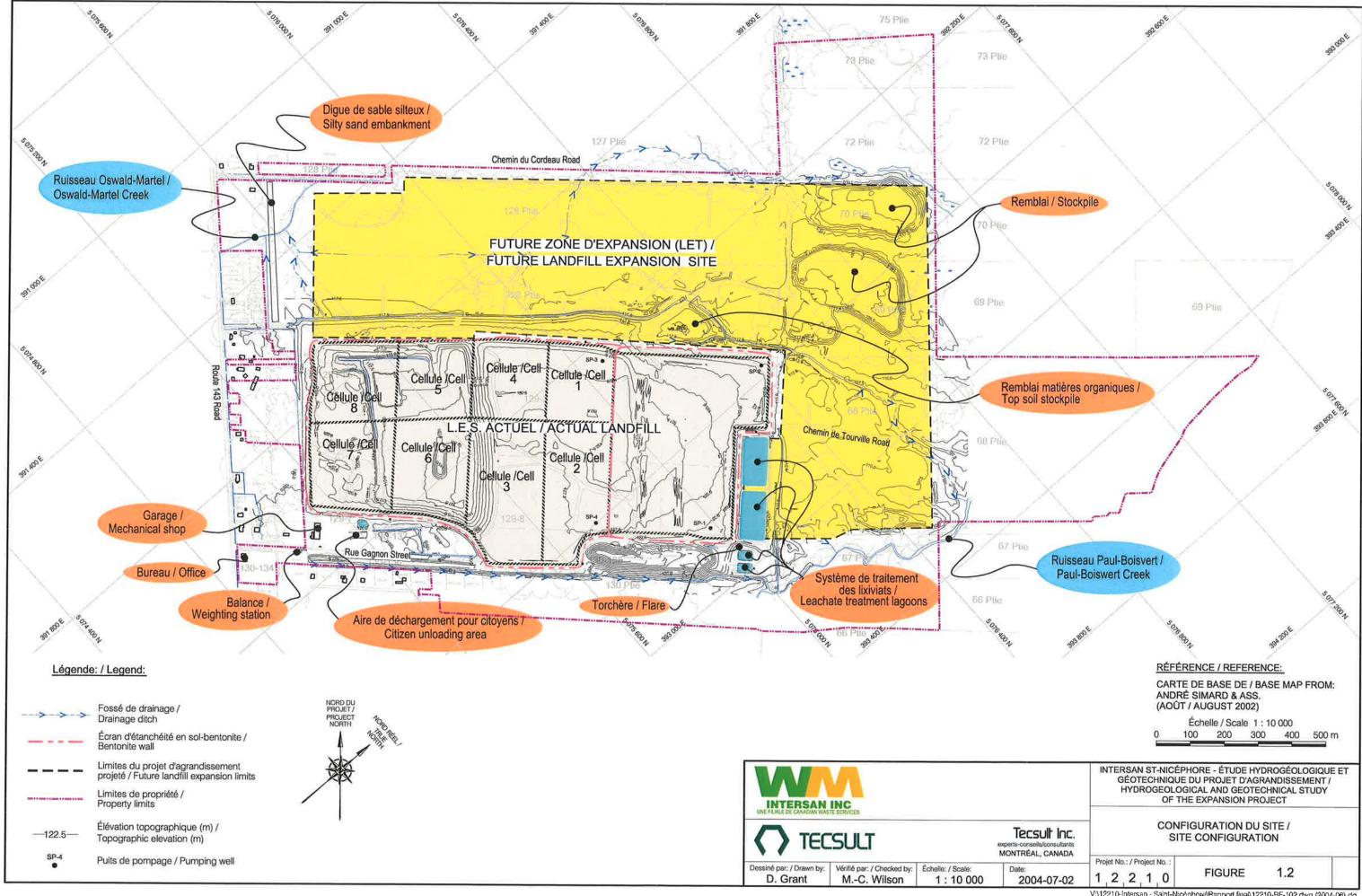
ruisseau Paul-Boisvert), il est possible que l'eau souterraine de l'aquifère de surface rejoigne le ruisseau Paul-Boisvert et, ultimement, la rivière Saint-François, à quelques kilomètres en aval.

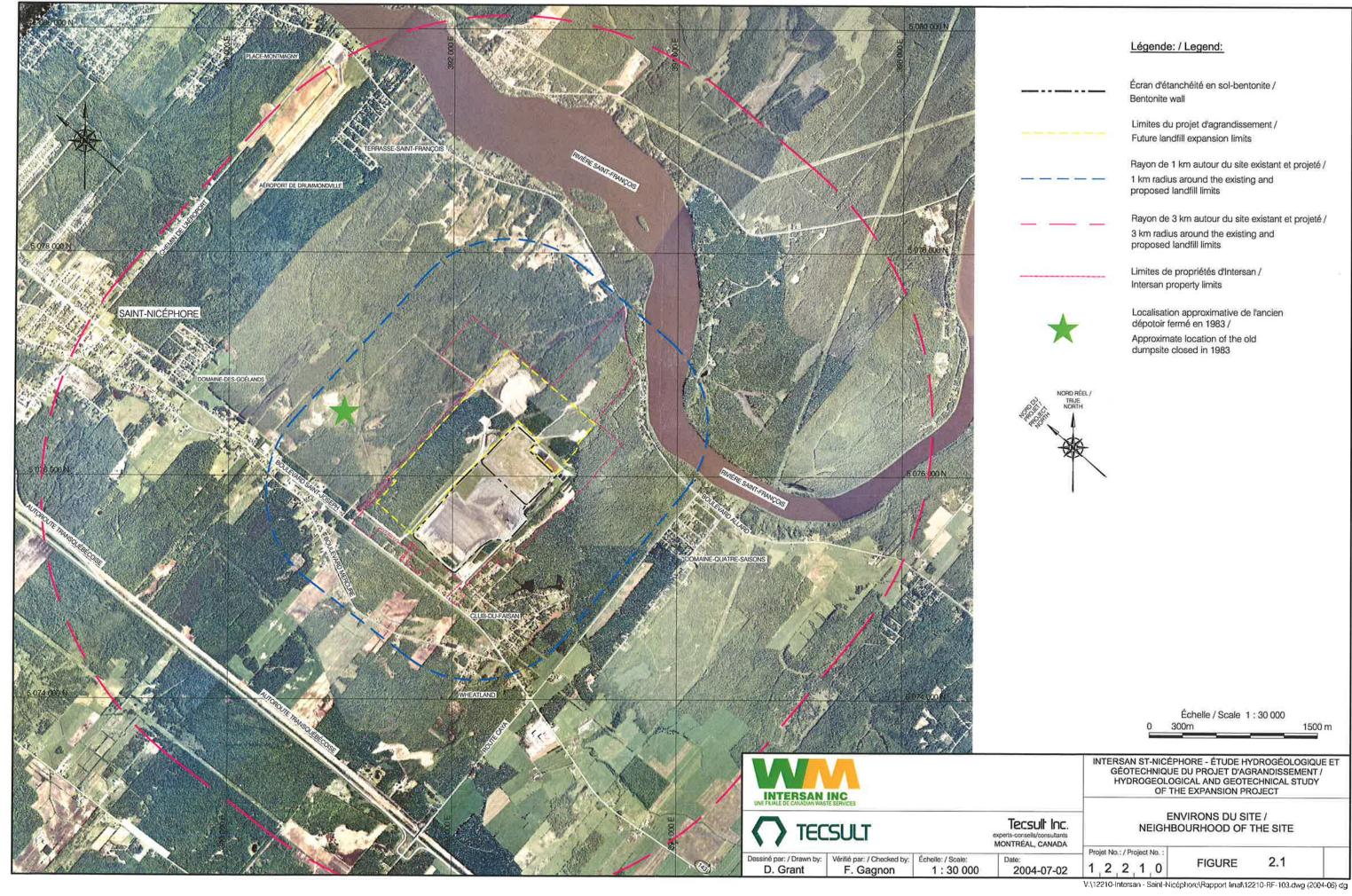
Aquifère confiné

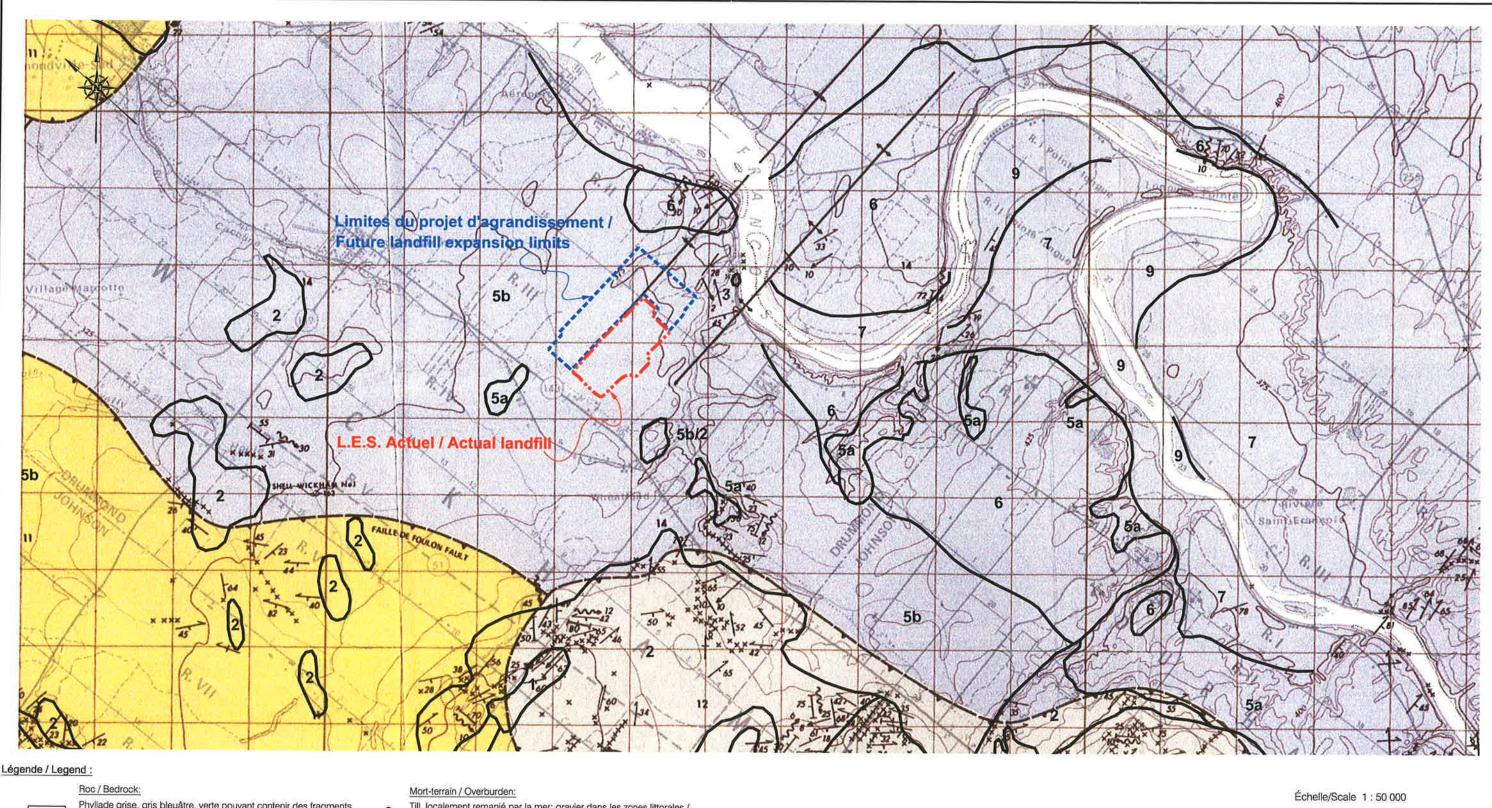
Presque tous les puits d'observation échantillonnés en 2003 et 2004 indiquent des dépassements des critères de qualité du PREMR (article 49). Les paramètres qui excèdent les critères sont l'azote ammoniacal, le fer, le manganèse, le sodium et les coliformes fécaux. Ces paramètres ont également été mesurés en concentrations supérieures aux critères dans les zones bruit de fond, en amont de la propriété d'INTERSAN.

Les récepteurs potentiels, situés en aval du site de l'agrandissement projeté, qui utilisent l'eau souterraine de l'aquifère confiné comme approvisionnement en eau potable, sont probablement ceux des secteurs résidentiels «Domaine-Quatre-Saisons» ainsi que ceux du boulevard Allard qui longe la rivière Saint-François.

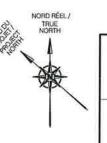

11 RÉFÉRENCES


- Aller, L. and al. (1987). DRASTIC: a Standardised System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. National Water Well Association, 173 pages.
- ASTM (1994). ASTM Standard on Ground Water and Vadose Zones Investigations, Second edition.
- Bouwer, H.et R.C. Rice (1976). A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, vol. 12, no. 3, pp. 423-428.
- BOWLES, J.E. (1988). Foundation Analysis and Design. 4th edition, McGraw-Hill; 1004 p.
- Bureau d'Audiences Publiques sur l'environnement (1998). Agrandissement d'un dépôt de matériaux secs à Saint-Nicéphore. Réf. : 127, 98 pages.
- Chapuis, R.P. (1999). Guide des essais de pompage et leurs interprétations. Les publications du Québec. 158 pages.
- DANAF (1983). Dewatering and Groudwater Control, Departments of the Army, Navy & Air Force, TM 5-818-5, NAVAC P-418, AFM 88-5, chapter 6.
- Dessau-Soprin (2002). Carte piézométrique (25 mai 2002). Intersan Inc. Lieu d'enfouissement technique Saint-Nicéphore. Réf. : 450392-110.
- Dessau-Soprin (2002). Suivi environnemental de la qualité des eaux souterraines, échantillonnage de juin et novembre 2001 pour Intersan Inc., site d'enfouissement technique, Saint-Nicéphore. Réf. : 450859-110, février 2002. 28 pages et figures et annexes.
- Driscoll, F.G. (1986). Groundwater and Wells, second edition NAVFAC, Design Manual 7.01, Soils Mechanics, Alexandria, VA: Department of the Navg, Naval Facilities Engineering Command.
- Foratek International Inc. (1981). Étude hydrogéologique d'un terrain situé sur une partie des lots 129 et 130, RG III, à Saint-Nicéphore, Comté de Wickam et proposé comme site d'enfouissement sanitaire pour les Consultants SBCS Inc. Réf. : FF81043.
- Foratek International Inc. (1984). Saint-Nicéphore : Complément aux relevés hydrogéologiques pour l'étude d'un site d'enfouissement sanitaire, Comté de Wickam. Pour Audet SBCS Inc. Réf. : Rapport n° 615. 12 pages et annexes
- Gazette officielle du Québec (2002). Projet de Règlement sur l'Élimination des Matières Résiduelles. Ministère de l'Environnement du Québec.


- Georoche Ltée (1985). Expertise hydrogéologique Site d'enfouissement sanitaire Saint-Nicéphore, Québec. Pour le ministère de l'Environnement, direction de la récupération et du recyclage. Réf. : 0987-5018-0000.
- Globensky Y. (1978). Rapport géologique 192. Région de Drummondville. Service de l'exploration géologique, Direction générale des mines, ministère des Richesses Naturelles, Québec. 107 pages et carte.
- Globensky Y. (1987). Géologie des Basses-Terres du Saint-Laurent. Réf. : MM85-02. 63 pages et carte.
- Golder Associés Ltée (June 2002). Review of Piezomotric Data St. Nicéphore Engineered Landfill for Intersan Inc. 7 pages and figures and appendices.
- Golder Associés Ltée (November 2002). Hydrogeological Study-Intersan Engineered Landfill Saint-Nicéphore, Quebec. Ref.: 021-7040. 20 pages and figures and appendices.
- Hvorslev, J. (1951). Time Lag and Soil Permeability in Ground-Water Observations. Bulletin nº. 36, Waterways experiment station, Corps of Engineers, U.S. Army. 47 pages.
- Hydrogéo Canada Inc. SNC-Lavalin (1992). Étude hydrogéologique complémentaire du lieu d'enfouissement sanitaire à Saint-Nicéphore pour les Entreprises de Rebuts Sanipan Inc. Rapport préliminaire et final. Réf.: 005667. 15-17 pages et figures et annexes.
- ISSMFE (1989). Appendix A: « International reference test procedure for cone penetration test (CPT) ». Report of the ISSMFE Technical Committee on Penetration Testing of soils TC 16, with Reference to Test Procedures, Swedish Geotechnical Institute, Linköping, Information, 7, pp. 6-16.
- Kramer, S.L. (1996). Geotechnical Earthquake Engineering. Prentice Hall, New Jersey; 653 p.
- Leonards, G.A. (1968). Les Fondations, Dunod. Paris.
- Leroueil, S., Tavenas, F & Le Bihan, J.-P. (1983). Propriétés caractéristiques des argiles de l'est du Canada, Canadian Geotechnical Journal, 20; 681-705.
- Les Laboratoires Shermont Inc. (1998). Étude Hydrogéologique. Lieu d'enfouissement sanitaire INTERSAN Inc., St. Nicéphore (Québec). Réf.: LAIS-014. 6 pages et figures et annexes.
- Lunne, T., Robertson, P.K. et Powell, J.J.M. (1997). Cone penetration testing in geotechnical practice. Blackie Academic & Professional, An Imprint of Chapman & Hall.
- Ministère de l'environnement du Québec (1990). Guide des méthodes de conservation et d'analyse des échantillons d'eau et de sol.

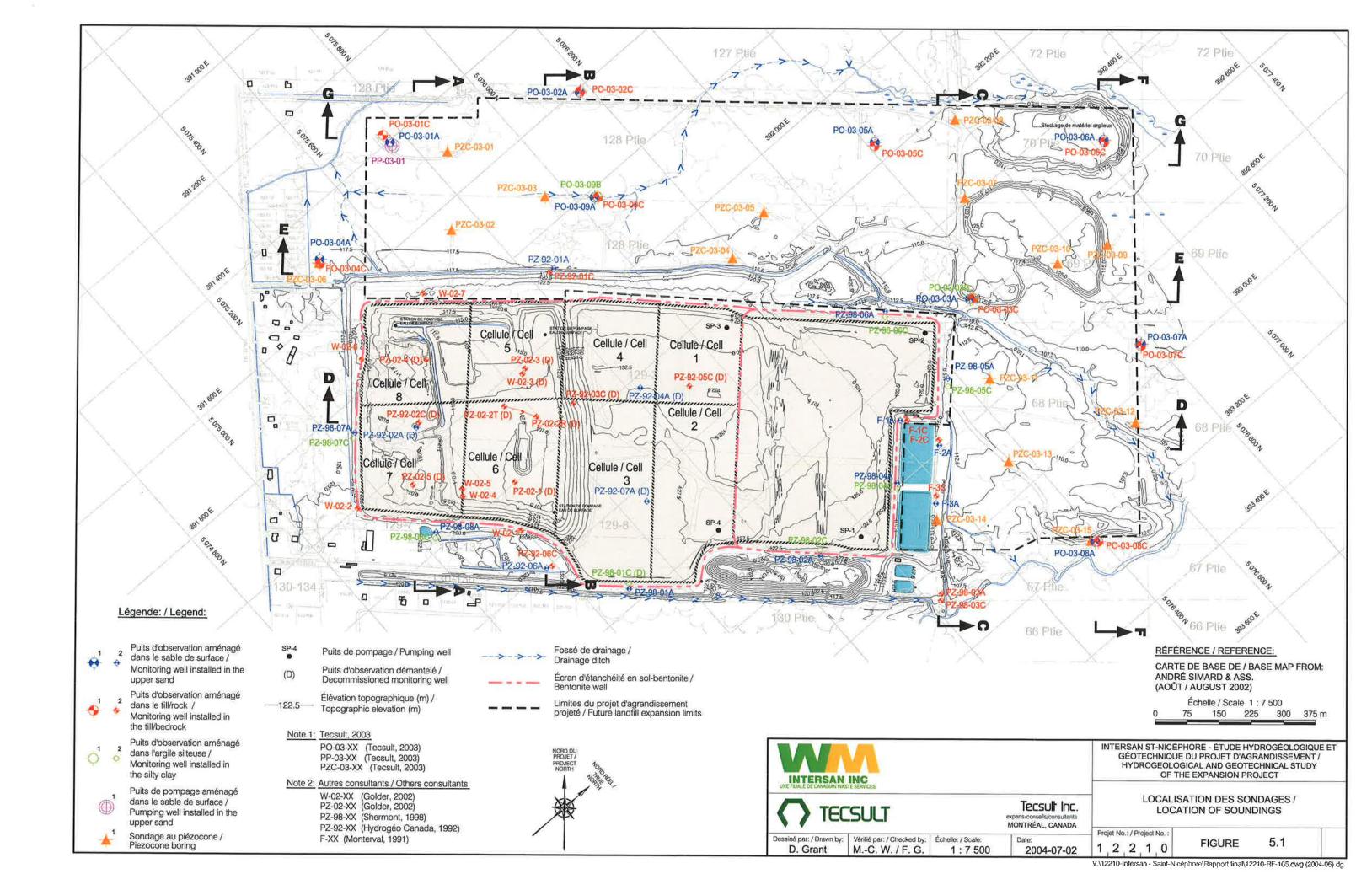

- Ministère de l'environnement du Québec (1995). Guide d'échantillonnage à des fins d'analyses environnementales. Cahier 1 Généralités et Cahier 3 Échantillonnage des eaux souterraines.
- Ministère de l'environnement et de la faune du Québec (1999). Guide standard de caractérisation des terrains contaminés.
- Ministère de l'environnement du Québec (1994). Guide d'échantillonnage à des fins d'analyses environnementales. Cahiers 1 à 5
- Ministère de l'environnement du Québec (1995). Guide de procédures d'assurance et de contrôle de la qualité pour les travaux analytiques contractuels en chimie.
- Ministère de l'environnement du Québec (1996). Guide des méthodes de conservation et d'analyse des échantillons d'eau et de sol.
- Ministère de l'environnement du Québec (1997). Règlement sur les déchets solides. Réf. : Q-2, r.3.2.
- Ministère de l'environnement du Québec (1998). Guide de classification des eaux souterraines du Québec. Service des pesticides et des eaux souterraines, Direction des politiques du secteur agricole et naturel, Direction générale de l'environnement.
- Ministère des Richesses Naturelles (1975). Géologie du Quaternaire dans les régions de Drummondville (SW), Dudswell (E), Scotstown et Coaticook (Germain Tremblay). 27 pages et carte.
- Ministère des Richesses Naturelles (1979). Étude hydrogéologique du bassin de la Saint-François (Renald McCormack). 55 pages + annexes.
- Monterval (1991). «Rapports de forage». Projet nº HG-127-2. Site d'enfouissement St. Nicéphore.
- National Research Council of Canada (NRCC). Supplement of the National Building Code of Canada, 4th Revision and Errata, January 1994, NRCC, Ottawa.
- NAVFAC (1986). Design Manual 7.01, Soil Mechanics, Alexandrier VA: Department of the NAVQ, Naval Facilities Engineering Command.
- SEED, H.B., TOKIMATSU, K., HARDER, L.F. & CHUNG R.M. (1985). Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations. Journal of Geotechnical Engineering, 111(12); 1425-1445.
- Waste Management (1998). Monitor Well-Piezometer Development Standard, Revision 7.
- Waste Management (2001). General Groundwater, Surface Water and Leachate Sampling Standard, version 9.3.

- Waste Management (2002). Typical Monitor Well/Piezometer Construction Standard, Revision 6.2.
- YOUD, T.L., IDRISS, I.M., ANDRUS, R.D. & al. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127 (10); 817-833.

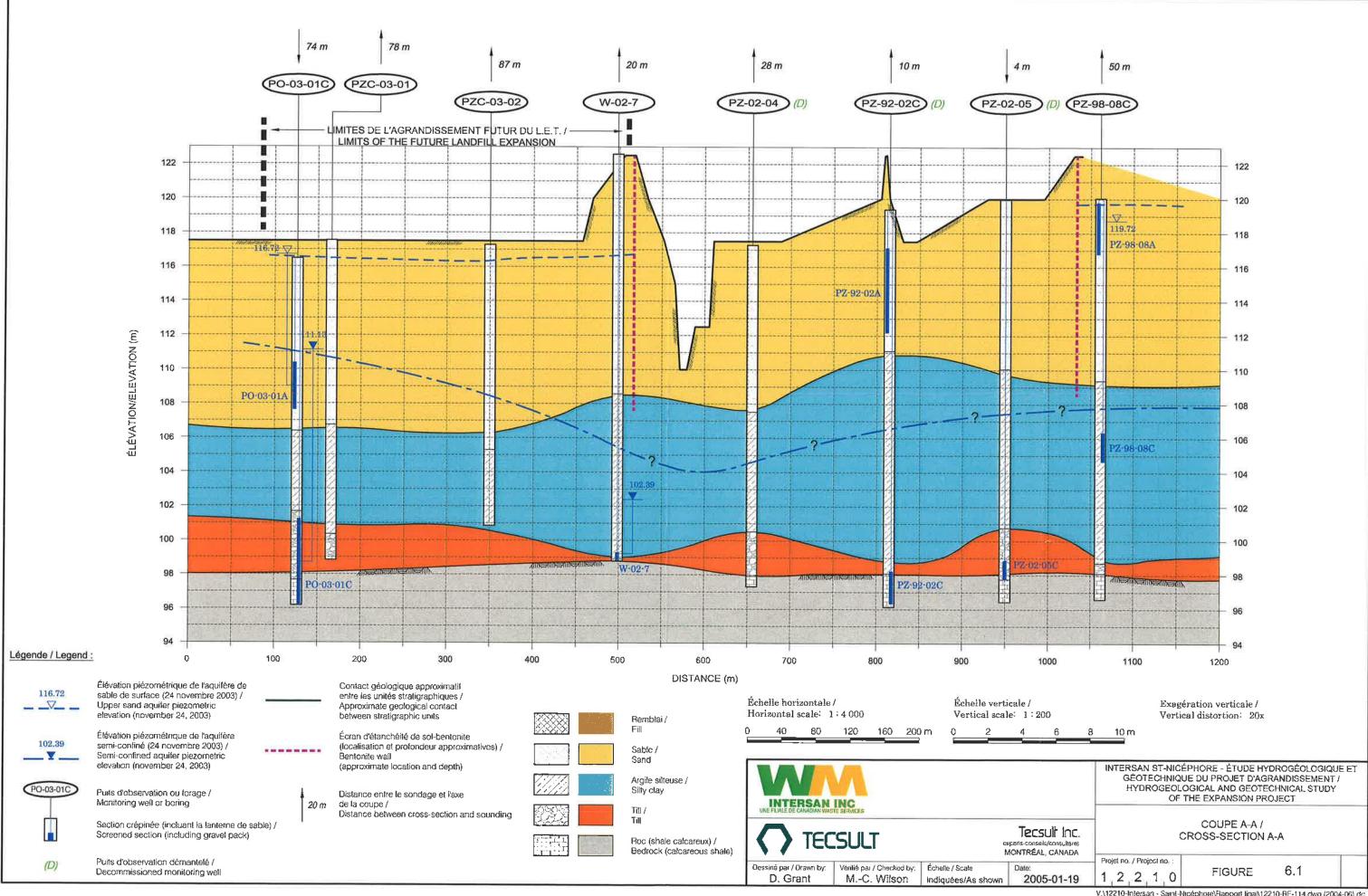


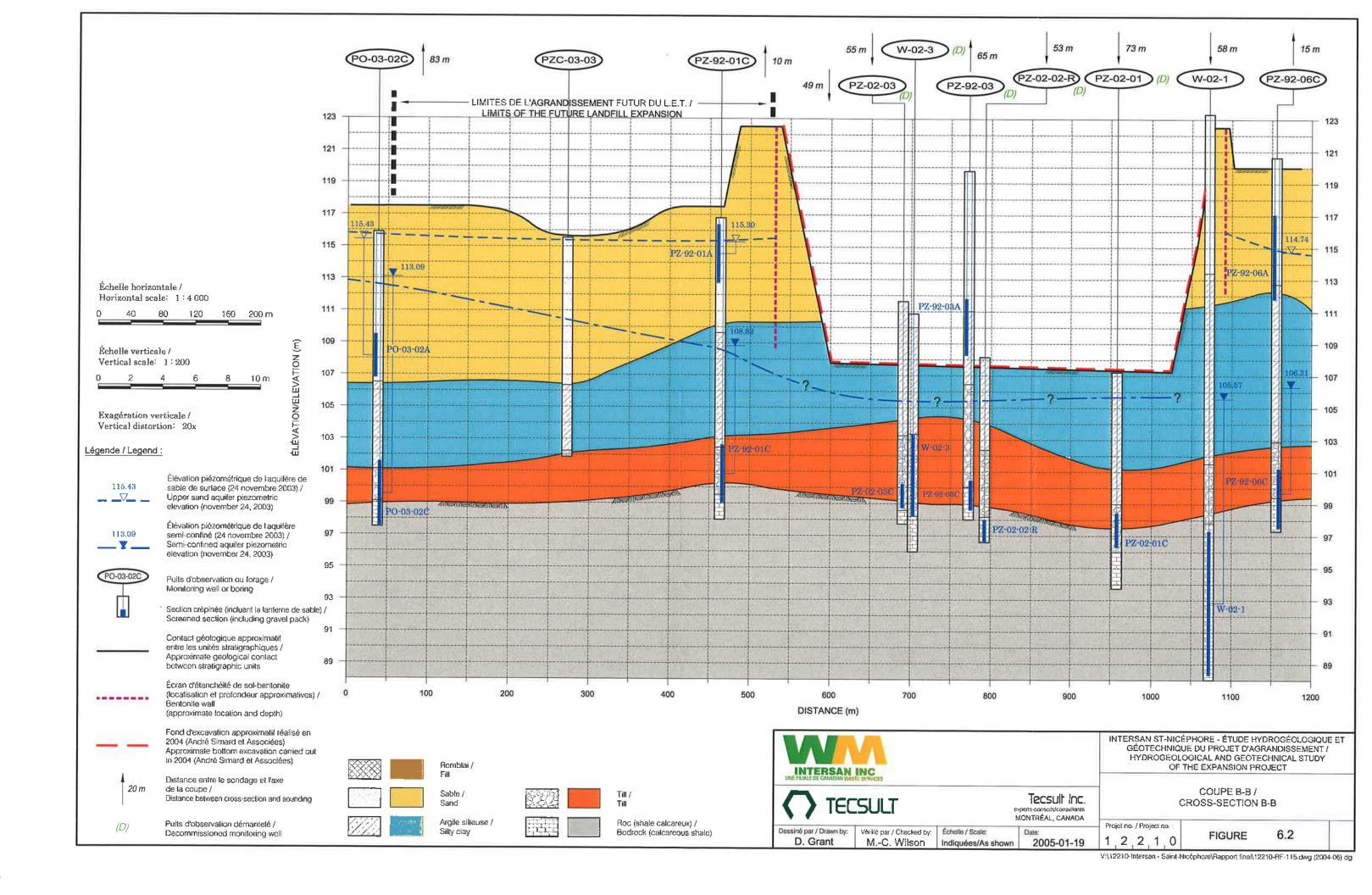
Phyllade grise, gris bleuâtre, verte pouvant contenir des fragments et lits de quartzite et de grès - Groupe de Stanbridge / Grey, bluish grey and green phyllite which may contains fragments and beds of quartzite and sandstone - Stanbridge Formation

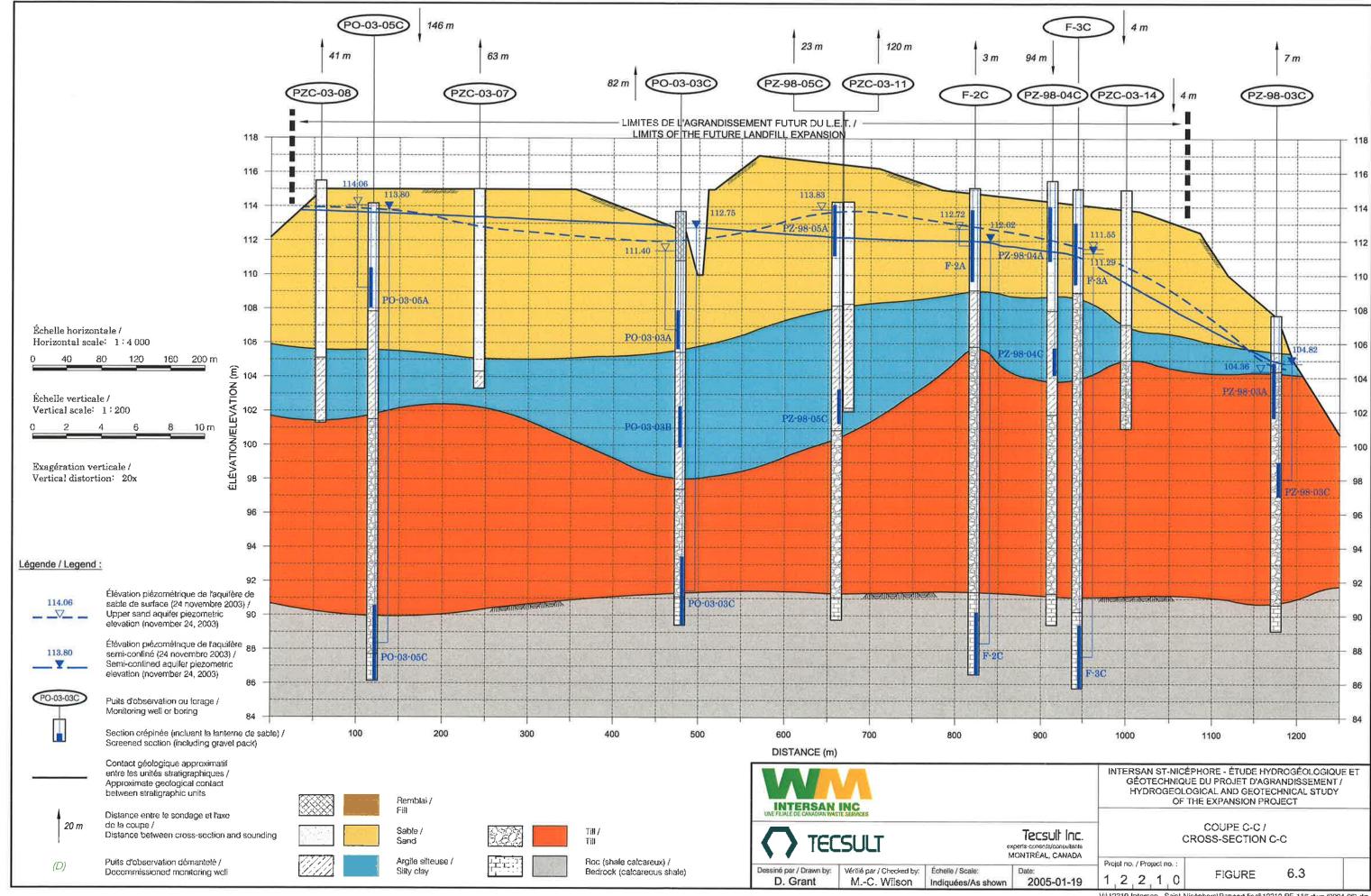
Grès interstratifié avec des ardoises du Groupe de Granby (cambrien supérieur) / Sandstone interbedded with slates from the Granby Group (upper cambrian) 11

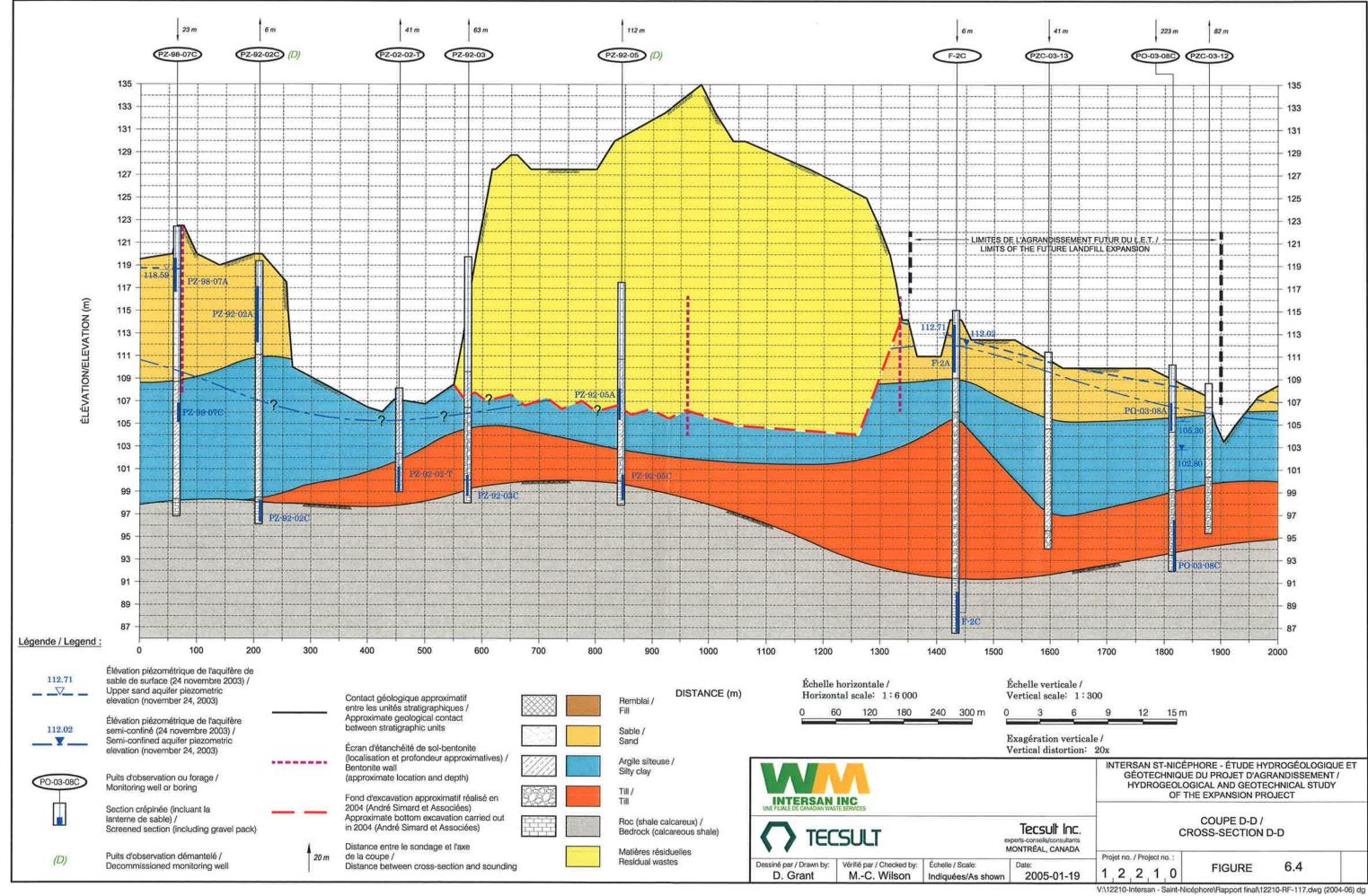

Ardoise calcareuse avec interlits de calcaire argileux de la Formation de Bulstrode / Calcareous slate with interbeds of argillaceous limestone of the Bulstrode Formation

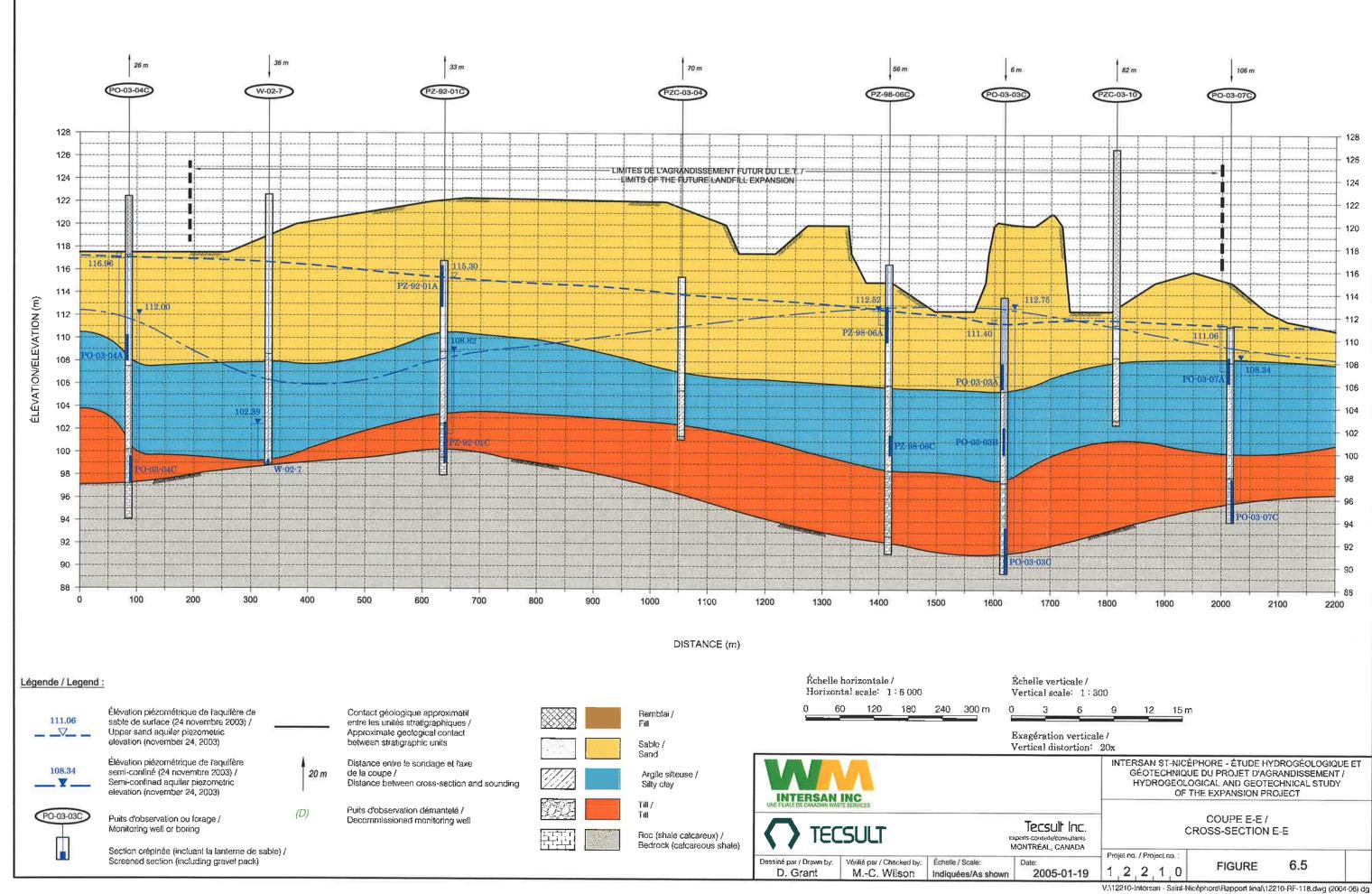
- Till, localement remanié par la mer; gravier dans les zones littorales / Till, locally reshaped by the sea; gravel in littoral zones
- Argile et silt de la Mer de Champlain / Clay and silt from the Champlain Sea
- Sable de la Mer de Champlain / 5b Sand from the Champlain Sea
- Sédiments deltaïques (sable, sable graveleux et un peu de gravier) / Deltaic sediments (sand, gravelly sand and little gravel)
- Sédiments fluviatiles (sable et gravier) / Fluvial sediments (sand and gravel)
- Sédiments des plaines alluviales actuelles (sable fin, un peu de gravier et de silt) / Sediments from actual alluvial plains (fine sand, little gravel and silt)

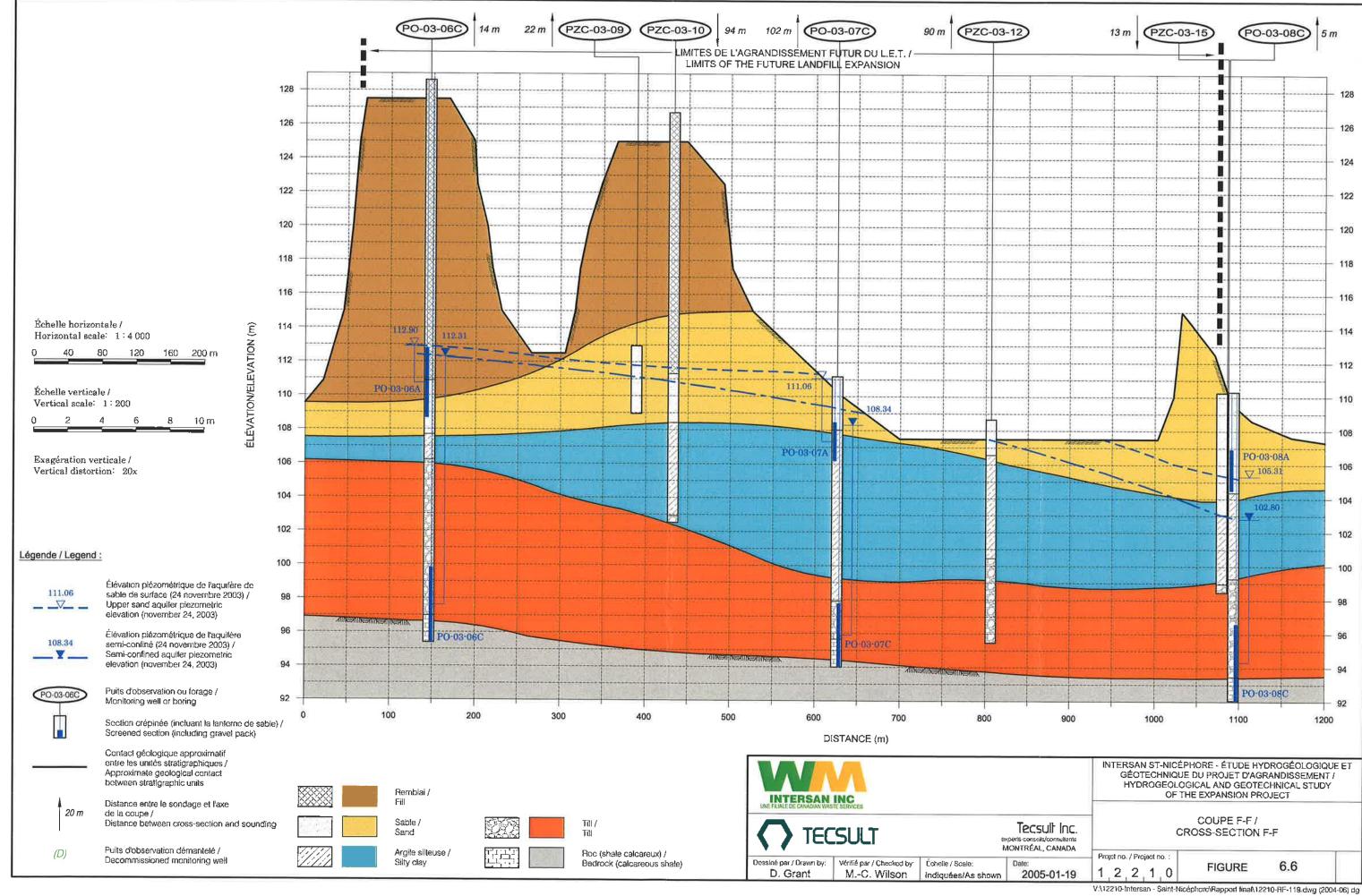


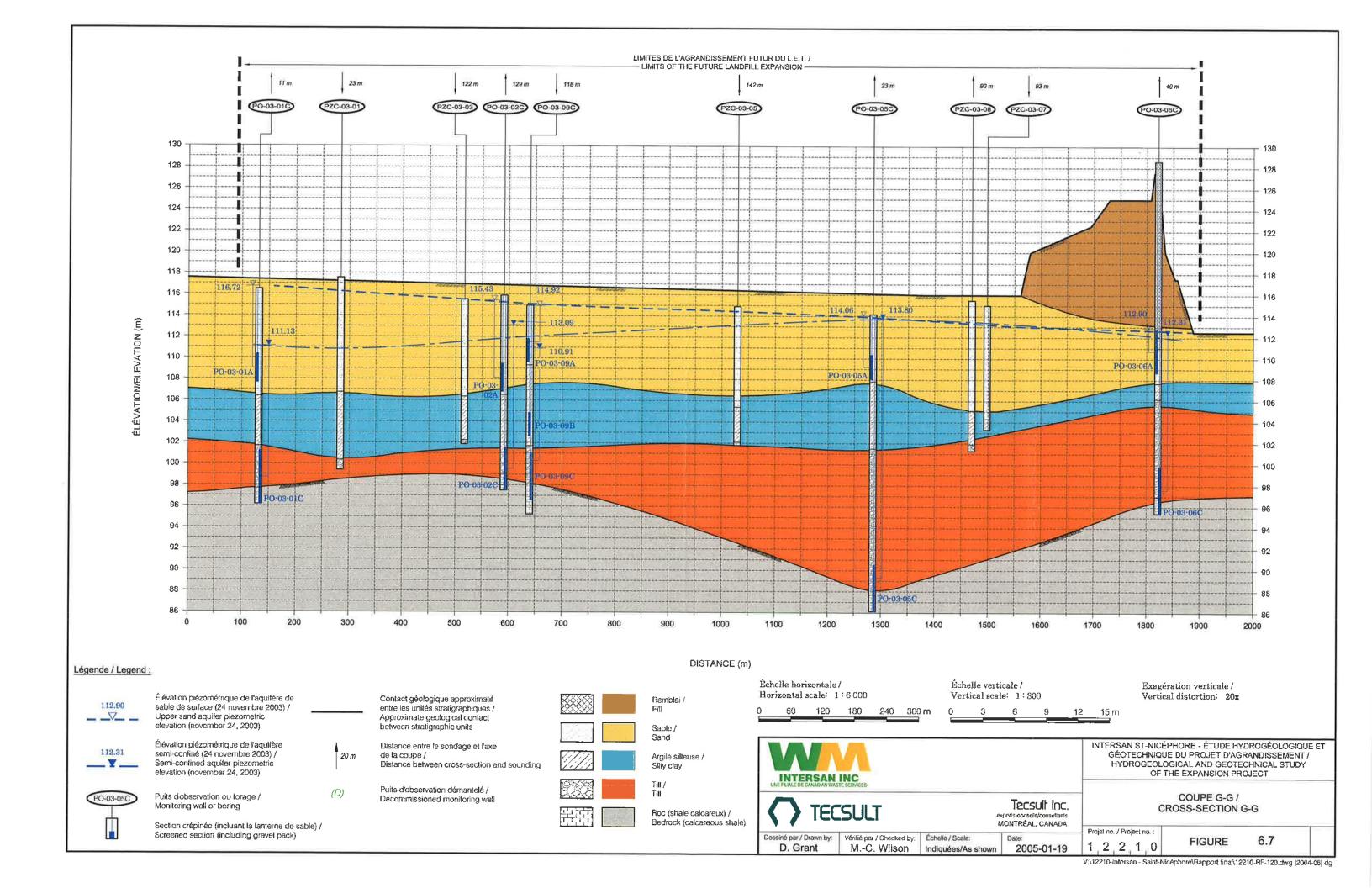

INTERSAN ST-NICÉPHORE - ÉTUDE HYDROGÉOLOGIQUE ET GÉOTECHNIQUE DU PROJET D'AGRANDISSEMENT / HYDROGEOLOGICAL AND GEOTECHNICAL STUDY OF THE EXPANSION PROJECT INTERSAN INC GÉOLOGIE RÉGIONALE / Tecsult Inc. TECSULT REGIONAL GEOLOGY MONTRÉAL, CANADA Projet no. / Project no. : Vérifié par / Checked by: Échelle / Scale: Dessiné par / Drawn by: Date: **FIGURE** 4.1 1,2,2,1,0 D. Grant M.-C. Wilson 1:50 000 2004-07-02

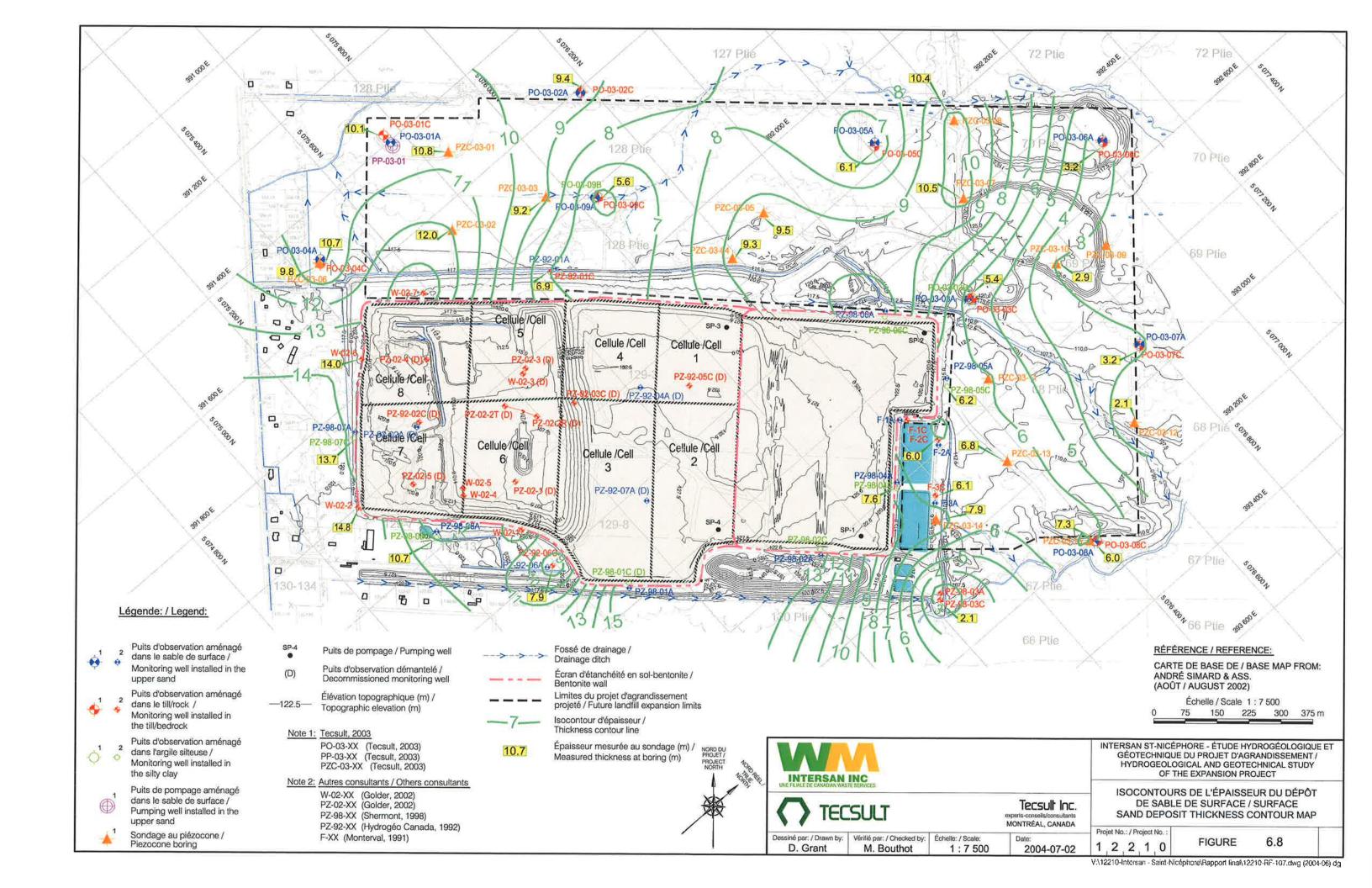

500 1000 1500 2000 2500 m

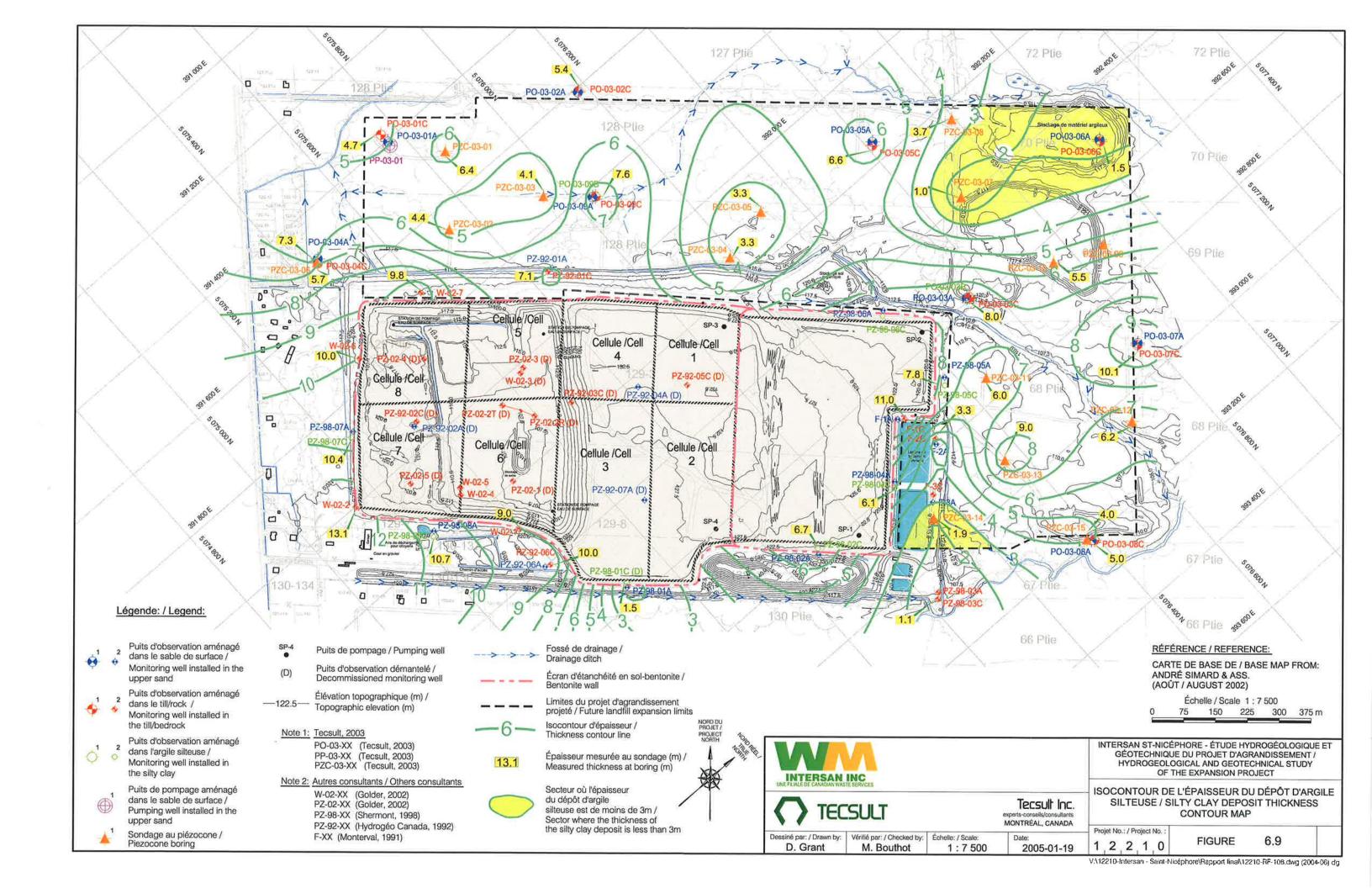


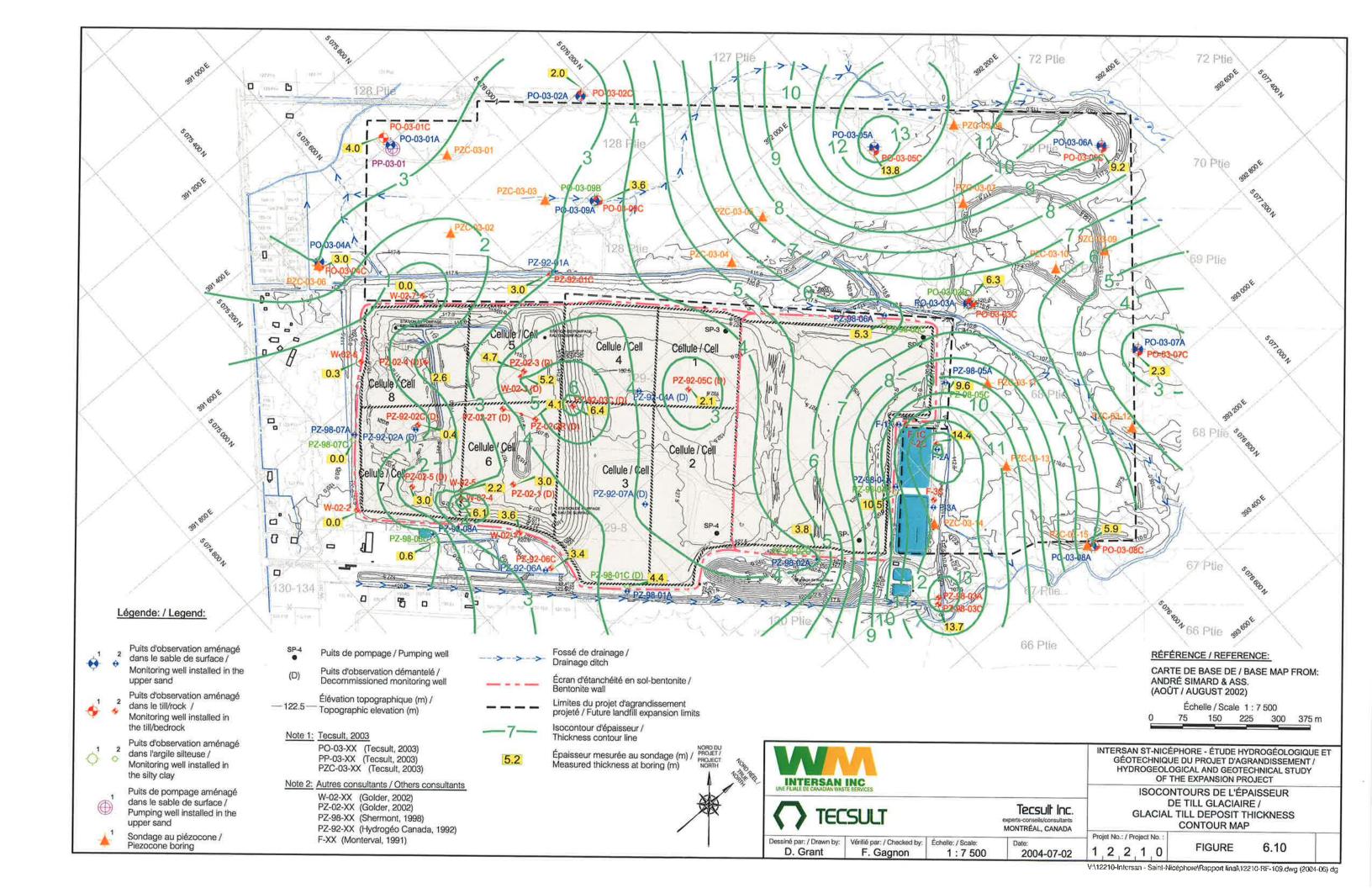


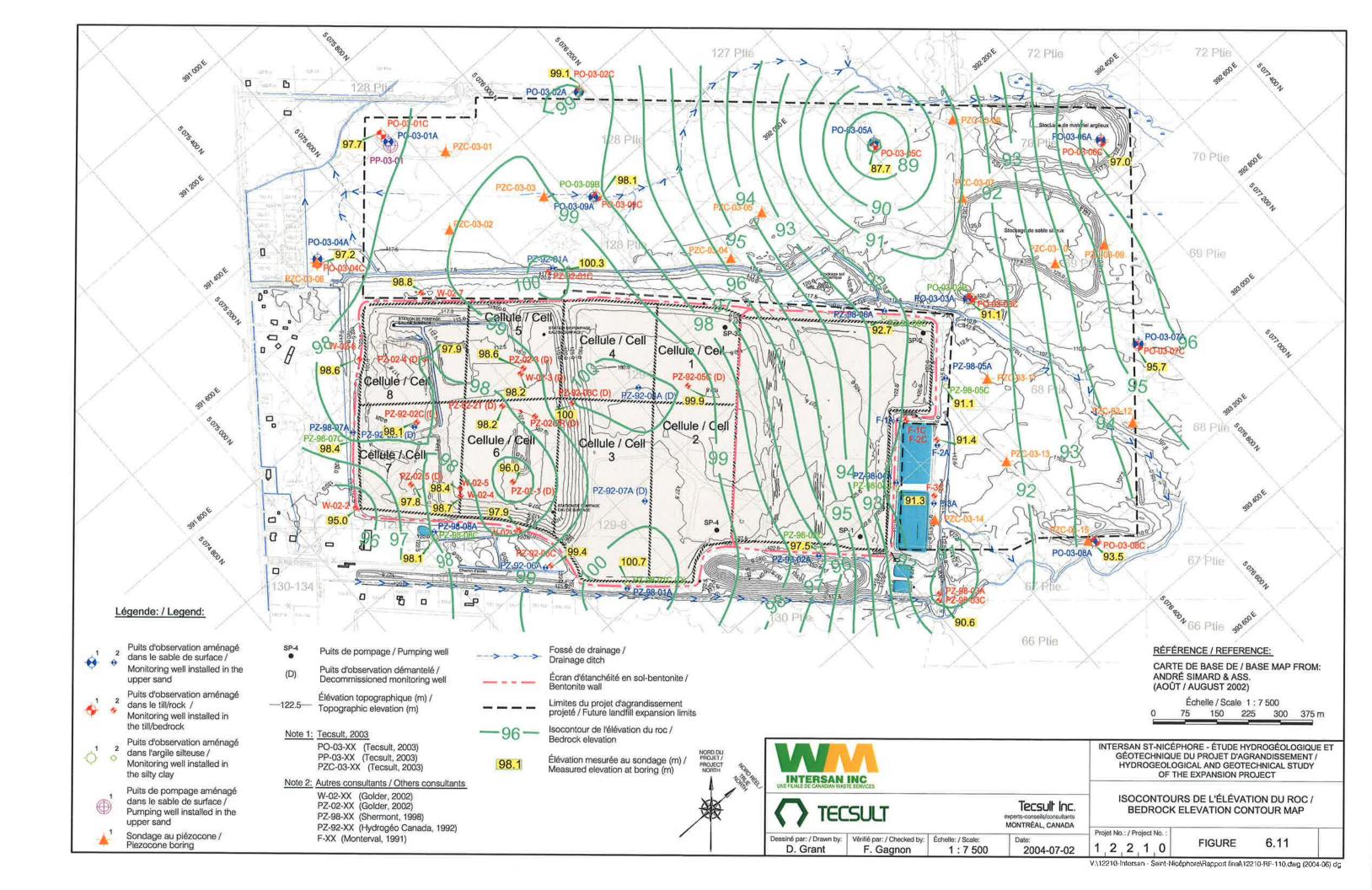


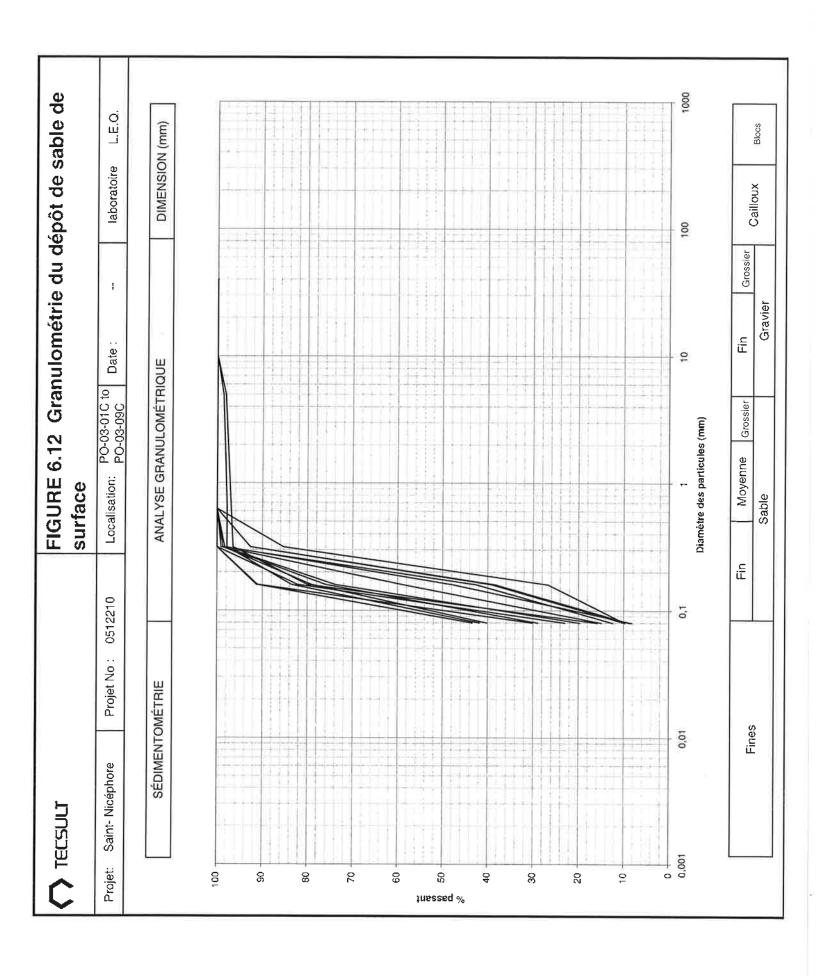


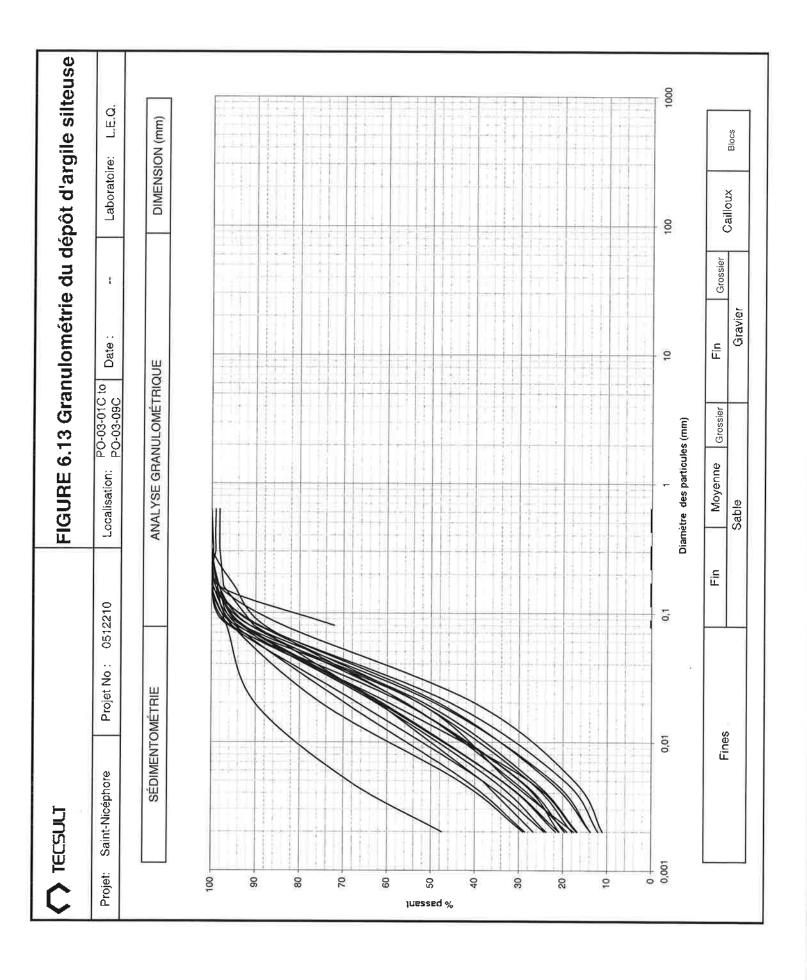


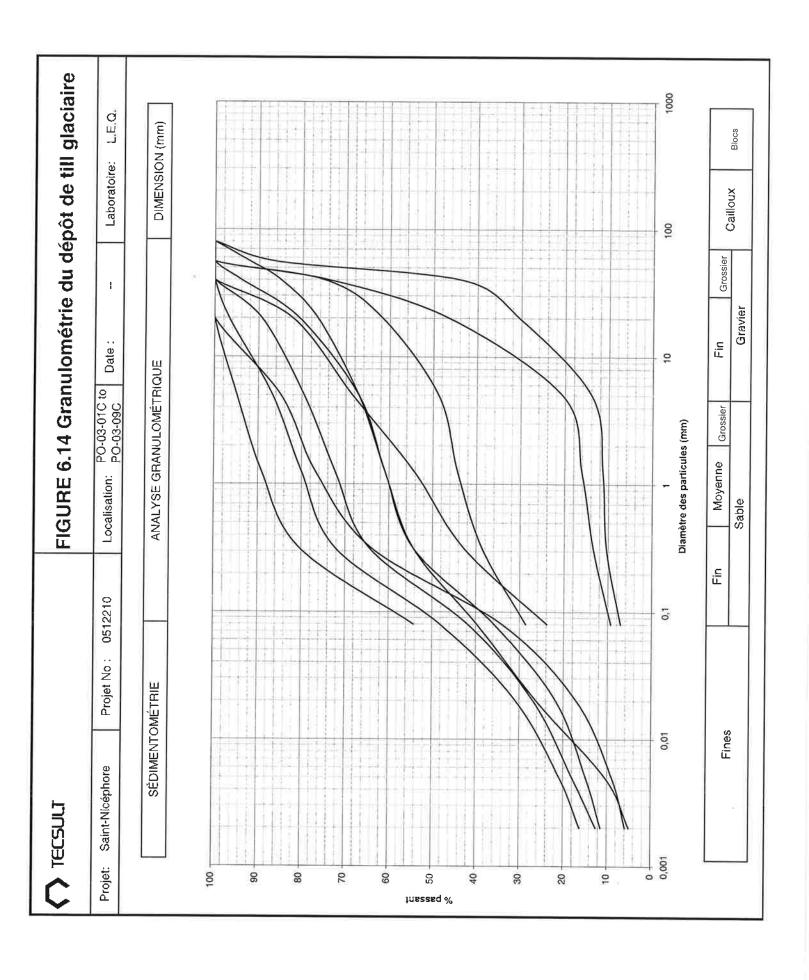


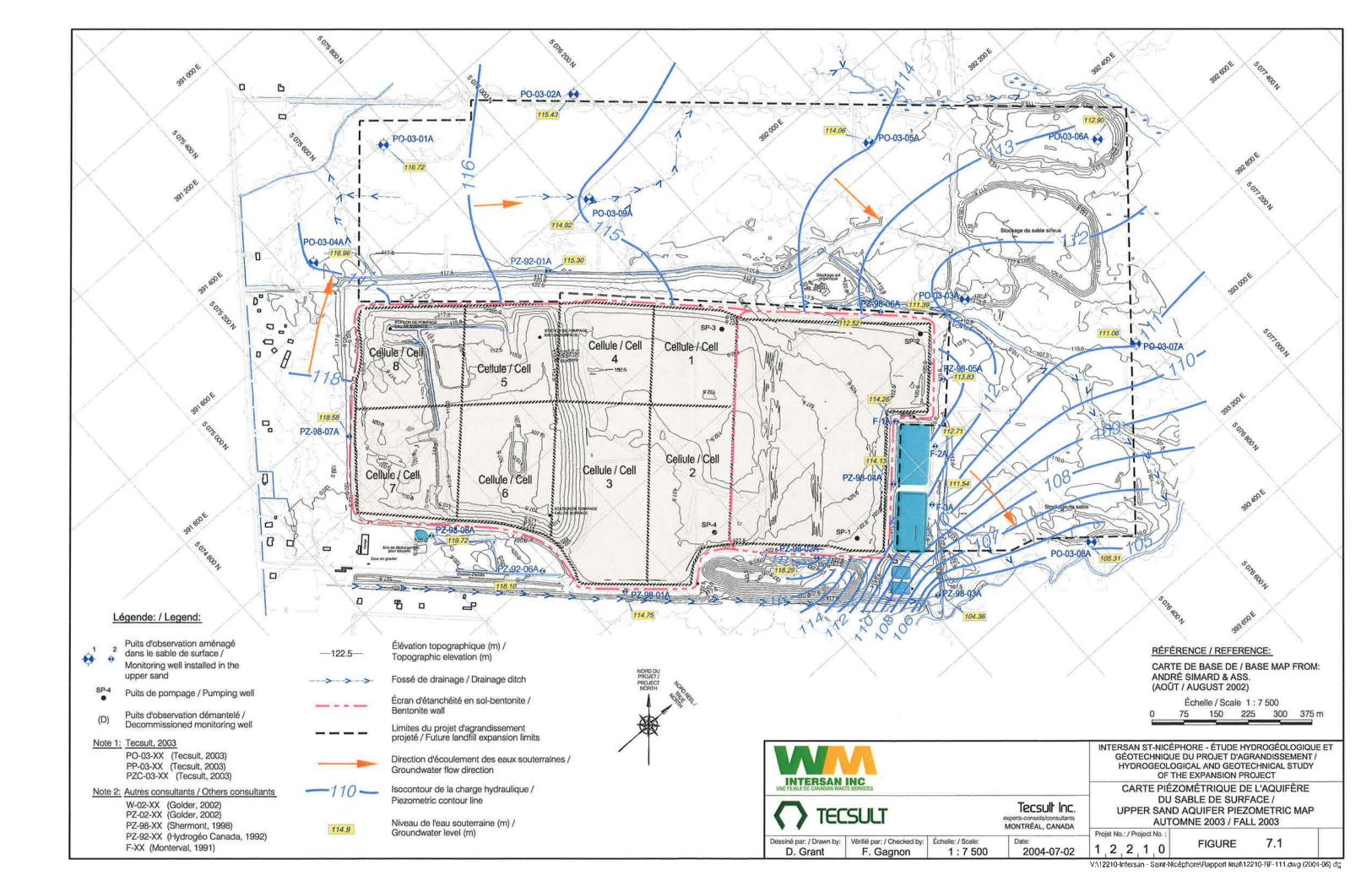


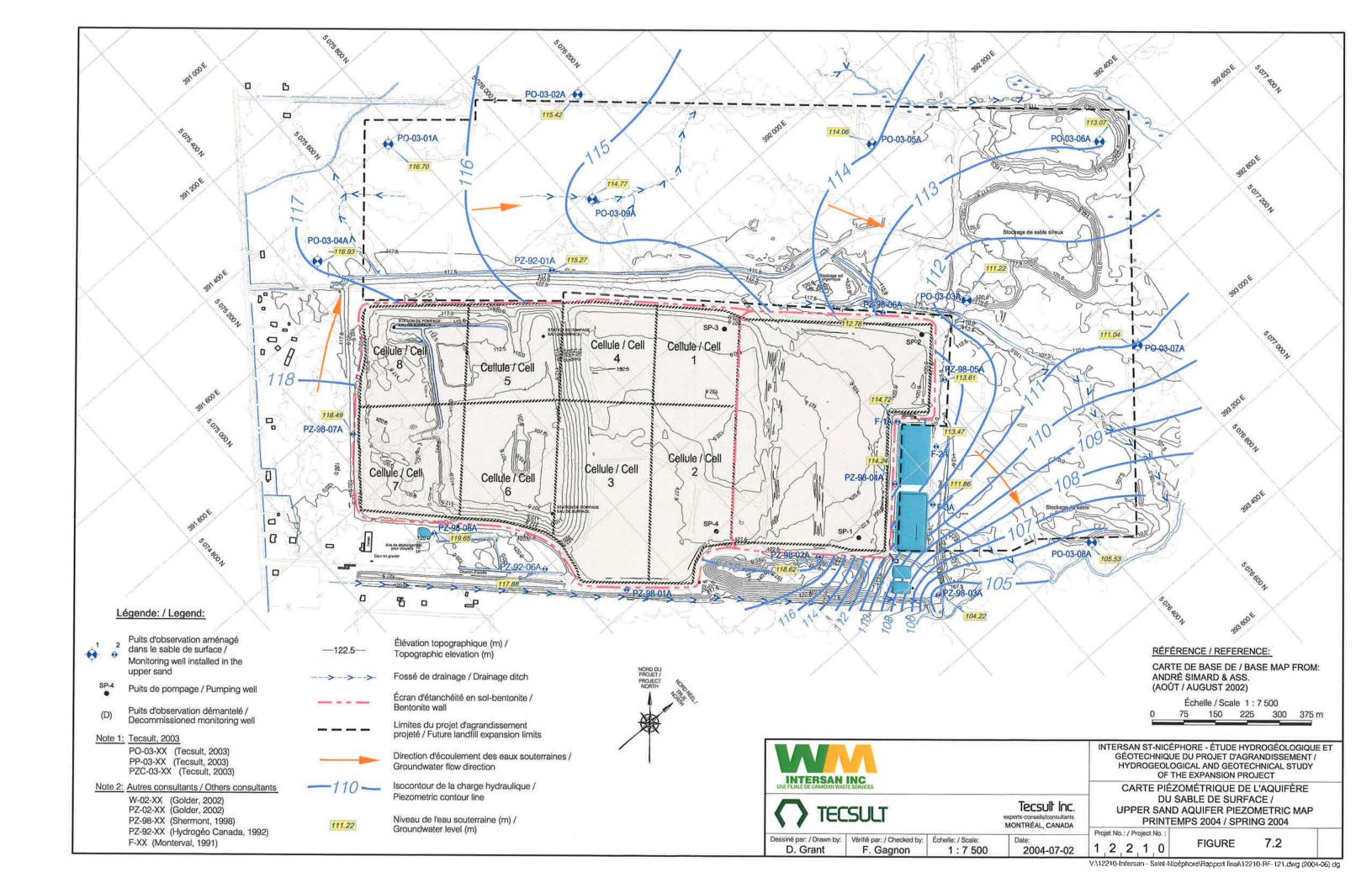


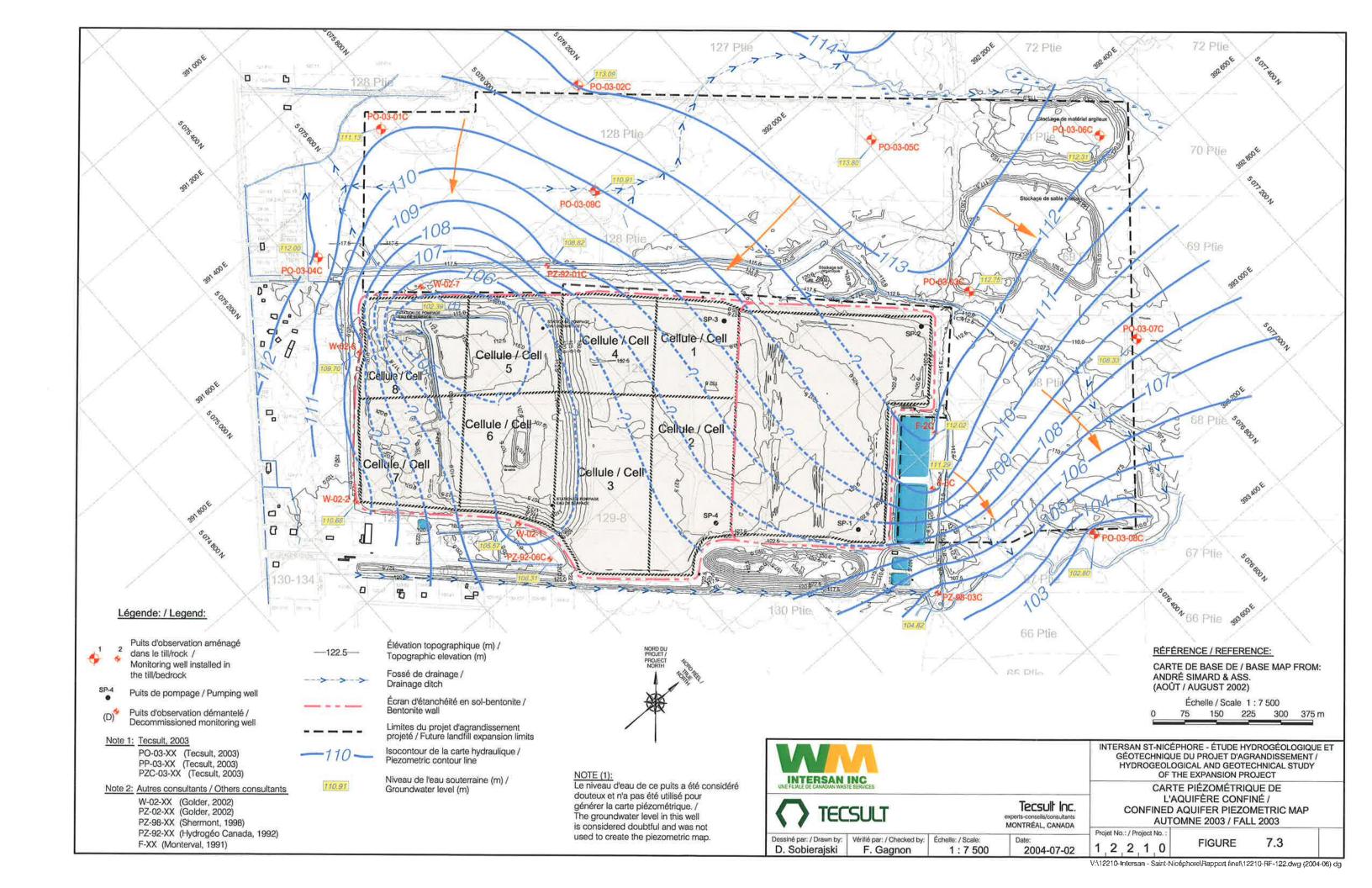


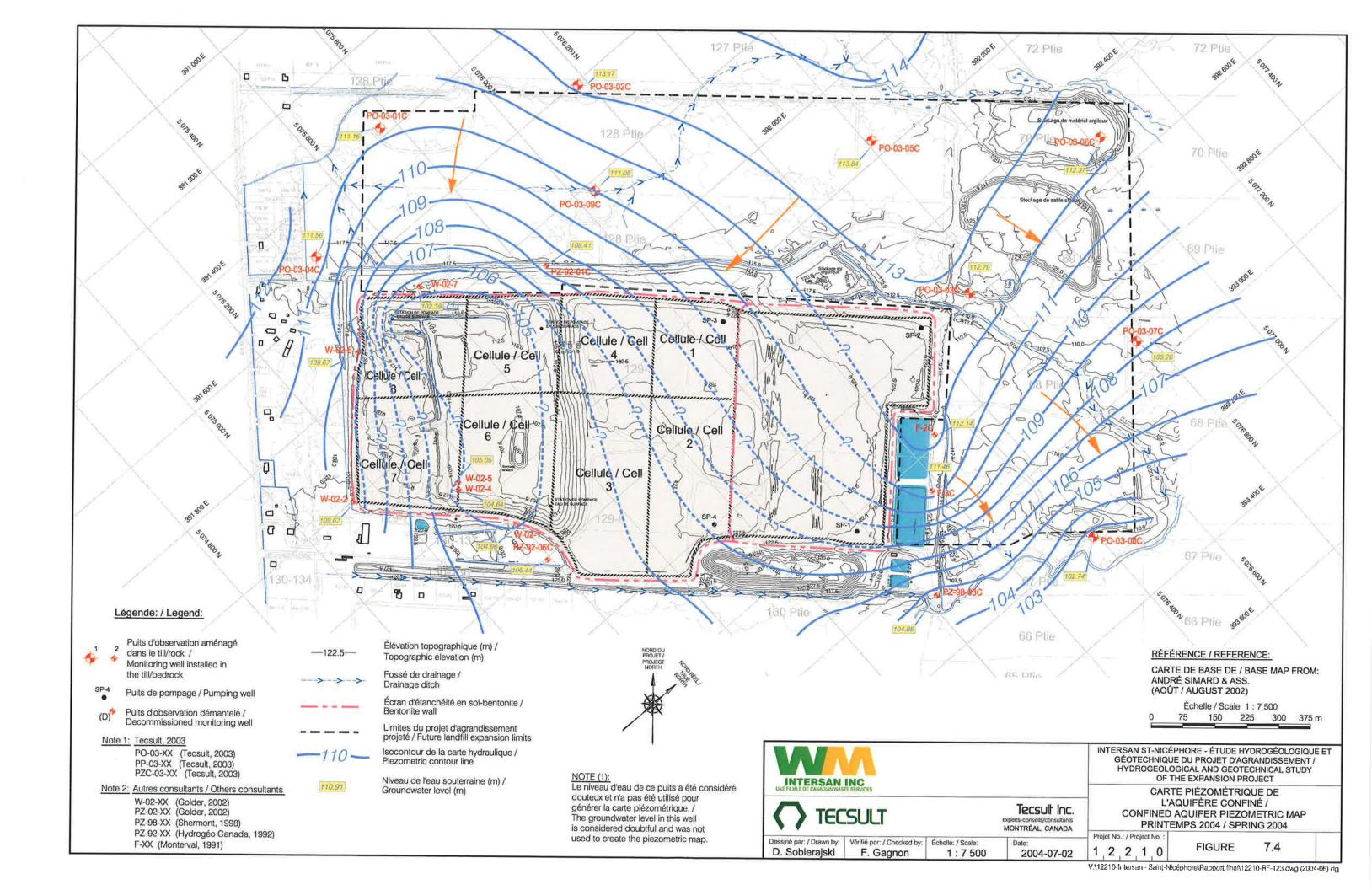


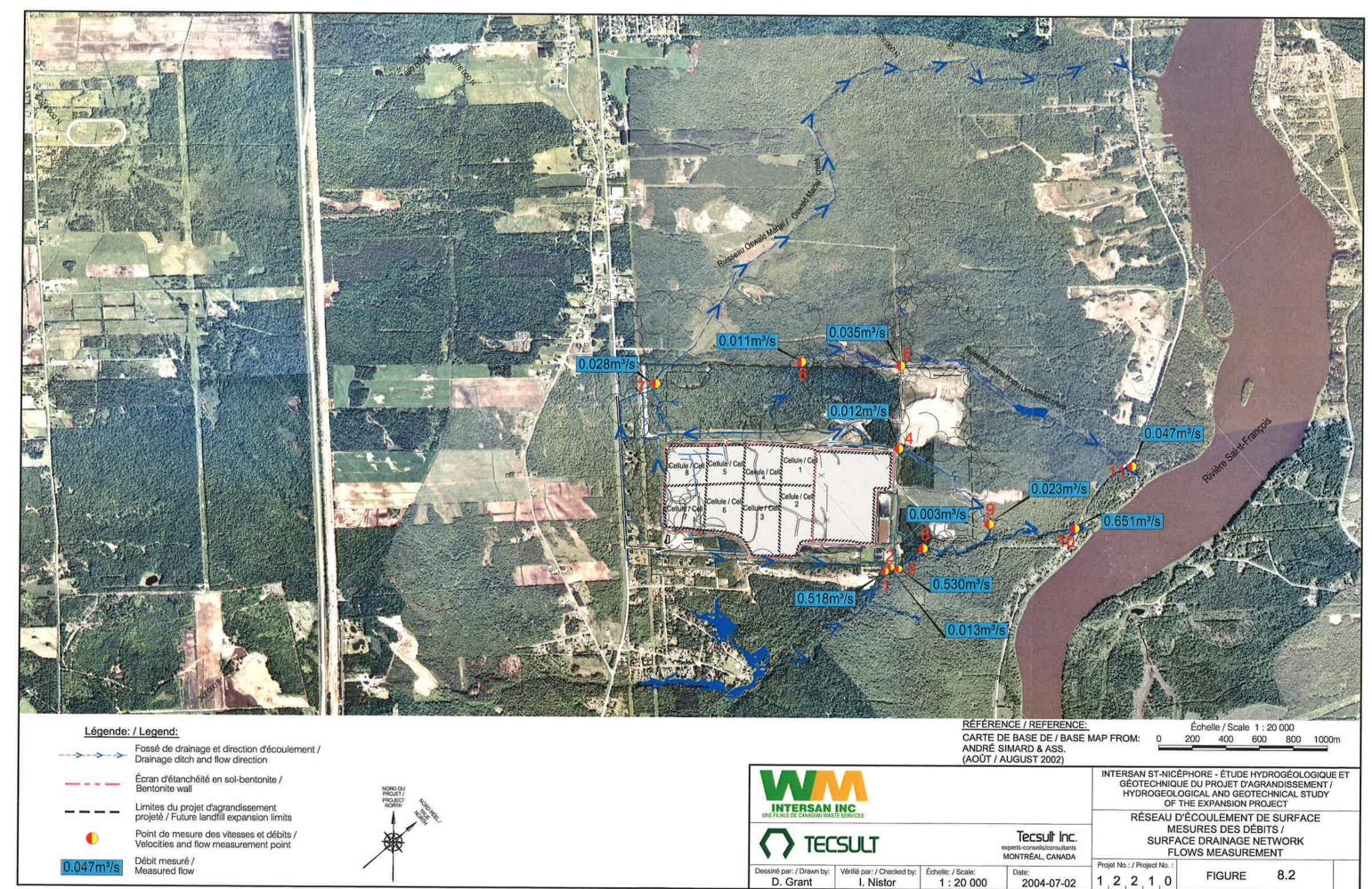


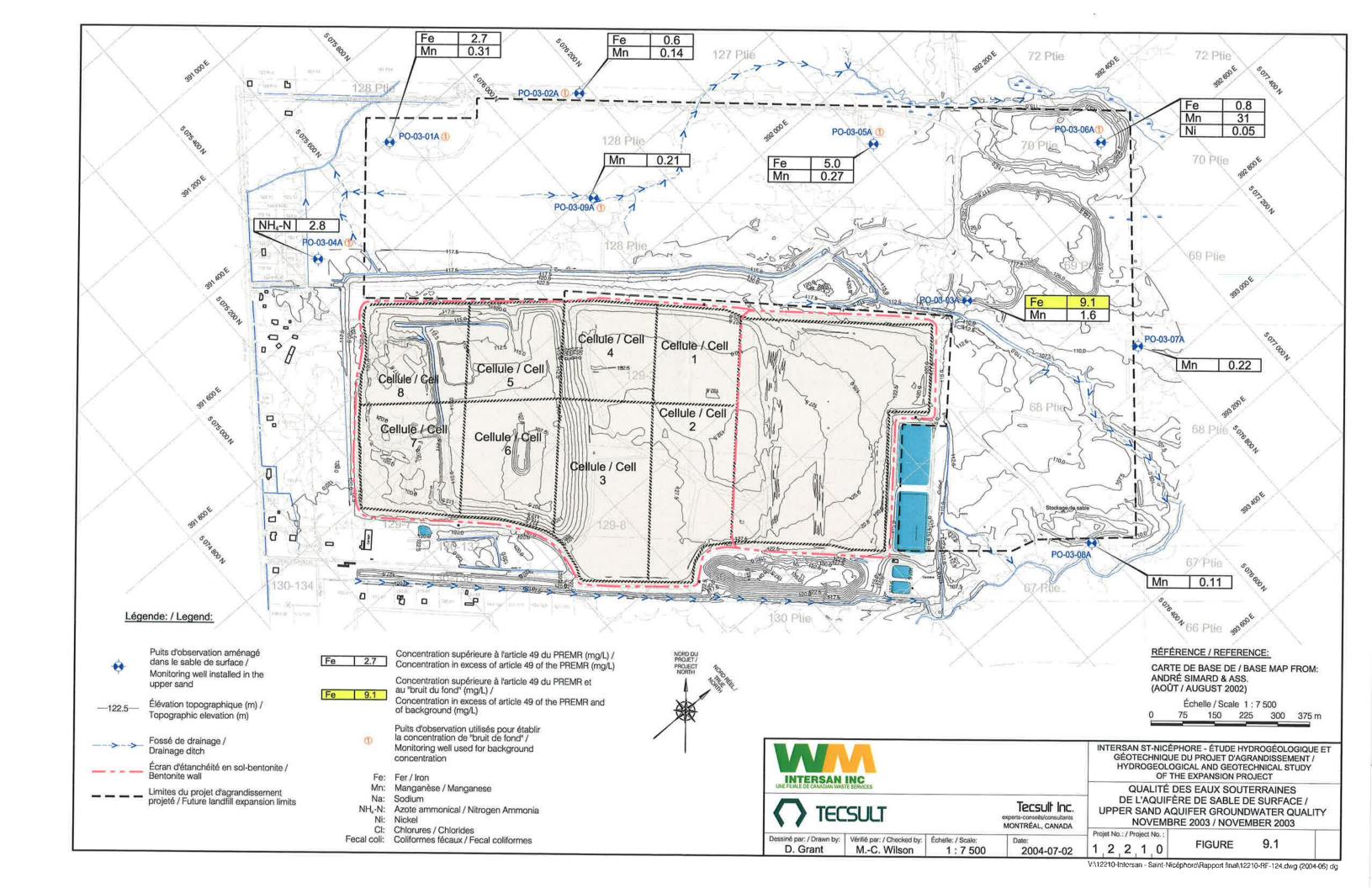


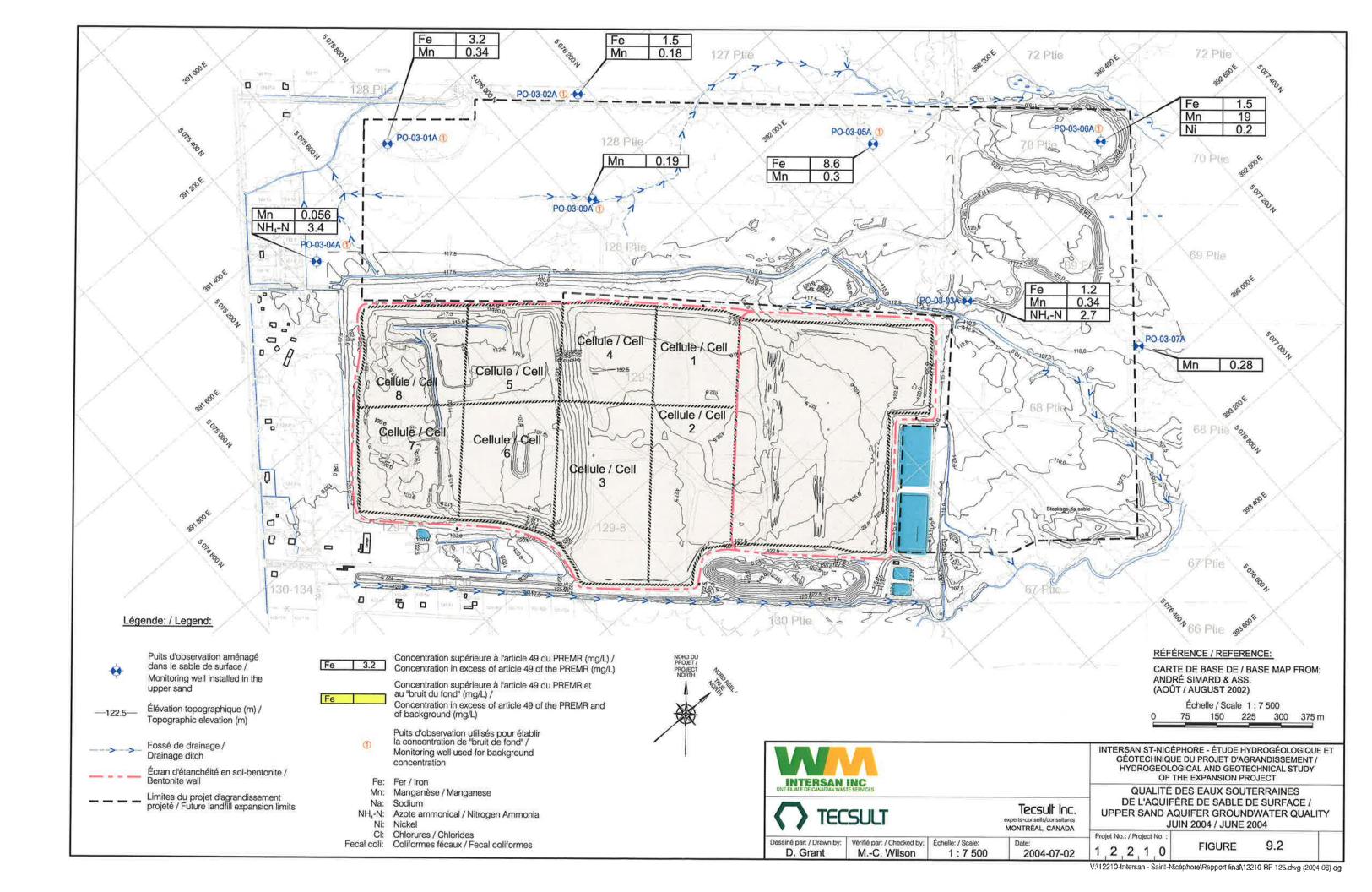


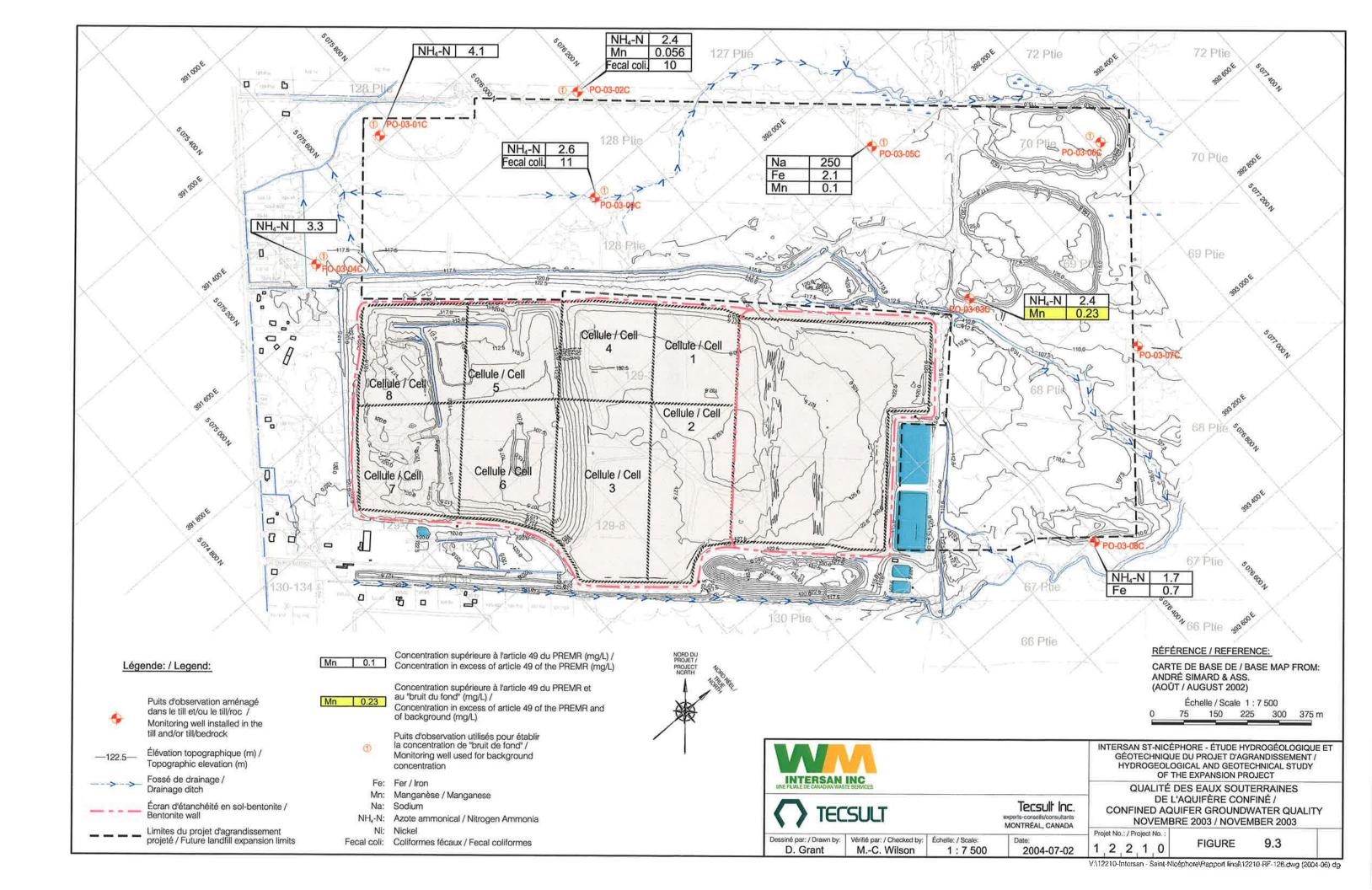


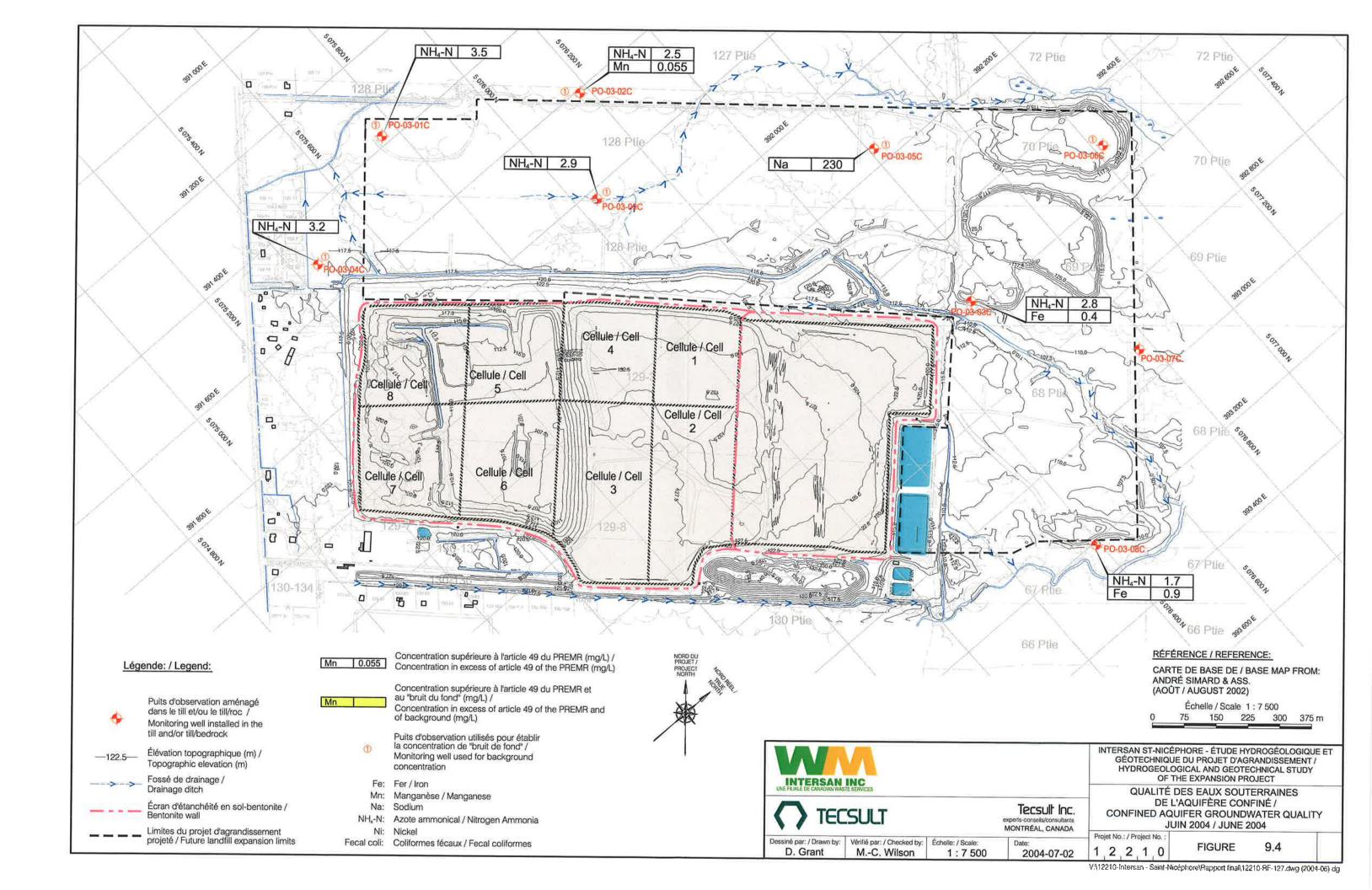


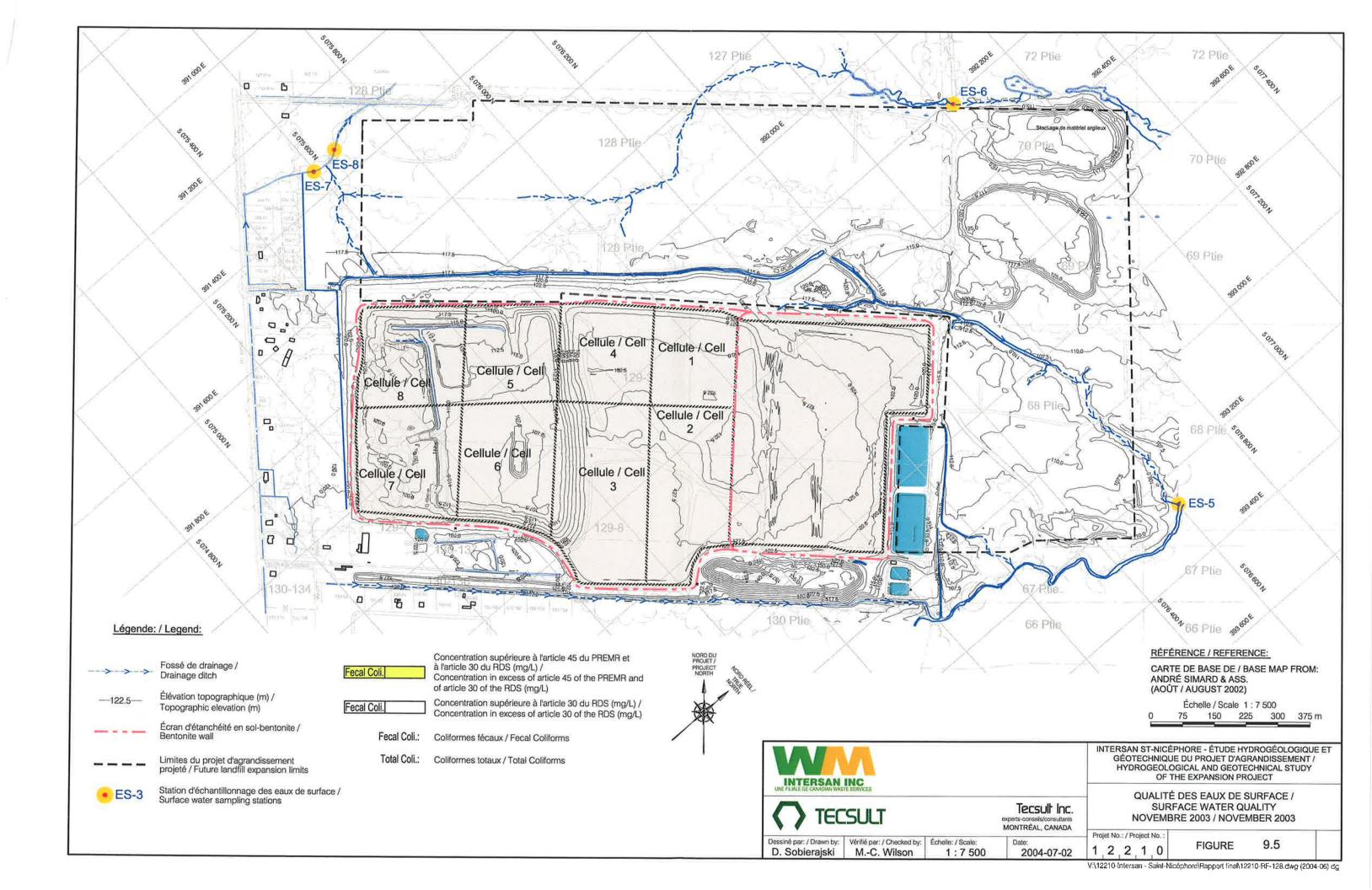


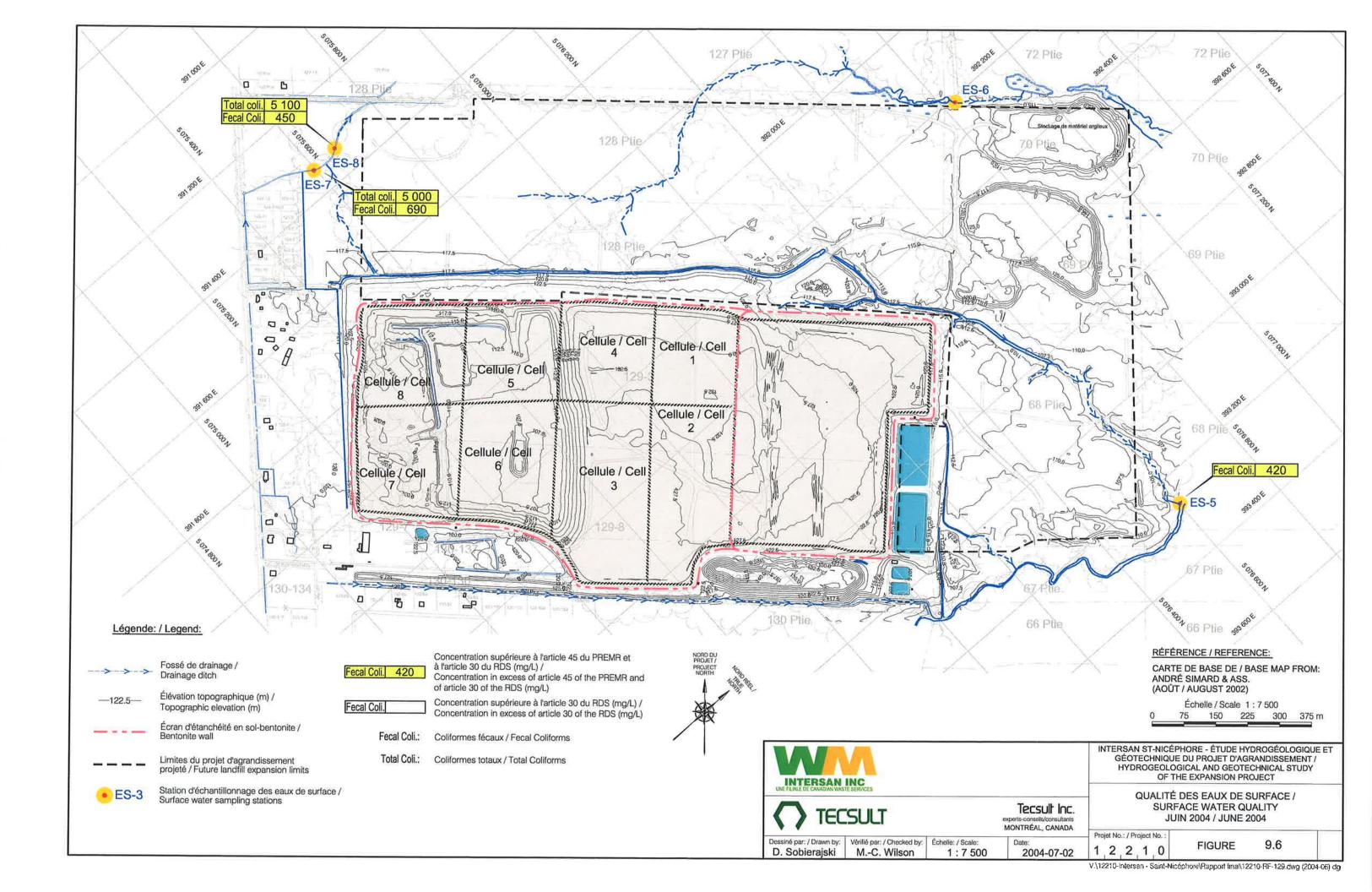












ANNEXE A

RAPPORTS DE FORAGES

TECSULT			BOF	RE	HOL	E L	00	3		
PROJECT: Hydrogeological Study			N°: 0512210		BOREH	OLE N	!°:	PO-03-01A	PA	AGE: 1 of 1
CLIENT: Intersan			SURFACE EL	EV.	(m): 11	6.829	T	TUBE ELEV (r	n);	117.736
SITE: St-Nicéphore Landfill Site			COORD. (m):					ROCK DEPTH	l (m):	:
FIRM: Forage Comeau					50757 3914 :		- 1	MAX, DEPTH	(m):	9.20
EQUIPMENT: Mobildrill P-31, donut	hammer		WATER LEVE		1):	DA			Н	DUR:
SIZE SOIL: HW RO	CK:		116.7	21				24-11-03		08:36:00
DATE STARTED: 16-10-03	ATE ENDED: 16-10-03									
	OLDED SHELBY				ECOVE					VANE
LITHOLOGIC		Ť	C: auger cuttin	<u> </u>	RC: F	ock cor		V: vane R: MPLING & TES	refu TINC	
SOIT DESCLI			GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	%	NUMBER OF BLOWS/15 cm	N blows/30 cm or ROD in %	REMARKS
116.83 SITE SURFA Fine SAND, traces of silt, loose	CE dark reddigh grou	1.1				"			_	
(10R 3/1 - Munsell no.), wet, n noncohesive, massive and gra unoxidized.	on-plastic, nular structure,				SS-01	X ·	3 7	2-3-5-5	8	1
Fine SAND, traces of silt, loose (10R 3/1 - Munsell no.), wet, n noncohesive, massive and graunoxidized. 1.07 Fine SAND with few silt, mediatedish grey (10R 4/1 - Munsell no.)-plastic, noncohesive, mass structure, unoxidized (SM). 3.05 Idem to SS-02, becoming dense (5YR 4/1 - Munsell no.). 4.112.71 4.12 Fine SAND, traces of silt, mediatedish grey (10R 4/1 - Munsell no.)-plastic, noncohesive, mass structure, unoxidized. 5.64 Fine SAND with some silt, very (10R 5/1 - Munsell no.), moist, noncohesive, massive and graunoxidized, presence of two shapes of the second presence of	m dense, dark Il no.), wet, sive and granular				\$5-02	6	57	3-11-12-12	23	PSA Win Gs
3 113.78 3.05 Idem to SS-02, becoming dens (5YR 4/1 - Munsell no.).	e and dark grey		Cement- bentonite graut	e e	SS-03	7	'1	2-12-18-18	30	111111111111111111111111111111111111111
Fine SAND, traces of silt, medi reddish grey (10R 4/1 - Munse non-plastic, noncohesive, mass structure, unoxidized.	um dense, dark Il no.), wet, sive and granular		.570		SS-04	6	60	5-7-8-8	15	
5.64 Fine SAND with some silt, very (10R 5/1 - Munsell no.), moist, noncohesive, massive and graunoxidized, presence of two sh	dense, reddish grey non-plastic, nular structure, ells (white).		-5.79 Bentonite -6.45 Sand Gra		\$\$-05	8	.2	9-29-47- 50 (10 cm)	76	Presence of white fragments (shells)
7.62 Idem to SS-05, becoming dens	e (SM).		PVC Scr. Open. 0.025mm Diam.: 56 Length: 1 -8.99	n Smann	\$8-06	8	3	19-19-26-48	45	Presence of white fragments (shells) PSA Wn CID
9.14 \ldem to SS-06, very dense. 107.63 End of borehole. 9.20			9.20							
DESCRIBED BY: F. Gagnon, eng. / S. Lafo APPROVED BY: MC. Wilson, eng.	rge, tech.	WA	TER LEVEL ME	EASU	JRED 8	Y: F.	. Ga	ignon, eng.		

TECSULT		BOREHOLE LOG									
PROJECT: Hydrogeological Study		N°: 0512210	BOREHOLE N°:	PO-03-01C	PAGE: 1 of 2						
CLIENT: Intersan		SURFACE ELEV	/ _{- (m)} : 11 6.481	TUBE ELEV (m	i): 117.406						
SITE: St-Nicéphore Landfill Site		COORD. (m):	(: 5075762.93	ROCK DEPTH	(m): 18.82						
FIRM: Forage Comeau		1	X: 391379.92	MAX, DEPTH (PTH (m): 20.30						
EQUIPMENT: Mobildrill P-31, donut	hammer	WATER LEVEL	1 ,	24-11-03	HOUR: 08:47:00						
	CK: HQ]	16	24-11-00	00.47.00						
	ATE ENDED: 16-10-03			7							
SAMPLE TYPE: REM SAMPLING METHOD: SS: split s	OLDED SHELBY TUB poon SH: shelby tube /	E NO AC: auger cuttings	RECOVERY [☑ VANE refusal						
LITHOLOGIC		INSTALLATION		AMPLING & TEST							
DEPTH (m) DEPTH (m) DEPTH (m)		GRAPHIC LOG	TYPE & No. SAMPLE	NUMBER OF BLOWS/15 cm	P Power 30 P P P P P P P P P P P P P P P P P P						
Fine SAND, traces of silt, loose (10R 3/1 - Munsell no.), wet, n noncohesive, massive and graunoxidized.	e, dark reddish grey on-plastic, nular structure,		SS-01 67	2-3-5-5	8						
1.07 Fine SAND with few silt, media reddish grey (10R 4/1 - Munse non-plastic, noncohesive, mas structure, unoxidized (SM). 2 1.07 Fine SAND with few silt, media reddish grey (10R 4/1 - Munse non-plastic, noncohesive, mas structure, unoxidized (SM).	ll no.), wet,		SS-02 67	3-11-12-12	8 PSA 23 Wn Gs Gs 30						
3.05 Idem to SS-02, becoming dens (5YR 4/1 - Munsell no.).	se and dark grey		SS-03 71	2-12-18-18	30						
4.12 Fine SAND, traces of silt, medi reddish grey (10R 4/1 - Munse non-plastic, noncohesive, mass structure, unoxidized.	ll no.), wet,		SS-04 60	5-7-8-8	15						
5.64 Fine SAND with some silt, very (10R 5/1 - Munsell no.), moist, noncohesive, massive and gra unoxidized, presence of two sh	non-plastic, nular structure,	Cement- bentonite grout	SS-05 82	9-29-47- 50 (10 cm)	Presence of white fragments 76 (shells)						
7.52 Idem to SS-05, becoming dens			83	19-19-26-48	PSA 45 Wh CID						
DESCRIBED BY: F. Gagnon, eng. / S. Lafo APPROVED BY: MC. Wilson, eng.	orge, tech. W/	ATER LEVEL MEA	SURED BY: F. C	Gagnon, eng.							

	TECSULT	ECSULT BOREHOLE LOG (contt)									
PROJEC	T: Hydrogeological Study			N°: 0512 2	210	BÓREH	ÖLE	N°:	PO-03-01C	PA	GE: 2 of 2
	LITHOLOGIC	DATA		INSTALL	ATION			SAN	MPLING & TES	TING	
DEPTH (m)		PTION		GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REMARKS
9.14	Idem to SS-06, becoming very	dense.				\$\$-07	X	96	34-56 (15 cm)	R	
10 - 106.4	Silty CLAY with few sand, stiff, 4/0 - Munsell no.), moist, media massive structure, unoxidized.					\$5-08	X	83	6-5-9-12	14	PSA Wn
12		YR 4/0 - Munsell	11611			SS-09	X	100	2-2-1-2	3	PSA Wn -
14-1101.70		(TILL), thin laver of			1,78	SH-10					PSA - Wn - Wp - Wl Gs -
15— 16— 100.13	gravel with few silt (8 cm) at 15 (5YR 4/1 to 7.5YR 3/0 - Munse low plasticity, noncohesive, bed	.35 m, dark grey Il no.), moist, non to		-15	ntonite 5,24 nd Grade 1	SS-11A SS-11B SS-11C	X	54	30-37-15-16	52	
17 — 117 — 1198.65	thin layers of gravel with few sil 16.77 and 17.16 m, black to da and 7.5YR 2.5/0 - Munsell no.), noncohesive, bedded structure	t (3 to 5 cm) at rk grey (5YR 4/1 moist, non-plastic,		-17	.07	\$5-12A \$\$-12B \$\$-12C	Š	69	16-23-22-16	45	PSA Wn
17.83	and clay, black to dark grey (7.3 2.5YR 4/0 - Munsell no.), moist noncohesive, bedded structure	5YR 2.5/0 and , πon-plastic, , unoxidized.		Ope Ope	C Screen en.; 25mm	\$\$-13A \$\$-13B	Ž	76	22-46-52- 55 (8 cm)	98	
19 18.82	BEDROCK: Calcareous SHALE inclined bedding (45°), some catraces of pyrite.			Dia	20mm m.: 50.mm egih: 3.05m	RC-1		97		64	
20- 96.18				2 4 7 7 7 7 7 7 7 7 7	.12	RC-2		93		48	
20.30	End of borehole.			20							
DESCRIB APPROVE	• . •	rge, tech.	W	ATER LEVE	L MEAS	URED B	Y:	F. Ga	agnon, eng.		

TECSULT		BORE	HOLE LO	G	
PROJECT: Hydrogeological Study		Nº: 0512210	BOREHOLE N°	PO-03-02A	PAGE: 1 of 1
CLIENT: Intersan		SURFACE ELEV	/ ₋ (m): 115.887	TUBE ELEV (r	n): 116.788
SITE: St-Nicéphore Landfill Sit	e	COORD, (m):	r: 5076175.99	ROCK DEPTH	l (m):
FIRM: Forage Comeau		1	X: 391609.54	MAX. DEPTH	(m): 9.09
EQUIPMENT: Diedrich D-50, donu	hammer	WATER LEVEL 115.433		E: 24-11-03	HOUR: 09:02:00
SIZE SOIL: HW F	OCK:]	•	24-11-03	05.02.00
DATE STARTED: 07-11-03	DATE ENDED: 07-11-03				
	MOLDED SHELBY TUE		RECOVERY [MANE
SAMPLING METHOD: SS: spli LITHOLOGI		AC: auger cuttings INSTALLATION		V: vane R: AMPLING & TES	refusal TING
DEPTH (m) SOIL DESCE		GRAPHIC LOG LOG DETAILS	TYPE & No. SAMPLE RECOVERY		or RDD in % CAD in %
115.89 SITE SURF			 -		
Fine SAND, very loose, dark Munsell no.), moist, non-plas massive structure, unoxidize within the first 0.3 m.	tic, noncohesive,	Ā	SS-01 6	7 1-1-1-1	2
1-114.82 1.07 Fine SAND with little silt, me (5Y 4/2 - Munsell no.), wet, r noncohesive, massive struct	on-plastic,		55-02	3 6-10-12-13	22 PSA Wn
3 112.84 3.05 Idem to SS-02, becoming da (10YR 4/2 - Munsell no.) (SM		Sentonite	SS-03 54	6-7-9-16	16 PSA Wn
4.11 Fine SAND with little medium dark grey (10YR 4/1 - Munse non-plastic, noncohesive, maunoxidized.	l no.), moist,		SS-04 63	3 28-37-52- 50 (10 cm)	89
Fine SAND, dense, dark green no.), wet, non-plastic, noncol structure, unoxidized.		-6.40 Sand Grade	ss-05 48	3 18-27-19-28	46
7.16 Fine SAND with few silt, den (5YR 3/1 - Munsell no.), mois noncohesive, massive struct	t, non-plastic,	-7.47 PVC Screen Open.: 0.025mm Diam.,50m Length. 1.52 →8.99	n	17-21-17-16	
9.09 End of borehole.		9.09			1
					Imilian
DESCRIBED BY: F. Gagnon, eng. / \$. La APPROVED BY: MC. Wilson, eng.	forge, tech. W	ATER LEVEL MEA	SURED BY: F.	Gagnon, eng.	

TECSULT		BORE	EHOLE LO	G	
PROJECT: Hydrogeological Study		Nº: 0512210	BOREHOLE N°;	PO-03-02C	PAGE: 1 of 2
CLIENT: Intersan		SURFACE ELEV	v. (m): 115.900	TUBE ELEV (m)	116.942
SITE: St-Nicéphore Landfill Site		COORD, (m):	7: 5076178.94	ROCK DEPTH (m): 1 6.81
FIRM: Forage Comeau		1	X: 391608.29	MAX. DEPTH (n	n): 18.39
EQUIPMENT: Diedrich D-50, donut	hammer	WATER LEVEL	1 1		HOUR:
SIZE SOIL: HW RO	CK: HQ	113.092	2	24-11-03	09:05:00
DATE STARTED: 05-11-03	ATE ENDED: 07-11-03				
	OLDED 🛮 SHELBYTUB	E NO	RECOVERY	CORE) VANE
SAMPLING METHOD: SS: split s		AC: auger cuttings			efusal
E E E	DATA	INSTALLATION	4 S.	AMPLING & TESTI	NG
SOIL DESCRI		GRAPHIC LOG	TYPE & No. SAMPLE RECOVERY	NUMBER OF BLOWS/15 cm	ES % SE A SEMARKS REMARKS
115.90 SITE SURFA Fine SAND, very loose, dark re		88	- 		
Munsell no.), moist, non-plasti massive structure, unoxidized.	o, noncohesive,		\$5-01	1-1-1-1	2
1.07 Fine SAND with little silt, media (5Y 4/2 - Munsell no.), wet, no noncohesive, massive structur 2.3 112.85 3.05 Idem to SS-02, becoming dark	n-plastic,		SS-02 63	6-10-12-13	22
3.05 Idem to SS-02, becoming dark (10YR 4/2 - Munsell no.) (SM).	greyish brown		SS-03 54	6-7-9-16	PSA Wn
Fine SAND with little medium s dark grey (10YR 4/1 - Munsell non-plastic, noncohesive, mass unoxidized.	no.), moist,		SS-04 63	28-37-52- 50 (10 cm)	39
5.64 Fine SAND, dense, dark grey (no.), wet, non-plastic, noncohe structure, unoxidized. 7.16 Fine SAND with few silt, dense (SYR 3/4 Muncell pc.) maint	sive, massive	Cement- bentonite grout	SS-05 48	18-27-19-28 4	
(5YR 3/1 - Munsell no.), moist, noncohesive, massive structure DESCRIBED BY: F. Gagnen, eng. / \$. Lafe	e, unoxidized.	ATER LEVEL MEA	SURED BY: F, 6	Gagnon, eng.	-
APPROVED BY: MC. Wilson, eng.					

	$ \cap $	TECSULT			ВО	REHO	DL	E L	00) (c	on't)		
PR	OJECT	: Hydrogeological Study			N°: 0	512210	В	OREH	OLE	N°:	PO-03-02C	PA	GE: 2 of 2
1	994	LITHOLOGIC	DATA		INS	TALLATIO	N			SAI	MPLING & TES	TING	
DEPTH (m)	6 DEPTH (m)	72	PTION		GRAPHIC	DETAILS		TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or ROD in %	REMARKS
	107.5				8	2			X	71	17-21-17-16	38	
9	106.76 9.14 100.5 9.39	Idem to SS-06, becoming med Lean CLAY, traces of sand, da Munsell no.), moist, stiff, cohes structure, unoxidized.	rk grey (5YR 4/1 -	-			ı	SS-07A SS-07B	X	83	14-10-6-7	16	PSA Wn
11-	105.23 10.67	Idem to SS-07B, becoming of and dark grey (2.5YR 4/0 - Mu	nedium consistency nsell no.).					SS-08	X	100	3-3-3-4	6	PSA SCIU PSA SA S
12	103.71 12.19	Idem to SS-08.				-13.11		SH-09		100			PSA Wn CIU
	102,18						- 1						4
14-	13.72	(2.5YR 3/0 - Munsell no.), wet, cohesive, massive structure, ur	medium plasticity,		7	Bentonite		SS-10	X	58	1-2-1-2	3	Wn =
15 Indianament	101.12 14.78	SAND with little silt and gravel grey (2.5YR 4/0 - Munsell no.), thickly bedded and blocky struc	wet, non-plastic,			Sand Grad		SS-11	X	58	13-14-16-17	30	SS.
The state of	99.09				: 目	PVC Scree	in						and a
17 11 12 13 14 15 16 17 17 17 17 17 17 17	16.81 97.51	BEDROCK, Calcareous SHALE inclined bedding (60°), some catraces of pyrite.	E, black to grey, alcified fractures with			Open 0.025mm Diam50m Length: 3.0	15m	RC-12		100		53	
uliu	18.39	End of borehole.			E. Orași	18.39	-		+				
	CRIBE ROVE	D BY: F. Gagnon, eng. / S. Lafo D BY: MC. Wilson, eng.	rge, tech.	W	TER L	EVEL MEA	ASU	RED B	Y:	F. G	ignon, eng.		

TECSULT		BORE	HOLE LO	G	
PROJECT: Hydrogeological Study	×	Nº: 0512210	BOREHOLE N°	PO-03-03A	PAGE: 1 of 1
CLIENT: Intersan		SURFACE ELEV	/. (m): 113.401	TUBE ELEV (m)	: 114.215
SITE: St-Nicéphore Landfill Site		COORD. (m):	r: 5076541.93	ROCK DEPTH (m):
FIRM: Forage Comeau		1	X: 392577.41	MAX. DEPTH (n	n): 7.75
EQUIPMENT: Diedrich D-50, donut	hammer	WATER LEVEL 111.39	, ,	E: 24-11-03	HOUR:
SIZE SOIL: HW RO	OCK:	111.35	,	24-11-03	10:25:00
	ATE ENDED: 19-11-03				
SAMPLE TYPE: REM	OLDED SHELBY TUB		RECOVERY	CORE	
LITHOLOGIC		AC: auger cuttings INSTALLATION		V: vane R: i AMPLING & TESTI	refusal ING
DEPTH (m) DEPTH (m) DEPTH (m)		GRAPHIC LOG LOG DETAILS	TYPE & No. SAMPLE	NUMBER OF BLOWS/15 cm	ES PREMARKS REMARKS
FILL: SILT with little fine sand, dark grey (10YR 4/1 - Munsel plasticity, cohesive, massive separate plasticity, cohesive, massive sep	medium density, I no.), moist, medium tructure, unoxidized. sand, traces of nic matter within the yish brown (2.5Y 3/2 tic, noncohesive, cture, unoxidized. s of medium sand, i'R 4/1 - Munsell no.), hassive structure, es of medium sand, unsell no.), wet, sive structure, ry dense, dark grey	Bentonite -5.49 Sand Grade -6.10 PVC Screen Open Ou25mm Dram. Som Length: 1.52 -7.62 7.75		6-11-17-23	5 28 PSM R PSM PSM R PSM
105.65					
DESCRIBED BY: F. Gagnon, eng. / \$. Lafe	orge, tech. W	L ATER LEVEL MEA	SURED BY: F	Gagnon, eng.	
APPROVED BY: MC. Wilson, eng.					

PROJECT: Hydrogeological Study CLIENT: Intersan SITE: St-Nicéphore Landfill Site FIRM: Forage Comeau EQUIPMENT: Diedrich D-50, donut hammer SIZE SOIL: HW ROCK: DATE STARTED: 19-11-03 DATE ENDED: 19-11-03 SAMPLE TYPE: REMOLDED SHELBY TU	WATER LEVEL (111,724	7: 5076544.87 K: 392579.27	TUBE ELEV (m): ROCK DEPTH (m) MAX. DEPTH (m)	-
SITE: St-Nicéphore Landfill Site FIRM: Forage Comeau EQUIPMENT: Diedrich D-50, donut hammer SIZE SOIL: HW ROCK: DATE STARTED: 19-11-03 DATE ENDED: 19-11-03	COORD, (m): Y WATER LEVEL (111,724	7: 5076544.87 K: 392579.27	ROCK DEPTH (m) MAX. DEPTH (m));
FIRM: Forage Comeau EQUIPMENT: Diedrich D-50, donut hammer SIZE SOIL: HW ROCK: DATE STARTED: 19-11-03 DATE ENDED: 19-11-03	WATER LEVEL (K: 392579.27 (m): DATE	MAX, DEPTH (m)	-
EQUIPMENT: Diedrich D-50, donut hammer SIZE SOIL: HW ROCK: DATE STARTED: 19-11-03 DATE ENDED: 19-11-03	WATER LEVEL (111,724	K: 392579.27 (m): DATE	l	42.00
SIZE SOIL: HW ROCK: DATE STARTED: 19-11-03 DATE ENDED: 19-11-03	111,724			: 13.69
DATE STARTED: 19-11-03 DATE ENDED: 19-11-03		•		10:20:00
			24-11-03	10.20.00
SAMPLE TYPE: REMOLDED SHELBY TU				
CANADI INC METUOD. CC. pelitanen CU. abelleutuka		RECOVERY [CORE	
SAMPLING METHOD: SS: split spoon SH: shelby tube LITHOLOGIC DATA	AC: auger cuttings INSTALLATION	RC: rock core	V: vane R: re AMPLING & TESTIN	
SOIL DESCRIPTION	GRAPHIC LOG	TYPE & No. SAMPLE SAMPLE	NUMBER OF SON	REMARKS
113,56 SITE SURFACE FILL: SILT with little fine sand, medium density,				
dark grey (10YR 4/1 - Munsell no.), moist, medium plasticity, cohesive, massive structure, unoxidized. 2.90 Fine SAND with little medium sand, traces of coarse sand, presence of organic matter within the first 8 cm, loose, very dark greyish brown (2.5Y 3/2 - Munsell no.), moist, non-plastic, noncohesive, thickly bedded and blocky structure, unoxidized. 3.68 Fine SAND with little silt, traces of medium sand, medium density, dark grey (5YR 4/1 - Munsell no.), wet, low plasticity, cohesive, massive structure, unoxidized. Fine SAND with some silt, traces of medium sand, dense, dark grey (5YR 4/1 - Munsell no.), wet, non-plastic, noncohesive, massive structure, unoxidized (SM). DESCRIBED BY: F. Gagnon, eng. / S. Laforge, tech.	Bentonite WATER LEVEL MEA	SS-01A 71 SS-01B 69 SS-02A 69 SS-02B 100		PSA Wn

♦ TEC	SULT	BOREHOLE LOG (con't)										
PROJECT: Hy	drogeological Study			N°: 05 1:	2210	BOREH	OLE	N°:	PO-03-03B	PA	GE: 2	of 2
	LITHOLOGIC	DATA		INSTAI	LATION	1		SAI	MPLING & TES	TING		
DEPTH (m) ELEV. (m) DEPTH (m)	SOIL DESCRI	PTION		GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REM	MARKS
106.56 ±106.40			ा त			+	H		-			-
8— 	to SS-03, becoming dark sell no.), wet (SM).					SS-04	X	100	35-50 (10 cm)	R	PSA Wn	Industrialing
9-1 1104.12	CLAY, traces of sand, ve 'R 4/0 - Munsell no.), wet, sive, massive structure, u	low plasticity, noxidized (CL).				SS-05A	X	100	2-1-1-3	2	PSA Wn Wp	minimum
10-4-1	to SS-05A, becoming dar sell no.), medium plasticity	k grey (2.5Y 4/0 - '.				SS-05B	X				Wİ	lun Imm
11 Parliment	CLAY, traces of sand (Cl	.).			-11.28 Sand Grade 00	SH-06					PSA Wn Wp Wl	minimulantanian
13 - Mun	to SH-06, becoming soft, sell no.), medium plasticit	dark grey (2.5Y 4/0 ly.			PVC Screen Open: 0.025mm Diam: 50mm Length: 1.52m	SS-07	X	100	1-2-1-4	3		luntuntuntuntuntunt
199.87 13.69 End o	of borehole.				13.56 13.69							hhhhhhhhh
DESCRIBED BY: APPROVED BY:	F. Gagnon, eng. / S. Lafo MC. Wilson, eng.	rge, tech.	W	ATER LEV	EL MEAS	URED B	Y:	F. Ga	agnon, eng.			Ting.

TECSULT	BOREHOLE LOG									
PROJECT: Hydrogeological Study		N°: 0512210	BOREHOLE N	PO-03-03C	PAGE: 1 of 3					
CLIENT: Intersan		SURFACE ELE	v. (m): 113.720	TUBE ELEV (n	n): 114.479					
SITE: St-Nicéphore Landfill Site		COORD. (m):	Y: 5076548.10	ROCK DEPTH	(m): 22.63					
FIRM: Forage Comeau		1	X: 392580.45		TH (m): 24.29					
EQUIPMENT: Diedrich D-50, donut	hammer	WATER LEVEL		E: 24-11-03	HOUR: 10:15:00					
	CK: HQ	1.2	•	24-(1-03	10.10.00					
	ATE ENDED: 19-11-03	· · · ·		TI 5						
SAMPLE TYPE: REM SAMPLING METHOD: SS: split s	OLDED SHELBY TUB poon SH: shelby tube /	E NO AC: auger cuttings	RECOVERY RC: rock cor		VANE refusal					
LITHOLOGIC		INSTALLATION		SAMPLING & TEST						
DEPTH (m) DEPTH (m) DEPTH (m)	PTION	GRAPHIC LOG	TYPE & No. SAMPLE	NUMBER OF BLOWS/15 cm	or ROD in % or ROD in % and ROD					
FILL: SILT with little fine sand, dark grey (10YR 4/1 - Munsel plasticity, cohesive, massive s Fine SAND with little medium s coarse sand, presence of orgatifirst 8 cm, loose, very dark grey. Munsell no.), moist, non-plast thickly bedded and blocky strusthickly bedded and bloc	medium density, ino.), moist, medium tructure, unoxidized. and, traces of nic matter within the yish brown (2.5Y 3/2 ic, noncohesive, cture, unoxidized. s of medium sand, R 4/1 - Munsell no.), assive structure, es of medium sand, unsell no.), wet, sive structure, y dense, dark grey	ATER LEVEL MEA		9 6-11-17-23 00 70-50 (8 cm)	5 28 PSM					
DESCRIBED BY: E Granes and 10 left	interest to a b	M M	eupen by: 5	0						
APPROVED BY: F. Gagnon, eng. / S. Lafo APPROVED BY: MC. Wilson, eng.	rge, tecn. W/	ATER LEVEL MEA	SURED BY: F.	Gagnon, eng.						

	()	TECSULT	BOREHOLE LOG (con't)											
PRO	JECT	: Hydrogeological Study			N°: 051	2210	BOREH	OLE	N°:	PO-03-03C	PA	GE:	2 o	f 3
		LITHOLOGIC	DATA		INSTA	LLATION	The second		SAI	MPLING & TES	TING	;		
DEPTH (m)	ELEV. (m) DEPTH (m)	SOIL DESCRI	PTION		GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	,	REMA	RKS
	106.72				NO SOL NO SO						1			
8	7.16	Idem to SS-03, becoming dark Munsell no.), wet (SM).	grey (7.5YR 4/0 -				SS-04	X	100	35-50 (10 cm)	R	PS/ Wn	v.	Leadenduntun
6 Innhantanta	105.44 8.28	Lean CLAY, traces of sand, ve (7.5YR 4/0 - Munsell no.), wet, cohesive, massive structure, un	low plasticity,				20.054	\vee	400	0440		PSA Wn		1
nluntu	9.45	Idem to SS-05A, becoming dar Munsell no.), medium plasticity	k grey (2.5Y 4/0 -			Cement- bentonite grout	SS-05A SS-05B		100	2-1-1-3	2	Wn Wp Wi		milmilian
	103.05 10.67	Lean CLAY, traces of sand (CL).					7/2				PSA		Implement
11 mlumlumlum							SH-06					PSA Wn Wp Wi	K2	mhantantan
	101.53 12.19	Idem to SH-06, becoming soft, - Munsell no.), medium plasticit	dark grey (2.5Y 4/0 y.		88		SS-07	X	100	1-2-1-4	3			hadantanha
	100.00 13.72	Idem to SS-07, becoming of me	edium consistency.				SS-08	X	100	1-3-2-3	5			utuutuutuutuu
- 7	98.48 15.24	Idem to SS-08, becoming very (2.5Y 3/0 - Munsell no.), high pl	soft, very dark grey asticity (CL).				\$8-09	X	83	1 (30 cm)- 1-1	2	PSA Wn Wp Wl		باساسياسا ساساسا
DES	97.41 CRIBE ROVEI	D BY: F. Gagnon, eng. / S. Lafo	rge, tech.	w	ATER LEV	/EL MEAS	URED B	Y:	F. G	agnon, eng.				TIP

4	()	TECSULT			ВС	R	EHOL	EL	00) (c	on't)			
PRO	DJECT	: Hydrogeological Study			N°: 0)512	210	BOREH	OLE	N°:	PO-03-03C	PA	GE: 3	of 3
		LITHOLOGIC	DATA		INS	STAL	LATION			SAI	VIPLING & TES	TING		
DEPTH (m)	65. SEPTH (m)	SOIL DESCRI	PTION		GRAPHIC	507	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or ROD in %	REM	MARKS
17	96,35 17,37	SAND with few gravel and silt, (TILL), dense, dark grey (7.5Y) wet, non-plastic, noncohesive, structure, unoxidized (SM). COBBLES and/or BOULDERS gravel, traces of silt (TILL), blace Munsell no.), moist, non-plastic thickly bedded and blocky structure.	R 4/0 - Munsell no.), bedded and blocky with few coarse ck (2.5YR 2.5/0 - ;, noncohesive,	000000000000000000000000000000000000000			i8.90	SS-10		46	16-17-22-43	39	PSA Wn	
	94.21 19.51	COBBLES and/or BOULDERS coarse gravel (TILL), white (7.5 no.), moist, non-plastic, noncoblocky structure, unoxidized.	YR 8/0 - Munsell	00000000000000000000000000000000000000			entonite 20,27 and Grade 0	RC-12		1				
23-11-11-11-11-11-11-11-11-11-11-11-11-11	91.09 22.63 89.43	BEDROCK: Calcareous SHALE black, altered and fractured. Pr fractures.	E, dark grey to esence of calcified)		O) O. Di Le	VC Screen pen.: 025mm iden.: 50mm ength: 3.05m	RC-13		90		12		
- 3		Fad of base's -!-				2	4.29	<u> </u>	Щ			\vdash		
25	24.29	End of borehole.												
	CRIBE ROVEI	D BY: F. Gagnon, eng. / S. Lafo D BY: MC. Wilson, eng.	rge, tech.	W	ATER	LEVE	L MEAS	URED E	Y:	F. G	agnon, eng.			

TECSULT BOREHOLE LOG ROJECT: Hydrogeological Study N°: 0512210 BOREHOLE N°: PO-03-04A PAGE: 1 of 2								
	N°: 0512210		BOREH	OLE N°	PO-03-04A	РА	GE: 1 of 2	
	SURFACE EL	.EV. ((m): 12 :	2.566	TUBE ELEV (m):	123.429	
	COORD. (m):		50754	52 66	RÓCK DEPTH	1 (m):		
					MAX. DEPTH	(m):	14.63	
t hammer):	DAT		НС	DUR: 15:14:00	
]	-			24-11-00		13,14.00	
				[D			
							VANE	
			1.0. 1					
PTION	GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	NUMBER OF BLOWS/15 cm	N blows/30 cm or ROD in %	REMARKS	
ACE						L		
Munsell no.), wet, sive structure,	bentoniti grout	е	SS-01			18	PSA Wn	
CRIBED BY: F. Gagnon, eng. / S. Laforge, tech. WATER LEVEL MEASURED BY: F. Gagnon, eng.								
	spoon SH: shelby tube DATA IPTION ACE s of gravel, medium Munsell no.), wet, ssive structure,	SURFACE EL COORD. (m): t hammer DCK: DATE ENDED: 31-10-03 MOLDED SHELBY TUBE Spoon SH: shelby tube AC: auger cutting CDATA IPTION ACE S of gravel, medium Munsell no.), wet, ssive structure, Comment bentoniting grout Comment bentoniting ground.	SURFACE ELEV. (SURFACE ELEV. (COORD. (m): Y: X: t hammer DCK: DATE ENDED: 31-10-03 AOLDED SHE shelby tube AC: auger cuttings EDATA INSTALLATION ACE Sof gravel, medium Munsell no.), wet, ssive structure, Coment-bentonite grout	SURFACE ELEV. (m): 122 COORD. (m): Y: 50754 X: 3915 t hammer DCK: DATE ENDED: 31-10-03 MOLDED SHELBY TUBE NO RECOVER Spoon SH: shelby tube AC: auger cuttings RC: rd DATA INSTALLATION IPTION ACE Sof gravel, medium Munsell no.), wet, ssive structure, Sof gravel, medium	S of gravel, medium Munsell no.), wet, sive structure, No. 20512210 BOREHOLE N° SURFACE ELEV. (m): 122.566 COORD. (m): Y: 5075458.66 X: 391502.34 WATER LEVEL (m): DAT 116.959 NO RECOVERY AC: auger cuttings RC: rock core INSTALLATION Solution Sol	NY: 0512210 BOREHOLE NY: PQ-03-04A SURFACE ELEV. (m): 122.566 TUBE ELEV (B. COORD. (m): Y: 5075458.66 X: 391502.34 WATER LEVEL (m): DATE: 116.959 DATE: 116.959 NO RECOVERY DATE: DATA INSTALLATION SAMPLING & TES BLOWS/16 cm NUMBER OF BLOWS/16 cm STEPPING A TES BLOWS/16 cm	SURFACE ELEV. (m): 122.566 SURFACE ELEV. (m): 122.566 TUBE ELEV (m): COORD. (m): Y: 5075458.66 X: 391502.34 MAX. DEPTH (m): ACT ENDED: 31-10-03 ACT	

•	TECSULT BOREHOLE LOG (con't) PROJECT: Hydrogeological Study N°: 0512210 BOREHOLE N°: PO-03-04A PAGE: 2 of 2													
PRO	JECT	: Hydrogeological Study			Nº: 05 1	2210	BOREH	OLE	Nº:	PO-03-04A	PA	GE: 2	2 of	2
		LITHOLOGIC	DATA		INSTA	LLATION			SAI	MPLING & TES	TING	}		
DEPTH (m)	ELEV. (m) DEPTH (m)	SOIL DESCRI	PTION		GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or ROD in %	RI	EMARI	(S
	115.57				NAC 1980	1		_						
8 mlmulumlus	114,65 7.92	Idem to SS-01, becoming loose	e.				SS-02	X	42	5-2-5-6	7			ahantanlaa hadaalaalaa
10 milionilium	113.58 8.99	noncohesive, massive structure (SP-SM).	non-plastic,				\$\$-03	X	46	16-32-33-34	65	PSA Wn		
. 1	111,60													1
11—ruhanhanhan	10.97 110.53	Idem to SS-03, becoming dens	e.			-11.58	\$\$-04	X	58	15-22-22-28	44			اساساساس
		Idem to SS-04, becoming dens 4/0 - Munsell no.), moist.	e, dark grey (2.5YR			Bentonite -12.34 Skind Grade 0	\$\$-05	X	50	10-22-24-40	46			
14 Junilanda Junilanda	108.55 14.02 107.94 14.63	Idem to SS-05, becoming very	dense.			PVC Screen Open.: 0.025mm Diam.: 50mm .ength: 1.52m	3 SS-06	X	58	31-44-30-29	74			International Land
15—11													antanahandan da	
16														-
	ESCRIBED BY: F. Gagnon, eng. / S. Laforge, tech. WATER LEVEL MEASURED BY: F. Gagnon, eng. PPROVED BY: MC. Wilson, eng.													

	BORE	HOLE LO	G	
	N°: 0512210	BOREHOLE N°:	PO-03-04C	PAGE; 1 of 3
	SURFACE ELE	/. (m): 122.433	TUBE ELEV (m	n): 123.247
	COORD _e (m):	/· E075452 17	ROCK DEPTH	(m): 25.26
			MAX. DEPTH ((m): 28.35
t hammer				HOUR: 15:10:00
OCK: HQ	112.002	•	24-11-03	13.10.00
			7 5	
				☐ VANE refusai
PTION	GRAPHIC LOG DETAILS	TYPE & No. SAMPLE	NUMBER OF BLOWS/15 cm	or ROD in % or ROD
ACE				2 -
Munsell no.), wet, ssive structure,	ATER LEVEL ME			PSA Win Instruction Instructio
forge, tech. W	ATER LEVEL MEA	ASURED BY: F.	Gagnon, eng.	
	es of gravel, medium Munsell no.), wet, ssive structure,	SURFACE ELEN COORD, (m): thammer OCK: HQ DATE ENDED: 31-10-03 MOLDED SHELBY TUBE NO Spoon SH: shelby tube AC: auger cuttings C DATA INSTALLATION ACE PS of gravel, medium Munsell no.), wet, ssive structure,	N°: 0512210 BOREHOLE N°: SURFACE ELEV. (m): 122.433 COORD. (m): Y: 5075452.17 X: 391509.93 WATER LEVEL (m): DATE 112.002 DATE ENDED: 31-10-03 WOLDED SHELBY TUBE NO RECOVERY EDATA INSTALLATION SO IPTION ACE Boof gravel, medium Munsell no.), wet, ssive structure, SS-01 46	SURFACE ELEV. (m): 122.433 TUBE ELEV (n): 122.432 TU

PROJECT: Hydrogeological Study BOREHOLE LO N°: 0512210 BOREHOLE LO					00) (c	on't)						
PROJECT: Hydrogeological Study N°: 0512210 BORI LITHOLOGIC DATA INSTALLATION							BOREH	OLE	N°:	PO-03-04C	PA	GE: 2 of 3	
		LITHOLOGIC	DATA		INST	ALLATIC	N			SAI	MPLING & TES	TING	
	DEPTH (m)	SOIL DESCRI	PTION		GRAPHIC	DETAILS		TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or ROD in %	REMARKS
	.92	Idem to SS-01, becoming loos	e.		8	8		\$\$-02	V	42	5-2-5-6	7	13
10 10 10 10 10 10 10 10 10 10 10 10 10 1		Fine SAND with little silt, very of (5YR 4/1 - Munsell no.), moist, noncohesive, massive structur (SP-SM). Idem to SS-03, becoming density of the second	non-plastic, e, unoxidized			Cement- bentonite grout		\$\$-04 \$\$-05	X	46 58	16-32-33-34 15-22-22-28	65	PSA Wn
14 114	8.41 1.02 7.49	Idem to SS-05, very dense.						\$\$-06	X	58	31-44-30-29	74	
15 - 14 15 - 14 16 - 1		Silty CLAY, traces of fine sand reddish grey (7.5R 4/1 - Munse plasticity, cohesive, massive st	ell no.), wet, low					SS-07	X	63	8-11-8-7	19	
17 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	4.14	Silty CLAY, traces of sand (CL	·ML).					\$H-08		100			PSA Wn Wp WI CIU
	_	Idem to SH-08, with little sand,	traces of gravel,						X				ie.
	ESCRIBED BY: F. Gagnon, eng. / S. Laforge, tech. WATER LEVEL MEASURED BY: F. Gagnon, eng. PPROVED BY: MC. Wilson, eng.												

TECSULT BOREHOLE LOG (C PROJECT: Hydrogeological Study N°: 0512210 BOREHOLE N°:) (c	on't)				
OJECT	F: Hydrogeological Study			N°: 0512	210	BOREH	OLE	N°: I	PO-03-04C	PA	GE: 3 of 3
	LITHOLOGIC	DATA		INSTAL	LATION			SAN	MPLING & TES	TING	
ELEV. (m) DEPTH (m)	1	PTION		GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or ROD in %	REMARKS
103.7	soft, dark grey (2.5YR 4/0 - Mu	neell no \ wat	Tenta	20 20		SS-09	$\overline{}$	96	1-2-1-1	3	
102.61 19.81	medium plasticity, cohesive, m unoxidized.	assive structure,				SS-10		100	2-1-1-2	2	PSA Wn Wp Wi
101.09 21.34		red (10R 4/2 -			21,64	SS-11	X	100	1 (46 cm)-4	1	PSA Wn Wp Wi
100.17			ИИ								
22.26 98.65	and silt (TILL), very dark grey (no.), moist, non-plastic, noncol bedded and blocky structure, u	2.5YR 3/0 - Munsell lesive, thickly		3	entonite 22,86 and Grade 1 3,47	RC-12		75			PSA Wn
23.78	Notifice (10) 2, while for balla	and traces of silt.		0000	VC Screen pen.: 025mm em.: 50mm ength: 1,52m	RC-13		79			8
97.44 24.99	SILT with little fine gravel and t	races of sand			24,99	PC 14	2	100			-
07.17	(TILL), dark grey (5YR 4/1 - Mu non-plastic, noncohesive, bedd structure, unoxidized. BEDROCK: Calcareous SHALI	nsell no.), moist, ed and blocky			and Grade 1 25,26	RC-14 RC-15	=	100			3 3
	with slaty cleavage (45°).	-, Diack, grapinito,				RC-16		100		73	÷
95.61 26.82	Idem to RC-16, with calcified fr traces of pyrite.	actured zone and		8	entonite	RČ-17		100		35	
											-
94.08 28.35	End of borehole.			2	8,35		1				
1											

▼ TECSULT		BORE	HOLE LO)G				
PROJECT: Hydrogeological Study		N°: 0512210	BOREHOLE N°	PO-03-05A	PAGE: 1 of 1			
CLIENT: Intersan		SURFACE ELEV	v. (m): 11 4.293	TUBE ELEV (m):	114.990			
SITE: St-Nicéphore Landfill Site		COORD. (m):	r: 5076617.98	ROCK DEPTH (n	n):			
FIRM: Forage Comeau			X: 392154.20	MAX: DEPTH (m): 6.25			
EQUIPMENT: Mobildrill P-31, donut	hammer	WATER LEVEL	. ,	E: 24-11-03	HOUR: 09:25:00			
SIZE SOIL: HW RO	CK:	114.000	,	24-11-03	09.25.00			
	ATE ENDED: 05-11-03							
	OLDED SHELBY TUI		RECOVERY [CORE				
SAMPLING METHOD: SS: split s		AC: auger cuttings INSTALLATION		V: vane R: re SAMPLING & TESTII	efusal NG			
DEPTH (m) DEPTH (m) DEPTH (m)	PTION	GRAPHIC LOG DETAILS	TYPE & No. SAMPLE	NUMBER OF SE	REMARKS			
114.29 SITE SURFA								
Fine SAND with little silt, loose Munsell no.), moist, non-plastic massive structure, unoxidized.		<u> </u>	SS-01 8	3 2-2-3-6	5			
massive structure, unoxidized. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(SP-SM).	Bentonile	SS-02 7	5 5-9-13-12 2	22 PSA			
2.59 Fine SAND with few silt, media (5YR 4/1 Munsell no.), moist, r noncohesive, massive structur	ion-plastic,	-3,91 Sand Grade	SS-03 5	8 5-11-17-16 2	_			
109.72 4.57 Idem to SS-03, becoming very grey (2.5Y 3/0 - Munsell no.), n 6 108.19 6.10 Idem to SS-04, becoming loose 108.04 End of borehole.	noist (SM).	PVC Screen Open. 0.025mm Diam. 50m Length 1.53	m I I	9 18-36-21-24 5	PSA - CID -			
DESCRIBED BY: F. Gagnon, eng. / S. Laforge, tech. APPROVED BY: MC. Wilson, eng.								

TECSULT BOREHOLE LOG ROJECT: Hydrogeological Study N°: 0512210 BOREHOLE N°: PO-03-05C PAGE: 1 of 4										
PROJECT: Hydrogeological Study		N°: 0512210	BOREHOLE N°:	PO-03-05C	PAGE: 1 of 4					
CLIENT: Intersan		SURFACE ELEV	/. (m): 114.172	TUBE ELEV (m)	114.967					
SITE: St-Nicéphore Landfill Site		COORD. (m):	r: 5076612.21	ROCK DEPTH (m): 26.47					
FIRM: Forage Comeau			X: 392160.09	MAX. DEPTH (n	n): 28.04					
EQUIPMENT: Mobildrill P-31, donut	hammer	WATER LEVEL (24-11-03	HOUR: 09:30:00					
	ck: HQ		•	v	00.00.00					
	ATE ENDED: 05-11-03 OLDED SHELBY TUB	E NO	RECOVERY	CORE [] VANE					
SAMPLING METHOD: SS: split s	poon SH: shelby tube	AC: auger cuttings	RC: rock core		refusal					
LITHOLOGIC	DATA	INSTALLATION	! S/	AMPLING & TEST	ING					
SOIL DESCRI		GRAPHIC LOG LOG DETAILS	TYPE & No. SAMPLE RECOVERY	NUMBER OF S	REMARKS					
Fine SAND with little silt, loose Munsell no.), moist, non-plasti massive structure, unoxidized. 112.65 1.52 Idem to SS-01, becoming med (2.5YR 4/6 - Munsell no.), wet 2 111.58 2.59 Fine SAND with few silt, media (5YR 4/1 Munsell no.), moist, in noncohesive, massive structure.	ium dense, red (SP-SM).		SS-01 83		5 PSA Wn					
58.03										
DESCRIBED BY: F. Gagnon, eng. / S. Lafe APPROVED BY: MC. Wilson, eng.	CRIBED BY: F. Gagnon, eng. / S. Laforge, tech. WATER LEVEL MEASURED BY: F. Gagnon, eng. ROVED BY: MC. Wilson, eng.									

<	TECSULT BOREHOLE LOG (con't) PROJECT: Hydrogeological Study N°: 0512210 BOREHOLE N°: PO-03-05C PAGE: 2 of 4														
PRÓJ	ECT	: Hydrogeological Study	0		T	N°: 05 12	2210	BOR	HO	LE	N":	PO-03-05C	PA	GE: 2	of 4
LITHOLOGIC DATA INSTALLATION									SAN	VIPLING & TES	TING				
10	(m) HI M	SOIL DESCRI	PTION			GRAPHIC LOG	DETAILS	TYPE&	No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REM	MARKS
1 1	08.07 6.10 07.83	Idem to SS-04, becoming loose						\$8-0	5A	X	79	8-6-3-6	9		
10000	5.34	Silty CLAY with little sand, med very dark grey (2.5Y 3/0 - Mun medium plasticity, cohesive, munoxidized.	sell no.), moist,					SS-0	5B	X				PSA Wn	moton moton
	06.55 7.62	Idem to SS-05B, with traces of reddish grey (7.5R 3/1 - Munse	sand, very stiff, dark sli no.).					SS-) ()	<u> </u>	63	5-9-18-14	27		and an transfer of an decolar
9 10 9 10 11 11 11 11 11 11 11 11 11 11 11 11)5.03).14	Idem to SS-06, becoming soft.						\$5-) /	X	67	1-2-1-2	3		fankuitantantuuk
-	03.50 0.67	Lean CLAY, traces of sand (CL).			529 529 t	Cement- sentonite rout	SH.	08					PSA Wn Wp Wi CIU	
10	101.98 12.19 Idem to SH-08, with little sand, traces of clay, becoming very stiff. 101.46 12.71 Fine SAND, little medium sand and traces of clay, becoming very stiff.							\$\$-0	/		98	2-4-24-42	28		
	ESCRIBED BY: F. Gagnon, eng. / S. Laforge, tech. WATER LEVEL MEASURED BY: F. Gagnon, eng. PPROVED BY: MC. Wilson, eng.														

	\cap	TECSULT			BOR	EHO	LE L	00) (c	on't)			
PRO	DJECT	: Hydrogeological Study			№: 0512	2210	BOREH	OLE	Nº:	PO-03-05C	PA	GE: 3	of 4
		LITHOLOGIC	DATA		INSTAL	LATION			SAN	MPLING & TES	TING		
ОЕРТН (m)	ELEV. (m) DEPTH (m)	SOIL DESCRI	PTION		GRAPHIC LOG	DETAILS	TYPE &	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	ŘEM	IARKS
	100.17			W277	BN 98			L					
15	99.31 14.86	unoxidized. SAND with some silt, few clay (TILL), very dark grey (2.5YR 3	and little gravel				RC-10		56				I material training
16		non-plastic, noncohesive (SC-S	6M).				RC-11		45			PSA Wn Wp Wi	lemlemlem
111	97.79	 			88			Ц					1
17	16.38	Idem to RC-11.					RC-12		33				ملسماسياسياد
	96.26 17.91	COBBLES and/or BOULDERS, of silt (TILL), dark grey (7.5YR wet, non-plastic, noncohesive, structure, unoxidized.	4/0 - Munsell no.),										Treatment and and an included and an included and an included
	94.66 19.51						RC-13		13				matampani
20	19.51	SILT with few coarse gravel and dark grey (5YR 4/1 - Munsell no noncohesive, bedded and block unoxidized.), wet, non-plastic,				RC-14		7				ministration
1			ş										=
71-6	93.14 21.03	Idem to RC-14, with few sand a cobbles, becoming reddish blac Munsell no.), thickly bedded and	k (10R 2.5/1 -				RC-15		40				almitmina
DES	CRIBE	D BY: F. Gagnon, eng. / S. Lafo	rge, tech	///// \/\!	ATER LEV	EL MEAS	ILBED B	Y.	F G	gnon, eng.	_1		
	ROVE		g-1	4 47		/\\				anon eng.			

()	TECSULT BOREHOLE LOG (con't) PROJECT: Hydrogeological Study N°: 0512210 BOREHOLE N°: PO-03-05C PAGE: 4 of 4												
PROJECT	⊓: Hydrogeological Study			N°: 0512	2210	BOREH	OLE	N":]	PO-03-05C	PA	GE: 4	of ·	4
	LITHOLOGIC	DATA		INSTAL	LATION			SAN	VIPLING & TES	TING			
DEPTH (m) LEEV. (m) DEPTH (m)		NOIT		GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	RE	MARKS	5
24	SAND with few silt and gravel, becoming reddish black (7.5R: low plasticity, cohesive, thickly structure. Idem to RC-16, becoming dusk Munsell no.). Idem to RC-17, becoming dark 3/1 - Munsell no.), non-plastic, and dark grey (7.5YR 2.5/0 - Munsenon-plastic, noncohesive, beddistructure, unoxidized. BEDROCK: Calcareous SHALI with slaty cleavage (45°) and cone from 26.80 to 28.04 m.	2.5/0 - Munsell no.), bedded and blocky bedded and blocky red (10R 3/2 - reddish grey (10R noncohesive. with little coarse little gravel (till), very ell no.), wet, ed and blocky black, graphitic, alcified fractured			21,95 Bantonite 23,62 Sand Grade 24,31 24,31 27/C Screen Den.: Den.: Den.: Somm Diam.: 50mm Diam.: 50mm Diam.: 50mm 227,36	RC-17 RC-18 RC-19	3Y:	63 69 100	agnon, eng.		PSA Wn		material and and and and another lands and another lands and and another lands another lands and another lands another lands and another lands another lands and another lands and another lands and another lands
APPROVE			• •		,,,_,,	, (

TECSULT		BOR	EHOLE	LO	G		
PROJECT: Hydrogeological Study		N°: 0512210	BOREHO	DLE N°:	PO-03-06A	PAGI	≣: 1 of 2
CLIENT: Intersan		SURFACE ELE	V. (m): 128	.786	TUBE ELEV (n	n):	129.766
SITE: St-Nicéphore Landfill Site		COORD. (m):	Y: 507702	4.05	ROCK DEPTH	(m):	
FIRM: Forage Comeau			X: 39250	11	MAX. DEPTH ((m):	20.12
EQUIPMENT: Mobildrill P-31, donut	hammer	WATER LEVEL 112.90		DATE	24-11-03	HOU	R: 11:10:00
	CK:]			-		7.0000
	ATE ENDED: 22-10-03						
	OLDED SHELBY TUE		RECOVER				ANE
SAMPLING METHOD: SS: splits		AC: auger cutting: INSTALLATIO			V: vane R:	refusa TING	11
DEPTH (m) DEPTH (m) DEPTH (m)		GRAPHIC LOG DETAILS	1	SAMPLE RECOVERY		N blows/30 cm or RQD in %	REMARKS
128.79 SITE SURFA							
FILL: Fine SAND, traces of sill brown (7.5YR 4/2 - Munsell no noncohesive, massive and graunoxidized. 1 2 3 3.36 FILL: SILT, traces of fine sand reddish grey (10R 4/1 - Munsel plasticity, cohesive, bedded states of the sand reddish grey (10R 4/1 - Munsel plasticity). 5 FILL: Fine SAND, medium det 4/1 - Munsel no.) moist, non-	, very stiff, dark ell no.), moist, low ructure, unoxidized.		\$\$-01	63		13	minimi meteoritan lantan lanta
bedded structure, unoxidized. 7 120.86 8 7.93 FILL: SILT, traces of fine sand (5YR 4/1 - Munsell no.), moist cohesive, massive structure, unoxidized.	plastic, noncohesive, , stiff, dark grey , low plasticity, moxidized.	Cement- bentonite grout	SS-02B				
DESCRIBED BY: F. Gagnon, eng. / S. Lat APPROVED BY: MC. Wilson, eng.	orge, tech. V	VATER LEVEL ME	азикей В	r: F.	Gagnon, eng.		

1	()	TECSULT		BOR	EHOI	E L	OG	(c	on't)				
PRO	JECT	: Hydrogeological Study			Nº: 0512	2210	BOREH	OLE	N°:	PO-03-06A	PA	GE: 2	of 2
		LITHOLOGIC	DATA		INSTAL	LATION	T		SAI	MPLING & TES	TING		
DEPTH (m)	ELEV. (m)	SOIL DESCRI	PTION		GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REM	IARKS
10-							SS-03	X	54	6-5-4-6	9		
11-	118.12 10.67	Idem to SS-03.					SS-04	X	0	3-5-7-7	12		
	116.60 12.19 115.53	Idem to SS-04, becoming dark 4/1 - Munsell no.). Thin sand la	reddish grey (10R ayer at 12.50 m.				SS-05	X	69	4-4-8-7	12		
14-	13.26	FILL: SILT, very stiff, dark redo Munsell no.), moist, low plastic massive structure, unoxidized.				-14,48	SS-06	X	67	5-7-9-12	16		
15	14.79	FILL: Well graded SAND, very - Munsell no.), moist, non-plast massive structure, unoxidized. organic matter at 15.78 m.	tic, noncohesive,		¥	Bentonite	SS-07	X	85	19-33-53- 50 (8 cm)	86		
17-	112.03 16.76	Idem to SS-07, traces of wood greyish brown (2.5Y 4/2 - Mun:	, becoming dark sell no.).			Sand Grade (SS-08	X	56	41-45- 50 (13 cm)	R	>	in the second
18-	17.75 108.98 19.81	SAND with traces of silt, very of Munsell no.), moist, non-plastic massive structure, unoxidized	c, noncohesive, (SP-SM).			PVC Screen Open.: 0.025mm Diam.: 50mm Length: 1.52r	SS-09	X	63	41-48- 50 (8 cm)	R	PSA Wn	
DES	108.67 20.12	reddish grey (7.5Y 4/1 - Munse	ell no.).	W	ATER LEV	20.12 /EL MEAS	SURED (BY:	F. G	agnon, eng.			

		BORE	HOLE LO	G				
PROJECT: Hydrogeological Study		N°: 0512210	BOREHOLE N°:	PO-03-06C	PAGE: 1 of 3			
CLIENT: Intersan		SURFACE ELEV	/. (m): 128.611	TUBE ELEV (n	n): 129.473			
SITE: St-Nicéphore Landfill Site		COORD. (m):	': 5077022.16	ROCK DEPTH	(m): 31.64			
FIRM: Forage Comeau			X: 392508.29	MAX, DEPTH ((m): 33.22			
EQUIPMENT: Mobildrill P-31, donut	hammer	WATER LEVEL (112.313	WATER LEVEL (m): DATE: HOUR: 112.313 24-11-03					
	ock: HQ		•	24-11-00	11:10:00			
	ATE ENDED: 22-10-03		DECOMEDY		MANE			
SAMPLING METHOD: SS: split s		AC: auger cuttings INSTALLATION			M VANE refusal			
LITHOLOGIC	LITHOLOGIC DATA				TING			
DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m)		GRAPHIC LOG	TYPE & No. SAMPLE RECOVERY	NUMBER OF BLOWS/15 cm	N blows/30 cm or ROD in % and and and and and and and and and and			
FILL: Fine SAND, traces of sill brown (7.5YR 4/2 - Munsell no noncohesive, massive and graunoxidized. 3.36 FILL: SILT, traces of fine sand reddish grey (10R 4/1 - Munse plasticity, cohesive, bedded st plasticity, cohesive, bedded st 4/1 - Munsell no.), moist, non-bedded structure, unoxidized. 7.93 FILL: SILT, traces of fine sand (5YR 4/1 - Munsell no.), moist, non-bedded structure, unoxidized.	t, medium dense, b.), moist, non-plastic, anular structure, l, very stiff, dark ell no.), moist, low tructure, unoxidized. nse, dark grey (10YR plastic, noncohesive, t, stiff, dark grey t, low plasticity,		\$\$-02A \$\$-02B		20			
0 Innlumlum			SS-03 54		9			
DESCRIBED BY: F. Gagnon, eng. / S. Lat APPROVED BY: MC. Wilson, eng.	orge, tech.	VATER LEVEL MEA	ASURED BY: F.	Gagnon, eng.				

	TECSULT	BOREHOLE LOG (con't)								
ROJECT	: Hydrogeological Study		N°: 0512210 BOREHOLE N°: PO-03-06C PAGE: 2 of INSTALLATION SAMPLING & TESTING						SE: 2 of 3	
	LITHOLOGIC	DATA	INSTA	LLATION			SAN	IPLING & TEST	ING	
ELEV. (m) 19 DEPTH (m)	SOIL DESCRI	PTION	GRAPHIC	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REMARKS
117.94	Idem to SS-03.				SS-04	X	0	3-5-7-7	12	
116.42	Idem to SS-04, becoming dark 4/1 - Munsell no.). Thin sand la	reddish grey (10R ayer at 12,50 m.		Cement- bentonite grout	SS-05	X	69	4-4-8-7	12	
	FILL: SILT, very stiff, dark red Munsell no.), moist, low plastic massive structure, unoxidized	city, cohesive, 💢			SS-06	X	67	5-7-9-12	16	2
	FILL: Well graded SAND, very - Munsell no.), moist, non-plas massive structure, unoxidized organic matter at 15.78 m.	tic, noncohesive, 🛛 🔯			SS-07A SS-07E	1/\	85	19-33-53- 50 (8 cm)	86	
111.8 16.76	Idem to SS-07, traces of wood greyish brown (2,5Y 4/2 - Mur	I, becoming dark sell no.).			SS-08	X	56	41-45- 50 (13 cm)	R	Ē
17.75	SAND with traces of silt, very Munsell no.), moist, non-plast massive structure, unoxidized	c, noncohesive,			SS-09	×	63	41-48- 50 (8 cm)	R	PSA Wn
108.8 19.81	Idem to SS-09, becoming dark 4/1 - Munsell no.).	k reddish grey (7.5Ÿ			SS-10	X	50	21-41-50- 50 (8 cm)	91	a a
7107.6 20.92	SILT with few sand, hard, dar Munsell no.), wet, non-plastic massive structure (ML).	k grey (5YR 4/1 - noncohesive,			SS-11	X	46	25-17-16-11	33	
22.4	25	2,5YR 4/0 - Munsell 🏻 🐉			SS-12	×	42	35-41-39-36	80	PSA

TECSULT BOREHOLE LOG (con't)												
PROJECT	: Hydrogeological Study			יא: 051	2210 E	BOREH	OLE	N°: I	PO-03-06C	PA	GE: 3	of 3
	LITHOLOGIC	DATA		INSTA	LLATION			SAñ	APLING & TES	TING		
DEPTH (m) ELEV. (m) DEPTH (m)	1	PTION		GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REM/	ARKS
105.28	8		9928	8 8	1		×				Wn	
24-103.9				2 2	23.77	RC-13A RC-13B	_	0 100	50 (3 cm)	R		# Hundundundundundundundundundundundundundu
25 103.0		non-plastic,				RC-13C	IT	26			PSA Wn	Implimitant
26 mlmulm					Bentonite	RC-14		18				olionlandanlandanlandanlandanlandanlandan
100.5	GRAVEL with few silt (TILL), to dark grey (2.5YR 4/0 - Munsell non-plastic, noncohesive.	no.), wet,				RC-15		67				
99.96	, ,,					RC-16		63			DC A	
29- 29- 99.04	(TILL), dark grey (10YR 4/1 - Not plasticity, cohesive (GM-G	Aunsell no.), moist,			-23.80 Sand Grade 1	RC-17		58			PSA Wn Wp WI Gs	100
29.57 30 98.43 30.18	3	(TILL) dock area			-29.72	RC-18		25				-
31 - mpm	(2.5YR 4/0 - Munsell no.), moi: noncohesive.	st, non-plastic,			PVC Screen Open : 0.025mm	RC-19		43				
31.64 32	BEDROCK: Calcareous SHAL with slaty cleavage (15°), calci	te nodule, calcified	<i>(XXXX</i>)		Diam.: 50mm Length: 3,05m	RC-20	Ħ	0				_
ունասեսուհ	fractured zone from 32.30 to 3	2.90 m.			-32.77		$\ $	55		30		
33— _{95.39}					33.22		${f \mu}$	-		+		
34-4	End of porenoie.											_
Indiada												
35												-
36-												
		lanca dash		WATER!	(V/E) NAF A 6	STIPE D	Bv.		Sagnon, eng.			=
DESCRIE APPROV	BED BY: F. Gagnon, eng. / S. Laf /ED BY: MC. Wilson, eng.	orge, tecn.	٧	VAICKL	VEL MEAS	VINED	ו נו	r. C	segnon, eng.			

TECSULT	BOREHOLE LOG								
PROJECT: Hydrogeological Study		Nº: 051221 0	BOREHOLE N°:	PO-03-07A P	AGE: 1 of 1				
CLIENT: Intersan		SURFACE ELEV	. (m): 111.432	TUBE ELEV (m):	112.144				
SITE: St-Nicéphore Landfill Site		COORD. (m):	: 5076772.93	ROCK DEPTH (m):				
FIRM: Forage Comeau			X: 392922.49 MAX. DEPTH (m):						
EQUIPMENT: Diedrich D-50, donut	hammer	WATER LEVEL (111.064		E: ⊦ 24-11-03	14:46:00				
GILL OF ILL	OCK;	111.004		24 11 00					
	ATE ENDED: 11-11-03								
	OLDED SHELBY TUB		RECOVERY [CORE					
SAMPLING METHOD: SS: split LITHOLOGIC		AC: auger cuttings INSTALLATION	RC: rock core	V: vane R: re AMPLING & TESTIN					
DEPTH (m) DEPTH (m) DEPTH (m)		GRAPHIC LOG LOG DETAILS	TYPE & No. SAMPLE	NUMBER OF SOME STATE OF SOME S	្ល g REMARKS ច				
111.43 SITE SURF,				-					
Fine SAND with few silt, trace red (2.5YR 4/6 - Munsell no.), noncohesive, massive structu	moist, non-plastic,	<u> </u>	SS-01 5	8 1-1-2-3 3	3				
1—110,37 Fine SAND with some silt, de - Munsell no.), moist, non-pla massive structure, unoxidized	stic, noncohesive,	Bentonila	SS-02 6	9 7-15-19-18 3	Wn - 4 CID PSA -				
108.84 2.59 Fine SAND with traces of silt, grey (5YR 4/1 - Munsell no.), noncohesive, massive structum 3.15 Silty CLAY, traces of sand, d. Munsell no.), moist, low plast massive structure, unoxidized	moist, non-plastic, ire, unoxidized. ark grey (5YR 4/1 - city, cohesive,	-2.95 Sand Grade	90 SS-03B 4	7 12-7-8-11 1 8	5 PSA Wn				
106.86 4.57 Idem to SS-03B, becoming v 5-106.20 5.23 End of borehole.	ery stiff.	PVC Scree Open: 0.025mm Diam: 50m Length: 1.5	ura i2m	59 5-7-14-17 2	21				
	forms took	NATED LEVEL MC	ASIDED BY: 5	Gagner err					
DESCRIBED BY: F. Gagnon, eng. / S. La APPROVED BY: MC. Wilson, eng.	DESCRIBED BY: F. Gagnon, eng. / S. Laforge, tech. WATER LEVEL MEASURED BY: F. Gagnon, eng.								

TECSULT	BOREHOLE LOG							
PROJECT: Hydrogeological Study		Nº: 05122	210	BOREHO	DLE N°	PO-03-07C	PAC	GE: 1 of 3
CLIENT: Intersan		SURFACE	ELEV.	(m): 111	.176	TUBE ELEV (n	n):	111.940
SITE: St-Nicéphore Landfill Site		COORD. (100	507676	30.75	ROCK DEPTH	(m):	15.52
FIRM: Forage Comeau			X: 392925.34 MAX. DEPTH (m): 1					
EQUIPMENT: Diedrich D-50, donut	hammer	WATER L	EVEL (r 8.335	n):	DAT	E: 24-11-03	НО	UR: 14:50:00
	CK: HQ] "				211100		11.00.00
					.v. [T cone I	<u>~1</u>	L/A & IC
SAMPLE TYPE: REM SAMPLING METHOD: SS: split s	AC: auger c		RECOVER	ck core		refu:	VANE sal	
LITHOLOGIC	INSTALL				AMPLING & TES			
DEPTH (m) ELEV. (m) DEPTH (m) DEPTH (m)	PTION] GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE RECOVERY	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REMARKS
111.18 SITE SURFA Fine SAND with few silt, traces					-		1	
red (2.5YR 4/6 - Munsell no.), noncohesive, massive structur	moist, non-plastic,			SS-01	5	8 1-1-2-3	3	
1—110.11 1.07 Fine SAND with some silt, der - Munsell no.), moist, non-plas massive structure, unoxidized	stic, noncohesive,			SS-02	6	9 7-15-19-18	34	Wn CID PSA
3 Fine SAND with traces of silt, grey (5YR 4/1 - Munsell no.), a noncohesive, massive structure (108.03) 3.15 Silty CLAY, traces of sand, da Munsell no.), moist, low plastic massive structure, unoxidized	moist, non-plastic, re, unoxidized. rk grey (5YR 4/1 - city, cohesive,	- 100 to be	ement- intonita out	AE0-22 BE0-22		7 12-7-8-11 8	15	PSA Wn
106.61 105.54 Lean CLAY, traces of sand, so 4/0 - Munsell no.), wet, mediu	oft, dark grey (7.5YR			SS-04	6	9 5-7-14-17	21	The first feet for the feet feet feet feet feet feet feet
DESCRIBED BY: F. Gagnon, eng. / S. Lat APPROVED BY: MC. Wilson, eng.		NATER LEVE	EL MEA	SURED E	BY: F	. Gagnon, eng.		

ı,	$\overline{\cap}$	TECSULT		BOREHOLE LOG (con't)									
PRO	DJECT	: Hydrogeological Study			№: 051 :	2210	BOREH	OLE	N°:	PO-03-07C	PA	GE: 2	of 3
		LITHOLOGIC	DATA		INSTAL	LATION			SAF	MPLING & TES	TING	,	
DEPTH (m)	ELEV. (m)	SOIL DESCRIF	MOIT		GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REI	MARKS
-	100.10	massive structure, unoxidized,		/////	88	Cement-	1				Т		
7-						Cement- bentonite grout	SS-05	\mathbb{X}	100	1-1-2-1	3	PSA Wn	Josephinibani
8-	103.56 7.62	Idem to SS-05, becoming stiff, 3/1 - Munsell no.).	very dark grey (5YR				SS-06	X	80	3-4-6-8	10		and an Landau foot
9							SH-07		92				olive done from Landing
10-	100.51 10.67	Idem to SH-06, becoming soft, (7.5YR 3/0 - Munsell no.).	very dark grey		CACI CACI			V	100	4004		PSA	
11-	99.44 11.74	Idem to SS-08, becoming, very	stiff, dark grev				SS-08	\triangle	100	1-2-2-4	4	PSA Wn	
12		(7.5YR 4/0 - Munsell no.), mois	et (CL).			-12.19 Bentonite	SS-09	X	79	5-7-12-28	19	PSA Wn Wp Wi	
DES	13.84	Coarse GRAVEL with few fine dense, black (2.5YR 2.5/0 - Mu noncohesive, bedded and block unoxidized. ED BY: F. Gagnon, eng. / S. Lafe	nsell no.), moist, ky structure,	v		-13.41 Sand Grade 0	SS-10	Y:	21 F. G	50 (13 cm)	R		

TECSULT		BOREHOLE LOG (con't)								
PROJECT: Hydrogeological Study			N°: 0512	2210 E	BOREH	OLE	N°:	PO-03-07C	PA	GE: 3 of 3
LITHOLOGIC	DATA		INSTAL	LATION		_	SAN	MPLING & TES	TING	
DEPTH (m) DEPTH (m) DEPTH (m)	PTION		GRAPHIC	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REMARKS
97.18 COBBLES and/or BOULDER gravel, little fine gravel, traces (2.5YR 2.5/0 - Munseli no.), n thickly bedded and blocky structure, 96.24 15—14.94 GRAVEL with little sand, trace (2.5YR 2.5/0 - Munsell no.), n bedded and blocky structure, 95.66 15.52 BEDROCK: Calcareous SHA black, inclined bedding (45°), fractures with traces of pyrite.	of silt (TILL), black noist, noncohesive, acture, unoxidized. es of silt (TILL), black noist, noncohesive, unoxidized (GP-GM).			PVC Screen open.: 0.025mm olam.: 50mm .ength: 3.05m	RC-11 RC-12 RC-13		70 92 91 81			PSA Wn
17—94.01 -17.17 End of horehole				-17,07 17,17	RC-15		100		78	
DESCRIBED BY: F. Gagnon, eng. / S. La	orge, tech.	W	ATER LEV	EL MEASI	JRED F	**************************************	F. G.	agnon, eng.		tion from from from from from from from from

TECSULT	BOREHOLE LOG								
PROJECT: Hydrogeological Study		Nº: 0512210	BOREHOLE	N°: P(O-03-08A	PAG	9E: 1 of 1		
CLIENT: Intersan		SURFACE ELEV	/. (m): 110.27	8 т	UBE ELEV (m	1):	111.247		
SITE: St-Nicéphore Landfill Site		COORD. (m):	/: 5076386.0	a R	OCK DEPTH	(m):			
FIRM: Forage Comeau		1	X: 393201.87 MAX. DEPTH (m):						
EQUIPMENT: Mobildrill P-31, donut	hammer	WATER LEVEL 105.307	· •	ATE: 2 4	4-11-03	HO	UR: 14:10:00		
	CK:]							
	ATE ENDED: 27-10-03 OLDED SHELBY TUE	RE MO	RECOVERY	П.	CORE [/ANE		
SAMPLING METHOD: SS: split s	poon SH: shelby tube	AC: auger cuttings	RC: rock c	ore \	V: vane R:	refus			
LITHOLOGIC	DATA	INSTALLATION		$ \Gamma$	PLING & TEST	TING			
DEPTH (m) DEPTH (m) OEPTH (m)	PTION	GRAPHIC LOG	TYPE & No.	≳ &	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REMARKS		
110,28 SITE SURFA Fine SAND, traces of silt, trace			+-+	_					
dense, yellowish brown (10YR moist, non-plastic, noncohesiv granular structure, unoxidized 1 2 3 107.23 3.05 Idem to SS-01, becoming dark 4/2 - Munsell no.) (SP-SM).	5/4 - Munsell no.), e, massive and (SP-SM).	Cement-bentonite grout -2.39 Bentonite -3.35 Sand Grade -4.12		50	3-5-7-8 3-6-7-8	12 \\	PSA PSA		
Munsell no.).		Diam. 59m Length: 1.50 -5.64 5.79	SS-03	58	7-9-11-11	20			
End of potentials.	5.79 End of borehole.				IDOD ARG				
APPROVED BY: MC. Wilson, eng.	ESCRIBED BY: F. Gagnon, eng. / S. Laforge, tech. WATER LEVEL MEASURED BY: F. Gagnon, eng. PPROVED BY: MC. Wilson, eng.								

TECSULT	BOREHOLE LOG									
PROJECT: Hydrogeological Study		N°: 0512210	BOREHOLE N°:	PO-03-08C	PAGE: 1 of 4					
CLIENT: Intersan		SURFACE ELEV	/. (m): 110.309	TUBE ELEV (m):	111.238					
SITE: St-Nicéphore Landfill Site		COORD. (m):	r: 5076391.36	ROCK DEPTH (n	n): 16.84					
FIRM: Forage Comeau			X: 393206.27	MAX, DEPTH (m)): 18.24					
EQUIPMENT: Mobildrill P-31, donut	: hammer	WATER LEVEL	• •		HOUR:					
SIZE SOIL: HW RO	ock: H Q	102.803	3	24-11-03	14:05:00					
	ATE ENDED: 27-10-03									
SAMPLE TYPE: REM		RECOVERY [CORE 🔟							
SAMPLING METHOD: SS: split s	AC: auger cuttings INSTALLATION		V: vane R: re	efusal NG						
DEPTH (m) ELEV. (m) DEPTH (m) DEPTH (m)	PTION	GRAPHIC LOG DETAILS	TYPE & No. SAMPLE SAMPLE RECOVERY		REMARKS					
110.31 SITE SURFA Fine SAND, traces of silt, trace			L.	2						
dense, yellowish brown (10YR moist, non-plastic, noncohesiv granular structure, unoxidized 3 — 107.26 3.05 Idem to SS-01, becoming dark 4/2 - Munsell no.) (SP-SM).	greyish brown (2.5Y		SS-02 46	3-6-7-8 13	2 PSA Wn					
APPROVED BY: MC. Wilson, eng.	SCRIBED BY: F. Gagnon, eng. / S. Laforge, tech. WATER LEVEL MEASURED BY: F. Gagnon, eng. PROVED BY: MC. Wilson, eng.									

(\bigcap	TECSULT		BOR	EHO	LE L	00	3 (c	on't)				
PRO	JECT	: Hydrogeological Study			N°: 0512	2210	BOREH	OLE	N°:	PO-03-08C	PA	GE: 2 of	4
		LITHOLOGIC	DATA		INSTAL	LATION		SAMPLING &			TING		
1 1	ELEV. (m)	SOIL DESCRII	PTION		GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REMARK	S
-	106.3			ान	88	<u> </u>					\vdash		-
2 5		Silty CLAY, traces of fine sand, consistency, dark greyish brow. Munsell no.), moist, low plasticity bedded structure, unoxidized. Lean CLAY, traces of sand, me very dark grey (5YR 3/1 - Munsterly, cohesive, massive structure, unoxidized. Idem to SS-04B, becoming of silvery dark grey (2.5Y 3/0 - Munsterly, cohesive, massive structure), and the silvery dark grey (2.5Y 3/0 - Munsterly).	medium n (2.5Y 4/2 - ty, noncohesive, dium consistency, ell no.), moist, low ucture, unoxidized. oft consistency and ell no.) (CL).			ement- entonite rout	SS-04A SS-04B		92	7-9-11-11	3	PSA Wn Wp Wi Gs	<u>Latendan de antres la cata a la cata de /u>
APPR			ge, tecn.	VVA	TER LEVE	L MEASU	JKFD B,	Υ.	F. Ga	gnon, eng.			

		TECSULT			В	OR	EHOI	LE L	00	∋ (c	on't)				
PRO	OJEC.	T: Hydrogeological Study			Nº:	0512	2210	BORE	HOLE	N°:	PO-03-08C	PA	GE: 3	of	4
	T Yes	LITHOLOGIC	DATA		IN	STAL	LATION			SAI	MPLING & TES	TING			_
DEPTH (m)	ELEV. (m)	1	PTION		GRAPHIC	FOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REM	MARK	s
	100.8			11111	W	W		+	-	_		-			
10	9.45	Idem to SS-05, becoming very plasticity.	soft and of medium					SS-06	X	100	1 (30 cm)- 1-1	1			and market from the second
111-	99.28	SILT with few gravel (TILL), tra- stiff, very dark grey (5YR 3/1 - I non-plastic, noncohesive, bedd structure, unoxidized. Medium SAND (TILL), with few very dense, very dark grey (2.5 non-plastic, noncohesive, mass unoxidized.	Munsell no.), moist, is ed and blocky sailt and fine sand, Y 3/0 - Munsell no.).				11.28	SS-07A	X	54	43-7-17-32	24			the colonistics of the colonistics of
12-	98.08 12.23 97.88 12.43 97.51	medium dense, dark grey (7.59) no.), moist, non-plastic, noncoh blocky structure, unoxidized. SILT with few sand (TILL), stiff, (7.5YR 3/0 - Munsell no.), moist cohesive, bedded and blocky st Coarse SAND with few gravel (dense, very dark grey (2.5Y 3/0 bedded and blocky structure, ur	R 2.5/0 - Munsell esive, bedded and very dark grey i, low plasticity, ructure, unoxidized / TILL), medium - Munsell no.), noxidized. IVEL (TILL), very no.), moist, low			Ве	entonite	SS-08A SS-08B SS-08C RC-09		67	14-13-13-12	26			and a continue of the continue
14-11-11-19-11-11-19-11-11-11-11-11-11-11-	95.68						3.72 nd Grade 1	RC-10		28				-	in Lincolnin him him him
DESC APPR		D BY: F. Gagnon, eng. / S. Lafor D BY: MC. Wilson, eng.	ge, tech.	WA.	TER I	LEVE	L MEASU	JRED B	Y:	F. Ga	gnon, eng.				

	()	TECSULT			BOR	EHOL	EL	00	€ (c	on't)		
PRO	OJECT	: Hydrogeological Study			№: 051	2210	BORE	KOLE	Nº:	PO-03-08C	PA	GE: 4 of 4
	T.,	LITHOLOGIC	DATA		INSTA	LLATION			SAI	MPLING & TES	TING	
DEPTH (m)	ELEV. (m)		PTION		GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or ROD in %	REMARKS
15—	94.16 16.15 93.47 16.84	GRAVEL with some sand, few very dark grey (2,5Y 3/0 - Mun- non-plastic, noncohesive, mass structure, unoxidized (GM).	sell no.), moist, sive and blocky TILL), traces of fine 0 - Munsell no.), sive and blocky			PVC Screen Dpen.; 0.025mm Diam.; 50mm .ength; 3.05m	RC-11 RC-12 RC-14 RC-15	WS	555 64 83 0		N bio	PSA Wn
1 1.	92.07					18.06	RC-16		100			- 12 - 12 - 12
19 11 11 11 11 11 11 11 11 11 11 11 11 1		End of borehole. DBY: F. Gagnon, eng. / S. Lafor	rge, tech.	W	ATER LEVI		JRED B	Y:	F. Ga	gnon, eng.		
	ROVE		g-,	V V/	****** CEVI	10112430	//YED 0	1.	r. Ga	gnon, eng.		

TECSULT		BOR	EHOLE !	_0	G		
PROJECT: Hydrogeological Study		N°: 0512210	BOREHOLE	N°:	PO-03-09A	PA	GE: 1 of 1
CLIENT: Intersan		SURFACE ELE	V. (m): 114.86	57	TUBE ELEV (r	n):	115.692
SITE: St-Nicéphore Landfill Site		COORD, (m):	Y: 5076039.	,,	ROCK DEPTH	l (m):	
FIRM: Forage Comeau			X: 391818.		MAX. DEPTH	(m):	5.26
EQUIPMENT: Diedrich D-50, donut i	ammer	WATER LEVEL		DATE:	24-11-03	HC	DUR:
SIZE SOIL: HW ROO	CK:	114.52	2		24-11-03		10:40:00
	TE ENDED: 17-11-03						
SAMPLE TYPE; REMO	OLDED SHELBY TUB Doon SH: shelby tube	AC: auger cuttings	RECOVERY RC: rock of	П			VANE
LITHOLOGIC I		INSTALLATION			V: vane R: MPLING & TES	refu TING	
DEPTH (m) DEPTH (m) SOIL DESCRIP		GRAPHIC LOG DETAILS	TYPE & No. SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REMARKS
114,87 SITE SURFACE Fine SAND with few medium sa							-
very loose, yellowish red (5YR moist, non-plastic, noncohesive unoxidized.	4/6 - Munseil no.),		\$8-01	50	1-1-1-1	2	
1.07 SAND with few silt, medium der (10YR 4/1 - Munsell no.), wet, r noncohesive, massive structure	non-plastic,	Bentonite	SS-02	54	8-8-10-10	18	PSA Wn
3 111.82 3.05 Idem to SS-02, becoming dense 4/0 - Munsell no.), moist.	e, dark grey (2.5Y	-3.05 Sand Grade	0 \$8.03	63	17-16-25-29 -	41	
110.30 4.57 Idem to SS-03, becoming very of (10YR 4/1 - Munsell no.) (SM). 5.26 End of borehole.	dense, dark grey	PVC Screen Open: 0.025mm Diam: Somr Length: 1.52	n	56	29-37-37-45	74	PSA
DESCRIBED BY: F. Gagnon, eng. / S. Lafor APPROVED BY: MC. Wilson, eng.	ge, tech. W	ATER LEVEL MEA	SURED BY:	F. G.	agnon, eng.		

TECSULT		BOR	EHOLE	LO	G		
PROJECT: Hydrogeological Study		N°: 0512210	BOREHO	LE N°:	PO-03-09B	PAG	E: 1 of 2
CLIENT: Intersan		SURFACE EL	EV. (m): 114.	.872	TUBE ELEV (n	n):	115.510
SITE: St-Nicéphore Landfill Site		COORD. (m):	Y: 507604	3 23	ROCK DEPTH	(m):	
FIRM: Forage Comeau			X: 39181		MAX, DEPTH	(m):	12.27
EQUIPMENT: Diedrich D-50, donut i	nammer	WATER LEVE		DATE	24-11-03	НО	JR: 10:45:00
SIZE SOIL: HW RO	CK:]			24 11 00		10140.00
DATE STARTED: 13-11-03 DA	ATE ENDED: 13-11-03			9			- 0
و ا	OLDED SHELBY TU		O RECOVER			(J. J)	/ANE
SAMPLING METHOD: SS: split s		AC: auger cuttin			V: vane R: MPLING & TES	refus	al
DEPTH (m) SOIL DESCRII		GRAPHIC LOG LOG		SAMPLE RECOVERY		N blows/30 cm or RQD in %	REMARKS
114,87 SITE SURFA	CE			l _{cc}		Z	
Fine SAND with few medium s very loose, yellowish red (5YR moist, non-plastic, noncohesive unoxidized.	and, traces of roots, 4/6 - Munsell no.),		\$\$-01 /	50	1-1-1-1	2	n de de la company de la compa
1.07 SAND with few silt, medium de (10YR 4/1 - Munsell no.), wet, noncohesive, massive structur	non-plastic,		\$5-02	54	8-8-10-10	18	PSA Wn
3.05 Idem to SS-02, becoming dens 4/0 - Munsell no.), moist.	se, dark grey (2.5Y		\$8-03 <u>/</u>	63	17-16-25-29	41	PSA Win
110.30 4.57 Idem to SS-03, becoming very (10YR 4/1 - Munsell no.) (SM). 5 109.23 5.64 Lean CLAY with little sand, stif (5YR 3/1 - Munsell no.), moist,	f, very dark grey	Cement bentant grout		56	29-37-37-45	74	PSA Wn Gs —
Ecal CB II mai mai cana, can	medium plasticity,	WATER LEVEL M	EASURED BY	Y: F.	Gagnon, eng.		70

3	\bigcap	TECSULT			BORI	EHOL	EL	00	3 (c	on't)		
PR	OJEC	T: Hydrogeological Study	h		Nº: 0512	210	BOREH	OLE	N°:	PO-03-09B	PA	GE: 2 of 2
_		LITHOLOGIC	DATA		INSTAL	LATION			SAI	VIPLING & TES	TING	}
DEPTH (m)	ELEV. (m)	I	PTION		GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REMARKS
7-		cohesive, massive structure, ur	noxidized.				SS-05	X	73	5-5-8-10	13	
8-	107.25 7.62	Idem to SS-05, becoming very	stiff (CL).				SS-06	X	69	5-12-15-18	27	PSA Wn Wp Wi
10	105.73 9.14	Idem to SS-06, becoming very of 3/0 - Munsell no.), wet, high pla	dark grey (2,5YR sticity, cohesive.		-10	75 ntonite 0.06 nd Grade 00	SS-07	X	1	4-6-10-9	16	
11	102.68 12.19	Idem to SS-07, becoming of me black (2.5YR 2.5/0 - Munsell no.	dium consistency,) (CL).		PV(Opp 0,0) Dia Len	C Screen en.: 25mm m.: 50mm gib: 1.52m	SS-08		1100	2-3-2-4	5	PSA Who will be a second of the second of th
	CRIBEI	DBY: F. Gagnon, eng. / S. Lafor BBY: MC. Wilson, eng.	ge, tech.	WA	TER LEVEL	. MEASU	RED 8Y	· ·	F. Gag	gnon, eng.		

PROJECT: Hydrogeological Study CLIENT: Intersan SITE: St-Nicéphore Landfill Site FIRM: Forage Comeau EQUIPMENT: Diedrich D-50, donut his	ammer :K: HQ TE ENDED: 13-11-0		N°: 0512 SURFAC COORD.	E ELEV			_	PO-03-09C	PA	GE: 1 of 3
SITE: St-Nicéphore Landfill Site FIRM: Forage Comeau	K: HQ			(m):	. (m): 11	4.95	R		_	
FIRM: Forage Comeau	K: HQ		COORD.				٠ ١	TUBE ELEV	m):	115.679
	K: HQ			T	- 50700			ROCK DEPTI	H (m):	16.87
EQUIPMENT: Diedrich D-50, donut h	K: HQ			Х	: 5 0760 (: 3918			MAX. DEPTH	(m):	19.71
			WATER	.EVEL (1	m):	D	ATE:		Н	DUR:
SIZE SOIL: HW ROC	TE ENDED: 13-11-0			10.514				24-11-03		10:50:00
DATE STARTED: 12-11-03 DA		3								
SAMPLE TYPE: REMO	<u> </u>				ECOVE			CORE		VANE
SAMPLING METHOD: \$5: split specific D		e A	C: auger c		RC: r	ock co	_	V: vane R MPLING & TES	refu	
DEPTH (m) DEPTH (m) DEPTH (m)	TION		GRAPHIC COG	DETAILS	TYPE & No.	SAMPLE	KECOVERY	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	
Fine SAND with few medium sar very loose, yellowish red (5YR 4 moist, non-plastic, noncohesive, unoxidized.	nd, traces of roots, /6 - Munsell no.).				SS-01	X	50	1-1-1-1	2	-
very loose, yellowish red (5YR 4 moist, non-plastic, noncohesive, unoxidized. 1 113.88 1.07 SAND with few silt, medium den (10YR 4/1 - Munsell no.), wet, no noncohesive, massive structure,	on-plastic.				SS-02	X	54	8-8-10-10	18	PSA Wn
3.05 Idem to SS-02, becoming dense, 4/0 - Munsell no.), moist.	dark grey (2.5Y				SS-03	X.	53	17-16-25-29	41	
4.57 Idem to SS-03, becoming very de (10YR 4/1 - Munsell no.) (SM).					SS-04	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	56	29-37-37-45	74	PSA
Lean CLAY with little sand, stiff, v (5YR 3/1 - Munsell no.), moist, me cohesive, massive structure, unor DESCRIBED BY: F. Gagnon, eng. / S. Laforga APPROVED BY: MC. Wilson, eng.	edium plasticity, kidized.		Cem	onite i	\$S-05		3 . Ga	5-5-8-10 gnon, eng.	13	SSA Mu Ss International Inte

▼TECSULT			BOR	EHOI	LE L	OG	(c	on't)		
PROJECT: Hydrogeological Study			N°: 0512	2210	BOREH	OLE	Nº:	PO-03-09C	PA	GE: 2 of 3
LITHOLOGIC	DATA		INSTAL	LATION			SAM	MPLING & TES	TING	N
SOIL DESCRI	PTION		GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF BLOWS/15 cm	N blows/30 cm or RQD in %	REMARKS
107.96			88	<u></u>					┝	
107.34 - 7.62 Idem to SS-05, becoming very	stiff (CL).				SS-06	X	69	5-12-15-18	27	PSA Wn Wp Wl
9 105.82 9.14 Idem to SS-06, becoming very 3/0 - Munsell no.), wet, high pl.	dark grey (2.5YR asticity, cohesive.				SS-07	X	1	4-6-10-9	16	
104.29 10.67 Idem to SS-07, becoming of m black (2.5YR 2.5/0 - Munsell no	edium consistency, b.) (CL).				SS-08	X	100	2-3-2-4	5	PSA Wn Wp Wi
12—102.77 12.19 Idem to SS-08, becoming soft.					SS-09	X	100	2-1-2-3	3	lll
13.26 SAND with few silt and gravel, medium dense, dark reddish gr Munsell no.), wet, non-plastic, t blocky structure, unoxidized (SI	ey (7.5R 3/1 - hickly bedded and		Be	3,26 entonite 3,87 end Grade 0	SS-10	X	58	54-13-15-17	28	PSA Wn Gs
14.79 Medium SAND with few coarse sand, traces of fine gravel (TiLl 4/0 - Munsell no.), moist, non-p bedded and blocky structure, un	.), dark grey (2.5YR lastic, thickly noxidized.			4.91	RC-11	Ш	13			արարարարար
DESCRIBED BY: F. Gagnon, eng. / S. Lafo APPROVED BY: MC. Wilson, eng.	rge, tech.	WA	TER LEVE	L MEASU	JRED BY	/ : :	F. Ga	gnon, eng.		

1	(TECSULT			ВС	R	EHOL	E L	00	€ (c	on't)			
PRO	DJECT	: Hydrogeological Study			N°: 0	512	2210	BOREH	OLE	N°;	PO-03-09C	PA	GE: 3 of	3
		LITHOLOGIC	DATA		INS	TAL	LATION			ŞAI	MPLING & TES	TING		
DEPTH (m)	86 ELEV. (m)		PTION		GRAPHIC	201	DETAILS	TYPE & No.	SAMPLE	RECOVERY %	NUMBER OF 8LOWS/15 cm	N blows/30 cm or RQD in %	REMAR	RKS
22 23 24 25 DESC	95.25 19.71	BEDROCK: Caicareous SHAL black, inclined bedding, calcified black, inclined black, incline	d fractures (60°).	WA	TER LI	S B	L MEASU	RC-13		100 92 100 F. Ga	gnon, eng.	30		and
APPR	OVE	DBY: MC. Wilson, eng.												

RECORD OF BOREHOLE PZ-02-1 (DRAFT)

PROJECT: 021-7040

LOCATION: St-Nicephore, Québec

PLIENT: Intersan

CONTRACTOR: Succession Forage George Downing Limitée / CME 75

BORING DATE: 2002-07-08

PAGE 1 OF 1

DATUM: Geodetic

COORDINATES: (MTM) 5,075,456.49 N 392,198.26 E

DIP: -90* SAMPLER HAMMER: 63.5 Kg DROP: 760 mm

	1		SOIL PROFILE	S	AMPL	-Fq		т	ECT	RESUI			60 mm	 	
BORING	ELEV. - DEPTH (m)	- 4	DESCRIPTION	NUMBER :	TYPE		BLOWS/0.3m or RQD (%)	HYDE 10" MAX 1	AL OBS VAULIC 10 ⁴ VOC C	SERVA S C CONE 10 ⁴ · 1 ONC. (TIONS M D. (cm/ 0 ⁴ 1 ppm)	Р -	ADDITION LAB TEST	t	MONITORING ISTALLATIONS JUNDWATER A IVIRONMENTA BSERVATIONS PZ-02-01
	107.22	9	GROUND SURFACE								14	2			PVC Elevation 108.90 m
ROTARY-WASH HW CASING	0.00 101.72 5.50		Moist to saturated, compact, grey SILT, with some clay. Becoming saturated.	2 3 1	SS SS SH	75	1 4							▼	106:78 m (2002-10-07)
	98.99 8.23 98.53 8.69	1	With some coarse grayel. GRAVELLY SOIL, with some cobbles (type of soil within matrix	6	ss ss		7 666	nes	22 R.	esia A			,	8	Bentonite
×		^	is unknown).		_ -	15	**				2				Silica sand PVC Screen Dia.; 51mm Slots: 0.25mm Length: 0.81m
· CORING HQ CORE BARREL	96.02 11.20 94.72		CALCAREOUS SLATE.	- -	OR 3	50 5	0					2			Silica sand Bentonite

Golder Associés

CHECKED: J. Côlé

": See abbreviation description page

RECORD OF BOREHOLE PZ-02-2-T (DRAFT)

PROJECT: 021-7040

LOCATION: St-Nicéphore, Québec

CLIENT: Intersan

CONTRACTOR: Succession Forage George Downing Limitée / CME 75

BORING DATE: 2002-07-05

PAGE 1 OF 1

DATUM: Geodetic COORDINATES: (MTM) 5,075,580.66 N 392

78		1	<u></u>	SOIL PROFILE	S,	AMPL	EŞ		TEST RES	DROP: 76	11111
DEPTH SCALE METRES	BORING	ELEV. DEPTH (m)	STRATA. PLOT	DESCRIPTION	· NUMBER	. TYPE .	RECOVERY %	BLOWS/0.3m or RQD (%)	VISUAL OBSER U \$ HYDRAULIC CO 10° 10° 10° MAX VOC CONC	VATIONS M P ND. (cm/s) T 10 ⁻⁴ 10 ⁻⁹ 10 ⁻⁹ (ppm)	ADDITIONAL LAB TESTING. SON SON SON SON SON SON SON SON SON SON
- 0	-	108.16		GROUND SURFACE Moist, compact, grey SILT, with some clay and fine sand.				8.	10,1 10,10,10,10,10,10,10,10,10,10,10,10,10,1	102 103 104	PZ
1 2 3 4 5 6 7 8		103.59 4.57 02.37 5.79	S	Becoming dark grey and wet. Saturated, dense to very dense, rey, fine to coarse SILTY SAND, race of clay and gravel.							Ber Silici
			2								P.B.1

PROJECT: 021-7040

LOCATION: St-Nicephore, Québec

CLIENT: Intersan

CONTRACTOR: Succession Forage George Downing Limitée / CME 75

BORING DATE: 2002-07-04

PAGE 1 OF 1

DATUM: Geodetic

COORDINATES: (MTM) 5,075,580.60 N 392,086.59 E

DIP: -90* SAMPLER HAMMER: 63.5 Kg DROP: 760 mm

. 1		140				SOIL PROFILE	1 8	SAMP	LES	1		TES	TR	ESUL	.TS					MÓNITORINA
METRES	BORING	METHOD	ELE\ DEPT (m)	_ <		DESCRIPTION	NUMBER	TYPE	RECOVERY %	BLOWS/0.3m or RQD (%).	HY 10 ⁻¹ MA	DRAL 'DRAL '10 ⁴ 'X VO	OBS JLIC 10 C CC	ERVA S CONI 0 ⁴ 1 ONC. (TION: M D. (cm ppm)	P /s) 10°	I 10°	ADDITIONAL LAB TESTING*	GRO EN OI	MONITORING ISTALLATIONS UNDWATER A VIRONMENTA BSERVATIONS PZ-02-02-R
			108.1			GROUND SURFACE			jë.			*				2.6	,			PVC Elevation 109.23 m
0			0.00			Moist, compact, grey SILT, with some clay and fine sand.							180	8				(6)		
2							1.	ss	75	7					0.00			34		
	EK						2	ss	40	6								ø	₽.	(2002-10-07)
4	HOLLOW STEM AUGER					9 I RC	3	ss	70	4			2					Wn M		Bentonite-cen grout
5	HOLLOW		103.54 4.57			Becoming dark grey and wet.			_									н		· · · · · · · · · · · · · · · · · · ·
6			102.32 5.79			Saturated, dense to very dense,	4	SS	70	3										41
7						grey, fine to coarse SILTY SAND, trace of clay and gravel.	5	ss	40	33			20	26				Wn M H	RANKANA RANKANA	
3		-				a en en g	6	ss —	65	60								M H		*
ALIGER		0				δ) ω	I	SS	<u> 15</u> ,	æ										Bentonite
W-W		EN CASIN	98.18			PEDDOON F												8		34 16 347
CORING	TO YOU DO	HU CURE BARNEIN CASING	97.21 10.90	\searrow	1	BEDROCK: Fractured, black CALCAREOUS SLATE.	1	CR	95	57										Silica sand PVC Screen Dia.; 51mm
-	1000	2	96.60 11,51	X	1	Massive. END OF BOREHOLE.	2	CR	95	93			1		3.23					Slots: 0.25mm Length: 1.0m
			š	3																ii s
Č.	L	1			L				ųči.									(4)	٠	X*

DEPTH SCALE (ALONG HOLE)

Golder Associés

CHECKED: J. COLÉ

*: See abbreviation description pa

RECORD OF BOREHOLE PZ-02-3 (DRAFT)

PROJECT: 021-7040

LOCATION: St-Nicéphore, Québec

CLIENT: Intersan

CONTRACTOR: Succession Forage George Downing Limitée / CME 75

BORING DATE: 2002-07-05

PAGE 1, OF 1

DATUM: Geodetic COORDINATES: (MTM) 5,075,650.99 N 392,010

DIP: -90° SAMPLER HAMMER: 63.5 Kg DROP: 760 mm

			SOIL PROFILE	S	AMPL	ES		TE	ST RE	SULT		P: 76	1	· N
BORING METHOD	ELEV. DEPTH (m)	STRATA, PLOT	DESCRIPTION	NUMBER	TYPE	RECOVERY %	BLOWS/0.3m or RQD (%)	VISUAL HYDRA 10 ³ 10 MAX VC	ULIC C	OND. 5 10 ⁴ NC. (pp	(cm/s)_ <u>I</u>	ADDITIONAL LAB TESTING	GROU ENV OBS
0	111.63	·1. 1·1.	GROUND SURFACE Saturated, dense, grey SANDY				34							
ROTARY-WASH HW CASING	107.97 3.66 107.06 4.57		Saturated, compact, grey SILT, trace of fine sand. Saturated, compact, grey SILT, with some clay and sand.	2 3 4 5 1	SS	75 70 90 80	34 36 12 4 3						Wn M H	A
ROTARY-WASH HQ CORE BARREL	102.49 9.14 100.66 10.97		With gravel, occasionnal shells, sand seams. Moist, dense, dark grey SiLTY SAND, trace of day and gravel. SAND AND GRAVEL, with boulders, trace to some silt. BEDROCK: Highly fractured, grey CALCAREOUS SLATE. END OF BOREHOLE.	3	SS CR CR CR	50	R 0 0 0 23							
					34		0.00			-		*).)

DEPTH SCALE (ALONG HOLE)

1:100

Golder Associés

LOGGED: M. B CHECKED: J. C *: See abbreviation

RECORD OF BOREHOLE PZ-02-4 (DRAFT)

PROJECT: 021-7040

LOCATION: St-Nicéphore, Québec

CLIENT: Intersan

AN 0217040-BH.GPJ

CONTRACTOR: Succession Forage George Downing Limitee / CME 75

BORING DATE: 2002-06-27

PAGE 1 OF 1

DATUM: Geodetic .

COORDINATES: (MTM) 5,075,491.13 N 391,844.89 E

*: See abbreviation description pa

DIP: -90° SAMPLER HAMMER: 63.5 Kg DROP: 760 mm

		T		_	SOIL PROFILE	_			_			_		OP:	76	0 mm		
DEPTH SCALE METRES	METHOD	ELEY DEPT (m)	<u>/.</u> Н	SIRAIA PLOT	DESCRIPTION	NUMBER	SAMP	1%	BLOWS/0.3m or:RQD (%)	7	RAULIO 10 ⁴ VOC C	SERVA S C CON 10 ⁴ CONC.	ATION M D. (cm 10 ⁻⁴ (ppm)	P· /s)	I I 10°	ADDITIONAL LAB TESTING*	GF	MONITORING INSTALLATIONS ROUNDWATER A ENVIRONMENTA OBSERVATIONS PZ-02-04
					CROUND CURRENCE										Ì	• •	9	PVC Elevation 117.85 m
0		117.20			GROUND SURFACE Moist, compact, greyish brown fine SAND, trace of silt.	1	SS	80	22	4		-			1		122	
2		1.50 114.53 2.75			Moist, compact, greyish brown fine to medium SAND.	2	SS	70	24					-				
4	, 8	2.75			Moist, very dense, greyish brown fine SILTY SAND.	3	ss	85	68				-					Bentonite-cem
		111 49			* * *	4	SS	75	39		4							grout grout
6		111.48 5.80			Becoming saturated and grey.	5	SS	50	43 R					ta.			Ā	110.86 m
AUGER					* ::	工	SS	_50_	Ē.							ā		(2002-10-07)
TEM AU	ď	107.53				8	SS	75	42		, in							
HOLLOW STEM	,	9.75 106.53 10.75		+	Saturated, medium dense, grey SILT, with some clay and trace of fine sand.	9	SS	100	8		9					Wn M H	5.X.X.S.	
12 로		- Nore-	Ш		Wet, very loose, grey SILT, with some clay and trace of sand.	10	SS	100	4		8			3			X22.00	
					* * * * * * * * * * * * * * * * * * *	11	SS	100								Wn		
14					8	13	SS	100	4							Н	2000	
16		100.52				14	SS	100	<u>-</u>	-	9							
18	1	16.76			Saturated, compact, grey SILT AND FINE SAND.	15	SS	40	8.					E.		Wn M		
	-	98.53 18.75 97.93			Saturated, very dense, grey	16	SS	55	26					8		н		Bentonite Silica sand
20 2	ž	19.35 97.32 19.96	\$//	4	GRAVEL, with silt. BEDROCK: Highly fractured, black CALCAREOUS SLATE. END OF BOREHOLE.	1	CR	50	0		-	.8						PVC Screen Dia.: 51mm Stots: 0.25mm
22		16					5									а М		Length; 0.35m Bentonite
		ĕ .			**				×					*		- 4		M ×
4																7-	9 .	9
EPTH SC : 150	ALE	(ALON	3 HOLI	≣)	* 1:						Iî							D: M: Beauchamp D: J. Côté

RECORD OF BOREHOLE PZ-02-5 (DRAFT)

PROJECT: 021-7040

LOCATION: St-Nicéphore, Québec

CLIENT: Intersan

CONTRACTOR: Succession Forage George Downing Limitée / CME 75

BORING DATE: 2002-07-02

PAGE 1 OF 2

DATUM: Geodetic

GOORDINATES: (MTM) 5,075,273.35 N 392,045.81 E

DIP: -90°

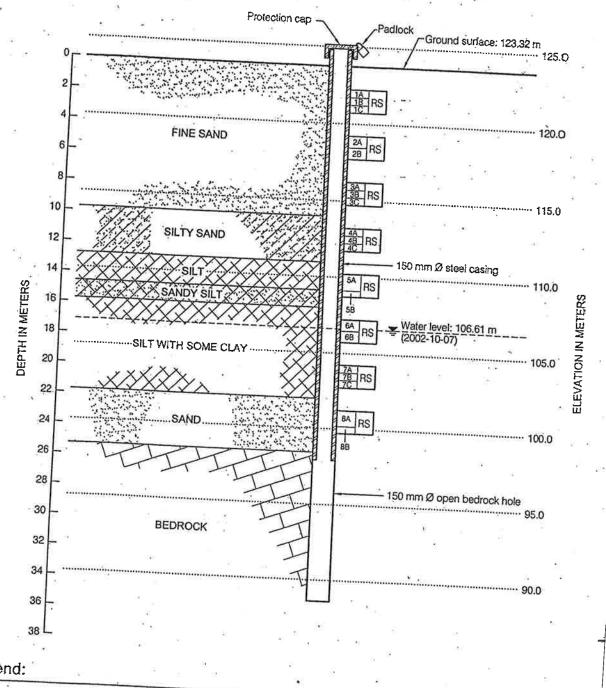
SAMPLER HAMMER: 63.5 Kg DROP: 760 mm

BORING				SOIL PROFILE	SA	MPLE	-	2		L OBSI			ä	1	NG.	ONITORING TALLATIONS
BORING	ELI DEF	тн	STRATA, PLOT	DESCRIPTION	NUMBER	TYPE	RECOVERY %	BLOWS/0.3m or RQD (%)	HYDR 10" MAX	AULIC 10* 10 /OC CC	COND 0° 10 0NC. (M P). (cm/s 0 ⁴ · 10]		LAB TESTING	NDWATER AN IRONMENTAL SERVATIONS
	8	VII GO		GROUND SURFACE	*			*	*	-			/2		3	PVC Elevation 120,76 m
20 1 1 0 6 8 2 9 9 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 1	6.16 3.81 44.64 5.33 13.87 6.10 13.11 6.86		Moist, compact, light brown to greyish brown fine SAND, trace of silt, locally oxidized. Saturated, compact, grey fine SAND, trace of silt. Becoming very dense. Becoming compact. Becoming very dense.	1 = 1	S S S S S S S S S S S S S S S S S S S	70 50 50 50 50 50 50 50 50 50 50 50 50 50	21 20 50 50 50 50 50 50 50 50 50 50 50 50 50								Bentonite-ce grout 108.36 m (2002-10-0
12 ROTAR	HW	107.78 12.19		Wet, dense, grey fine SAND, with trace of silt. CONTINUED ON PAGE 2	n =	16	ss	85	32	*	* (4)		6	- 34		GED: M. Beauc

RECORD OF BOREHOLE PZ-02-5 (DRAFT)

PROJECT: 021-7040

LOCATION: St-Nicéphore, Québec


PAGE 2 OF 2

щ	1					SOIL PROFILE	1 .	SAMP.	LES	T	T	ESTF	RESU	LTS				NONE
DEPTH SCALE METRES		METHOD	DEPT (m)	н	STRATA PLOT	DESCRIPTION	NUMBER	TYPE	RECOVERY %	BLOWS/0.3m or ROD (%)	HYDR	10 ⁴ /OC C	S CON 10 ⁴ ONC.	M D. (cm 10 ⁻¹ (ppm)	P Vs) 10 ³	10°	ADDITIONAL LAB TESTING*	GROUNDY ENVIROR OBSERV
	L		1			CONTINUED FROM PAGE 1				1,	10	10°	101	102	103	10	(A)	
13			107.0	5	ΪÌ	Wet, compact, grey SILT with some clay and sand.	17	ss	45	23		122						
	1			П	11	Some day and salk.	-	-		23		1					583	
. 14				\parallel	11	*	18	SS	50	10			35					
			105.45 14.46	3		Becoming loose to very loose.	=	=	=	=	٠.						*	
15			1	П	П		19	SS	75	8								
					H	a 4	20	SS	75	4							M	
16					H	g es il	=	=	=	=					İ		н	
			s .			- Al	21	SS	.75	4							H	Bento
17	'ASH	9	. "				22	SS	85	5					-			grout
	ROTARY-WASH	HW CASING	102.45	1	IJ,	Saturated firm crow CLAVEV				Ē	×							
18	MOTA	¥	11.02	1	1	Saturated, firm, grey CLAYEY SILT.	23	SS	85	4	÷							
	ш	,		1		;	24	ss	85	=								
19		2.1	100.77	1	1	198				_								
			100.77 19,20	ĬΤ	M	Saturated, compact, grey SILT, with some clay and sand.		_										
20				11	Ш		25	ss	90	11	1							
			99.55	\vdash	Ш	Saturated dense prev SILT with	15						- 5			П		
21						Saturated, dense, grey SILT, with trace of clay and sand.	26	ss	50	35							м .	Bento
						•6		_						1	I	- ,	H	Silica
22	- 2	ار	07 77			E .									1	11	*	Sflica PVC Dia.: Slots: Lengt
ı	0	RE BARREL	97.77 22.20	K	7	BEDROCK: Highly fractured, dark grey CALCAREOUS SHALE.	27	SS	50	R			20		T	П		Slots:
23	ORING	RE B/		1	X	grey CALCANEOUS STALE.				18	ļ.	4			- 14			Bento
	ŏ	HQ CO	96.45	Z	1		2	CR	68	26								
24		Ĭ	23.52	j.		END OF BOREHOLE.				•	:		3			Ħ		E .
			*			** * * * * * * * * * * * * * * * * * *												e
25	-			2		- a							-			\prod	- 1	
						The second		5							s .		. 9	
26		-	345			s 8 * _	, F											
			- 1			2 2							5	0.				
,,				×		* .	- 2			*			Se.					** 31 #
27														201			- 1	
	M	.	11			2 1/21					. 7	1		v				\$00
8		1							÷	1			5		19			n _a
1	1	-		120			- 1		1			- 1			. **	11		

DEPTH SCALE (ALONG HOLE)

Golder Associés

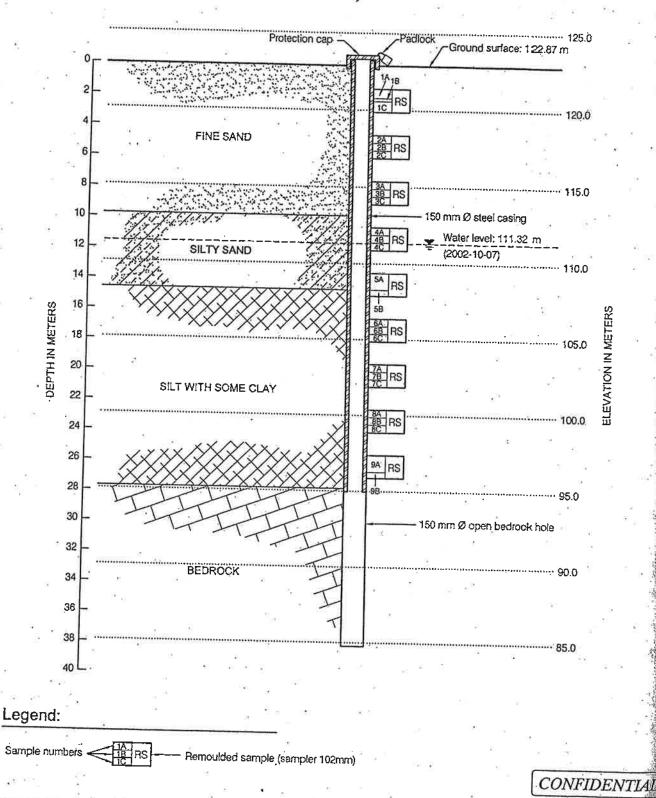
CHECKED: J. Côle *: See abbreviation des

Legend:

Sample numbers ARS Remoulded sample (sampler 102mm)

CONFIDENTIAL

Date:	2002-11-25	Scale H: Not to scale V: 1:250
Orawn by:	M. Tremblay	Planned by: C. Tremblay
≯hecked by:	J. Côté	Approved by: M. Poulin
4 2	02040-4100-A01	Project no: 021-7040-4100

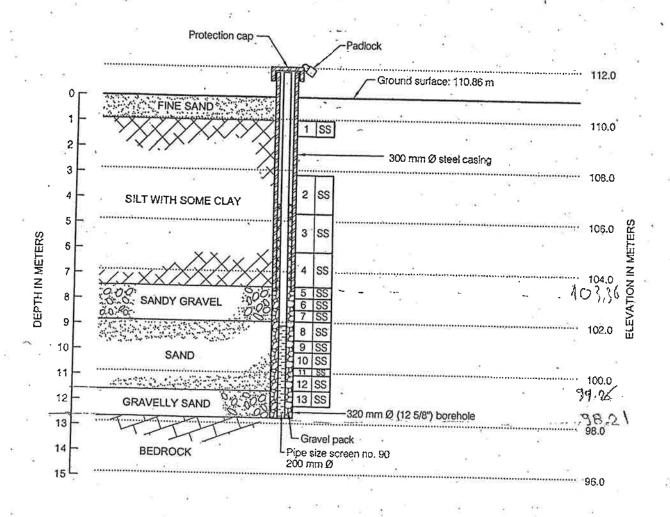

HYDROGEOLOGICAL STUDY INTERSAN ENGINEERED LANDFILL ST-NICÉPHORE, QUÉBEC

BOREHOLE LOG AND INSTALLATION SCHEME WELL W-02-1

V 51

A-1

Date:	2002-11-25	Scale H	l: Not to scale V: 1:250
Drawn by:	M. Tremblay	Planned by:	C. Tremblay
Checked by:	J. Côté	Approved by:	M. Poulin
Drawing.no.:	02040-4100-A02	Project no:	021-7040-4100



HYDROGEOLOGICAL STUDY INTERSAN ENGINEERED LANDFILL ST-NICÉPHORE, QUÉBEC

BOREHOLE LOG AND INSTALLATION SCHEME ... WELL W-02-2

ioone .

Legend:

Sample number 1 SS Balled remoulded soil sample

CONFIDENTIAL

Date:	2002-11-25	Scale H:	Not to scale V: 1:150
Drawn by;	M. Tremblay	Planned by:	C. Tremblay
ecked by:	J. Côté	Approved by:	M. Poulin
ving no:	02040-4100-A03	Project no:	021-7040-4100

HYDROGEOLOGICAL STUDY INTERSAN ENGINEERED LANDFILL ST-NICÉPHORE, QUÉBEC

BOREHOLE LOG AND INSTALLATION SCHEME WELL W-02-3

FIGURE

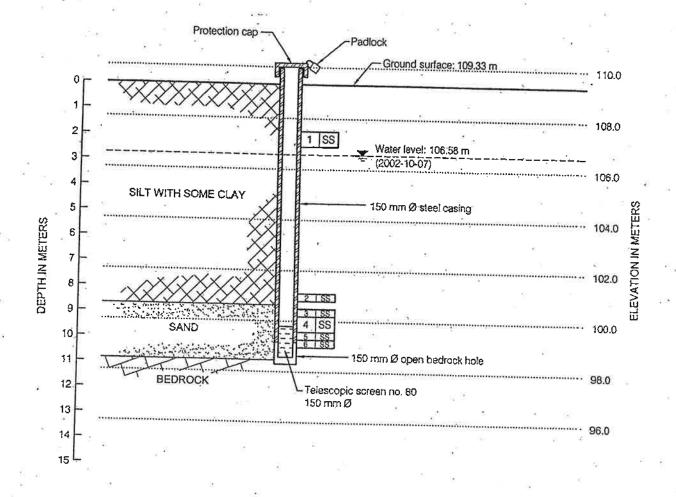
A-3

Legend:

Sample number _____ 1 SS ____ Bailed remoulded soil sample

CONFIDENTIA

Date:	2002-11-25	Scale H: Not to scale V: 1:150
Drawn by:	M. Tremblay	Planned by: C. Tremblay
Checked by:	J. Côtě	Approved by: M. Poulin
Drewing no.:	02040-4100-A04	Project no: 021-7040-4100



HYDROGEOLOGICAL STUDY INTERSAN ENGINEERED LANDFIL ST-NICÉPHORE, QUÉBEC

BOREHOLE LOG AND INSTALLATION SCHEME WELL W-02-4 FIGURE

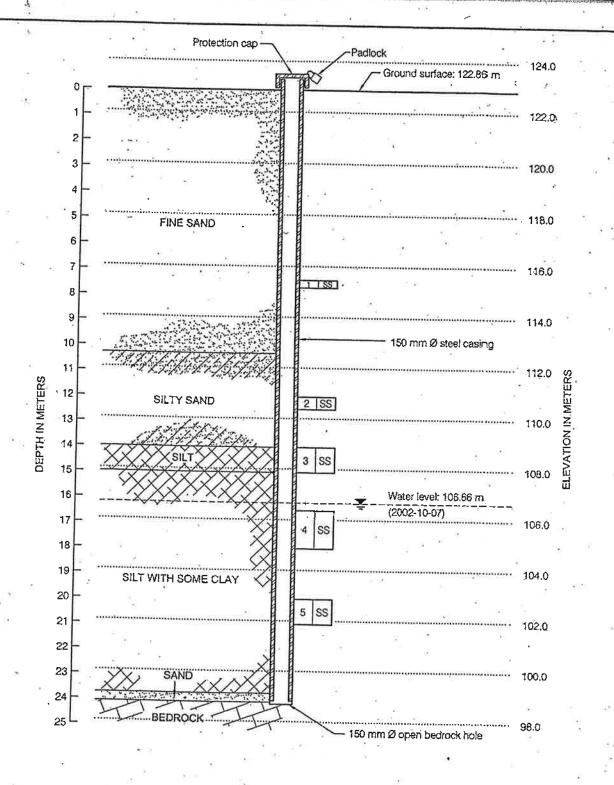
Α-

Legend:

Sample number 1 SS Bailed remoulded soil sample

CONFIDENTIAL

Date:	2002-11-25	Scale H: Not to scale V: 1:150
Drawn by:	M. Tremblay	Planned by: C. Tremblay
"hecked by:	' ' J. Côtê	Approved by: M. Poulin
rawing no.:	02040-4100-A05	Project na: 021-7040-4100


HYDROGEOLOGICAL STUDY INTERSAN ENGINEERED LANDFILL ST-NICÉPHORE, QUÉBEC

BOREHOLE LOG AND INSTALLATION SCHEME WELL W-02-5

FIGURE

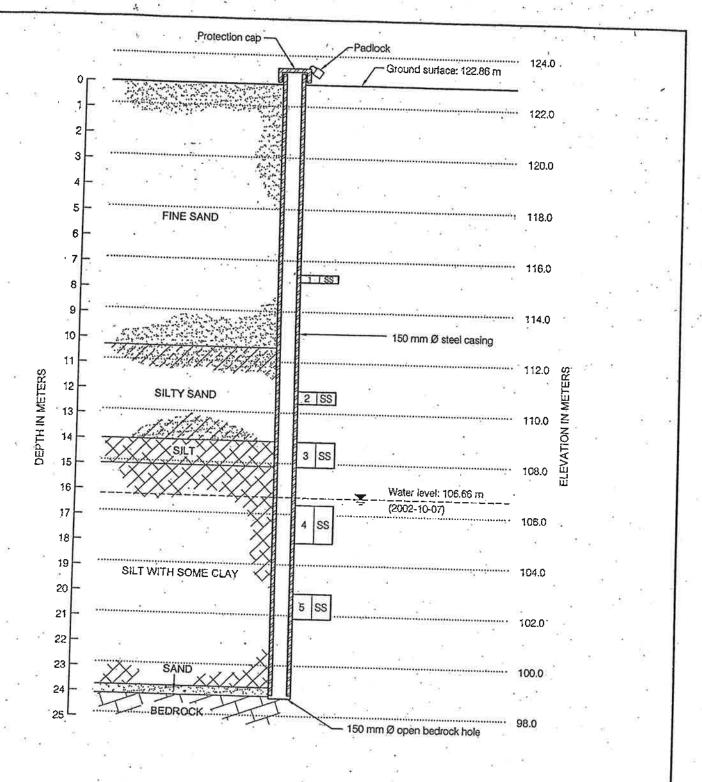
A-5

Legend:

Sample number 1 SS Bailed remoulded soil sample

CONFIDENT

Date:	2002-11-25	Scale H: Not to scale V: 1:150
Drawn by	M. Tremblay	Planned by: C. Tremblay
Checked by:	J. Côté	Approved by: - M. Poulin
Drawing no.:	02040-4100-A06	Project no: 021-7040-4100



HYDROGEOLOGICAL STUDY INTERSAN ENGINEERED LANDE ST-NICÉPHORE, QUÉBEC

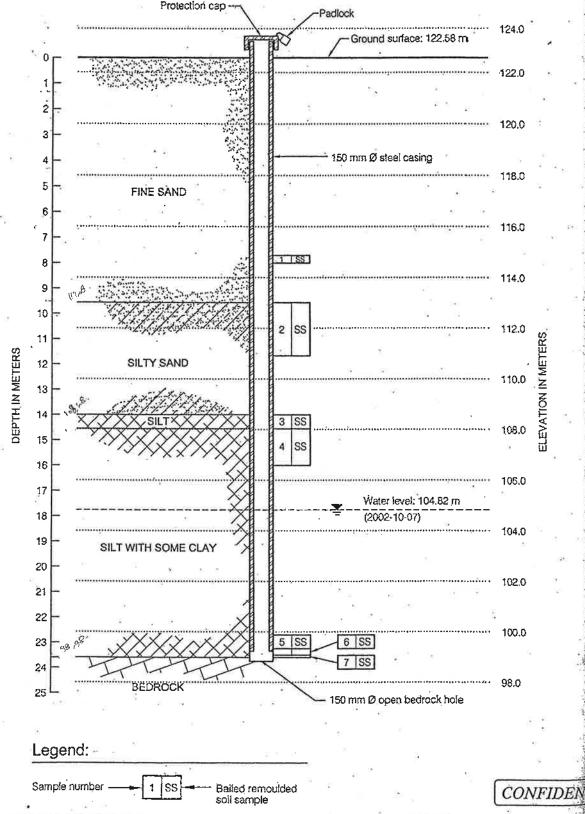
BOREHOLE LOG AND INSTALLATION SCHEME WELL W-02-6

FIGURE

Sample number 1 SS Bailed remoulded soil sample

CONFIDENTIAL

te:	2002-11-25	Scale H: Not to scale V: 1:150
Iwn by:	M. Tremblay	Planned by: C. Tremblay
ad	J. Côté	Approved by: M. Poulin
المر	02040-4100-A06	Project no: 021-7040-4100


HYDROGEOLOGICAL STUDY INTERSAN ENGINEERED LANDFILL ST-NICÉPHORE, QUÉBEC

BOREHOLE LOG AND INSTALLATION SCHEME WELL W-02-6

GUNE

A-6

Date:	2002-11-25	Scale H: Not to scale V: 1:150
Drawn by:	M. Tremblay	Planned by: C. Tremblay
Checked by:	J. Côté	Approved by: M. Poulin
Drawing no.:	02040-4100-A07	Project no: 021-7040-4100

4

HYDROGEOLOGICAL STÚ INTERSAN ENGINEERED LAÑ ST-NICÉPHORE, QUÉBE

BOREHOLE LOG AND INSTALLATION SCHEME WELL W-02-7 FIGURE

RAPPORT DE FORAGE

Projet: Etude hydrogéologique Site: L.E.S. St-Nicephore Sondage: 981A Client: Intersan Inc. Page: 1 de 2 Dossier: LAIS-014

Date du lorage: 98-05-06 au 98-05-06 Foreuse: Diedrich Tubages: Tarière Remarque: ETAT DE L'ECHANTILLON TYPE DE L'ECHANTILLON Carottier: NQ Remanié ESSAI IN SITU ET DE LABORATOIRE CF Cuillère sendue Non Remanié TS Tube Shelby Granulométrie Pénétration Standard Perdu TA Tarière Sédimentométrie No Pénétration dynamique au cône Carotte de Roc CD Carottier à Diamant Teneur en eau Cui Résistance intacte au cone kPa-BE Benné Peterson Limite Liquide Cur Résistance Remaniée au cône kp COUPE STRATIGRAPHIQUE Limite Plastique k Perméabilité cm/s PROFONDEUR (m) ECHANTILLON ELEVATION (m)
PROFONDEUR (m) JOINTS NIVEAU D'EAU/DATE PIEZOMETRE RESISTANCE AU CISAILLEMENT ESSAIS IN SITU-ET LABORATOIRE NON-DRAINE-SCISSOMETRE CU 1 % RECUPERATION OUVERT/FERME ESSAIS N/RQD REMPLISSAGE TYPE NO DESCRIPTION DU SOL ET DU ROC Non-remanice ANGLE REMANIEE 123.44 N coups/300 mm Sable silteux gris 10, 20, 30, 40, 50, 60, 70, 80, 90 -1.00TA-1 -2.00 CF-2 50 24 120.39 3.00 3.05 Sable brun-gris, un peu de CF-3 16 4.00 -5.0075 6.00 50 -7.00 15.82 Sable brun, traces de silt -8.00 CF-6 83 28 9.00 114.30 Sable gris, traces à un peu de

RAPPORT DE FORAGE

Projet: Etude hydrogéologique				Sondage: 981A
Site: L.E.S. St-Nicephore			10 E	Page: 2 de 2
Client: Intersan Inc.	1/	39 22		Dossier: LAIS-014
Daie du forage: 98-05+06 au	98-05-06	Foreuse:	Diedrich :	Tubages: Tarière .

		. (10	,00) II VC	•	:		marque:		30	00-0	o at	. 9	0-0.	J-U	o roreuse:		ibages: Tariere arottier: NQ
ETAT	DE L'E	CHANTILLON		TYPE	DE L'EC	HANTI			T	-		===		-,-	E:	SSAI IN SITU I	T DE LABORATO	
	a · No ■ Per	manié n Remanié rdu otte de Roc	TS TA CD BE	Cuillère Tube She Tarière Carottier Benne Pe	à Diama lerson	ant	1	34 34		S S W 1 UL L	Grant Sédim Teneu Limite Limite	rentor ren Liqu	méli eau ide	rie		No.	Pénétration : Pénétration : Résistance In	itandard lynamique au côn tacte au cône kPa maniée au cône l
PROFONDE	ELEVATION (m)		9	TRATIGRAI	*	oc	SYMBOLE .	NIVEAU D'EAU/DATE PIEZOMETRE	TYPE NO	ELYL			J	OUVERT/FERME		ESSAIS IN SITU ET LABORATOIRE	RESISTANO NON-DRAINE NON-REMA REMANIEE N co	E AU CISAILLEME -SCISSOMETRE C
	12.16	FIN DU FO	RAGE	10 10 10 10	(e) E				CF-8	X	.75	75		*		W _{et}		
.00		3 5 2		(a)	4		į.		, , , , , , , , , , , , , , , , , , ,	3.								8 8 1 1 1 1 1 1 1 1 1
00		31 W	(4) 2(a)				3 3 3 3 3 3 4	de un	3	ж 8								
0			Œ.	}	s.	,		ii.	ž.							2 (2)	# e	
0		eng 20 10	100				ē	*								961 2		

RAPPORT DE FORAGE

Projet: Etude hydrogéologique		Sondage: 981C
Site: L.E.S. St-Nicephore		Page: 1 de 3
Client: Intersan Inc.		Dossier: LAIS-014
Date du forage: 98-05-26 au	98-05-28 Foreuse: Diedrich	Tubages: Tarière
Remarque:		Carottier: NO

			,	•	. *							Re	ma	rque:							3	ě	5)			arottie		
ETA'	DE I	L'ECH	IANTI	LLO	4			TYP	E D	E L'I	ECHAN	TILLON			T						ES	SAI	IN SI	TU E	DE LABORAT			
IΣ		Rema Non Perd	anié Rema	nié	1 1 0	rs '	Tub Tari Caro		elby r à	/ . Dia:	manț	er.)# # #	500	S S W. T LL L	ranui édimi eneui imite imite	entor en Liqu	néir eau ide		8			Ne Cui Cui	Pénétration Pénétration Résistance I Résistance F Perméabilité	dynamiq itacte av emaniée	ue au 1-cône	kPa
-	T.			col									T			CHANT				TMIO	S	-			RESISTAN	05841 G	10.1111	
PROFONDEUR (m)	ELEVATION (m)	25 PROFONDEUR (m)	*	1			3		***		ROC	SYMBOLE	control of the contro	NIVEAU DEAU/DATE	TYPE NO	ETAT	% RECUPERATION	ESSAIS N/RQD	ANGLE	OUVERT/FERME	REMPLISSAGE	ESSAIS IN SITU	탢	LABORATOIRE	NON-DRAINI NON-REM REMANIES	C-SCISSO ANIEE oups/30	OMETR:	CU kP
-			Silt peu	sabl d'ai	eux	gri	s, t	гасе	s à	un		1	忿	$ \otimes$						9					8	- 8		5 *1
-1.00)				6	2 3 ± 3€3		10	j.Ti		Ř		0000	0	9			39								S	· %	e i
-2.00) =	E					≎ ⁸⁸ ⊗				0000	000									⊕ ⊛ ∂			*		20
3.00			χ.	n H	×			e: e: ;		3¥:	181		0000000	00000							,		i.e			e e e e	3 3	3)
-5.00			05V 5			Steat		-	9 1	· ·	N Se _C		0 000000	0 0 0 0 0			9						V.				9.	20 38 34 1
[:		*						20 20 20		000	0.0				,				a.		٠	a		*	W .c
6.00						**	:3	80	588	70	: ::::::::::::::::::::::::::::::::::::		000	0.0			4		Đ		q					700	9	15 15 16
7.00			ø).	rii.		e e				F	94 1035		0000	0 0 0			W W					3	हा। इ.	8.8				*
-8.00 -			*	90		5)	3						00000	3 9 9 9	•	75						8		ijer a g	e e	5: *		8 a
9.00	3		18	**	545 Sec. 34	*	3 .	2 2 388	(#)				00000	0 0 0 0	CF-1	X	16	3					8	* = 1 * = 3	*	e e	 	

RAPPORT DE FORAGE

Projet: Etude hydrogeologique Sondage: 981C
Site: L.E.S. St-Nicephore Page: 2 de 3
Client: Intersan Inc. Dossier: LAIS-014
Date du forage: 98-05-26 au 98-05-28 Foreuse: Diedrich Tubages: Tarière

						Remar	oue:						TOLO	use.	Dearich Tubages: Tarière
1	ETA	T DE	L'ECHANTILLON	TYPE DE	L'ECHANTILL	ON.	1-11						COAL DI	Olfmir.	Carottier: NQ
	- 200		Remanié Non Remanié Perdu arotte de Roc	CF Cuillère fene TS Tube Shelby TA Tarière	due Diamant son			S S W To LL Li LP Li	édime eneur mite mite	lométri entomé en ea Liquide Plastiq	trie u e jue		SSAI IN	N Ni · Ci Ci	ET DE LABORATOIRE Pénétration Standard Pénétration dynamique au cône il Résistance Intacte au cône kPa ir Résistance Remaniée au cône kPa Perméabilité cm/s
	PROFONDE	ELEVATION (m)	DESCRIPT	ION DU SOL ET D		NIVEAU D'EAU/DATE	PIEZOMETRE TYPE NO		z	ESSAIS N/RQD ANGLE	OUVERT/FERME		ESSAIS IN SITU	ATOIRE	RESISTANCE AU CISAILLEMENT NON-DRAINE-SCISSOMETRE CU k NON-REMANIEE REMANIEE N coups/300 mm 10. 20. 30. 40. 50. 60. 70. 80. 90 6
	1.00		* *			0000000	° CF-2	X	56	1			G.		1
	.00		5 0 0				CF-3	X	16	1			6	7	
14. 15.	.00	3.72	And the second second second second	gris, traces de	//:		CF-4	Z :	4 4				e e		
16.0	100	3.66	¥ 8 ⁹ 	5 8 2 5 2 2									(a)		
17.0		.76	Silt sableux g d'argile, trace	ris, un peu es de gravier			CF-5	50	51						
+9.00	18.	29 .67	Sable silteux g gravier Sable, silt, arg présence de ci	ile avec		1	CP-6	50	75			100	e a		

RAPPORT DE FORAGE

Projet: Etude hydrogeologique
Site: L.E.S. St-Nicephore
Page: 3 de 3
Client: Intersan Inc.
Date du forage: 98-05-26 au 98-05-28 Foreuse: Diedrich
Remarque:
Carottier: NQ

	<u> </u>			APPLIES CONTROL OF	50		marque:				2						Carottier: NQ
_		CHANTILLON		TYPE DE 1		TILLON					·	- :		ES	I IAZZ	n situ e	T DE LABORATOIRE
	20 No ■ Pe	manié on Remanié ordu olte de Roc	TS TA CD BE	Cuillère fendu Tube Shelby Tarière Carottier à Di Benne Peterso	amant n		. y 		S S W T LL L LP L	iranu Sédim Seneu Jimite Jimite	ento r en Liqu Plas	melr eau iide liqu	ie e			Cu Cu	Pénétration Standard Pénétration dynamique au cône ii Résistance Intacte au cône kPa ii Résistance Remaniée au cône kPa Perméabilité cm/s
PROFONDEUR (m)	E ELEVATION (m)	DESCRIP	5	traticraphiqu	e?	SYMBOLE	NIVEAU D'EAU/DATE PIEZOMETRE	TYPE NO : ES	LVIG	Z RECUPERATION E	ESSAIS N/RQD	ANGLE	OUVERT/FERME	-	ESSAIS IN SITU	ET LABORATOIRE	RESISTANCE AU CISAILLEMENT NON-DRAINE-SCISSOMETRE CU I NON-REMANIEE REMANIEE N coups/300 mm 10. 20. 30. 40. 50. 60. 70. 80. 9
.00.	100.71	3 v		an and an an an an an an an an an an an an an	V 6			CF-7	×	100					167 2	e 	
.00	99.19 24.23			eux gris foncé	71.		C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CD-8		93	. 30				jar K		
00		end e	3		11		2 g 4		53.			2			2	w_ u	
00		# % # #		5 182 5 ₄ 18							20				2		
00	a de			300 31		21		fa	5 2		,	(Z					

RAPPORT DE FORAGE

Projet; Etude hydrogéologique		Sondage: 982A
Site: L.E.S: St-Nicephore		Page: I de 1
Client: Intersan Inc.		Dossier: LAIS-014
Date du forage: 98-05-22 au	98-05-22 Foreuse: Diedrich	Tubages: Tarière
Remarque:		Carottier: NQ

							Rei	narque:										Carottier: NQ
ETAT	DE L'E	CHANTILLON		TY	PE DE L	ECHAN	TILLON				1				ES	SAI IN	SITU E	T DE LABORATOIRE
- VIIII	⊠ No ■ Pe	otte de Roc	TS TA CD BE	Tube S Tarière Carotti Benne	e ier à Dia Petersoi	mant	· · · · · · · · · · · · · · · · · · ·	41	,	S S W T LL LI	ranu édim eneu imite imite	entor en Liqu	métr eau iide	-	8	×	No Cui	Pénétration Standard Pénétration dynamique au cône Résistance Intacte au cône kPa Résistance Remaniée au cône kPa Perméabilité cm/s
		COU	E ST	RATIGE	RAPHIQU	E	- 0		EC	HANT	ILLO	V	J	OINT	S			RESISTANCE AU CISAILLEMENT
PROFONDEUR (m)	ELEVATION (m)	DESCRIP	TION	DU SOI	L ET DU	ROC	SYMBOLE	NIVEAU D'EAU/DATE PIEZOMETRE	TYPE NO	ETAT .	2 RECUPERATION	ESSAIS N/RQD	ANGLE	OUVERT/FERME	REMPLISSAGE	ESSAIS IN SITU	ET LABORATOIRE	NON-DRAINE-SCISSOMETRE CU ki NON-REMANIEE REMANIEE N coups/300 mm 10. 20. 30. 40. 50. 60. 70. 80. 90.
-	141.01	Sable bru	n un	neu d	a silt		12:7	XIXX	-	1.			-	-	-	-		
-1.00		Sable ort	m, un	peu a	e snt							,					9) 	
-2.00		15 15 15 16 17	*		s :	.: .: .:		0 0 0	CF-2		79	2						*
-3.00 -		14 27						0000000	CF-3	X	-13	3						
-4.00°	117.24							00 00 0								-	.79	
- -5.00 - -	4.57	Sable silte	eux g	ris		2		109086 DII- 0	CF-4	X	83	24		100		3.0		\
- 6:00	102 103 104 104 104 104 104 104 104 104 104 104					.x			CF-5	X	92	29				2	× ,	
-7.00	4		8		8	9 4 10 5)					s			7 8	12. 14.	*1 ii	5433	
-8.00		ž.			8 E	:e			CF-6	X	21	6	27			2	8 B B	
8		285		*	\$7.57			:[]::[
	12.67 9.14 11.90	Silt argiler sable	ıx gri	s, trace	es de				CF-7.	X	75	1		ii t		K.		1

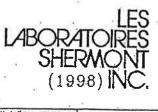
RAPPORT DE FORAGE

Projet: Etude hydrogéologique
Site: L.E.S. St-Nicephore
Page: 1 de 3
Client: Intersan Inc.
Dossier: LAIS-014
Date du forage: 98-05-22 au 98-05-22 Foreuse: Diedrich
Remarque:
Carattian NO

1 3		(1998) INC.	Date du forage	: 98-	05-2	2 au	9	8-0	5-2	2 Foreus	e: [liedrich Tubages: Tarière
	T DE L	POULANDIU OVI	Remarque:		-	-				20 B		Carottier: NQ
		ECHANTILLON TYPE DE L'ECHANTIL	LON	-					3	SSAI IN SIT		T DE LABORATOIRE
	P	on Remanié TS Tube Shelby TA Tarière rotte de Roc CD Carottier à Diamant BE Benne Peterson	* 1 y	S :	Sédim Teneu Jimité	lomé entor r en Liqu Plas	nétr eau ide	ie		4 (a) (a) (a) (a) (a)	Ne Cui Cui	Pénétration Standard Pénétration dynamique au cône Résistance Intacte au cône kPa Résistance Remaniée au cône kPa Perméa bilité cm/s
PROFONDEUR (m)	ELEVATION (m)		SYMBOLE . NIVEAU D'EAU/DATE PIEZOMETRE TYPE NO	ETAT	RECUPERATION			OUVERT/FERME	REMPLISSAGE 00	ESSAIS IN SITU	LABUKATUIKE	RESISTANCE AU CISAILLEMENT NON-DRAINE-SCISSOMETRE CU k NON-REMANIEE REMANIEE
PRC	121.7	, se w	NIVEA PIE T		% REC	ESS/		OUVE	REM	ESS	Š	N coups/300 mm
_	161.11	Sable brun, un peu de silt		-				-	-		-	10. 20. 30. 40, 50. 60. 70, 80. 90
-1.00			0 0							***	88	
-2.00										a		
-3.00										×		
- -4.00										3		(E)
	117.15 4.57	Sable silteux gris				İ				z: ===	.	9 6
-5.00 - - -	** 									* e		
6.00	.						*					
7.00							-			3f * ***		
8.00												
9.00 1												
	9.14	Silt argileux gris, traces de sable								*		A SER OF SERVICE

RAPPORT DE FORAGE

Projet: Etude hydrogéologique Sondage: 9820 Site: L.E.S. St-Nicephore Page: 2 de 3 Client: Intersan Inc. Dossier: LAIS-014


Date du forage: 98-05-22 au 98-05-22 F

			(19	98	IIAC	,	8	Dat	le du :	orage:	98-	05-2	22 at	1 9	8-0	5-2	2 Fore	euse:	Diedr	ich.		es: Ta:	
	ET	AT DE L'ECI	IANTII I ON	_	TVD	P DP t/P	Allismu	Ker	narqu	e:							777					tier: N	
		Rem		_	Cuillère	E DE L'E	CHANTIL	TON						,		E	SSA! IN	Situ .	ET DE	LABOR	TOIRE		=
300	2	The state of the s	Remanié 1 .e de Řoc	TS TA CD BE	Tube Sh Tarière Carottie Benne P	elby r à Diam eterson			240		S :	Granu Sédim Peneu imile imile	ento: r en Liqu	nétr eau ide	ie		35. 1	N No Cu Cu	Pén Pén i Rési ir Rési	étratio étratio stance stance	n Stand n dyna: Intacte	lard nique a au cor	ú cône ie kPa cône kP
1	-	Hi	COUP	E ST	RATIGRA	PHIQUE					CHAN'	rillo	N		TNIO	S.		-			30 1110		
	PROFONDEUR (m)	ELEVATION (m)	DESCRIPT	'ION I	DU SOL	ET DU R	eoc	SYMBOLE	NIVEAU D'EAU/DATE PIEZOMETRE	TYPE NO.	ETAT	Z RECUPERATION.	ESSAIS N/RQD	ANGLE	OUVERT/FERME	REMPLISSAGE:	ESSAIS IN SITU	LABORATOIRE	NON-R	-Drain On-re Enanie N	IE-SCIS MANIEE E coups/	300 mi	⊕ ————————————————————————————————————
	ļ.,		#		·	JB.	17	7/	A K	8			-	+	\dashv	-	-	-	. 10.	20. 30	40. 50	60. 70	0. 80. 9
	1.00	111.05 10.67 S	able brun ilt	-gris	. Iraces	de				CF-1	X	. 100	3				9 9.	×	*) 2 3	⊕ M 16 16	± ±
		108.00 13.72 Sil		1. 2.		.32		XXXXXXX		CF-2		0					200 46			* * * * * * * * * * * * * * * * * * *	090. 5. 136		337 26 38
15			l gris arg	neux,	trace d	e				CF-3		50	6						.			2 5 8 8 8 8	
±6.	00 .			e 90 70	14 S 16,	e ge				F-5	10	0 1:	5				200 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		\ }		r Fra		
+8.0 - - - - - - - - - - - - - - - - - - -				15 4	(A)	2 2 3 7		0000000000	CI	7-6	100	6					3	*		- 10 - 41		8	

RAPPORT DE FORAGE

Projet: Etude hydrogéologique
Site: L.E.S. St-Nicephore
Page: 3 de 3.
Client: Intersan Inc.
Dossier: LAIS-014
Date du forage: 98-05-22 au 98-05-22 Foreuse: Diedrich
Remarque:
Caroltier: NO

	3907	(10	00) II V	<i>)</i> .	D	mavious	. age.	JU-	00-	ان دا	u 9	0-0	:	ic ro	reuse:	: Diedrich Tubages: Tarière
Terr	AT DE L	ECHANTILLON	TYL	'E DE L'ECHAI		marque	-	_								Carottier: NQ
副份		emanië	CP Cuillère		THEON					7	:.		E	SSAL		ET DE LABORATOIRE
E	No.	on Remanié erdu rolte de Roc	TS Tube St TA Tarière CD Carottie BE Benne J	nelby er à Diamant Peterson		· ·		EP I	Grant Sédim Feneu Limite Limite	entoi r en Liqu Plas	méti eau fide stiqu	rie 		i.	· (N Pénétration Standard No Pénétration dynamique au cône Cui Résistance Intacte au cône kPá Cur Résistance Remaniée au cône kPá c Perméabilité cm/s
PROFONDEUR (m)	ELEVATION (m)		pe straticr <i>i</i> Fion du sol	1	SYMBOLE	NIVEAU D'EAU/DATE PIEZOMETRE	TYPE NO.	CHAN	ATION	Gb;		OUVERT/FERME	REMPLISSAGE 65	ESSAIS IN SITU	et Laboratoire	RESISTANCE AU CISAILLEMENT NON-DRAINE-SCISSOMETRE CU KP NON-REMANIEE
<u> </u>	四层					NIVE.			Z RE	ESS		OUV	RE	S	3	N coups/300 mm 10, 20, 30, 40, 50, 60, 70, 80, 90.
	101.30 20.42		et argile ave de cailloux (1	ec Till)		000	CF-7	X	108	20				ų.		10 00 00 40 00 10 00 00
E1.0			147 8 8:	3.8 1 , 1			CD-8		12					8		
22.00			er e			00 0	CF~9	\bigvee	32	99				B	×	
₽3.00 -		(M)	42 55 83	e			CD-10	Î	0	33				7/	1083	
24.00	97.49 24.23.	Calcules an	ailaus asia fa			000					-	İ			,	
25.00	-	calcaire ar	gileux gris (o	nce			CD-11		50	*0				£ 1.	1 E	
-	95.96 25.76	FIN DU FOR	ACR -			000	35		0					(*);		
26.00	4.2	4	2 6	¥ (a.)			ES.		0					il il		
27.00 - - -			9X 142 28				. [e 3		
88.00	162	×	(eq.) ::	9.							-			# 1 8 ()		owns
9.00		h.,	5°			*	687							*	œ.	ਹੈ, ਨੂੰ ਜ਼ ਕੋਲ ਜ਼ ਕੋਸ ਲਹੂ ਸ਼
													1.			W:

RAPPORT DE FORAGE

Projet: Etude hydrogeologique
Site: LES. St-Nicephore
Page: 1 de 1
Client: Intersan Inc.
Date du forage: 98-05-20 au 98-05-20 Foreuse: Diedrich
Remarque:
Carollieir MO

		(Taso) II AC'	Date du lorage:	90-0	3-20	au 5	18-05-	-20 Foreuse:	
[time	to Day en	COLUMNIA ON	Remarque:		į.			.00	Carollier: NQ
	-	CHANTILLON TYPE DE L'ECHANTILL	ОИ					ESSAI IN SITU	ET DE LABORATOIRE
22	No.	manié CF Cuillère fendue IN Remanié TS Tube Shelby IN TA Tarière Otte de Roc CD Carottier à Diamant BE Benne Peterson		S Sé W Te LL Lin	ranulon éditnenl ineur e mite Li mite Pl	lomét n eau quide	rie	Ct Ct	Pénétration Standard Pénétration dynamique au cône Résistance Intacte au cône kPa Perméabilité cm/s
		COUPE STRATICRAPHIQUE		CHANT			ETHIOI	т — ^	
PROFONDEUR (m)	ELEVATION (m) PROFONDEUR (m)		NIVEAU D'EAU/DATE PIEZOMETRE TYPE NO		RECUPERATION		SWE	7	RESISTANCE AU CISAILLEMENT NON-DRAINE-SCISSOMETRE CU kF NON-REMANIEE REMANIEE N coups/300 mm
•	115.55	8 2	Z		86.	1			10. 20. 30: 40. 50. 80. 70. 80. 90.
-1.00	114.03	Sable silleux brun, traces de matière organique	TA-1						
}	1.52	Sable brun-roux, un peu de silt.	CF-2	M.	58 13			12.0	Let "
-2.00	.,				00 1	1		=	· *
3.00		Sable gris fonce, un peu de silt.	000086 1 C1-3	X	92 45	5			
4.00	110.83								
-5.00 -	4.72	FIN DU FORAGE							985 ⁵⁵ 385 24 557
- -6.00 - -	3 3							* * >	
7.00									
-8.00 -9.00							.ox		

RAPPORT DE FORAGE

Projet: Etude hydrogeologique
Site: L.E.S. St-Nicephore
Page: 1 de 3
Client: Intersan Inc.
Date du forage: 98-05-20 au 98-05-21 Foreuse: Diedrich
Remarque:
Condition No.

Date Carolider Date Carolider Date Carolider Carolid		a a	(19	98) INC.	D.	ate du fo	rage:	98-	05 -	20 au	98-	-05-	21 Fore	enze.	Diedrial	Doss	ier: LAIS-01
SSA IN STUTE TO P. LAGRATORISE SSA IN STUTE TO P. LAGRATORISE Fordu TA Training Perdu TA Training Selection of Control of Benefity as the control of Benefity and the co		ETA	T DE L'ECHANTILION	TVDD DO MON	; N	emarque:			28						DICCI IC		ges: Tarière
Table Shelby Perdu Carotte de Rec CD Carotter à Diamant EB Benne Peterson COUTE STRATIGRAPHIQUE COUTE STRAINING COUTE STRATIGRAPHIQUE COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAINING COUTE STRAIN		4		THE DE LECTION	NTILLON						¥5		essal in	SITU	ET DE LAI	BORATOIRE	cter: NQ
BEHANTIELON DOINTS DESISTANCE AU CISALLEMENT DOINTS DESISTANCE AU CISALLEMENT DOINTS DOI	.	3///	Non Remanié Perdu Carotte de Roc	TS Tube Shelby TA Tarière CD Carottier à Diamant BE Benne Peterson			· · · · · · · · · · · · · · · · · · ·	S: . W :	Sédin Feneu Jimile	tenton ir en e Liqui	nétrie eau ide		8 35 35 8	N No Cu Cu	Pénétr Pénétr il Résista ir Résista	ation Stan ation dyna nce Intact nce Remar	mique au côn e au cône kp
10.20 30.40 50.60 70.80 9 10.20 30.40 70.80 9 10.20 30.40 9 10.20 30.40 9 10.20 30.40 9 10.20	•	÷	The same of the sa	E STRATIGRAPHIQUE	· ·		- E	CHAN	TILLO	N		its			rermea	bilite cm/	\$
114.01 1.52 Sable brun-roux, un peu de 2.00 Sable gris, traces à un peu de 3.00 CF-1 100 93 CF-2 92 49 CF-2 92 49 CF-3 58 8 CF-3 58 8 CF-3 58 8 CF-3 58 8 CF-3 58 8 CF-3 58 8 CF-3 58 8 CF-3 58 8 CF-3 58 8 CF-3 58 8 CF-3 58 8 CF-3 58 8 CF-3 58 8 CF-3 58 8 CF-3 58 8 CF-3 CF-3 58 8 CF-3 CF-3 58 8 CF-3	b		DESCRIPT DESCRIPT	-	SYMBOLE	NIVEAU D'EAU/DATE PIEZOMETRE	TYPE NO	ETAT	% RECUPERATION	ESSAIS N/RQD	OUVERT /FERME	REMPLISSAGE	ESSAIS IN SITU	LABORATOIRE	NGN-DI NON- REM	RAINE—SCI -REHANIEE UNIEE N. coups/	SSOMETRE CU
1.00 114.01 1.52 Sable brun-roux, un peu de silt Sable gris, traces à un peu de silt CF-1 100 9d CF-2 92 49 CF-3 58 8 EF-2 Silt argileux gris, traces de sable CF-3 58 8 EF-2 Silt argileux gris, traces de sable CF-3 Silt argileux gris, traces de sable CF			Sable silter malière or	ux brun, traces de		~ ~			-	+	+	H			10. 20.	30. 40. 50	0. 60. 70. 80
-3.00 Sable gris, traces à un peu de silt CP-1 100 93 -5.00 CP-2 92 49 -7.00 107.91 Salt argileux gris, traces de sable CP-3 58 8		1	14.01			00000											
-3.00 Sable gris, traces à un peu de silt -4.00 -5.00 -7.00 107.91 -8.00 Sable gris, traces à un peu de silt CF-1 100 CF-2 92 49 -7.00 CF-3 58 8	Ιţ	(*)		roux, un peu de		5 0		. !	i	i		-			=1		
Sable gris, traces à un peu de silt -4.00 -5.00 -6.00 -7.00 -7.00 -7.00 -8.00 Silt argileux gris, traces de sable CF-3 58 8		00.5	ant.	e .		0000			ļ	.!			- 90			2 *	e
-5.00 CF-1 100 93 CF-2 92 49 -7.00 107.91 7.62 Silt argileux gris, traces de sable CF-3 58 8	E ₃	.00	Sable gris, t	races à un peu de	\ \ \ \ \								14		٥	×	₩ 19
-5.00 CF-1 100 93 CF-2 92 49 FF-3 58 8 FF-3 58 8 FF-3 58 8 FF-3 58 8 FF-3 58 8 FF-3 58 8 FF-3 58 8 FF-3 FF-3 58 8 FF-3	E	00	Sift				3									**	89.1 ²
-7.00 -7.00 -7.62 Silt argileux gris, traces de sable CF-2 92 49 CF-3 58 8	F		e e e										81	- !	*	# #	6 52
7.00 107.91 7.62 Silt argileux gris, traces de sable CF-2 92 49 CF-3 58 8	-5.0	00	1		X	CF	-12	() tó	9	3			:#0 ₄₈ :#C	-		. B	
-8.00 107.91 7.62 Silt argileux gris, traces de sable CF-3 58 8	6.0	00	100 8 11								-		3		e	*	
107.91 7.62 Silt argileux gris, traces de sable CF-3 58 8	E		, a s			CP-	-2	92	49			1		-	× .	. /	Z ·
7.62 Silt argileux gris, traces de sable CF-3 58 8	F'.00			· . /		\bowtie		1	1.	П	18		7.5	1		/	
-8.00 sable cF-3 58 8	ļ			<u>;</u> ;		\bowtie			1.	П		1			/	/ :	
	-8.00	7.62		is, traces de	7	CF-	3 🛚	58	8				56 50 ₉₀	 *	/	1800 1800 - 2	
CF-4 100 3	9.00	-									s) 4	[5-2. *	M S			K 400	I
			u.			CF-4	X	100	3				E E	*	*	* **	Î

RAPPORT DE FORAGE

Projet: Etude hydrogéologique
Sité: L.E.S. St.-Nicephore
Page: 2 de 3
Client: Intersan Inc.
Dossier: LAIS-014
Date du forage: 98-05-20 au 98-05-21 Foreuse: Diedrich
Remarque: Carottier: NO

		8		Re	marque:	10		****		18					Carottier: NQ
ETAT	DE L'E	CHANTILLON	TYPE DE L'EC	HANTILLON	1.3						-	25	SAI IN	SITU E	T DE LABORATOIRE
	Rer Nor Per Per Per Rer Nor Rer Nor Rer Nor Nor Rer Nor nié a Remanié	ant		G Granulométrie S Sédimentométrie W Teneur en eau LL Limite Liquide LP Limite Plastique						1	71	Cu	Pénétration Standard Pénétration dynamique au cône i Résistance Intacte au cône kPa r Résistance Remaniée au cône kPa Perméabilité cm/s		
	T	COU	E STRATIGRAPHIQUE	2		EC	HANT	[LLO]	1	1(TAK	3			RESISTANCE AU CISAILLEMENT
PROFONDEUR (m)	α.	DESCRIP	tion du sol et du r	SYMBOLE	NIVEAU D'EAU/DATE PIEZOMETRE.	TYPE NO	ETAT	7 RECUIPERATION	ESSAIS N/RQD	ANGLE	OUVERT/FERME	REMPLISSAGE	ESSAIS IN SITU	ET LABORATÓIRE	NON-DRAINE-SCISSOMETRE CÜ k NON-REMANIEE REMANIEE N coups/300 mm 10, 20, 30, 40, 50, 60, 70, 80, 90
-	105.53			113) · H.: .	-	-	•	-		-	-	-		
+1.00						CF+5	X	ſao	i	\$0			24		
+2.00		0 6				CF-6	X	54	23				2.3		
14.00	101.81		eux gravėleux, argilė (Till)	2.3		CF-7		50	97				# B	s (8	
£5.0		# 12 # # 1 # #		0.012.00						22				a er e '	
16.0 - - - 17.0		5 2 2	e E			CD-8		48	80					2 (4) (4)	
18.00		· · · · · · · · · · · · · · · · · · ·	3 - §			CP-1		50	48			3			
19.00		ж ж 2	* 8											L M	
Œ			· · · · · · · · · · · · · · · · · · ·	1,4,0	40 0	CF-1	2	83	65	L	<u>.</u>	Ļ	<u></u>		<u> </u>

RAPPORT DE FORAGE

Projet: Etude hydrogéologiqueSondage: 984CSite: L.E.S. St-NicephorePage: 3 de 3Client: Intersan Inc.Dossier: LAIS-014Date du forage: 98-05-20 au 98-05-21 Foreuse: DiedrichTubages: Tarière

(marque:		• •				_				Carottier: NQ
		ECHANTILLON				ECHAN'	TILLON								.E	SSAI II	N SITU	ET DE LABORATOIRE
	222al N ■ P	emanié on Remanié erdu rotte de Roc	TS TA TO CD CO BE I	Cuillère Fube She Farière Carottier Benne Pe	elby à Dia etersor	mant				S : W : 1	Granu Sédim Feneu Limite Limite	ento r en Ligt Plas	métr eau iide stiqu	ė	7 ₀		, c	Pénétration Standard c Pénétration dynamique au cône ui Résistance Intacte au cône kPa ur Résistance Remaniée au cône kPa Perméabilité cm/s
PROFONDEUR (m)	S PROPONDETTO (m)	DESCRIP	1 0	U SOL I			SYMBOLE	NIVEAU D'EAU/DATE PIEZOMETRE	TYPE NO	TATA	ATION	1		OUVERT/FERME S		ESSAIS IN SITU	ET LABORATOIRE	RESISTANCE AU CISAILLEMENT NON-DRAINE-SCISSOMETRE CU kt NON-REMANIEE REMANIEE N coups/300 mm 10. 20. 30. 40. 50. 60. 70. 80. 90.
21.00 - - - 22.00	,s		· ²⁰ ne	\$ 000 20	2		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		CF-1:	I	50	75						
	91.30	Calcaire a	vileny	gris for	ncá		0.0.00000000000000000000000000000000000		CF-15	i	0.	6						
25.00	89.47					NACANG MARKANANANANANANANANANANANANANANANANANANA			CD- 17		50	13	2		**	30 80 80	45 1,5 31	
9.00	26.06	FIN DU FOR	AGE															

RAPPORT DE FORAGE

Projet: Etude hydrogeologique
Site: L.E.S. St-Nicephore
Page: 1 de 1
Client: Intersan Inc.
Date du forage: 98-05-18 au 98-05-18 Foreuse: Diedrich
Remarque:
Carottier: NO

		-				9	Re	marque:				*			-			DICATION.			er: NQ	
I.L			L'ECHANTILLON		TYPE DE						_			-	ES	SAI IN S	ITU E	T DE LAS			y . i.u	
			Remanié Non Remanié Perdu arolte de Roc	TS Tub TA Tari CD Card BE Beni	ottier à D ne Pelers)iamant ion	3			S S W 7	Sédim Feneu Jimile	lomé entor r en Liqu Plas	nétri eau ide		[0]	W.	N No Cu Cu	Pénétre Pénétre i Résista r Résista Perméa	tion : tion : nce In	Slanda Iynami Itacte e emanié	que au u cône	kPa:
			COU	E STRATI	GRAPHIQ	UE			E	CHANT				INTS	Т					7		
The state of the s	PROFONDEUR (m)	ELEVATION (m)	DESCRIP	tion du s	SOL ET D	U ROC	SYMBOLE	NIVEAU D'EAU/DATE PIEZOMETRE	TYPE NO	ETAT	% RECUPERATION	ESSAIS N/RQD	ANGLE	-1	KEMPLISSAGE	ESSAIS IN SITU ET	LABORATOIRE	NON-DI NON- REM	RAINE REMA NIEE N co	-SCISS NIEE oups/3	00 mm	E CU kP
	.00		Sable silte matière o	eux brun, rganique	un peu o	de		::B::	TA-1	X		.w				a		10. 20		90. 50.	1	00. 90.
-2.		111.5	9	*	20g				CF-2	X	.75	. 4				₹0	2	×		×		26
-3.0	00	2.74	Sable silte	ux gris					*		i	1				¥ 6	ी				32	
4.0		3.20	FIN DU FOI	RAGE	1/4	33	· - 4		• - •				*****			1 Y		, x	*	* * *!	#i	N
-5.0			٥	e: 	£1	5		181 1865 - 18								e e	л Э		ě.	2	ai N	
-6.0	0	9	·		* *					×						94		e.	* * * * * * * * * * * * * * * * * * *	20 280	100 pa	n i
- -7.0	0		2 2 1 ×	38		/*										.5		(5)	**	at all		
- - -8.00		*		ĕ					2		.					8 ⁸⁸	€	. 14 .	4 8 8	o e	10 g	.6 .
9.00			•0	Š				* -		0.0		3						e d as	5 3 8	60 ₃	•	
				¥				٠			3							Šg	×			

Projet: Etude hydrogéologique				Sondage: 985C
Site: L.E.S. St-Nicephore			3.00	Page: 1 de 3
Client: Intersan Inc.		36		Dossier: LAIS-014
Date du forage: 98-05-18 au	98-05-19	Foreuse: D	iedrich 🕟	Tubages: Tarière
Remarque:	n .	25 34355	11	Constitution

!				180000		marque						ภ		- 25	34355	Carottier: NQ
	101	ECHANTILLON		TYPE DE L'ECH									Ε	SSAI IN	SITU	ET DE LABORATOIRE
			TS Tub TA Tar CD Car BE Ben	llère fendue de Shelby ière ottier à Diaman ne Peterson IGRAPHIQUE	ıt	1		S W LL LP	Grent Sédin Tenet Limit Limit	nento Ir en e Liqu e Plas	méti eau tide stiqu	rie	•		Ņ Ne Ci	The state of the s
官	-	Et.V	D OTTER!	Idiki IIIQVI	T	. <u>ca</u>	E	CHAN	TILLO	T	J	OINT I	S		9	RESISTANCE AU CISAILLEMENT
PROFONDEUR (m)	ELEVATION (m)	9		SOL ET DU ROC	SYMBOLE	NIVEAU D'EAU/DATE PIEZOMETRE	TYPE NO	ETAT	% RECUPERATION	ESSAIS N/RQD	ANGLE.	OUVERT/FERME	REMPLISSAGE	ESSAIS IN SITU	LABORATOIRE	NON-DRAINE-SCISSOMETRE CU ki NON-REMANIEE — — — — — — — — — — — — — — — — — —
Ë		Sable silte matière o	eux brun. rganique	un peu de	3											
1.00		¥7		E 3		0 0 0									a'	
-2.00		1			1:11	٥١٥						.	ļ			
						, iii	1		×							* ×.
	111.5					41KJ 980601;		İ		į	į	1			350	
-3.00	2.74	Sable silter	ux gris			; 吴 。	CF-1	V	50	6	İ	Ì			190	
4.00	3			**************************************										i .		
-5.00	90		8				CF-2	X	83	54		•		839 771a	*	
												1		22.0		. /
8 8	. 1	5							::	ľ		İ		×		/
6.00	08.19 6.10	Silt gris arg	ارمان		[<u> </u>		CF-3	V	100	17						
*		one gris org	ileux	(8	///\&			4				ŀ		0		*
7.00		* *	8	9										ē		
		(4): "p(5)!		32	///		CF-4	\bigvee	100	2				1.4		
8.00	.	* *		3										74		
0.00		* 6 * s	187	34 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			F-5	X	75	1						
		e. e. 		-											Î	

Projet: Elude hydrogéologique	<u> </u>	· · · · · · · · · · · · · · · · · · ·	Sondage: 9850
Site: L.E.S. St-Nicephore	-	380 S = 35==3	Page: 2 de 3
Client: Intersan Inc.	1 1	(6)	Dossier: LAIS-014
Dale du forage: 98-05-18 au	98-05-19	Foreuse: Diedrich	- Tubages: Tarière
Remarque:			Carottier: NO

150E		Y	(1990) 1110.	Date du lorage	2: 96-	<u>05-1</u>	8 au	98	3-05	-19 [огецѕе:	Diedrich - Tubages: Tarière
	[m.	T DE I	POUNTHION	Remarque:								Caroltier: NQ
	-		L'ECHANTILLON TYPE DE L'ECHANTILL	LOX		*			112	ESSA	in situ (ET DE LABORATOIRE
		M P	Remanié Non Remanié Perdu TS Tube Shelby TA Tarière CD Carottier à Diamant BE Benne Peterson	720 9	\$ \$ W 1	Sédim Peneu Jimite	lomét enton r en e Liqui Plast	nétri eau ide		× ×	No Cu	Pénétration Standard Pénétration dynamique au cône il Résistance Intacte au cône kPa ir Résistance Remaniée au cône kPa Perméabilité cm/s
	PROFONDEUR (m)	ELEVATION (m)	COUPE STRATIGRAPHIQUE DESCRIPTION DU SOL ET DU ROC	SYMBOLE NIVEAU D'EAU/DATE PIEZOMETRE TYPE NO	ECHAN	RECUPERATION E	s db	JO	OUVERT/FERME		ET	RESISTANCE AU CISAILLEMENT NON-DRAINE-SCISSOMETRE CU kP/ NON-REMANIEE
	PROF	ELEV		SYN VEAU PIEZO	: &	RECUI	SSAIS	AN	UVERT	FSSAR	E LABO	N coups/300 mm
9		104.2		N N		54	. ец		8			10. 20 30. 40. 50. 60. 70. 80. 90.
	1.00			GF-	6	75	- 1				a 419 Z	
1	2.00			CF-	7	100					e e	
[[[44		13.41 100.42 13.87	Silt gris argileux, trace de	CF-I	, X	75	29				·	
15	.00	£	7.6.6 9.6.6	CF-9	X	0	49					
#6. -			d. 11, 10, 10, 10, 10, 10, 10, 10, 10, 10,	CD-1	0	0						
18.0	00	0.00		CD-1		0				10	•	
19.0	- 1	8.29	Sable et silt gris		<u>-</u>							

Projet: Etude hydrogéologique	E
Site: L.E.S. St-Nicephore	Sondage: 985C
Client: Intersan Inc.	Page: 3 de 3
Date du forage: 98-05-18 au 98-05-19 Foreuse: Diedrich	Dossier: LAIS-014
Remarque: Diedrich	Tubages: Tarière

	(1000) 11 10.	Date du forage: Remarque:	98-0	05-18	au 98-05-	-19 Fores	Dossier: LAIS-014
21 21	ETAT DE L'ECHANTILLON TYPE DE L'ECHANTILLON	Remarque;		*		io roteuse.	0 - 10.1016
8	Remanié CF Cuillana fondi	ON		٠.		ESSAL IN SITU	Carottier: NQ ET DE LABORATOIRE
323 3	Non Remanie TS Tube Shelby	di .	G C	ranulon	nerlie	N	LI DE LABORATOIRE
_	TA Tarière		S 38	diment	lomětrie		
_	Carotte de Roc CD Carottier à Diamant	1	W Te	neur ei	li eau 🗀	C	c Penetration dynamique au cône ui Resistance intacte au cône kPa
I	BE Benne Peterson	101	LL Lin	uite Lic	quide astique		" NESISIANCE Remania
ŀ	COUPE STRATIGRAPHIQUE	1 12	HANTI	LON	JOINTS	į į	Perméabilité cm/s
- 1	PROFONDEUR (m) ROFONDEUR (m) ROFONDEUR (m) SYMBULE:	NIVEAU D'EAU/DATE PIEZOMETRE TYPE NO	T	1	JOINTS	1000	RESISTANCE AU CISAILLEMEN
9	IN IN IN IN IN IN IN IN IN IN IN IN IN I	12 6		NO O	e	5 6	NON-DRAINE-SCISSOMETRE CU
. 1.	DESCRIPTION DU SOL ET DU ROC	N ER	-	F 8	ERM	1 ST	NON-REMANIEE
. [PROFONDEUR (III) PROFONDEUR (IIII) PROFONDEUR (IIII) SYMBOLE.	SAU D'EAU IEZOMETRI TYPE NO	ETAT	SN	T/F USS	IS IN	REMANIEE -
: []		PIE		ESSAIS N/RQD	ANGLE OUVERT/FERME REMPLISSAGE	ESSAIS IN SITU ET LABORATOIRE	
- 11	94.29	Z.	. 6	· 6	98	다 그	N coups/300 mm
- 11		0 0 0 EL-12					FD. 20. 30. 40. 50. 60. 70. 60. 9
		0 000		0			
.	1.00	300				SE	
11	1 1	CF-13	< x	J	. :	: 1	1
11		1 1	ď ,	'l i			1
Ez	.00	0000					√x 3 x x
11		0 0 0 CD-14	Ш.	1.1			
11		0 3 5 50-14	. 0				/
160		000			111		j
e3.	91.07	0 2900 15	4		! -	1	/
Ιt	23.22 Calcaire argileux gris foncé	° 0 0 CD-15	U	. !	1 1	1	/ka
· [[.		20.	i	ė			8.8 ·
. 24.0	0 1	0 2 3 CD-16.				. !/	
15	89.75	0000.	2.0	Ü		1	
11	24.54 FIN DU FORAGE	°°°9	H	1	11.	- [::e:: e * * * * * * * * * * * * * * * *
25.00				16	111	16.4	777
11:		4 . 1					21 X 4 4 1
1 F		120					* G
€6.00		1 1				8 0	≥ ∞
F0.00							ie W
ΙĖ				11		1	6
11-		.	1				· ·
27.00				11	11		7955 ·
11- 1	- i · i	1 1 1	1			-	
1t - I				14		· .	
88.00	* * * * * * * * * * * * * * * * * * * *	- 1 1 1	1				185 g
11 1	2 3		1		1 1		
1.F . T	l . l	1 1 1	1 .	1-1		1 kg	v 000 ² . N
29.00	1 1:				11		1 4 4
E9.00		11	1				
t · 1	Age (6)	1 1 1					
F					11	.1 -	
<u> </u>		1 1 1				2	
27			1			0.00	n =

RAPPORT DE FORAGE

Projet: Etude hydrogeologique
Site: L.E.S. St.-Nicephore
Page: 1 de 1
Client: Intersan Inc.
Date du forage: 98-05-15 au 98-05-15 Foreuse: Diedrich Tubages: Tarière

	-		15		1	R	emarque			125						. aba.	Diedisc			es: Tar	
1	ETA	T DE	L'ECHANTILLON	TY	PE DE L'ECH	ANTILLON				-		-	_	=	00.11			-	Caroti	ier: NQ	
			Remanié	CF Cuillère	fendue				<u> </u>	0.		(4)		E	SSAI IN		ET DE LA				
	2		Non Remanié	TS Tube S	helby "					Gran					9	N	Pénét	ration	Standa	ard .	
- 1			Perdu	TA Tarière	-	Œ			S.	Sédin Tenet	iento	meti	rie	Z 25		N	c Pénéti	ration	dynam	יות פווחו	cone
	ļ		arotte de Roc	CD Carottle	er à Diamar	ıt			II. :	Limit	r en	eau			196		II Kesist	ance I	ntacte	au côn	1cDe
١.	_	× 2		BE Benne F	elerson				LP I	Limite	Plac	lion	in.			C	ir Kesisti	ance F	Remanie	e au ci	ine kPa
.	_	-	COUP	E STRATIGRA	APHIQUE			E	CHAN	TILLO	N		OINT	0 1		k	Permé	abilité	cm/s		
	PROFONDEUR (m)	ELEVATION (m)	DESCRIPT	ION DU SOL	ET DU ROC	SYMBOLE	NIVEAU D'EAÙ/DATE PIEZOMETRE	TYPE NO	ETAT	NOLL			OUVERT/FERME		ESSAIS IN SITU	LABORATOIRE	NON-E NON REM	raine i-rem aniee n c	-SCIS ANIEE oups/3	SOMETR ————————————————————————————————————	
1	3.		Sable brun	-gris et rou	Y 110	127	XI XX		_		1						10. 20	30.	40. 50	60, 70,	80 90 🛍
11	35	1	peu de silt	Pun és ton	v, air	1000												 -		 +	
1:1	- 0	1	is:			17.7	0 0 4			* 1		- 1		- 1			1				2
IF	1.00			. *		1.	0 0	2					- [2				* 1.7.5		A STATE OF THE PARTY OF THE PAR
11			2			133								1	7					â	
ŀĽ			Į.			1:7.	0 0			į	. [- 1			**		*				1-1
1				7)		100		ii .		-				•	120						<u> </u>
1-2	00.5		Ti.			1	प्रस्रो र	- 1	-	-	1	-		-		- 1	18				
It		1				1: 1:1		620			1	1	1		22	1			***		ķ
1	- 1		1		ğ	: · · £	$\mathbb{Z}^{\mathbb{Z}}$				1	!	İ		9 °	ļ			2 39		E
1.			1			1. 7		1	1	1	į	1		1		İ					50.1
-3	.00			400			目:.]	- 1		3.5	Ì	1	-			- 1	8		*5	* 11	
-					. 3	上月	10901		1	3	- 1			1		-					181
ŀ						1.4	: =	- 1				1	ı			- 1			8	*	
L	00	1				1: 3:1	109086		- 1			1	1		50	- 1				35	
-	00		* -	1.60	#		100		- 1				1		28				80		i Ki-
ŀ	1	17.86		* :		i : : 1.	· [] = [-]	- [20 92					2	
t		1.57	Sable brun-	ris traces d	P		目::1										5				12.
-5.1	00	°	silt	, , , , , , , , , , , , , , , , , , , ,			目 ::	- 1		Ţ							9	φ.			
ŀ.,		1	520	9		· . · [·	月::]				ļ	1		1		- 1	51	15:01		N	ng rings
į.	- [!		8			目::4	1	- 1			1			9	- 1			60		
1		6.64	AUT				掛記	- 1	-1			1	1			1			=		7 P. S.
-6.0	0 0	.79	FIN DU FORAC	E	10					1						1					
					-		2	1	1		1	1		l		1	90				
-	1	- 1	, B =		1	-				1	1	1				-		12			بيا
7.0					5#8					1						- 1					. 1
-7.0	0	1	4		1	- 1		- 1			1							*	11 (
	1		\$	C.			1	1				100		12	i i	1			240		
8		- 1		100	1			1.	1								6 .	12		u = 8	1
8.00				12		:=:				1		(*):			15		9			8 -	
	1	-					. '			1		8 1			ř	1	90				
	1 -		(2)						1	1			1				92		55	12	大学
100	1					- [1	1			*,		Ť	.*	1,450
9.00	1						(2)							¥2			ĝ)				
	1	1	10 m												8			12			F-378
]		- 1						×				1				200
		1						1				1	1			1		2			
	-	1											- 1		(Vic.			6	15).		
	C.			1.20											200	9			2000		1

RAPPORT DE FORAGE

Projet: Etude hydrogéologique
Sondage: 987C
Site: L.E.S. St.-Nicephore
Page: 1 de 3
Client: Intersan Inc.
Dossier: LAIS-014
Date du forage: 98-05-12 au 98-05-15 Foreuse: Diedrich
Tubages: Tarière

			(10	00) 11 40	•	D	ice du	lorage	. 90-	05-	iz au	98	-05-	15 F	préuse	: Die	drich	T	ubages:	Tarier	e .
İſ	ETAT	T DE L	ECHANTILLON	TYPE	DE L'ECHAI	VTILLON	marqu	ie:	·	_					. 7	10 11		C	arottier	: NQ	
11	-		Remanié	CF Cuillère 1		VIILLON			-		1	(*)	-	ESSA!	in situ			ORATO	IRE		
		222. N ■ P	on Remanié erdu rotte de Roc	TS Tube She TA Tarière CD Carottier BE Benne Pe	lby à Diamant	3			S :	Sédin Teneu Limite	domét enton r en e Liqui	iétrie au de	×,	e ^{cela} - Ustr	9 I	N P No P Cui R Cui R	énétra énétra ésista: ésista:	ation S ation d ace In ace Re	itandard ynamiqu tacte au maniée	ue au ci	D _h II
11	*.		COUP	E STRATIGRAP	HIQUE		T	T	CHAN'	rillo	Plast		NTS	í ·	· ·	c P	erméa	bilité (em/s		5
	PROFONDEUR (m)	PROPONDETED (m)	DESCRIPT	ION DU SOL E	T DU ROC	SYMBULE	NIVEAU D'EAU/DATE PIEZOMETRE	TYPE NO		RECUPERATION		ANGLE ANGLE		SSSAIS IN SITU	ET	NO	HON- HON-DI	Raine- -Remai Iniee -	E AU CI SCISSON NEE _ ups/300	METRE -	ient cu kp
ll		122.43	3				Z			2%		ç	,	-			 10. 20.	7.7		_	
	00	17.86 1.57	peu de sill	n-gris el roux.			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CF-2		50	9					7	e. 20.	30, 4	0. 50. 60	2. 70, 8) so.
-5.0 -6.00	0		silt	gris, traces de		000000000000000000000000000000000000000	M1.00000	CF-4	X	67	15			200		*	* ·	e 6	ı	3	
- - -7.00						0000		CF-5	X :	75 1	4			7	14 ₂ ,		k		* ***	æ	59.799
8.00 9.00				e g		000000000000000000000000000000000000000	0 0 0 0 0 0 0 0	CF-6	10	0 (3			e st		*	3 (S)		·	٠	÷
	(6		e 	° 8		0	0 C	F-7	(j				:5		-			,# 6	190) K)	

RAPPORT DE FORAGE

Projet: Etude hydrogéologiqueSondage: 987CSite: L.E.S. St.-NicephorePage: 2 de 3Client: Intersan Inc.Dossier: LAIS-014Date du forage: 98-05-12 au 98-05-15 Foreuse: DiedrichTubages: Tarière

1			(10	90 _,	II VC.	90	P	ste du .	orage:	98-	05-	IZ a	u 9	8-0	5− <i>{</i> ′	5 Fo	reuse.	Diedrich	Tubages:	Tarière	
	ETA	T DE I	ECHANTILLON	_	TYPE DE L'	PCU AMM	LOW	marqu	e: .									\$ N	Carottier		*(
8			Remanié	CF	Cuillère fendue	CCHANTI	TÜN								E	SSAI (N SITU	ET DE LABOR	ATOIRE		
			lon Remanié Perdu arolte de Roc	TS TA CD BE	Tube Shelby Tarière Carottier à Dias Benne Peterson	nant		F		TT I	Sédin eneu imité	ilomé iento ir en Lique Plas	méli eau iide	rie	te ran	290	Ni Ci Ci	Pénétration Pénétration Pénétration Résistance Perméabili	n dynamiqu Intacte au Remaniée	ie au côn cône kP	٠.
1	ê	-		E ST	RATIGRAPHIQUE	· T		ल	Ē	CHAN	LILLO	N .		OINT	S	*		1	INCE AU CI	SAILLEUR	— МТ
	PROFONDEUR (m)	ELEVATION (m)	DESCRIPT	ion i	DU SOL ET DU	ROC	SYMBOLE	NIVEAU D'EAU/DATE. PIEZOMETRE	TYPE NO	ETAT	% RECUPERATION	ESSAIS N/RQD	KCLE	OUVERT/FERME	LISSAGE	ESSAIS IN SITU	ET LABORATOIRE	NON-DRAII NON-RE REMANII	NE-SCISSO Maniee -	METRE C	ι. J k —
	PRO	ο,			(4)		S	IVEAU	ŢŢ	-	RECL	ESSAI	A?	OUVER	REMP	ESSA	LABC		coups/300	mm	_
		112.4	3			-		0110			2%		8			2		10. 20. 30	. 40, 50, 60). 70. 80.	90
	2 g 2	111.7	A commence of the commence of	٠.	£	[:		0 0								7	m }		14	-18-1-	
	- -1.00	10.67	Sable gris.	un p	eu de silt .			0 0	CF-8	V	50	23									2000
1		2	12.0		3 T	ŀ.		0 0	4	\triangle	30	دی. ا	.	1				<i>إ</i> :		D (0)	5
	2.00	,	2.5		,			000			-	ĺ		İ	İ			Į.	(2)		5
ľ	2.00			(2)				6 0										7		8 ° 0	-
lE					¥ *			٥	CF-9	X	83	39	Ī								{
ŧ	3.00				, at ,			0		H						0. E		/	A	**	1
-		08.71			25	l'a			*	1		l				27	.	- /	9)	5	1
1		13.72	Silt argileux	gris	. traces de	17	7			∇			.				l	/ .	-	*	-
F	ŀ	1	*		e je	1//		122	CF-10	ΔΙ'	00	3					.]	(-		<u> </u>	1
Ė.			§ &		*	1//				İ			!		1.		1			7.8	I
15	.00	- 1	Ę.	8	16 Ø	1//	1									*	9	1.	12		É
E				*	167	1//	18		CF-11	VI.	00	8		1		*	1	* s	¥ 1 ¥70	2	·
16	.00		*			V/,	1			4		١.			-			*	ti e	9 9 901	ě
-	1		· .	æ		1//	Æ.					1		1							1
±7.	00						1		CF-12	X 10	00	8							. y ×	g 8	i
Ē			180	-		1//			ř	7		1		1		a		1 -	3.7		
		*	61	0	×1 ±1	1//	\otimes													8 g U	å
18.0	00					1//	X	\otimes		1	1		1		×				14: 18:	1006	
				12	**		10	000	F-13	(10	0 (6				1	,	<	9 1	5 E	á
- 1 9.0	0	1	8		19	1.//	000	000											8 8	90 - 41	1
	102		, 161 161		¥6 63	1//	0	0 0								22		:4	#	B	1
	19.	51 .5	lilt et argile g	rise		1//	00	C. C.	F-14	100			-					0 % ° ₂		~ .	
	8					V./:/.	0	00	V	7.00	1	1_			×		!*	A -		·	5.1

RAPPORT DE FORAGE

Projet: Etude hydrogéologique
Sondage: 987C
Site: L.E.S. St-Nicephore
Page: 3 de 3
Client: Intersan Inc.
Dossier: LAIS-014
Date du forage: 98-05-12 au 98-05-15 Foreuse: Diedrich
Tubages: Tarière

			. (19	9ģ) INC.	Da	te du	forage:	98-	-05-	12 a	u 9	8-0	5-	15 Fe	reus	e: I	Diedrich Tubages: Tarière	04
	E-10	of NO	teriori i sioni i a s	<u></u>		Re	marqu	e:		. 7				:		2 %	7 83	Caroltier: NQ	
			L'ECHANTILLON	-	TYPE DE L'ECHAN	TILLON								I	ESSAI	IN SIT	U E	T DE LABORATOIRE	=
er (calen) Stepenstate and an	2		Remanié Non Remanié Perdu arotte de Roc	TS TA CD	Cuilière fendue Tube Shelby Tarière Carottier à Diamant Benne Peterson	20	*	8	S H	Grant Sédim Teneu Limite Limite	iento ir en Liqu	méli eau iide	rie	3	\$0		N No Cui	Pénétration Standard Pénétration dynamique au côn Résistance Intacte au cône kP r Résistance Remaniée au cône	8
			COU	E S	TRATIGRAPHIQUE		· -	E	CHAN				OINT	3	10.0		K.	Perméa bilité cm/s	
	PROFONDEUR (m)	ELEVATION (m)	DESCRIPT	TION	DU SOL ET DU ROC	SYMBOLE.	NIVEAU D'EAU/DATE PIEZOMETRE		ETAT	ATION	ESSAIS N/RQD		OUVERT/FERME		ESSAIS IN SITU	ET	LABURATUIRE	RESISTANCE AU CISAILLEME NON-DRAINE-SCISSOMETRE CI NON-REMANIEE REMANIEE N coups/390 mm 10, 20, 30, 40, 50, 60, 70, 80,	U ki
! }			ě	W.		1/1/	000		×	-	-			-				10, 40, 60, 70, 60, 60, 70, 60,	90. ——
18	1.00							d				740					2		. (40)
iŀ		9				14	် ေ	CF-1:	M	100	} !	İ		į					
	00.5				= //		100 6 07 6 09				2					(B)			
23	1.00	(i)	æ		E			CF-16	X	100	16	:			20	ĵ.	+		90
24	.00	98.35		1				0							. s §		-		50
ŀ	•	24.08	Calcaire ar	gileu	x gris foncé		0 0	9		3			-						
e5.	00		± 3+		and the same of th		00	CD-17	5.00 - 1.00 <i>0</i>	60	37								
<u> </u>	-	96.83	0.20		ž		, b					ı	1					∑ 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	
ŀ		25.60	FIN DU FOR	MGE			0		L		-					9 .		1960 9 m +3	
2 6.	00		******	95	1	- 1			4			1			<u>.</u>	8	1		
<u> </u>		(2)	2 3			20	.			, ,		-				88 E			
₽7.(-	00		<i>u</i>	,	es now										5,	: :		ĝe d	
28.0	10		9 9	7				3							72	9	1	· · · · · · · · · · · · · · · · · · ·	
			-					* ,					1		100		-		** **
0.85	0					1								13.5	1 (2) 24 120	35	-		100
: : : (a)		8	0 E	100 m		+2	×												
	-										w 1-	L	1						383

RAPPORT DE FORAGE

Projet: Etude hydrogéologique
Site: L.E.S. St-Nicephore
Page: 1 de 1
Client: Intersan Inc.
Dossier: LAIS-014
Date du forage: 98-05-09 au 98-05-09 Foreuse: Diedrich
Remarque:
Carottier: NO

E	TAT	DE L'I	CHANTILLON	i	TYPI	DE L'ECHA	NTILION	marque	-		3.5		=	_				Caroltier: NQ
1		□ Re	manìé	-	Cuillère	lendue	CLUN				~		7)			i iazz		ET DE LABORATOIRE
			n Remanié	TS	Tube She	lby	.14	39.)		G I	Granı Sădin	ilomé iento	trie mai	- i			N	
			rdu		Tarière					w 1	leneu	L SU	eau eau	F14			₩.	Pénétration dynamique au cône
11		J car	otte de Roc		Carollier	à Diamant		2		IL I	imite	: Liqi	ide	114			Cu	il Résistance Intacte au cône kPa ir Résistance Remaniée au cône kPa
11			COU	PE S	Benne Pe FRATIGRAI	eterson				Th I	imile	Plas	liqu	e		- 8	k	Perméabilité cm/s
11-	=			-	THE TOTAL	IIIQOE	1	-	E	CHAN	TILLO	N	J	OINT	S	24		
112	=	EE		72		*	1	JATI			Z	1			j	5	name i	RESISTANCE AU CISAILLEMENT NON-DRAINE-SCISSOMETRE CU KF
			er 2°				当	NE SE	. 0		ATIO	RQD		RME	GE	SIT	JRE	NON-REMANIEE OF THE
1 8	I NOT UNDEUK (M)	PROFONDEUR (m)	DESCRIP	TION	DU SOL E	T DU ROC	SYMBOLE	D'E	TYPE NO	ETAT	Z RECUPERATION	ESSAIS N/RQD	ANGLE	/FE	ISS/	ESSAIS IN SITU	LABORATOIRE	REMANICE
1 6		3 6					SYI	SAU TEZ	TYF	Ė	Ecu	SAIS	AN	ER1	MPL	SAR	ABO]	
11		19.99						NIVEAU D'EAU/DATE PIEZOMETRE			2 R	ES		OUVERT/FERME	RE	S.		N coups/300 mm
	Ť	10.00	Sable gris	nn	nau de ail			XHXX			2.0	1				W.		10, 20, 30, 40, 50, 60, 70, 80, 90,
1		*	5 B. I.		ped de Sil	ů.				1						1/-		
l.t	-			: 5#				980601-ild		V						i#1		-
-1.0	0	- 1				75	1: (3)	- Eg.]	TA-1	I X I		ĺ					21	1
lt		- 1						: B8:		/\i		İ	İ				fa .	
-			**					: 目: .]		/ V								
-2.0					8		1:::1	: [[::]		\ /		- 1			-			
-	-						1	.目::		Vi	Ť	1	-		1			- III
Ė	1	- 1					i. : 1	: 計: 計	S-AT	XI	i	1	- 1		1	**************************************	1	· · · · · · · · · · · · · · · · · · ·
1	1	- 1	8					:目::1	× .	/\	1	i					İ	
-3.00	11	6.79		ç		*	-		- 1		ļ		1	1	ļ		. [
-	3.	.20	FIN DU FOR	AGE								¥.	÷	1			İ	a Ci
t	1					// 88		1	- 1		- [Ì		ĺ		i	
-4.00	1				· §	- 8	j .	Í	1	i			1	1			- 1	Į.
t.			*:		2:			İ		ĺ	İ			İ			- 1	· (m
-					-	i					1					10		1-
5.00	ļ.	1							- 1	1			1					20
-		- 1				1	2	1.	. 1	ŀ.								v s °((iii
Ė.	1	- 1			2	1		1	1	1		-	1			5	-	
١		1						1				1		İ			ľ	,
-6.00							1	21		1	1			1			- 1	Table 1
-				*		- 1	1	1	ľ	İ		l		1	İ		12	10 No. 10
		1				- 1		1	- 1			1		1	1	/ 5	i	**************************************
-7.00	9	1			. * "	- 1				1.			1					(()
10		1			- a= x		.		·				ŀ	1] *			
- 1			5.			1		** A	1	1	1							***
8.00					2			× 1.				1		-			71	
0.00	5)	ŀ	(*) X		160	1			1	İ	1		1					N 2004
			r :			4		1		1					35		1	B R SAI
					8 6	1		E	1			1					1	
9.00	'n				8,							1						
		1			12	-					1							W .
	ie					1		4			1							8. ×
1		L.,														i e		(a
	4				100							-						·

RAI I OIVI 2 =	The state of the s
	Sondage: 988C
Projet: Etude hydrogeologique	Page: 1 de 3
Site: L.E.S. St-Nicephore	Dossier: LAIS-014
Client: Intersan Inc.	
Date du lorage: 98-05-09 au 98-05-11 Foreuse: Diedrich	Carottier: NQ
Remarque:	n moths

Ì	(7)		(1998	3) INC	<u>`</u> .				98-05	-09	au	98-	05-	11	roreuse		Carottier: NQ
	.10		Tool	43			arque:		_		- 1			FSS.	AI IN SIT	J ET	DE LABORATOIRE
I I I I I I I I I I I I I I I I I I I	Name of	Reman Non Re Perdu	ié C manié 1 de Roc C	CF Cuillère CS Tube SI CA Tarière CD Carotti	nelby er å Diamanl	72 🙀		- 1	S Sé ¥ Te 11 Li	dime neur mile	ométr intom en e Liqui Plast	étrie au de	980 6 (a) (a) (a)	* 18	3 ° 6	N No Cui	Pénétration Standard Pénétration dynamique au cône Résistance Intacte au cône kPa Résistance Remaniée au cône kPa Perméabilité cm/s
	-	IR (m)	COUPE	STRATICE ON DU SO	Pelerson APHIQUE L ET DU RO	SYMBOLE	NIVEAU D'EAU/DATE PIEZOMETRE		CHANT			J01	TS	REMPLISSAGE	ESSAIS IN SITU ET	LABORATOIRE	RESISTANCE AU CISAILLEMENT NON-DRAINE-SCISSOMETRE CU kPA NON-REMANIEE REMANIEE N coups/300 mm
	III POSSES	0.05	Sable gris	un peu d	e silt			2		2	3		0.		:00		10, 20, 30, 40, 50, 60, 70, 80, 90,
	2.00		G _W	R ₁₉₂			0	10008013 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								ú	
	-3.00 -4.00		ē		* * * * * * * * * * * * * * * * * * *		0 0 0 0	o o CF	K		00 C	6					
	-5.00	*		8			000	000	2					-		4.50	
	-7.00	* * * * * * * * * * * * * * * * * * * *		e 8	N. .≅:		000	0 0	:F-3	X	100	72				180	
	-8.00		S 6				0 0 0 0	0000	CF-4	X	100	95			6.	9	
)	9.00	9.14		silteux gris	2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			00000	CF-5	X	100	46				i.	
	E	<u> </u>	<u> </u>		- 2 :		<u></u>	0 0		1.	\	<u></u>	_	نا	<u>بل</u> ا	1	

RAPPORT DE FORAGE

Projet: Etude hydrogéologique
Sondage: 988C
Site: L.E.S. St-Nicephore
Page: 2 de 3
Client: Intersan Inc.
Date du forage: 98-05-09 au 98-05-11 Foreuse: Diedrich
Remarque:
Carettier: NO

[F				*		Re	marqu	e:				80			n case,	Carottier: NQ
1 1		ECHANTILLON		TYPE DE		TILLON	-					-		ESSAI	IN SITU	ET DE LABORATOIRE
- 2	No.	emanié on Remanié erdu rotte de Roc	TS Tu TA Ta CD Ca BE Be	illère fend ibe Shelby rière rottier à D nne Peters TIGRAPHIQ	Diamant				S S # 7 LL L	Sēdim Seneu Jmile Imile	enton r en e Liqui Plast	nétri eau de ique		. 5 . 5	N N C	
PROFONDEUR (m)	ELEVATION (m)	DESCRIP	À	SOL ET D		SYMBOLE	NIVEAU D'EAU/DATE PIEZOMETRE		CHAN.	2 RECUPERATION	db	\top	REMPLISSAGE	ESSAIS IN SITU	ET LABORATOIRE	RESISTANCE AU CISAILLEMENT NON-DRAINE-SCISSOMETRE CU M NON-REMANIEE REMANIEE N coups/300 mm 10. 20. 30, 40, 50, 60, 70, 80, 90
- +1.00	109.38	Silt gris, traces de	in peu d sable	l'argile.				CF-6		100	25			•0. %	ie M	
+2.00 +3.00	×	2	# 32					CF-7	X	100	10			3.	* * * * * * * * * * * * * * * * * * *	
4.00	ie .		30 2 =	* 9				CF-8	X.	00				2.0		
	104.81	Silt argileux sable	gris, tr	aces de			-	CF-9	1	00	4			e e	ai Gran	
7.00		9 g	51 - K - W	es a				CF-10	10	10	4			5		
00		5 p 300	n n e				000000000000000000000000000000000000000	F-11	100	0 4	4			e ec	, ,	

		2 0 1 1/1 1 0	
Projet: Etude hydrogéologique	The second second		Sondage: 988C
Site: L.E.S. St-Nicephore	97 4 (7	188	Page: 3 de 3
Client: Intersan Inc.			Dossier: LAIS-014
Date du forage: 98-05-09 au	98-05-11	Foreuse: Diedrich	- Tubages: Tarière
Remarque:			Carottier: NQ

					marque:										- Carottier: NQ	
		ECHANTILLON		LILTON		ESSAI IN						SSAL IN	I IN SITU ET DE LABORATOIRE			
	No	emanié on Remanié ordu otte de Roc	BE Benne Peterson	×	4		S S W T LL L	lédim 'eneu imite	ilomé ientoi r en : Liqu : Plas	nětr eau ide	ie	is.	% p ≪ ⊛	No Cu Cu	Pénétration Standard Pénétration dynamique au cône il Résistance Intacte au cône kPa r Résistance Remaniée au cône kPa Perméabilité cm/s	
		COU	PE STRATIGRAPHIQUE				HANT				OINT	S		0	1 1 8	
PROFONDEUR (m)	S ELEVATION (m)	DESCRIP	TION DU SOL ET DU ROC	SYMBOLE	NIVEAU D'EAU/DATE PIEZOMETRE	TYPE NO .	ETAT	- % RECUPERATION	ESSAIS N/RQD	ANGLE	OUVERT/FERME	REMPLISSAGE	ESSAIS IN SITU	LABORATOIRE	RESISTANCE AU CISAILLEMENT NON-DRAINE-SCISSOMETRE CU KF NON-REMANIEE REMANIEE N coups/300 mm 10. 20. 30. 40. 50. 60, 70. 80. 90.	
\$1.00	98.71					CF-12		100	22				"	,		
6	21.34	Sable gris	, un peu de silt		. 809	CF-13	M	100	59						,	
22.00	98.10 21.95	Calcaire a	rgileux gris fonce	200000	ن ۾ ڏ										Jan W	
23.00			. Bridge Erig Tollice			CD-14		52	0							
	23.47	FIN DU FO	RAGE	aaaaaa	~~				į		i				ā m	
E4.00			8										e in		*	
25.00 - - -		3	e #			8		-					91			
26.00	a .	ğ.	2 <u>2</u> 21 = 2		(4)									(a)	7 55 a	
27.00 - - - - - - - - - - - - - - - - - -					8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			,					9 8 90 6			
						*			*10				*(a x	

Projet: Elude hydrogéologique	
Site: L.E.S. St-Nicephore	Sondage: 988C
Client: Intersan Inc.	Page: 3 de 3
	Dossier: LAIS-014
Date du forage: 98-05-09 au 98-05-11 Foreuse: D Remarque:	iedrich Tubages: Tarière

			(19	998) INC		D	eta du t	re124H	mc.					-			Dossier:	LAIS-014
			, , ,	,,,,,,,,	•	0	ate Ou 1	orage:	98-	05-0	5-09 au 98-05-11 Fore				euse:	euse: Diedrich Tubages: Ta		
	ETA	T DE	L'ECHANTILLOI	TYPE	DE L'ECHANT	11/	enter que										Carottie	
			Remanié	CF Cuillère fe	DE L'ECHANT	ILLON			- 1			7		ESSAI II	I SITU	ET DE LABOR	ATOIRE	
			lon Remanié	TS Tube Shell	eridue ·						lonté			(8)		Pénétration		
i	_		erdu .	TA Tarière	·				\$:	Sédim	enlon	nétrie	:		N	c Pénétratio	n standar	*
	0	Ce	rotte de Roc	CD Carottier	à Biamant		a ,,,				r en a			57	,C	li Résistance	n danamid	ne an cone
			2000	BE Benne Pet	erson				LL Limite Liquide LP Limite Plastique						Ci	ir Résistance	Remania	au cône kPa
			COU	PE STRATIGRAPI	HIQUE		Т	T - Do	LP [imite	Plast				k	Perméabil	lé em/s	on cone Kha
	12	1 1-			7		-	EC	HAN	TILLO	V	JOI	NTS		1 - 5			
	R (E	티	*		.8	ATE	8				-1		_		RESISTA	INCE AU C	SAILLEMENT
	130	2 8	5		*	C 23	5 2	1		101	8	15	H	Ĕ	된	NON-DRAI	NE-SCISSO	METRE CU ki
	PROFONDEUR (m)	ELEVATION (m)	DESCRIP	tion du sol et	DU ROC	SYMBOLE	NIVEAU D'EAU/DATE PIEZOMETRE	TYPE NO	T.	ERA	ESSAIS N/RQD	ANGLE FRT /FF	REMPLISSAGE	ESSAIS IN SITU	LABORATOIRE	NON-RE	HANIEE _	
	ROF	3 6				SYM	J n	YPE	ETAT	JU.	23	E E	E	S €	- 36 - 27 - 28	REMANIE	Œ , -	
11	Д.	ο.				~.	YEA P.E.A	-		REC	8	- E	E.	333	3	N	coups/300	mm —
11		100.0	5		1		Z			- % RECUPERATION	·	10	1					
11				72		777	000	CF-12		1	-	-				10, 20, 30	40, 50, 6	70. 80 90.
11			1		- V		2 0 0 0	01-12	XI	100	22			(+)		*		
H			1		Y)	4//	0 0 0	ľ		1	ì	İ	1 1			1		
1 2	1:00			27	· //	///	0000		- 1							\		
11		98.71			1/2	1//							1 1			-		
11	- 1	21.34	Sable gris,	un peu de silt	1.:	44	0000	k	-	4		1	1		1		. 1.	
11		98.10	α	:03		- //		CF-13	VΙ	100	59	1	1	30			Α.	
P2		21.95	Calcaire ar	gileux gris fonce	200	222	000	. 1	7					0		· ·	١.	
ļĘ		1		g grav			000			•		i			1	. 8	1	s "
1			0.50 (2)	e :						i	1				ĵ	/		
5,	.00	- 1					000 (D-14		52 i	ol	1	1		İ	/		
F	1		R: 12			٥	0 0			-		-	1			/		
F		6.58	8.7	Vi		×,	6 6 9					1 1			· 1	**		
t	2	3.47	FIN DU FOR	AGE	Tana	222	~	Н	ч.		i	î î	- 1		- 1			
24.	00	- 1	50			-	- 1		İ		i	: !	ĺ	es	i	¥0		
1		- 1			i		. 1	- 1			1	li	1		- 1			
t				(3)				ľ		i			1		- 1		.0	
1	1	1					1		1	:		1.1		80	- 1			
25.	00		h	185			1	- 1		1 .							3	<i>B</i>
Ė	1			-			i		ı	į								
		*	8	. « ¹⁶ »	1			- 1		ļ	1 1	1	1					34
-		.				1	1		1	i	1		1					
26.0	101	1	7.1		1	1		_	1		1 1				.			
		1		6	1									72	1	29		5
	1	1	Š.	TV.			1		1			1	13		* 1	081		
7.0		1		~~											1.			
	1					1		:				1			.			
		1		67	-	1	-										AU	*0
	1	1		84	1	15	- L											581
8.00				39 11 127		1		1.					1			¥		
		1			2 2	1	1								1		8#8	
	1	1					1	1.		- 35						a is		
				e e	3705			1							1.			
9.00		e .		= *		,												10.50
												1	12			(-)	- 2	No.
	+1	1		92	*3				20	-							90	(i)
	=	1			. 1 1		1 .	1 1	- 1				1				27	E
							. 1				1/2					1.6	g ik	20
-	-	-			2 4				-		-							

\$	Hydro	geo	Canada	RAPPO	RT DE FO	ORAGE						
. Pr	ojet: 0056	67		Forage:	PZ-92-02	(A,C)	5	Date	:_10-13/1	1/9	2	
	Diamatre de lo Fond du forage Type d'installat Elevation superieu Elevation du sol	ion: Pi re du tubag	0 mm 25 m ezometre double e prolecisur: 12037 m 38 m	- 4 - 4	2 5 60 2 60	# # # # # # # # # # # # # # # # # # #	Туре	d'analyse : G Granulos C: Chimique L: Lixiviat C: Controle	18	w e	e e e e e e e e e e e e e e e e e e e	
		Pro	fil stratigraphique	10 N			Pui	its		Į.	· uo	
Profon- deur (m)	Elev. (m)	Profil	Descrip	ition		Amena	igemen	t .	Niveau d'eau	Echantillon	Recuperation	No. d'echanfillon Analyse
0	119.38			4	COUVER		1	in	8		200	
2		-	SABLE FIN SIL	TEUX BRUI	TUBAI PROTECT BENTONI	EUR	Π :: 1.7 25		00 CONTRACTOR			1.5 - 1.45 2.5 - 2.9
6	115.04	- 0*	SABLE FIN SIL	TEUX GRIS	SABLE FI	į			2.59 CREPINI EN PVC \$ 100 mm	\boxtimes	38/45	4.0 - 4.4
8	111,11				BENTONIT		20			×	45/45	7.5 - 7.9 8.6 - 9.0
12			SILT GRIS / PEU D'AI	VEC UN	MATERIAL REWPLISS	IX DE AGE			TUBAGE EN PVC \$ 50 mm			12.0 - 12
18 20 22 22 24 24	98.48		SABLE SET, QUELDUE CAI TRACE D	RAVIER LLOUX FY RGILE TILL	BENTONIT	21			CREPINE EN PVC \$ 50 mm		15/45	20 - 20.
22	98.08 96.13		ROC		SABLE FI	ltrant E 23	.05		21.40 22.90	×	25/45	21 - 21.
24		a. a.		e 2 3	ž,	23	.35	a B a			35.5	
28	12 52 20 5,	2		· .	***	9		180 180			80	
E 32	2.5		9 8 9 9						7.50		is m	
. 4		ê		* 3 * 2 *		ûl ≥		e A M				7 m
	علــــــــــــــــــــــــــــــــــــ								تسسياه			56671002.0

A Hydrogeo Canada

RAPPORT DE FORAGE

Projet: 005687

Forage: PZ-92-03 (B.C)

Date: 05-10/11/92

Diametre de lorage: 200 mm

Fond du forage:

21.75 m Type d'installation: Piezometre double

Elevation superieure du lubage protecteur: 120.845 m

Elevation du sol ______ 11936 m

Type d'analyse :

Granutometrique *

C: Chimique

L: Lixivist

Q Controle de qualite

	역 1일 전 #	Prof	il stratigraphique		Puits	7.53 N17	'n	
Proton- deur (m)	Élev. (m)	Profil	Description	Amenag	ement	Niveau d'eau	Echantillon	Recuperation No. d'echantillon
<u> </u>	119.76		e de la deservición de la defendación del defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defendación de la defend	COUVERCLE		6	+	Œ 2-0-
1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	115.56	200000	SABLE FIN SILTEUX BRUN	TUBAGE PROTECTEUR		TUBAGE	×2	78/45 1.0 – 1.4 745 2.7 – 3.1
5 6 7 8	111.01		SABLE FIN SILTEUX GRIS	MATERIAUX DE REMPLISSAGE		EN PVC 100mm CREPINE EN PVC	≥ 25	5/45 4.0 - 4.4 /45 5.5 - 5.9
9 10	109.61		SILT SABLEUX GRIS	8.68 SABLE FILTRANT		₱ 100mm 9.26	× 36/	745 8.5 - 8.9 745 10.0 - 10.
12	106.46		SILT GRIS AVEC UN PEÙ D'ARGILE	11.49 BENTONITE		10.76		
- 14 - 15 - 16 - 17			SABLE, SILT, GRAVIER OUELQUE CAILLOUX ET TRACE D'ARGILE	MATERIAUX DE REMPLESSAGE 16.23		2	0/45	15 13.3 - 13.7 5 15.5 - 15.95
18 19 20	100.04			BENTONITE 19.30 SABLE FILTRANT		REPINE N PVC 50mm		17.0 REJET
21 22 23	98.01		ROCIE	ENTONITE 21.15	20.4	85		
	7	خيات						*

	rojet: 005			Z-92-04 (A)	٠,	Date	e:_4/11/5	}2	
20 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12	Diametre de la Fond du forag Type d'installa Beration superie Elevation du so	e: 9.85 dioo: Plez ure du tubege p	m ometre simple rolecieur: 118.76 m		Тура	d'analyse : G: Grandon C: Chimique L: Lixivial C: Controle			2 2 2
8 4		Profil	stratigraphique -		Pui	ts		7	_ J
Profon- deur (m)	Elev. (m)	Profil	Description	An	nenagement		Niveau d'eau	Echantillon	Recuperation
- 0	117.90		1 18	COUVERCLE CADENASSE	7		18	\exists	7
1	116.75		SABLE FIN SILTEUX BRUN	TRAC			TUBAGE EN PVC \$ 100mm		45/45
2 - 3	**************************************			BENTONITE	1.90 2.15	77/2	240		35/45 2
4	3		SABLE FIN SILTEUX GRIS				, Crepine		20
6	111.10	•		SABLE FILTRANT			EN PVC # 100mm	<u>⊠</u> 2	2/45 4.
F 7	711.10				_	=	6.83	≥ 2	4/45 6.
8			SILT GRIS AVEC UN PEU D'ARGILE	2 25			8	×23	760 <u>8.</u> 0
- 10	108.05				9.85				
- 10 - - 11		2,			3.00		3 50	⊠ 4	/60 9.2
- 12		•	2 2 3		8	5% 5%	:*		

Projet: 005657 PZ-92-05 (B,C) Forage:_ Date: 29-30/10 et 2-3/11/92 Diametre de forage: 200 mm Type d'analyse : Fond du forage: 19.70 m G: Granulome trique * Type d'installation: Piezometre double C: Chimique Elevation superiaure du tobage protecteur: 118.30 m L: Lixiviat Elevation du soF 117.53 m O: Controle de quatite Profil stratigraphique Puits Profon-Recuperation Elev. Profil Echantillon deur (m) Description (m) Amenagement . Niveau d'eau COUVERCLE CADENASSE 117.53 0 ō 1 TUBAGE PROTECTEUR SABLE FIN SILTEUX BRUN 115.95 2 CIMENT TUBAGE, EN PVC 3 # 50mm 45/45 3.28 - 3.8 4 SABLE FIN SILTEUX GRIS TUBAGE MATERIAUX DE EN PVC \$ 100mm 5 REWPLISSAGE × 33/45 4.90 - 5.3 6 110.73 7 **★ 40/45** 6.06 - 6.5 8 BENTONITE **32/45** 7.10 − 7.55 9 CREPINE EN PVC × 16/60 8.25 - 8.70 10 SILT GRIS AVEC UN PEU D'ARGILE 45/60 9.27 - 9.87 10.00 11. SABLE FILTRANT 12 104.98 × 60/60 10.8 - 11.4 11.62 12.15 FRAGMENTS DE COOULLAGES DANS 13 104.53 14 SILT GRIS AVEC UN PEU D'ARGILE 102.03 BENTONITE 45/45 14.35 - 14.8 SABLE SILT, GRAVIER OUELQUE CAILLOUX ET CREPINE 10/45 15.95 - 16.4 EN PVC 99.93 17.01 # 50mm Roc 17.45 SABLE FILTRANT 12/45 17.10 - 17.55 97.83 19.24 18.95 BENTONITE 19.70 23 56671005.0%G

MAPPUK! DE FORAGE

Hydrogeo Canada RAPPORT DE FORAGE Projet: 005667 PZ-92-06 [A,C] 🍦 Forage: __ Date: 19-22/10/92 Diametre de lorage: 200 mm Type d'analyse : Fond du forage: 23.30 m G: Granufometrique * Type d'installation: Piezometre double C: Chimique Elevation superieure du lubage protecteur; 121.58 m L: Lixivial Elevation du sol-O: Controle de qualite Profil stratigraphique Puits Profon-Recuperation Elev. Profil Description deur (m) Echantillon (m) Amenagement 120.63 COUVERCLE CADENASSE-0 1 TUBAGE PROTECTEUR TUBAGE EN PVC # 100mm 2 33/45 1.38 - 1.8 CIMENT . SABLE FIN SILTEUX BRUN 3 MATERIAUX DE 3.0 4 REMPLISSAGE \times 30/45 3.0 - 3.45 115.39 4.0 5 TUBAGE EN PVC # 50mm 6 CREPINE 45/45 5.05 - 5.5C SABLE FILTRANT SABLE FIN SILTEUX GRIS EN PVC # 100mm 112.73 ×45/45 6.5 - 6.95 8 9 ×31/45 7.9 - 8.35 8.45 8.83 SILT SABLEUX GRÍS 10 **≥** 32/45 9.10 - 9.55 BENTONITE 11 109.18 33/45 10.55 - 11.00 12 13 ×43/45 11.90 - 12.35 14 MATERIAUX DE 45/45 | 13.16 - 13.51 SILT GRIS AVEC UN REMPLISSAGE 15 45/45 14.2 - 14.65 16 16.15 17 45/45 16.0 - 16.45 102.90 ARGILE GRISE BRUNE 18 102.78 BENTONITE 45/45 17.4 - 17.85 19 SABLE, SILT, GRAVIER-OUELQUE CAILLOUX E 20 26/45 19.4 - 19.85 99.43 21 CREPINE EN PVC SABLE FILTRANT 22 # 50mm 23 97.33 BENTONITE 22.90 23.10

Hydrogeo Canada RAPPORT DE FORAGE Projet: 005667 PZ-92-07 (A) Forage:_ Date: 23/10/92 Diametre de lorage: 200 min 'Type d'analyse : Fond du forage: 7.45 m G: Granulometrique Type d'installation: Piezometre simple C: Chimique Elevation superieure du tubage prélecteur: 118.781 m L: Lixiviat Elevation du sot 17.995 in Q: Controle de qualite Profil stratigraphique Puits Proton-No. d'echantillon Analyse Elev. Profil Description Echantillon deur (m) (m) Amenagement COUVERCLE 117.996 0 SABLE FIN SILTEUX BRUN TUBACE PROTECTEUR TUBAGE 117.076 EN PVC 1 CIMENT BENTONITE 1.75 2.25 3 × 45/45 2.45 - 2.90 4 SABLE FIN SILTEUX GRIS SABLE FILTRANT CREPINE EN PVC 6 28/45 5.7 - 6.15 111.27 SILT GRIS AVEC UN PEU 7 6.75 110.55 7.45 10 11 56671007.DWG

Géotechnique, hydrogéologie et contrôle des matériaux

2600, rue Dalton Sainte-Foy, Québec Canada, G1P 3S4 (418) 853-8367 Télex: QBC 051 31593

Page 1 de 1

RAPPORT DE PUITS D'EXPLORATION LA TARIÈRE OU DE TROU A

)0E1	£ 55		*	nt sanitaire No du Sonoge	100
1		ROIT		-Nicép	E 20 E	PROFONDEUR_	3,40 ш
1.	ÉLE	VATI	D NC		(a)	HVEAU DE RÉFÉRENCE	
		HNIC		R.J		LARGEUR LONGUEUR	<u>.</u>
	Gs:	echant prél e v	é à la	la tari main		Wc: feneur en eau (%) Ag: analyse granulométrique DATE 85-09-0	
	rof:		ECHA	NTILLO			système de
- In	i;⊡ ;₩	. loc, _	_no	poids opprox.	essois	DESCRIPTION ET OBSERVATIONS	classification unifié
0	,2				· ::	Silt gris, un peu d'argile, traces de sable;	
10	,4				A.E.G.	consistance moyenne à raide, traces de coquil- lages.	
1	,				×	Présence de matières organiques sous forme de	
0	,6					taches noires.	
				2			
0	,8_			:(*0			
1	,0		~		đi		
	-370	×	•	1 3	. W.		
1	,2				Ag		
1	,4_	X	1 AS	* × 23	Wc=18,6%	, a see the see that	
1	,=_				^Y d=1788kg	/=-	
1	,6_	* 1	(4)				
	,8	E	*			où Yd= masse volumique sèche.	
1	' `	600	8.,	Ť	. 1		
.2	,0					* 4	To .
					25 55		
12	,2_	å J		* 2	* 5 ×		
2	,4	- 50		5	2		
1					7/2		888 W
2	,6	• •			-		64 62
12	,8	51				2,80 m	
		\ /					9
3	,0-	\/				Silt argileux gris, traces de sable;	
1		X	2 AS			présence de coquillages et de matières organi- ques sous forme de taches noires.	
)	,2-	$/ \setminus$	(120)	-	* 160		
13	,4	(9.	3,40 m	
1.				=3//		PROFONDEUR DE L'EAUAbsente DATE 85-09-05	
1	-					PROFONDEUR DE L'EAU DATE	
<u></u>	106-			<u>اب نا</u>		na mana di manana manana di manana 	لسببا

GÉOROCHE LTÉE

Géotechnique, hydrogéologis et contrôle des matériaux

2600, rue Dalton Sainte-Foy, Québec Canada, G1P 3S4 (418) 653-8387 Télex: QBC 051 31593 Page 1 de 2

RAPPORT DE PUITS D'EXPLORATION OU DE TROU À LA TARIÈRE

PR	DUET				nt sanitaire	1
ENI	DROIT_	St-	Niceph	ore	PROFONDEUR	3,60 m
ÉLE	VATIO	ON D	U TER		NVEAU DE RÉFÉRENCE	· · ·
	CHNIC			R;J.	LARGEUR LONGUEUR	a
As: Gs:	echant prélevi	illon à Éàla	i la tari main	ere	Wa: teneur en eau(%) Ag: analyse granulométrique DATE 85-09-0	
prof:	9.\$) . ((A))		NTILLO	ON '	PERSONALISM EX COSESSATIONS	système de classification
pi:¤ m:¤	_loc ,	_00	poids	essols	DESCRIPTION ET OBSERVATIONS	- unifié -
0,2	6			# W #1	Silt sableux à un peu de sable, un peu	7.0
			3	500	d'argile.	
0,4_	a a		9 (1			*
0,6	320	ie		neti		(25)
0,8					2 B 120 98. 2 B	
1.0				100 B B		
-, <u>2</u>	X	1 .AS		Wc= 18,0% Yd= 1811k	h and the second of the second	-
1,4			(6)	0.5		<
1,6_		8		0 12		27 m
1,8_		# # T	1000	i.		
2,0			e i	2	$\dot{\gamma}_{ m d=}$ masse volumique sèche.	8
2,2				(ec = 20)		
2,4		JS 10	2,			
2,6_	\$194	*		at a ⁶⁵ 200 g		No.
2,8				19. *		¥2
3,0_				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 E1
1,2_						
) 3,4_		*	*			
P,4-	1			×	PROFONDEUR DE L'EAU Absente DATE 85-09-05	
					PROFONDEUR DE L'EAUDATE	2
	1			L.,	<u> </u>	

no: 0987-5018-0000

GÉOROCHE LTÉE

Géotechnique, hydrogéologie et contrôle des matériaux

2600, rue Dalton Sainte-Foy, Québec Canada, G1P 3S4 (418) 653-8387 Télex: Q8C 061 31593

Page 2 de 2

RAPPORT DE PUITS D'EXPLORATION OU DE TROU A LA TARIÈRE

PR	OJET_	Sit	e d'en	fouissemer	nt sanitaire No du Sondage	P-2
EN	DROIT	St-	Niceph	ore	PROFONDE UR_	
ÉL	ÉVATI	ON D	U TER	RAIN ET	NIVEAU DE RÉFÉRENCE	
	CHNIC		R.J		LARGEURLONGUEUR	- 3
As: Gs:	echant prélev	illon é à la	a la tari main	iere	Wc: teneur en eau (%) Ag: analyse granulométrique DATE 85-09-0	5
prof:			NTILL	ON		système de
pi;□ m;¤	loc.	no.	poids approx.	essais	DESCRIPTION ET OBSERVATIONS	classification unifié
3,6	\times	2 AS			Silt argileux gris, traces de sable. 3,60 m	***
					Fin du puits	
-					e 1	
					e like 5 e u.si	
-			2			
7-4-5		=		1 ta	200 X	8.62
				* 5	8	
-				· · · · · · · · · · · · · · · · · · ·		
-				¥ £		
				-	000 ES g	
	v a 1					
		F		# · ·		
-		¥.				
-	* ¹ 1	**		** *		14
	¥ 303			± 196		
** 34	20		- 95 - 46			
-				* * * * * * * * * * * * * * * * * * *		
			×	2)		
		12	730 ₋₀₀	18		
				7		
u"		• •				
		8		e. ¥	# 3 mm	
) * I						*(
-	20		*		BEOFONDELID DE MEANS DATE	0.50
-		tt.	100		PROFONDEUR DE L'EAU <u>Absente</u> DATE 85-09-05 PROFONDEUR DE L'EAU DATE	2 2 2
-106-			. 44		PROFONDEUR DE L'EAU DATE DATE	s 9
* 11 16 4						

2600, rue Dalton Sainte-Foy, Québec Canada, G1P 3S4 (418) 653-8387 Télex: QBC 051 31593

on	- 00	Page1	de	
ébec	13		8	

Télex: QBC 051 31593 RAPPORT DE PUITS D'EXPLORATION OU DE TROU A LA TARIÈRE d'enfouissement sanitaire

PR	JET_	Sit	e d¹er	fouisseme	nt sanitaire No du Sondage	P-5
ENI	ROIT_	St-	Nicéph	nore	PROFONDEUR	0,20 m
ÉLE	VATIO	DN D	U TER	RAIN ET N	NIVEAU DE RÉFÉRENCE	·
TEC	HNICI	EN	R.J.	-	LARGEURLONGUEUR_	
As: Gs:	échant prélevi	illon à É à la	i la tari main	ère	Wc: teneur en eau (%) Ag: analyse granulométrique DATE 85-09-0	
prof:			NTILLO	ON .	DESCRIPTION ET OBSERVATIONS	système de classification
m:¤	loċ.	no.	poids approx.	essais	DESCRIPTION ET OBSERVATIONS	unifié
0,2	\times	1.AS		Wc= 15,0	Silt gris, un peu de sable et d'argile.	
	•			γ _{d= 1872k}	Fin du puits	
-						
_			10 12	y ⁿ os		
			.ey ^(X)			
· -			e er e		Υd= masse volumique sèche.	
					*	1
	. * 1					
-	-					1
-			.*			
	8 8			l		-6
. ,	02:					
				8		
	1			90 - 300 9 - 2		
_	1					
			i i i			.
-			×7			
_						
			0 134		18 E	
.)					- A	
	1		(*)	1	PROFONDEUR DE L'EAU Absente DATE 85-09-05	
_				**	PROFONDEUR DE L'EAU DATE DATE DATE DATE DATE	1 .
6-106		<u> </u>	.31		1,,	الشسسينيات

GÉOROCHE LTÉE
Géotechnique, hydrogéologie
et contrôle des matériaux

2800, rue Dalton Sainte-Foy, Québec Canada, G1P 3S4 (418) 863-8387 Télex: QBC 061 31583

Page 1 de 1

RAPPORT DE PUITS D'EXPLORATION OU DE TROU A LA TARIÈRE

PR	OJET_	·, ·,	Site	d'enfouis	ssement sanitaire No du Sondage	P-6
EN	DROIT		St-N	icéphore	PROFONDE UR	
ÉL	ÉVATI	ON D	U TER	RAIN ET	NIVEAU DE RÉFÉRENCE	
	CHNIC		R.,		LARGEURLONGUEUR_	
Gs:	prélev	fillon é à la	à la tari main	ere	Wc: teneur en eau(%) - Ag: analyse granulométrique DATE 85-09-05	(6)
prof; pi:□			NTILLO			système de
m;¤	loc.	no.	poids approx.	essais	DESCRIPTION ET OBSERVATIONS	classification — unifie
0,2	\bigvee	1 AS			Sable brun, un peu de silt.	4
0,4	$/ \setminus$	**	27	=		
0, <u>6</u> _	()	. 1	2		0,50 ш	
0,8	\bigvee	2 AS	(8) (Wc=13,4%	Silt sableux gris, traces d'argile.	9 9 8
1,0	$/ \setminus$			^Υ d=1960k		
		×			1,05 m Fin du puits	· ·
. —		. 15 25		9	a was	8
				# /		
		-	×			
_	ŷ.		ិតភ *	- 180 - 180		
	100		las.	96 W T		8
				* * *		*
·				. 9"	· · · · · · · · · · · · · · · · · · ·	
-		۰		. G		1
-		8.	-	***		-
-						- g.
-						\$0.00 S
	2					4
5						8 8
. —	Ē	13.50		,	PROFONDEUR DE L'EAU Absente DATE 85-09-05	
_		it.		3.00 3.00 2.00	PROFONDEUR DE L'EAUDATEDATE	
-106-F		1				

Géotechnique, hydrogéologie et contrôle des matériaux

Sainte-Foy, Québec Canada, G1P 3S4 (418) 653-8387 Télex: QBC 061 31593

RAPPORT D'EXPLORATION LA TARIÈRE DE PUITS OU DE TROU A

PR	OJET_	Šit	e d'er	fouisseme	nt sanitaire No du Sondage p-7	
		- 8	Nicéph		PROFONDEUR 1,80 m	
ÉLI	ÉVATE	ON D	U TER	RAIN ET	NIVEAU DE RÉFÉRENCE	
	HNIC	_		J'	LARGEUR LONGUE UR	
As: Gs:	echant prélev	illon i é à la	a la tari main	ère	Wc: teneur en eau(%) Ag: analyse granulométrique DATE 85-09-05	•
prof:			NTILL	ON	système	de
pi:□ m:⊠	loc.	no.	poids approx.	essals	DESCRIPTION ET OBSERVATIONS classifica	ition
0.2		,-	. 8	*(
0,2		-				
0,4	8)				Silt sableux gris, traces à un peu d'argile.	
0,6			4		and the state of t	
,	3 S. E.					242
0,8_	* * * *	*		7.		
1,0						
1						
. =				iā.	e e	
1,4			÷:			
1,6_		÷	.5			
1,8			*	(8)	1,80 m	
-				*	Fin du puits	
	2		*.			
				int int is		
		. 9				
				785 H		- 1
	•					.
		l	-	, e.		٠
		ı	7.5	2		
1	-	.	2 2			
2	35 A			n 24		
				-	PROFONDEUR DE L'EAU Absente DATE 85-09-05	
				F g*	PROFONDEUR DE L'EAUDATE	
3-106-F						

RAPPORT DE FORAGE

Page: 1 de 1 Forage No: F-1A

Client: Le Groupe SNC

Projet No: HG-127-2 Projet: Installation de prezonnetres

Locolisation: Site d'enfaussement, St-Nicéphore

Fore du 91-07-11 au 91-07-11 Marteau: 63.5

Chute: 0.76

Niveou de références

· È			85	į	-	TIGRA		UL		T		1	-	EC	HANT	LLON	S -	T			-				-	-	pe: 3				٠.
PROFONDEUR (m)	NIVEAU (m) /	VOTO DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA DE LA	; ;:-	DU S	escr Ol o	IPTION U DU	N ROC				STRATICRAPHIE	PIEZOMETRE	TYPE ET	NUMERO.	. ETAT	RECUPERATION	N ou ROD		CON	wn	wi wi			BOR	SAIS Atoi -sit	RE	1	COI 20. 1 1 RES	NETR UPS 40. L SISTA	/ 0.: 60. LL NCE	3 n . (8 . L. . AU
- 4	0.00	For	nne sar	نة ه	hant:	11	/* 		K.										20.	40.	60.						1 2	0.	40.	60.	10
1.		inst	oge sar allation	0		852			×			77			Œ									*			_1		11	1	ı
		Sab	e fin à (Selon	foro	en o	vec d	es t	2000	de	13		1//	1		1				!	ļ	4			*8						1.	
2.		31		11	7.2-12	x I		ai S	4	7			S.					100							₹0		,**				
3.		~				î .		•	82	27.11.		91-07-29	7			:						r.									
	-		3			303		÷		7		. · · · · · · · · · · ·																			
4.						22	Е																				***************************************				***************************************
		21			r.	12				· ·							-			•••••	-			,	.e <				·	ļ.,	
5.					a H		*						a .		1					 X			15 15 11	S)				,			
5.1	9	FIN DU	FORAG	E	Λ		-			ن.	۲		98							*****	ļ Ī	1		10		-	<u></u>				1
			ş.			* **			1.						-								e Via	*:						4	
	ľ				6																•		e _s								-
1			* a #	90				15 38		300			0.00			1	ļ	ļ.,					2:		66	1					
		8 3	R R 			•,							in .	. 20									6 (6)	ě	R B						
		3			×	er G												 -	1.	-				**		ļ		<u>.</u>			
	NO	TE: Tro	u de fo	race	scell	é à I	'nid					-												5.0 *						***************************************	
	de ben	mortie tonite	entre supérie	le b ur e	oucho ka s	on de urfoc	e.								3 1							8			3			<u>.</u>			•••• <u>•</u>
e:		-		-	•		_		L	1.						- 1	ļ						3			23	1 :	1			

RAPPORT DE FORAGE

Forage No: F-18

Client: Le Groupe SNC

Projet: Installation de piezomètres

Foré du 91-07-11 au 91-07

Localisation: Sile d'enfouissement, St-Nicéphore

Marteau: 63.5

Niveau de référence:

Tubage: TARIERE

Prof nappe: 3.15 le 91-07

-		COUPE STRATIGRAPHIQUE			EC	HANTI	LLONS		i			1	Prof nag	70. 0	.13	le 91-
PROFONDEUR (m)	NIVEAU (m) / PROFONDEUR		展	Ľπ	*					MITE D	Ç	_ E	2N22	١.	COLL	ETROM PS./
FONDE	YEAU (DESCRIPTION DU SOL OU DU ROC	STRATIGRAPHIE	PIEZOMETRE	TYPE ET NUMERO	ETAT	RECUPERATION	ou ROO	CO	NSISTAN	CE	LABO	PRATOIRE	1	20. 4	
PRO IN	2 2		STRAI	PIEZ	₩.	, m	RECUE	N	wp	wn	κl	ET	N-SITU		resi Cisaili	STANC
	0.00	·		¥ 2		(2)	7.		20.	40.	60.		8		20. 4	
	9.00	Forage sans echantillonnage pour installation d'un piezomètre.	.;,	:::			i							1		
				11						.			()			
1.		Sable fin à moyen avec des traces de silt. (Selon forage F-1C).		ii	*		i			ļ	<u>. </u>					
	- [SIL (Selon lorage F-1C).	.4.	1 1 1 1 1 1		0						3	Ť.			
				ii										1		
2.		<i>u</i> *	7	1 1 1 1			١.	1			 			ļ		
				7-29	2		.		-					1		
3.		ļ,	7	1 4 91-07-29			ļ									
		a	(*)	Ė			. j									
-					2	*		*				22				
4.			/	1.			-				ļ					
				1	İ			.				Œ				
5.			11	1//									A.			
	i e	2	- 1	X//			1	ŀ			-		ar gr			
					5											
6.0	- to	ill occileur à occile au			^		ļ									
1	1	ill argileux à argile silleuse, gris. Selon forage F-1C).		.		. [[1 8 9			
			1		n:		٠.				Barr	N.			2	
			1					-		ļ						
		1/2	1		1	-			.							
. -		19	/	::		+ .	1									
] .		(//	4	•			Sm.	ļ-,				ä.		<u> </u>		
		· · · · //	1				į					2				
			/			1	•	1								
		1/,	1	::			į.			-		e 8	183	1		
		1/2	1		8 E		ě									
		Y /	/ 1			1		-		350 P			. 2 6		1.7	

RAPPORT DE FORAGE

Projet No: HG-127-2

Poge: 2 de 2 Forage No: F-18

Date: 91-08-13

Client: Le Groupe SNC

Projet: Installation de piezometres

Fore du 91-07-11 ou 91-07-11 Marteau: 63.5

Localisation: Site d'enfouissement, St-Nicéphore Niveau de référence:

Tubage: TARIERE

Chute: 0.76 Prof noppe: 3.15 le 91-07-29

	T	COUPE STRATIGRAPHIQUE		T	T 60							-	Proi no	ppe:	3.15	le 91-	-07-29
PROFONDEUR (m)	NIVEAU (m) /		STRATIGRAPHIE	PIEZOMETRE	NUMERO	ETAT	RECUPERATION.	N ou RQD	CO		NCE wi	LABOR	sais Vatoire I-situ	1	20. RES	SISTANC	0.3 m XO. 80. LLL
	1000	A A								40.	60.	ľ			20.	40. 6	0. 80.
H .	10.00	Land the state of	17	:	-		2			4	44	 		1	1.	بب	
11	10.28	FIN DU FORAGE		-		* 1			. I.								
-		× H 1										*,		1			
11.	1	, mill with	. 1							1				-		Ŀ	
[.												1	*		·†		
-		- 28			1		- 1										
- 12.		£ 8* * * * 1			1			- 1				15					1
-						Į		ŀ		- 	<u> </u>			ļ	ļ		<u>l</u>
1	8			1			1	- 1					2:				
ļ.,		an e a w						-				Y.					
- 13.		*													1.		
F	* 4			1											······		
F 1				- 1		4	1										
- 14,	. 1	9 B	İ	*	- 1	1	1							:			
- "		3			1	- 1	.	ļ.,		-							
t I		t free free					1										
	- 1	0 0		- 1	.							55		Q.		: [
- 15.	- 1			- 1				-									
1		* * * * * *			- 2			-		Ť		12 12					
- 1		. * *									1		0.723			1	
- 16.		3 3	-	- 1		- 1		1									
- 10.	1	8	- 1	- 1						ļ	ļ	52					
583		**				1											
	. 1	0		4												1	
- 17.			1.		12		1				-	· 2	- 1				
. 3	a e	4			- 1		1	-	Ī			(a)	ŀ				
			1.	1			1	-					12			1	
18.				100	0 3		-	188				0.5		l		1	1
10.	- 1		-					ļ		ļļ			1				
	1.			- 1								17		Ī			
	1 8	OIE: Trou de forage rempli au dessus					3	1								1	
19_	T.	oide des materiaux provenant du		. 1				.]									
-	SI	OTE: Trou de forage rempli au dessus u bouchon de benionite supérieur à pide des matériaux provenant du prage, et scellé à l'aide de mortier ur les 0.60m supérieurs.					1		1			×		 -			
	3						1					* ","				ļ	
	1		1						1 1				.		1		
.Note:			1			<u> </u>	1 :	<u></u>	<u>1l</u>							1.	
															-		

MONTERYAL

RAPPORT DE FORAGE

Poge: 1 de

Client: Le Groupe SNC

Projet No: HG-127-2 Projet: Installation de přezomětres

Forage No: F-1C

Localisation: Site d'enfouissement, St-Nicéphore

Foré du 91-07-19 au 91-07-Marteau: 63.5 Chute: 0.

Niveou de référence:

Tubage: HW,NW

		COUPE STRATIGRAPHIQUE	, ·	T EC	THAN	1101	ĸ		Prof nop	De: 4.68	le 91=07-
PROFONDEUR (m)	je.	IS	PIEZOMETRE	TYPE ET NUMERO		NON	N ou ROD	UMITE DE CONSISTANCE WP WN WI 22, 24, 26.	ESSAIS LABORATOIRE ET IN-SITU	20. RES	NETROMETRE UPS / 0.3 m 40: 60, 8 L L L USTANCE AU LEMENT, KPC 10, 60, 80
	0.00	Sable fin à moyen avec des traces de silt, gris noirâtre. Présence d'oxydation jusqu'à environ 2.5m de profondeur. Odeur d'hydrocarbure.			, :					1	
	•										
			,	CF-1	X	89	32				
] - 3.				A		×					
- 4.			-07-79								
5.				F-2	Z.	44 1	9				
- 6,			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
	5.10	Silt argiteux avec des traces de soble, gris.					-				
						-	-				
- 8. -			CF	-3 ×	89	6	0		1:20.6		100
9.0	X) Ar	gile silteuse ovec des troces de				0.7	_				
Note:											

Client: Le Groupe SNC

RAPPORT DE FORAGE

Projet No: HG-127-2

Projet: Installation de prezometres

Localisation: Site d'enfouissement, St-Nicéphore

Niveau de référence:

Tubage: HW,NW

Poge: 2 de 3

Forage No: F-1C

Foré du 91-07-19 ou 91-07-23

Morteau: 63.5

Chute: 0.76

Prof noppe: 4.68 le 91-07-29

		COULDE CEDITION OF THE COURSE				N			200			ror nop	DE: 4.	203 1	e 91-	-07-2	9 >
'	-	COUPE STRATIGRAPHIQUE		EC	HANT	LLON	S			100	1 3		T				
(E		(a) (a)						1	JMITE D	E ·	ESS	NC		PEN	ETROM	ETRE	3 3
PROFONDEUR (m)	NINEAU (m) /	밑	Li		- 8	2				-	-		١.		s/c		
1 2	들용	DESCRIPTION	PIEZOMETRE	15 S		I S	8	co	NSISTAN	ICE	LABORA	TOIRE	1.2	0. 4	0. 6	0. 80 Lil	1.
Į Č	2 %	DU SOL OU DU ROC	Ö	TYPE ET	ETAT	18	N ou ROD						-	Seemon			-
8	2 2	DESCRIPTION DU SOL OU DU ROC	PE	FE		RECUPERATION	Z	wp	yn ,	wi .	ET IN-	-situ	1.		STANC		
					- 14	2		- 00		0.0					LEMEN		
<u> </u>	1							1 1	24.	ZO.		i.		0. 4	0, 60	3. 80).
L	10.00	1/	71:		1										ш		
		V:	111														
1		17/	: i i														
F 11.		Vi)	411	CF-4	V	89	2	1 1	0	1	Wn: 23.	, d.					1
ļ '''		Argile silteuse ovec des traces de soble, gris.	1:1		\triangle		-	mi	<u> </u>	┪	Wn: 23.						
}		sobie, glis.	411									6					1
+		1/2	4!;								2007. 10 0						
1		. (4)	1::								i		1 8				
- 12.		1/2	111		*		*:	 -	∳	- 				ļ!			
-		* Y										3	98001				
ŀ		1/2	11:		20		90										
- 13.		67															•)
[IS.		V.	4:5							.ļ							
_		(1)	1i:		G .								1				
-		Vil	11:													- 4	ĺ
		17/	1::							1						-	
14.		Vij	11:	CF-5	X	100	4		D	.ļ	Wn: 22.	9					
		1/.			~											1	12
-	-	(2)	13								BS W					ı	
٠		170			1												
- 15.		· \\	11:				9	 	<u> </u>	.ļ	ŕ	2.5		<u></u> j			
		· ///	111	*			20				·						
-	i	(1/1				- 1										1	
	- 1	· V//	1:1			. }	27					250	- 5	. 1		, P	
- 16.	1	17/2	111		٠ ا					<u>j</u>	2		1)				- 1
	1	1.1	11	v **	ps.						9	90					
.	-	1/4	11	. 1		- 1					04						
		· V.4/	111									361					
- 17.		17:	1:1	CF-6	ΧI	100	24			o	Wn : 26.	2					
	17.07	Soble et gravier à soble grossier avec des traces de gravier, traces de silt, gris. Présence de cailloux à partir de 22.9m de profondeur. Compacité dense très dense. Till probable.	1	1	\sim		-	-	1	Ŭ	1111 - 20.	3					******
	is I	gns. Presence de cailloux à portir de	11					- [* a				. 1	
1	- 1	22.9m de profondeur. Composité dense	11				0				100						27
18.	1	ues dense, IIII probable.	1!							i		5		j			
	- 1		11	8		- 1		·····	<u></u>	1) (i)				······		
F		27	11	1	1		- [.		,		. !	- 1		
	1	· [조]	1		1						× * *			. [- 1		
19.			::		3,		1	. 1	1			•		1	. [Ì	
		b s.,4	1!					· · · · · · · · · · · · · · · · · · ·	''i''''						**		
		 	11			-	- 1			12.	#F	90,1	I	1		1	- 5
-		· / / / / / / / / / / / / / / / / / / /	1:		1				. [1	1	.		
للث			11 1	OF-7	Z 1	00 8	Re	1	. [8	. 1			4	*	
Note	2:		7					•					<u> </u>		_ !		<u> </u>

MONTERYAL

RAPPORT DE FORAGE Projet No: HG-127-2

Client: Le Groupe SNC

Projet: Installation de piezomètres

Localisation: Site d'enfouissement, St-Nicéphore

۲.

Niveau de référence:

Page: 3 de 3

Forage No: F-10

Fore du 91-07-19 au 91-07-23

Mort eau: 63.5

Chute: 0.76

	-	COUPE STRATIGRAPHIQUE			EC	HANTI	LON	1				T	× (1)		Г				
4	NIVEAU (m) /		STRATICRAPHIE	PIEZOMETRE	TYPE ET NUMERO	. ETAT	RECUPERATION	N ou RQD	cc	UMITE Oksist/ P wn 24.	WI .	LAE	essais Poratoi In—sit	RE	-1	COU 20. 4 L L RES CIŞAIL	ietroi Ps / 16. e L., Istano Lemen	O.3 n SO. 1 L CE AU NT, kf	U
927	20.00		4	ii		***			-	+	4	1-					1		Santana Santana
21.	:: ::•	Soble et gravier à soble grossier avec	•																
22.	Miss C	Sable et gravier à soble grossier avec des traces de gravier, traces de siit, gris. Présence de cailloux à partir de 22.9m de profondeur. Compacité dense très dense. Till probable.		111111									e . ·						
3.		78 N 18 N			jet B	2: (90)		ei er					ž:						The state of the s
		,			NX-8		89			***************************************	-								
	24.03	Roc: Ardoises calcaire et graphitique, gris noirâtre et noirâtre. Schistosité plus ou moins bien développée à environ 60 degrés p/r à l'axe de la corotte.	क्षांच क्षांच		NX—9		100								•••••				The second second
5.		Nombreuses veinules de calcite blanchâtre.	, k		NX-10	ł	100						# } e	2				•••••	1
		M _D a w			NX-11		63						3.		,	•••••			I
									-				35/					*	,
					NX-13		90						13T 24 8						***************************************
= 72					NX-14	1	00						:90						***************************************
29	.06	FIN DU FORAGE	. !	:::				!				E		-	- [_	
		£											1.0					- [

RAPPORT DE FORAGE

Page: 1 de

Client: Le Groupe SNC

Projet No: HG-127-2 Projet: Installation de piezomètres

Forage No: F-28

Localisation: Sile d'enfouissement, St-Nicéphore

Fore du 91-07-12 ou 91-07-Morteou: 63.5

Niveau de référence:

Tubage: TARIERE

- 11	-	T	ONING AND	Tubo	ige: TA	KIEKE	-			5 30 4	Prof -	Unite: ()
	22	-	COUPE STRATIGRAPHIQUE		-	EC	HANTI	LLON	S		rrot nop	oe: 2.93 le 91-07-;
	PROFONDEUR (m)		DESCRIPTION DU SOL OU DU ROC	STRATICRAPHIE	PIEZOMETRE	TYPE ET ".		RECUPERATION	N ou ROD	CONSISTANCE WP WR WI	ESSAIS LABORATOIRE ET IN-SITU	PENETROMETRE COUPS / 0.3 m 20. 40. 60. 80 RESISTANCE AU CISALLEMENT, KPO
- 15		0.00	Forage sans echantillanguage saus							20. 40. 60.		20. 40. 60. 8C
	1,	1020	Forage sans échantillonnage, pour installation d'un piézomètre. Sable fin à moyen avec des traces à un peu de sit. (Selan forage F-2C).	21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							/
	3.				02-20-16 ▶ -	,						
- 5	4.		, , , , , , , , , , , , , , , , , , ,							ا المستوى		
- 6.	6.10	Sill F-	argileux gris. (Selon forage		4		_	مين				
7.	ê											
- 8. - 9.					tive			:				
9.	.77	Till pro	boble. (Selon forage F-2C).									

Client: Le Groupe SNC

Localisation: Site d'enfouissement, St-Nicéphore

RAPPORT DE FORAGE

Projet No: HG-127-2

Projet: Installation de piezornetres

Forage No: F-2B

Foré du 91-07-12 au 91-07-12

Date: 91-08-13

Page: 2 de 2

		Niveau	de référence:	iore	Tuba	ge: TA	RIERF	-		-	7		-	_	Marteou		-		ute: 0.	
		E	COUPE STRATIGRAPHIQUE	-:				201415	1100				-		Prof no	ope: 2	2.93	le 91	-07-2	29
.	PROFONDEUR (m)	NIVEAU (m) /			STRATIGRAPHIE	PIEZOMETRE	TYPE ET NUMERO	ELAT	RECUPERATION	N ou ROD	. N	ONSIS	E DE STANCE vn #1		ESSAIS LABORATOIRE ET IN-SITU	1	20. A RES CISAL	PS / 10. (L ISTAN(LENÉ)	Œ AU IT, kpo	0. L_1_
I		10.00		- :		777				_		1 1). 60.		5 5 6	1.3	20. 4	0. 6	0. 80),
11		10.35	FIN DU FORAGE	-		11										1	 			ᅫ
lE	11.		8 0			*/		6		7	7				94 - 81 538 - 138					
IF			2 0 35												8 N		!	,		
F	12.					*.									5 15	9				
IF		- 1	2,							1		<u> </u>	<u> </u>		:6					
F	13.				į										- ·					ř
IF.	1	1						-	1			<u>-</u>								
ŀ,	4.		*												¥ (0)					
ŀ	-						8 0			-		7		7		<u>× </u>				
 - -	5.														* # # # # # # # # # # # # # # # # # # #				4	
Ė				1								***	-	1	v		1			
F 19	5.	1.								ļ.,,,		ļ.,					•		1	1
- - 17		•	स्य - १४ - १९ - १९ - १९ - १९ - १९ - १९ - १९	=									*		* (a)	***************************************				
			* '		1:			1	1		<u> </u>	 	┪┈					ļ		
- - - 18.			To the second of	100			ŀ				1			1	- e - e - e					
		1	ena * e			-			1		╬	<u>. </u>	-			<u>, </u> .	ļ			
- 19.	N	No du l'o fo	DIE: Trou de forage rempli ou dessus o bouchon de bentonite supérieur à ide des matériaux provenant du rage, et scelle à l'aide de mortier r les 0.60m supérieurs.		n *	-							,		247		***************************************		***************************************	
e vi	1	Su	r ies U.bUm supērieurs.		5															
No.	te:	1																		

RAPPORT DE FORAGE

Forage No: F-3A

Page: 1 de 1

Dale: 91-08-13

Client: Le Groupe SNC

Localisation: Sile d'enfouissement, St-Nicéphore

Projet No: HG-127-2

Projet: Installation de piezometres

Fore du 91-07-12 au 91-07-12 Morteou: 63,5

Chute: 0.76

Niveau de référence:

Tubage: TARIERE

Prof nappe: 4.58 le 91-07-29

	-	COUPE STRATIGRAPHIQUE		EC	HANT	ILLON	3	Ī						T			-,-	
PROFONDEUR (m)	NIVEAU (m) / PROFONDEUR	DESCRIPTION DU SOL OU DU ROC	PIEZOMETRE	TYPE ET NUMERO	-	RECUPERATION	N ou RQD	C	rp w	TANCE		ESSAI Laborat Et In-s	OIRE .		COUR 20. 4 L.) RESI	PS / O. (L STAN(LEME)	CE AU NT, kp	n 80. 80.
	0.00	Forage sans echantillonnage, pour	.,					20). 40). 60.				, 2	0. 4	0. E	Ø. 8	XO.
- - 1,		installation d'un piezomètre.										0 .						
2.		Sable fin silteux. (Selon forage F-3C).		e e							i.							
- 3.				34X														
						N II												
- 5.			::- - €		8		20		-					•••••		•••••		
•	5:60	FIN DU FORAGE		2						3		* 3		/4				
7.												10 14/A	٠					
8.												· e	2 2 2			*		
	*								***************************************									
9.		NOTE: Trou de forage scellé à l'aide de mortier entre le bouchon de pentonite supérieur et la surface																
Note:	<u>.</u> L			. 1	1	1	.]					-4	-					

RAPPORT DE FORAGE

Page: 1 de 1 Forage No: F-3B

Client: Le Groupe SNC

Projet No: HG-127-2 Projet: Installation de piezometres

Fore du 91-07-15 ou 91-07-15

Localisation: Site d'enfouissement, SI-Nicéphore

Marteou: 63.5

Chule: 0.76

Niveau de référence:

Tubage: TARIERE

Prof noppe: 4.47 le 91-07-29

		COUPE STRATIGRAPHIQUE			E	CHAN	TILLON	<u>S</u>				9			-	při	ETRO		-
י ייציו פעופרפע (ווו)	NIVEAU (m) /	DESCRIPTION DU SOL OU DU ROC	STRATIGRAPHIE	PIEZOMETRE	TYPE ET	ETAT	RECUPERATION	N ou RQD	0	UMF CONSI: PP	STANG	CE NI	LAB	essais Oratoire In-situ		20.	IPS / 40. L ISTAN LDVE	0:3 1 60. 1. 1 CE AL NT, ki	UF
1	0.00	Forage sans echantillonnage, pour installation d'un piézomètre.		ii			İ		Н		L	L			- 1		10. <u>1</u>	w. 	-
1.		/	7 .]	11	19			-		140				*****					Sand Street Course
		Sable fin silteux. (Selon forage F-3C).						100			,-		0.020	3		·		-	
2.	74			77	3		ŀ						150n e						,
	ni						٠.	*				,	ماليا	6 (8) 6 (8)				†*************************************	I
					9									· £		ļ -		ļ	
				-07-29								E .						ų.	***************************************
		[A]	,; ,; ,;	1-16.▶			6	2				*******		. H		<u> </u>	,		
			, 1 : ; ;										i e	**					·
		// /					9.						383				52		
6.	00	Sable silteux et graveleux. Till probable. (Selon forage F-3C).	7					1					.5			,			
							.			***************************************			P. x						
7.2	20	FIN DU FORAGE	‡:		1			ŀ					3	7 19 34 1					
			-								1	-		3 2		٠. ا			
,		NOTE: Trou de foració remoli du daceura						ľ	-				e .	. s ² 				,	
100		NOTE: Trou de forage rempli au dessus du bouchon de bentonite supérieur à l'aide des matériaux provenant du forage, et scellé à l'aide de mortier sur les 0.60m supérieurs.							-				i 19	# 2					
-	1	sor ies o.comsupeneurs.		-		•			ŀ				9						
e:			<u></u>	1		\perp			į	1	İ		*		4	1.			

Client: Le Groupe SNC

RAPPORT DE FORAGE

Projet: Installation de piezometres

Localisation: Site d'enfouissement, St-Nicéphore

Niveau de référence: Tuboge: HW,NW,BW

Projet No: HG-127-2

Forage No: F-3C

Fore du 91-07-24 ou 91-07-26

Marteau; 63.5

Chute: 0.76

Page: 1 de 3

			oge: H	W,NW,BW	0			·//		Prof na	ppe: 4.61	le 91-	-07-29
-	-	COUPE STRATIGRAPHIQUE	1	E	CHANTI	LLON		1.			7	·	,
PROFONDEUR (m)	NIVEAU (m) / PROFONDEUR	Is	PIEZOMETRE	TYPE ET NUMERO	ETAT	RECUPERATION	N ou RQO	CONSISTANC WP WN 120. 40. 60	E	ESSAIS LABORATOIRE ET IN-SITU	20. 1.1 R	PENETROMOUPS / (0. 6) 40. 6 ESISTANCE ALLEMEN 40. 6	0.3 m 0. 80. L 1 L E AU T, kPa
	0.00	Soble fin silteux, brun, contenant des	i i	 ``			-	444	ļ	***	ـــــــــــــــــــــــــــــــــــ	<u> </u>	
	000 [©]	Soble fin silteux, brun, contenant des traces de matière régétale jusqu'à 3m de profondeur. Compacité très loche à moyenne.								* 300 22 4 24			
1.		1.77	; ;							11 98 98	ļļ		
2.				CF-1	X	11	2						
			11							3 ¹⁴ - 5	 -	$\dashv \dashv$	
3.					*				b)	a j			
					8					24 24 26			
4.	- 20		7-29		i					*			
5.	2		1 € 91-07-29	CF-2	X	50	8			200			2
١,		2.7 27.2								E *	<u> </u>		
5.				ŀ									
6	.10	Soble silteux et groveleux, gris. Compocité très dense. Till probable.	!	- 1			ľ			2 B	<u> </u>		
7.				-									
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
-				F-3	\leq	90 R	٠	_			<u></u>		
					3								
1		4.7										<u> </u> _	
	1.												***************************************
lot e:		1/0:1!					L			: o			

MONTERVAL

RAPPORT DE FORAGE

Poge: 2 de 3

Projet No: HG-127-2

Client: Le Groupe SNC

Projet: Installation de piezometres

Localisation: Sile d'enfouissement, St-Nicephore

Niveau de référence:

Tubage: HW,NW,BW

Forage No: F-3C

Fore du 91-07-24 ou 91-07-26

Morteau: 63.5

Chute: 0.76

Prof nappe: 4.61 le 91-07-29

	-	COUPE STRATIGRAPHIQUE	\exists		EC	HANTI	LONS	3		-						DEN	ETROL	ic ibc	
PROFONDEUR (m)	NIMEAU (m) / PROFONDEUR	DESCRIPTION DU SOL OU DU ROC	STRATIGRAPHIE	PIEZOWETRE	TYPE ET NUMERO	ETÄT	RECUPERATION	N ou ROD		LIMITE Onsis	e de " Tance	E .	ESSAIS LABORATOR	-		coul). 4	PS / 6 D. 6 L.L.	0.3 m 0. 8 1.) 30. 1
<u> </u>	₹ 6		STRA	C3IA	F ₹		RECU	ž	20). 40	n wl 0. 60		et in-sit	υ	_(0	YSĀIL	stanc Lenen D. 6	IT, k	à
	10.00		1:3	-	3		-			-			# 		-	_1_		1	L
11.			4	1	·				, ;					100			*		**********
	×	e e	;;;		CF-4	 	0	69					3				2		
12.	343	Sable silteux et graveleux contenant	*		**												865		
	8	Sable silteux et graveleux, contenant des cailloux à partir de 14m de profondeur. Compocité très dense, Till probable.	•	111	g 91	4								14	4				T
13.	8			j.										13	*********				***********
		8 s_6s	7	1	ar i		2												
٤.				1									-			*******	<u></u>		*********
				1										V					
5.	*	2	* 1					= ,					res es						······································
			, ,	17.									* *			y•)			
6.													N F						***************************************
7.				1 4	CF-5		Ö	Re		1		7.) (Sec.)			9			
=			. F.	1 1 1													-		***************************************
1.			7.	1 1	NX-S		26												
			*.	1			-									9.61	12		
			4	1								,.	§ # *		,	.,		• .	
			,										5		,	×			
Note				<u>i </u>		_1					į		3	10				4	0.000

MONTERVAL

RAPPORT DE FORAGE

Projet No: HG-127-2 Projet: Installation de piezomètres

.

Forage No: F-3C

Foré du 91-07-24 au 91-07-26

Morteou: 63.5

Chuke: 0.76

Page: 3.de 3

...

61 1. 01 07 00

Date: 91-08-19

Localisation: Site d'enfouissement, St-Nicéphore

Niveau de référence:

Client: Le Groupe SNC

Tubage: HW,NW,BW

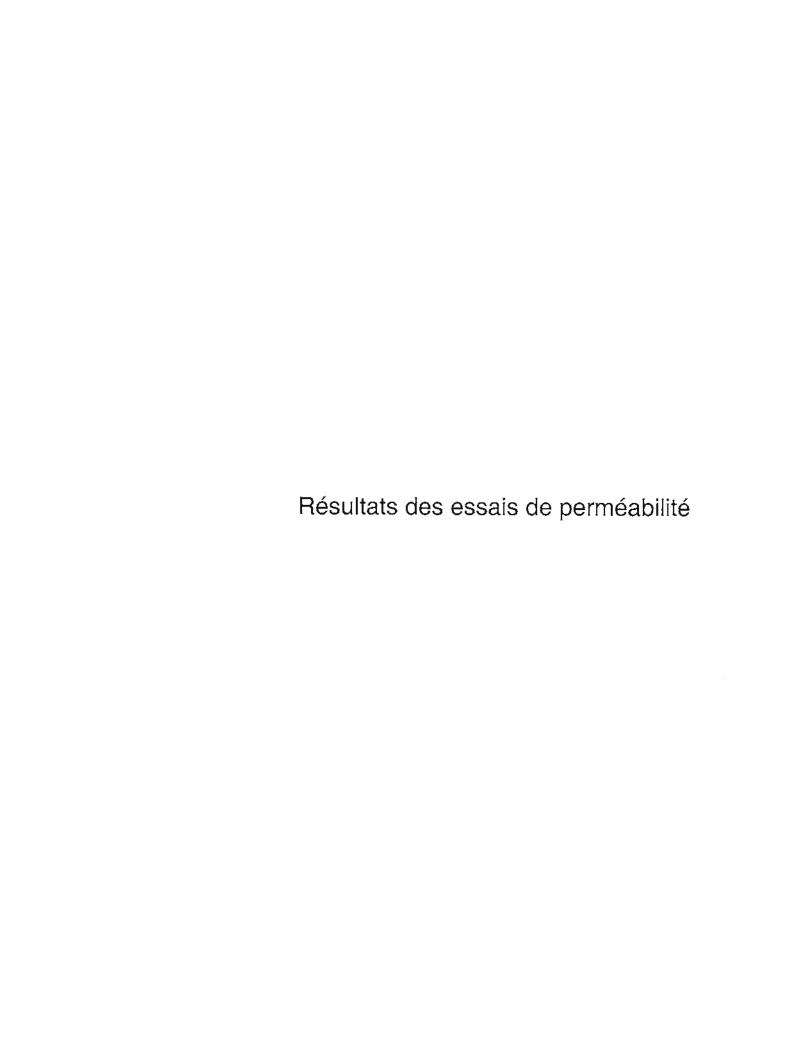
	·	-1		001	IDE CTO	ITODIO			_ 100	oge: 1	aw,nw,e	SW								<u>.</u> 8	Pr	of not	pe:	4.61	le S	91-07	-29	
	7	-		W	UPE SIR	MTGRAP	HIQUE		T	1		ECHA	MIL	LONS) a						-	1	T			OMETE		
	PROFONDEUR (m)	EAU (m) /	PROFONDEUR	¥0		RIPTION		8	STRATIGRAPHIE	PIEZOWETRE	TYPE ET	CKO	2	RECUPERATION	ou RQD	(LIMIL CONSI	e de Stanc		1	ESSA BORAT			CO	UPS /	/ 0.3 60.	m - 80.	į
	PROF		.] .		00 SOL 1	ou du f	roc .	.000 (20)	STRATI	PIEZO	PTT .	*0×	1	RECUPE	N on		wp 0. 4	wn i		Ē	N-9	SITU		CISA	SISTA ILLEM	NCE A ENT, I	W . kPa	
	•	20.	.00	110		e at ee		7		11		1	1	7	-	-!-	ш	1	<u> </u>	-			1	Ť	Ť	Ŧ	₩. -	
1				<u>ž</u>)	Tier:		8	ar i	,					-														
I	- 21		S	able silter es caillour Il probabl	x et gro	iveleux, ocité trè	contend s dense	nt !						İ	.	•						er.		<u> </u>	<u>.</u>	-	ļ.,	
ŀ) (40) (72)		"	n bropapi	5 0 000 2 00		= (19.7																			
lE	22.	1	1	:#:				3		11		ŀ			-						© .≆		ļ	<u> </u>	ļ	ļ	<u> </u>	
F	s. Pereki							5		11										392		2 ³⁹	٠.					
ŀ	23;	1:				:4								-	ŀ					2.0	e e	1540		ļ	ļ	ļ		
-			-		12		027			11			İ							2 11	e g	0						
-	24.			29			2	.			:(*)				-				4			24		ļ	<u> </u>		<u> </u>	
E				# F 14		¥		ŀ											9		30							
F	25.	24.84	4 Roo	Ardoise noirâtre.	générale Schisto	ement c	colcaire, s ou	-	जीव			ij									e 100 - 100			<u>. </u>				
Ė			deg	Ardoise noirâtre. ins bien de rés p/r à sence de philiques. achâtres.	l'axe d	e la car s niveau	ron 60 otte. Ix noirât	res			NX-7		7.	3						20 94		Ĭ		1				
F.	26.	tii	blor	ndrätres.	veinules	de cok	cite						2							ž.	63							-
ŀ		(#) (#)						.	[:			-								,,18			- 5		-		ļ	
- 2	27.				ā.	9 2				. ,	₹X-8		63	5						***			*1.					
				8			a 18 ¹²	1											3	141	14		Ī	****				
- 2	B.	-		/5)	8	3	4.	-													2.38							
-				×		9	×		· .												ř.	-			7			
- 29	2.		¥	\$89 2		34				:: N	X-9		98			***************************************					4					- 1	1991	
	29	9.31	FIN D	U FORAGE		<u> </u>			1::	::	Ļ	Ļ						1			(6) F	-						
	L		5		×	,,57								0							20		- !!					
	Note:								-				1	100	_	<u> </u>	E	1	۷,	-			_!		<u>. l</u>			15

4.0 STRATIGRAPHIE

4.1 Description des échantillons

On présente à la suite les identifications de chaque forage.

			- NJ	ŭ ₩
<u>No</u>	Profondeur	<u>(m)</u>	Description	
11	0.0 - 1.0	? -	Sable	
w ¥	1.0 - 5.0	2 B	Sable gris très fin sil	.teux
12	0.0 - 0.2	2	Tourbe	
F 7	0.2 - 3.3		Sable gris très fin	
89.44	3.3 - 4.0	+	Silt liquide	
	4:0 - 5.0		Sable gris très fin sil	teux
13	0.0 - 5.0	×	Sable brun jaune, silte	ux
	2	5	*	
14	0.0 - 1.0	9800	Sable brun	Į.
(0)	1.0 - 3.7	â()	Sable gris fin	
	3.7 - 5.0	fi	Sable gris fin	•
£	ar ex			
15	0.0 - 1.5	95	Sable brun	-
\$	1.5 - 3.0		Sable gris	
87.01	3.0 - 4.0	-	Silt sablonneux	×
	2			.
16	0.0 - 2.1		Sable brun	- E ²
	2.1 - 4.0		Sable gris	
87.19	4.0 - 5.0	(4)	Sable gris fin et silt,	5 -4 A
*			traces d'argile	


No	Profondeur (m)	Description
8	E (55)	9 8 9
17	Assessment — Assessment III A	The state of the s
	8.6.751.7 - 3.5	Silt gris argileux
	K 9 9	§ 8
18	0.0 - 1.25	Sable brun
	85.461.25 - 3.60	Silt gris avec un peu
		d'argile et de sable
	Note arrêt aŭ re	
	15	
19	0.8 - 1.0	Sable brun fin
	87 1.0 - 3.3	Silt gris
		9 K (42
20	0.0 - 0.5	Sable brun
	0.5 - 1.7	Sable gris fin
	86.261.7 - 4.8	Silt argileux
		*
21	0.0 - 1.0	Sable brun
	878 1.0 - 2.4	Silt gris avec un peu
		d'argile et sable
(4)	3	272 *******
22	0.0 - 2.0	Sable brun
	88.582.0 - 4.0	Silt et sable gris très fin
2.78.90		

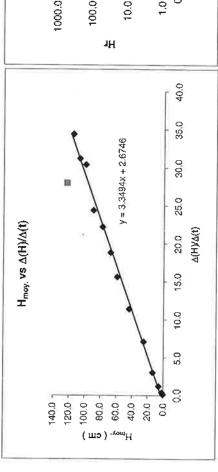
Cette analyse a été réalisée par M. B. Bouchard, maître foreur, sous la supervision conjointe de M. R. Thibault, Environnement et M. R. Bergeron de "Audet SBCS Inc."

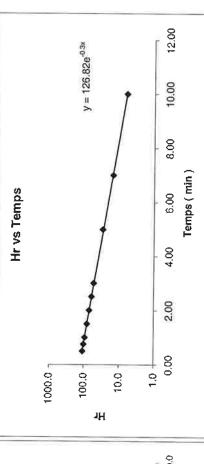
Ces sondages indiquent de façon générale la présence d'une formation de sable brun qui devient fine et finalement silteuse en profondeur.

ANNEXE B

ESSAIS DE PERMÉABILITÉ ET DE POMPAGE

PO-03-01A


PUITS:


Interprétation : Graphique des vitesses

Projet: Intersan	Date: 2003-11-13
Site:	St-Nicéphore
Stratigraphie:	Sable fin, un peu de silt

_		_						_	_			_	_	_		_	~	?
Hr=H-Ho	(cm)	123.8	116.8	108.2	100.4	92.8	80.6	69.5	60.1	52.3	29.5	15.3	200	0.1	- 4	2.4		
1 AH/A t	(cm/min)		28.0	34.4	31.2	30,4	24.4	22.2	18.8	15.6	11.4	7.1	3.0	12	0.4	0.1		
Hmoy.	(cm)		123.0	115.2	107.0	99.3	89.4	77.8	67.5	58.9	43.6	25.1	13.5	5.9	8	9.0		
ЧΨ	(cm)		7.0	8.6	7.8	7.6	12.2	11.1	9.4	7.8	22.8	14.2	9.1	6.1	1.9	9.0		
H=Hi-h	(cm)	126.5	119.5	110.9	103.1	95.5	83.3	72.2	62.8	55.0	32.2	18.0	8.9	2.8	0.9	0.3		
h (du datum)	(cm)	223.0	216.0	207.4	199.6	192.0	179.8	168.7	159.3	151.5	128.7	114.5	105.4	89.3	97.4	96.8		
Δť	(min)		0.3	0.3	0.3	0.3	0.5	0.5	0.5	0.5	2.0	2.0	3.0	5.0	5.0	5.0		
emps	(min)	0.00	0.25	0.50	0.75	1.00	1.50	2.00	2.50	3.00	5.00	2.00	10.00	15.00	20.00	25.00		

= 446.06	
----------	--

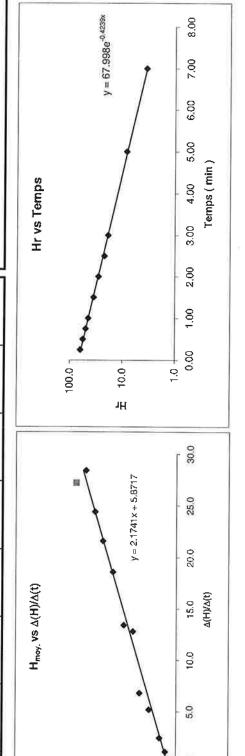
Étape 2: In Hr vs Temps graph
Pente de la régression linéaire, p2= -0.299990869
K= (Ap)/(60C)= 2.20E-04 cm/s

* NAVFAC ; Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

Étape 1: Have. vs DH/Dt graph
Pente de la régression linéaire, p1= 3.34940735

K= A/(60pC) = 2.19E-04 cm/s

correction du niveau statique observé, Ho= 2.7 cm


PO-03-01C

PUITS:

Projet: Intersan	Date: 2003-11-13	
Site:	St-Nicéphore	
Stratigraphie:	Roc fracturé et till	

Aire intér								
	3.0	0.1	3.0	0.3	2.9	616	6.0	30.00
	2.7	0.1	3,4	4.0	65 25	615.7	5.0	25.00
	2.3	0.1	3.9	0.5	3.6	615.3	5.0	20.00
•	1.8	0.4	5.1	2.0	4.1	614.8	5,0	15.00
Fonda	0.2	1:1	7.8	3.3	6.1	612.8	3.0	10.00
Diametr	3.5	2.4	11.9	4.9	9.4	609.5	2.0	7.00
Dia	8,4	5.2	19.5	10.4	14.3	604.6	2.0	5.00
^^	18.8	6.8	26.4	3.4	24.7	594.2	0.5	3.00
Nivea	22.2	12.8	31.3	6.4	28.1	590.8	0.5	2.50
	28.6	13,4	37.9	6.7	34.5	584.4	0.5	2.00
	35.3	18.6	45.9	9.3	41.2	577.7	0.5	1.50
	44.6	21.6	53.2	5.4	50.5	568.4	0.3	1.00
	50.0	24.4	59.0	6.1	55.9	563	0.3	0.75
	56.1	28.4	65.6	7.1	62.0	556.9	0.3	0.50
	63.2	27.2	72.5	6.8	69.1	549.8	0.3	0.25
	70.0				75.9	543	¥.	0.00
		2						
	(cm)	(cm/min)	(cm)	(cm)	(cm)	(cm)	(min)	(min)
	Hr=H-Ho	1 AH/A t	Hmoy.	Ч∇	H=Hi-h	h (du datum)	Δt	Temps

Interprétation : Méthode :	Interprétation : Graphique des vitesses Méthode : Niveau ascendant
 Réalisé par : Interprété par : Approuvé par :	Réalisé par : Francis Gagnon Interprété par : Francis Gagnon Approuvé par :
 Datum : Élévation du Datum : Élévation du sol :	PVC 117.406 m 116.481 m
 Protondeur du puits : Niveau d'eau statique, H : Volume Retiré/Ajouté :	20.3 m 6.189 m L
 Diamètre du tubage, d: Diamètre de la lanterne, D: Longueur de la lanterne, L: Rapport L/D: Constante, C*:	5 cm 11.43 cm 506 cm 44.2694663 2°3.1416°L/In(2L/D)
= Aire intérieure du tubage, A :	709.12 19.6 cm²

0.01

(ma)-yomH

Étape 2: 1n Hr vs Temps graph
Pente de la régression linéaire, p2= -0.423882069
K= (Ap)/(60C)= 1.96E-04 cm/s

* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

PO-03-02A

PUITS:

Sable fin, un peu de silt

Date: 2003-11-20 St-Nicéphore

Projet: Intersan Site: Stratigraphie:

Interpretation: Graphique des vitesses	Menode: Nivead ascellarit	Réalisé par : Francis Gagnon	Interprété par : Francis Gagnon	Approuvé par :		Datum	116	115.887			i		Diametre de la lanterne D		23 5346	C	438 82	30:001	Aire intérieure du tubade A :				Hr vs Temps		TOWNS TO THE STATE OF THE STATE	y = 114,49e ^{-0.1577x}	1	1			10.00 15.00 20.00 25.00	
Hr=H-Ho	(cm)		115.7	110.5	105.8	101.1	97.2	89.9	83.0	76.7	71.2	60.5	52.1	44.8	38.5	32.4	24.5	17.3	12.2	3.4	0.0	2				į	1				5.00	
I AH/A t	(cm/min)			20.8	18.8	18.8	15.6	14.6	13.8	12.6	11.0	10.7	8.4	7.3	6.3	6.1	3.9	3.6	2.6	5:	0.7			1000.0		100.0	a)	ę,	0.01	c	00.0	
Hmov.	(cm)			116.4	111,5	106.8	102.5	96.9	89.8	83.2	77.3	69.2	59.6	51.8	45.0	38.8	31.8	24.2	18.1	11.1	5,0										25.0	>
ΔН	(cm)			5.2	4.7	4.7	3.9	7.3	6.9	6.3	5.5	10.7	8.4	7.3	6.3	6.1	7.9	7.2	5.1	8.8	9,4				10 E						20.0	
H=Hi-h	(cm)	0077	13.0	113.8	109.1	104.4	100.5	93.2	86.3	80.0	74.5	63.8	55.4	48.1	41.8	35.7	27.8	20.6	15.5	6.7	6,6		(1)√∆(1)			=			.3157		15.0	Δ(Η)/Δ(t)
h (du datum)	(cm)	0 17	247.0	241.8	237.1	232.4	228.5	221.2	214.3	208.0	202.5	191.8	183.4	176.1	169.8	163.7	155.8	148.6	143.5	134.7	131.3		H _{moy.} vs Δ(H)/Δ(t)				4	1	y = 6.3965x + 3.3157		10.0	Δ(H)
Δt	(min)			0.3	0.3	0.3	0.3	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	6.0	5.0								1	<u>.</u>	5.0	
Temps	(min)	000	0.00	0.25	0.50	0.75	1.00	1.50	2.00	2.50	3.00	4.00	5.00	6.00	2.00	8.00	10.00	12.00	14.00	20.00	25.00			140,0 -	120.0	•	- 0'08 :-)	- 00.00 - 00.00		20.0 -	0.0	

Étape 2: In Hr vs Temps graphPente de la régression linéaire, p2= -0.157737199
K= (Ap)/(60C)= 1.18E-04] cm/s

* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

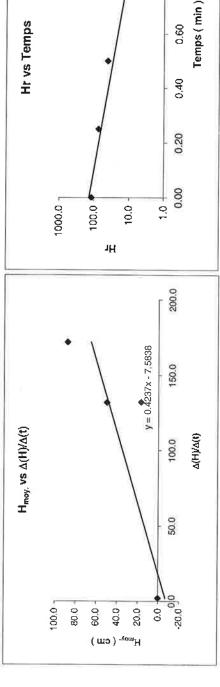
Étape 1: Have. vs DH/Dt graph

Pente de la régression linéaire, p1= 6.39654187

K= A/(60pC) = 1.17E-04 cm/s

Correction du niveau statique observé, Ho= 3.3 cm

PO-03-02C


PUITS:

Roc fracturé et till St-Nicéphore

Projet: Intersan Site: Stratigraphie:

Interprétation : Graphique des vitesses	Méthode : Niveau descendant		Réalisé par : Francis Gaonon	Interprété nar · Francis Gagnon	· disco saginor		PVC	116	115.9 m	18.39 m	3.815 m		5 cm	11,	406 cm	35,5205599	Constante, C* 2*3.1416*L/ln/2L/D)	598.36	19 6 cm²	
Interprétation	Méthode		Réalisé par	Interprété nar	Approuvé par		Datum	Élévation du Datum :	Élévation du sol :	Profondeur du puits :	Niveau d'eau statique, H:	Volume Retiré/Ajouté :	Diamètre du tubage, d :	Diamètre de la lanterne, D	Longueur de la lanterne. L	Rapport L/D:	Constante, C*	- 11	Aire intérieure du tubage. A	
	Hr=H-Ho	(cm)		117.1	74.1	41.1	8,1	7.6												
	1 4/H ∆	(cm/min)			172.0	132.0	132.0	2.0												
	Hmoy.	(cm)			88.0	50.0	17.0	0.3												
	H∇	(cm)			43.0	33.0	33.0	0.5												
	H≃Hi∙h	(am)		109.5	66.5	33.5	0.5	0.0												
	h (du datum)	(cm)		272	315	348	381	381.5												
	₽	(min)		ï	6.0	6.3	0.3	0.3												
	Temps	(min)		00:00	0.25	0.50	0.75	1.00												

1.68E-03 cm/s -3.075639592 Étape 2: In Hr vs Temps graph Pente de la régression linéaire, p2≂_ K = (Ap)/(60C) =

1.20

1.00

0.80

0.60

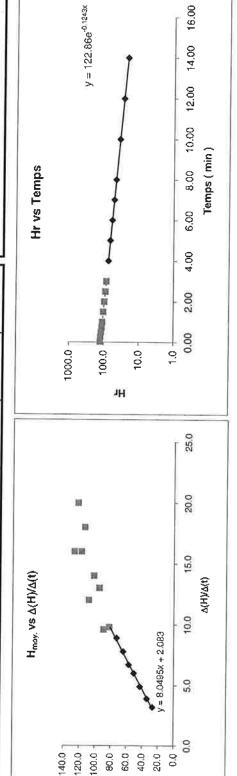
 $y = 136.69e^{-3.0756x}$

* NAVFAC: Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

Étape 1: Have. vs DH/Dt graph
Pente de la régression linéaire, p1= 0.42371017

K= A/(60bC) = 1.29E-03 cm/s

Correction du niveau statique observé, Ho=


PO-03-03A

PUITS:

Date: 2003-11-27	St-Nicéphore	Sable fin, un peu de silt
Projet: Intersan	Site:	Stratigraphie:

						Éléva	ī	Drofor	Nive at a la	Volume	Diametra	Diamètro de						Aire intérieure	
Hr=H-Ho	(cm)	126.4	122.4	117.4	113.4	108.9	102.9	95.9	89.4	84.6	74.8	65.9	58.1	51.4	45.4	35.6	27.8	21.0	16,9
∆ H/∆ t	(cm/min)		16.0	20.0	16.0	18.0	12.0	14.0	13.0	96	88	0.80	7.8	6.7	6.0	4.9	3.9	3.2	0.4
Hmoy.	(cm)		126.5	122.0	117,5	113.3	108.0	101.5	94.8	89.1	81.8	72.5	64.1	56.9	50.5	42.6	33.8	26.7	21.3
ΔН	(cm)		4.0	5.0	4.0	4.5	6.0	7.0	6.5	4.8	9.8	8.9	7.8	6.7	6.0	9.8	7.8	6,4	4.5
H=HI-h	(cm)	128.5	124.5	119,5	115.5	111.0	105.0	98.0	91.5	7.98	76.9	68.0	60.2	53.5	47.5	37.7	29.9	23.5	19.0
h (du datum)	(cm)	418.0	414.0	409.0	405.0	400.5	394.5	387.5	381.0	376.2	366.4	357.5	349.7	343.0	337.0	327.2	319.4	313.0	308.5
γÇ	(min)		0.3	0.3	0.3	0.3	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	11.0
Temps	(min)	0.00	0.25	0.50	0.75	1.00	1,50	2.00	2.50	3.00	4.00	5.00	6.00	7.00	8.00	10.00	12.00	14.00	25.00

Élév Elév nu d Slum meir re d sur c	Interprétation : Graphique des vitesses Méthode : Niveau ascendant	Réalisé par.; Francis Gagnon Interprété par.; Francis Gagnon Approuvé par ;	Élévation du Datum: 114.215 m Élévation du sol: 113.401 m Profondeur du puits: 7.75 m Niveau d'eau statique, H: 2.895 m Volume Retiré/Ajouté: L Diamètre du tubage, d: 5 cm Diamètre de la lanterne, D: 11.43 cm Longueur de la lanterne, L: 226 cm Rapport L/D: 19.7725284 Constante, C*: 2*3,1416*L/In(2L/D)	= 386.14
---	---	---	---	----------

120.0 100.0 90.0 60.0 40.0 20.0 0.0

H_{moy} (cm)

1.05E-04 cm/s Étape 2: In Hr vs Temps graph
Pente de la régression linéaire, p2= -0.124304144
K= (Ap)/(60C)= 1.05Ë-04

* NAVFAC: Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

1.05E-04 cm/s 8.0495356

K= A/(60pC) =

Étape 1: Have. vs DH/Dt graph Pente de la régression linéaire, p1=_

?orrection du niveau statique observé, Ho=¯

PO-03-03B

PUITS:

H=H-H3


(cm)

82.4

57.1 16.9

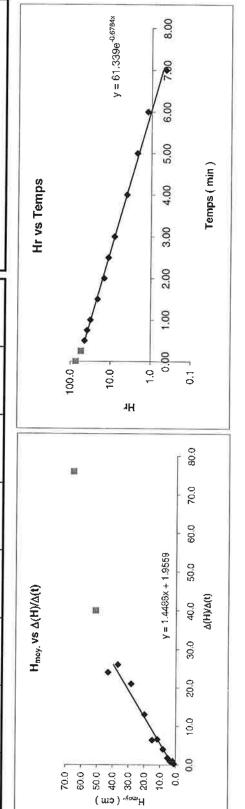
72.7

Projet: Intersan	Intersan	Date:	Date: 2003-11-27			
Site : Stratigraphie :		St-Nicéphore Argile, traces de sable	phore s de sable			
Temps	Δt	h (du datum)	H=Hi-h	ΑH	Hmov	+ VH ∨
(min)	(min)	(cm)	(cm)	(ma)	(mo)	(cm/min)
0.00	199	363	86.0			
10.00	10.0	357.7	80.7	5.3	83.4	0.5
20.00	10.0	353.3	76.3	4.4	78.5	0.4
30.00	10.0	349	72.0	4.3	74.2	0.4
00.09	30.0	337.7	60.7	11.3	66.4	0.4
98.12	38.1	325	48.0	12.7	54.4	0.3
254.12	156.0	297.5	20.5	27.5	34.3	0.2

5.05E-06 cm/s -0.006242323 É**tape 2: in Hr vs Temps graph** Pente de la régression linéaire, p2= K= (Ap)/(60C)=[

* NAVFAC: Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

K= A/(60pC) = [Correction du niveau statique observé, Ho=


PO-03-03C

PUITS:

Intersan Date: 2003-11-27	Site: St-Nicéphore	Roc fracturé et till
Projet:	Site:	Stratigraphie:

Aire intérieu								
								30.00
	1,2	0.3	1-1	9.0	0.8	170.2	2.0	10.00
32	9.0	1.0	1.9	1.0	1.4	169.6	1.0	8.00
	0.4	0.8	2.8	0.8	2.4	168.6	1.0	7.00
Longueur	1.2	1.0	3.7	1.0	3.2	167.8	1.0	6.00
Diamètre d	2.2	1.8	5.1	1.8	4.2	166.8	1.0	2.00
Diame	4.0	4.0	8.0	4.0	6.0	165	1.0	4.00
Volu	8.0	6.6	11.7	3.3	10.0	161	0.5	3.00
Niveau d	11.3	6.4	14.9	3.2	13.3	157.7	0.5	2.50
Prof	14.5	13.0	19.8	6.5	16.5	154.5	0.5	5.00
	21.0	21.0	28.3	10.5	23.0	148	0.5	1.50
Élé	31.5	26.0	36.8	6.5	33.5	137.5	0.3	1.00
	38.0	24.0	43.0	6.0	40.0	131	0.3	0.75
	44.0	40.0	51.0	10.0	46.0	125	0.3	0.50
	54.0	76.0	65.5	19.0	56.0	115	0.3	0.25
	73.0				75.0	96	40	0.00
	(cm)	(cm/min)	(cm)	(cm)	(cm)	(cm)	(min)	(min)
	Hr=H-Ho	A H/A t	Hmoy.	Ч∇	H=Hi-h	h (du datum)	Δť	Temps

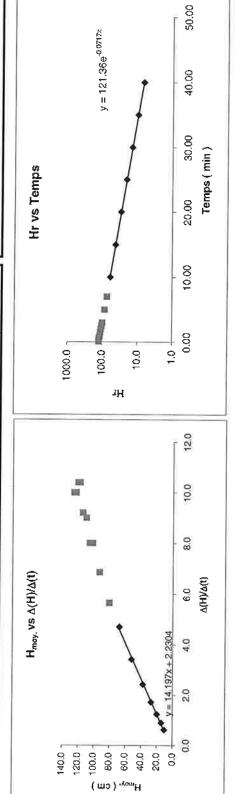
ses									
Interpretation : Graphique des vitesses Méthode : Niveau descendant	Réalisé par : Francis Gagnon Interprété par : Francis Gagnon Approuvé par :	114.479 m	112.75 m	1.71 m	-	5 cm 11.43 cm	402 cm	Happort L/D : 35.1706037 Constante, C* : 2*3,1416*L/ln(2L/D) = 593.85	19.6 cm²
Interpretation : Méthode :	Réalisé par : Interprété par : Approuvé par :	Datum : Élévation du Datum :	Élévation du sol	Niveau d'eau statique, H	Volume Retire/Ajoute:	Diametre du tubage, d : Diamètre de la lanterne, D :	Longueur de la lanterne, L	Happort L/D: Constante, C*:	Aire intérieure du tubage, A :

Étape 2: In Hr vs Temps graph
Pente de la régression linéaire, p2= -0.578363981
K= (Ap)/(60C)= 3.74E-04

* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

Étape 1: Have. vs DH/Dt graph
Pente de la régression linéaire, p1= 1.44881023K= A/(60pC) = 3.80E-04 cm/s

>orrection du niveau statique observé, Ho=


PO-03-04A

PUITS:

Projet : Intersan Date : 2003-11-13
Site : Stratigraphie : Sable fin, traces de silt

						ή		Profe	Niveau d'	Volum	Diamet	Diamètre d	Longueur d					Aire intérieu))
Hr=H-Ho	(cm)	124.8	122.3	119.8	117.2	114.6	110.0	105.5	101.5	97.5	83.8	72.5	58.4	41.3	29.2	20.6	14.4	on on	6.8
∆ H/∆ ((cm/min)		10.0	10.0	10.4	10.4	9.2	9.0	8.0	8.0	6.9	5.6	4.7	3.4	2.4	1.7	1.2	0.9	9.0
Hmoy.	(cm)		125.8	123.3	120.7	118.1	114.5	110.0	105.7	101.7	92.9	80.4	57.7	52.1	37.5	27.1	19.7	14.4	10.6
НΔ	(cm)		2.5	2.5	2.6	2.6	4.6	4.5	4.0	4.0	13.7	11.3	14.1	17.1	12.1	8.6	6.2	4.5	3.1
H=Hi-h	(cm)	127.0	124.5	122.0	119.4	116.8	112.2	107.7	103.7	99.7	86.0	74.7	9.09	43.5	31.4	22.8	16.6	12.1	9.0
h (du datum)	(cm)	 511.5	514.0	516.5	519.1	521.7	526.3	530.8	534.8	538.8	552.5	563.8	6.24.9	595.0	607.1	615.7	621.9	626.4	629.5
Δţ	(min)	Si	6.3	0.3	0.3	0.3	0.5	0.5	0.5	0.5	2.0	2.0	3.0	5.0	5.0	5.0	5.0	5.0	5.0
Temps	(min)	0.00	0.25	0.50	0.75	1.00	1.50	2:00	2.50	3.00	2.00	7.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00

Interprétation : Graphique des vitesses Méthode : Niveau descendant	Réalisé par : Jean Blouin Interprété par : Francis Gagnon Approuvé par :	PVC 123.429 m 122.566 m	1	e du tubage, d: 5 cm la lanterne, D: 11.43 cm la lanterne, L: 229 cm Rapport L/D: 20.0349956	= 389.87 = 19.6 cm ²
Interprétation Méthode	Réalisé par : Interprété par : Approuvé par :	Datum Élévation du Datum Élévation du sol	Profondeur du puits Niveau d'eau statique, H Volume Retiré/Ajouté	Diamètre du tubage, d Diamètre de la lanterne, D Longueur de la lanterne, L Rapport (C)	Aire intérieure du tubage, A :

Étape 2: In Hr vs Temps graph
Pente de la régression linéaire, p2= -0.071659901
K= (Ap)/(60C)= 6.02E-05 cm/s

Étape 1: Have. vs DH/Dt graph

Pente de la régression linéaire, p1= 14.1968997

K= A/(60pC) = 5.91E-05 cm/s

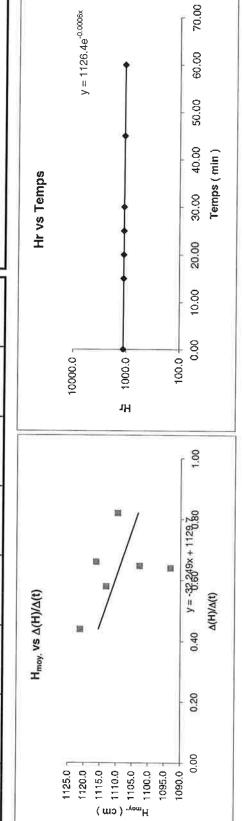
Correction du niveau statique observé, Ho= 2.2 cm

* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

ESSAI DE PERMÉABILITÉ EN BOUT DE TUBAGE (LEFRANC)

PO-03-04C

PUITS:


Interprétation : Graphique des vitesses

Date: 2003-10-30 Projet: Intersan Stratigraphie:

St-Nicéphore	Silt argileux, traces de sable

(cm) (cm/min) (cm)	(Allerian)	1124.5	6.6 1121.2 0.44 1117.9	0.66	2.9 1113.2 0.58 1111.7	1109.7 0.82	L	-	Nivo		Diam's	Touche			Aire inter	
	(cm) (cm)	0 1124.5	6.6 1117.9	9.9 1114.6	12.8 1111.7	16.9 1107.6	26.6 1097.9	36.2 1088.3								
	(min)		15.0	5.0	5.0	5.0	15.0	15.0								
	(min)	0.00	15.00	20.00	25.00	30.00	45.00	90.09								

Réalisé par : Sylvain Laforge Interprété par : Francis Gagnon Approuvé par :
rau i
Profondeur du buits
1212
Volume Retiré/Ajouté :
Diamètre du tubage, d: 10.60 cm
Diamètre de la lanterne, D 🗧 10.60 cm
Longueur de la lanterne, L: 61.00 cm
Constante, C: 2*PI*L/In(2L/d)
= 156.88
Aire intérieure du tubage, A : 88.2 cm²

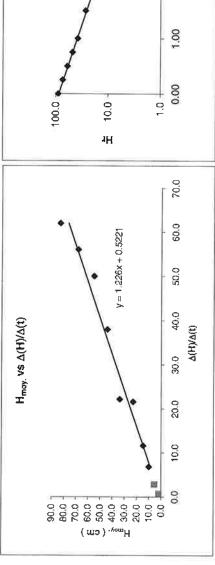
5.27E-06 cm/s Étape 2: In Hr vs Temps graph

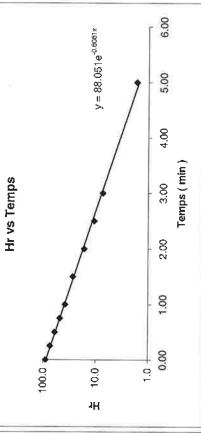
Pente de la régression linéaire, p2= -0.000562019

K= (Ap)/(60C)= 5.27E-06

PO-03-04C

PUITS:


Sable et gravier (till)


St-Nicéphore

Projet: Intersan Site: Stratigraphie:

									2			Día	Lo Lo			Aire	
Hr=H-Ho	(cm)	0.06	74.5	60.5	48.0	38.5	27.4	16.6	10.8	7.4	1.7	0.2					
Δ H/Δ t	(cm/min)		62.0	56.0	50.0	38.0	22.2	21.6	11.6	6.8	2.9	0.8					
Hmoy.	(cm)		83.3	68.5	55.3	44.3	33.9	23.0	14.7	10.1	5.6	2.0					
ΔН	(cm)		15.5	14.0	12.5	9.5	11.1	10.8	5.8	3,4	5.7	1.5					
H=Hith	(cm)	91.0	75.5	61.5	49.0	39.5	28.4	17.6	11.8	8.4	2.7	1.2					
h (du datum)	(cm)	1033.5	1049	1063	1075.5	1085	1096.1	1106.9	1112.7	1116.1	1121.8	1123.3					
Δt	(min)		0.3	0.3	0.3	0.3	0.5	0.5	0.5	0.5	2.0	2.0					
Temps	(min)	0.00	0.25	0.50	0.75	1.00	1.50	2.00	2.50	3.00	5.00	2.00					

Interprétation :	Interprétation : Graphique des vitesses	
Methode	IMETRIODE: INIVEAU DESCENDANT	
Réalisé par : Jean Blouin	Jean Blouin	
Interprété par :	Interprété par : Francis Gagnon	
Approuvé par		
Datum	PVC	
Élévation du Datum :	123.247 m	
Élévatíon du sol :	122.433 m	
Profondeur du puits:	25.26 m	
Niveau d'eau statique, H	11.245 m	
Volume Retiré/Ajouté :		
Diamètre du tubage, d	5 cm	
Diamètre de la lanterne, D	11.43 cm	
 Longueur de la lanterne, L	240 cm	
 Rapport L/D:	20.9973753	
 Constante, C*	Constante, C* 2*3,1416*L/In(2L/D)	
IJ	403.46	
Aire intérieure du tubage, A :	19.6 cm ²	

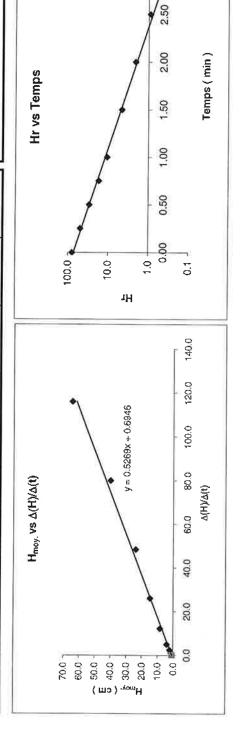
Étape 2: In Hr vs Temps graphPente de la régression linéaire, p2= -0.808075235
K= (Ap)/(60C)= 6.55E-04|cm/s

* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

Étape 1: Have, vs DH/Dt graph
Pente de la régression linéaire, p1= 1.21520626
K= A/(60pC) = 6.67E-04 cm/s

Correction du niveau statique observé, Ho≓

PO-03-05A


PUITS:

Interprétation : Graphique des vitesses

Date: 2003-11-13 Sable fin, un peu de silt St-Nicéphore Projet: Intersan Stratigraphie:

Aire intér								
Longue								
Diamet								
Diar	0.1	0.2	9.0	0.4	9.0	85.6	2.0	2,00
×	0.3	1.2	1.3	0.6	1.0	86.0	0.5	3.00
Nive	0.9	2.4	2.2	1.2	1.6	86.6	0.5	2.50
ш.	2.1	5.0	4.1	2.5	2.8	87.8	0.5	2.00
	4.6	12.2	8.3	6.1	5.3	80.3	0.5	1.50
	10.7	26.0	14.7	6.5	11.4	96.4	0.3	1.00
	17.2	48.4	24.0	12.1	17.9	102.9	0.3	0.75
	29.3	80.0	40.0	20.0	30.0	115.0	0.3	0.50
	49.3	116.0	64.5	29.0	50.0	135.0	6.3	0.25
	78.3				79.0	164.0		00'0
	(cm)	(cm/min)	(cm)	(cm)	(cm)	(cm)	(min)	(min)
	Hr=H•H0	∆ H/∆ t	Hmoy.	Ч∇	H=Hi-h	h (du datum)	Δŧ	Temps

Réalisé par : Jean blouin Interprété par : Francis Gagnon Approuvé par : Datum : PVC Élévation du Datum : 114.29 m Elévation du sol : 114.29 m Profondeur du puits : 6.25 m Niveau d'eau statique, H : 0.85 m Volume Retiré/Ajouté : L Diamètre de la lanterne, D : 20.4724409 Constante, C* : 2*3,1416*L/In(2L/D) Aire intérieure du tubage, A : 19.6 cm²					
Réalisé par : Jean blouin Interprété par : Francis Ga, Approuvé par : Élévation du Datum : 114.28 Élévation du Datum : 114.28 Profondeur du puits : 6.3 Niveau d'eau statique, H : 0.3 Volume Retiré/Ajouté : Diamètre de la lanterne, D : 11.4 Longueur de la lanterne, L : 23.47244 Constante, C* : 2*3,1416*L, Asport L/D : 20.47244 Constante, C* : 2*3,1416*L, 396.6	duoub	3338 3338 3338 3338 3338 3338	35 m 5 cm 53 cm	34 cm 39 In(2UD) 36	.6 cm²
Réalisé par : J Interprété par : Approuvé par : Approuvé par : Élévation du Datum : Élévation du batum : Élévation du sol : Profondeur du puits : Niveau d'eau statique, H : Volume Retiré/Ajouté : Diamètre de la lanterne, D : Constante, C : : Constante, C : :	ean blouin rancis Ga	PV 114.29 6.3		20.47244(*3,1416*L 396.(19
Réalisé Interprété Approuvé Approuvé Elévation du Dat Elévation du Dat Elévation du profondeur du pi Niveau d'eau statique Volume Retiré/Ajo Diamètre de la lanterne Longueur de la lanterne Constante, Aire intérieure du tubage	par: Ju par: F par:	um sol:	H PER	, L: , D: , C:: 2	, A :
lnt Ap Ap Elévatior Eléva Profonde Niveau d'eau Volume Re Diamètre de la Diamètre de la Longueur de la R	Réalisé erprété prouvé	Dat n du Dat ation du eur du pi	statique stiré/Ajo u tubage lanterne	lanterne lapport I nstante,	tubage
É P Niveau Vol Diamètr Longueu Aire intéri	Ap II _	lévatior Éléva rofonde	ı d'eau ume Re nètre du e de la l	ır de la Fi	eure du
		ш в.	Niveau Vol Diar Diar	Longue	vire intér

3.50

 $y = 72.687e^{-1.8032x}$

Étape 2: In Hr vs Temps graph Pente de la régression linéaire, p2=__--1.803212239

1.49E-03 cm/s K = (Ap)/(60C) =

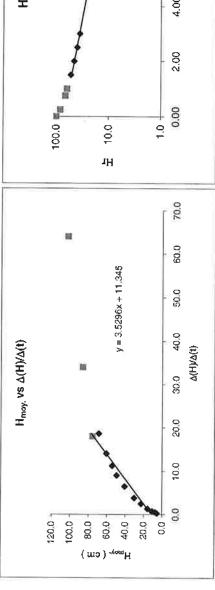
* NAVFAC: Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

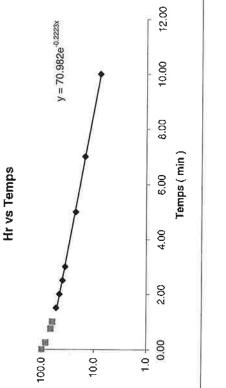
1.57E-03 cm/s 0.7 cm

Étape 1: Have. vs DH/Dt graph Pente de la régression linéaire, p1=__0.52693341

K= A/(60pC) =

`orrection du níveau statique observé, Ho≕


PO-03-05C


PUITS:

Roc fracturé et till St-Nicéphore Projet: Intersan Stratigraphie:

HQ.		100		J.,		Ī	_		ź	Τ		Τ					Aire ir	Ι
Hr=H-Ho	(cm)	98.6	83.6	9'99	62.1	52.8	45.8	40.2	35.7	22.8	15.2	7.8	1.	2.5	5.1	6.3		
∆ H/∆ t	(cm/min)		64.0	34.0	18.0	18.6	14.0	11.2	9.0	6.5	3.8	2.5	1.3	0.7	0.5	0.2		
Hmoy.	(cm)		102.9	86.4	75.7	68.8	9.09	54.3	49.3	40.6	30.3	22.8	15.8	10.6	7.5	5.6		
ΑH	(cm)		16.0	17.0	4.5	9.3	7.0	5.6	4.5	12.9	7.6	7,4	6.7	3.6	2.6	1.2		
H=Hi-h	(cm)	110.9	94.9	77.9	73.4	64.1	57.1	51.5	47.0	34.1	26.5	19.1	12.4	8.8	6.2	5.0		
h (du datum)	(cm)	16	32	49	53.5	62.8	8.69	75.4	79.9	92.8	100.4	107.8	114.5	118.1	120.7	121.9		
Δţ	(min)	ě	0.3	0.5	0.3	0.5	0.5	0.5	0.5	2.0	2.0	3.0	5.0	5,0	5.0	5.0		
lemps	(min)	0.00	0.25	0.75	1.00	1.50	2.00	2.50	3.00	5.00	7.00	10.00	15.00	20.00	25.00	30.00		

Interprétation : Méthode :	Interprétation : Graphique des vitesses Méthode : Niveau descendant
Réalisé par : Jean Blouin Interprété par : Francis Gagnon Approuvé par :	Jean Blouin Francis Gagnon
Datum : Élévation du Datum :	PVC 114.967 m
Élévation du sol : Profondeur du puits :	114.172 m 28.04 m
Niveau d'eau statique, H : Volume Retiré/Ajouté :	1,269 m
Diamètre du tubage, d	S cm
Diametre de la lanterne, D : Longueur de la lanteme, L :	9.6012 cm 422 cm
Rapport L/D: Constante, C*::	Rapport L/D: 43.9528392 Constante, C*: 2*3,1416*L/In(2L/D) = 592.35
Aire intérieure du tubage, A :	19.6 cm²

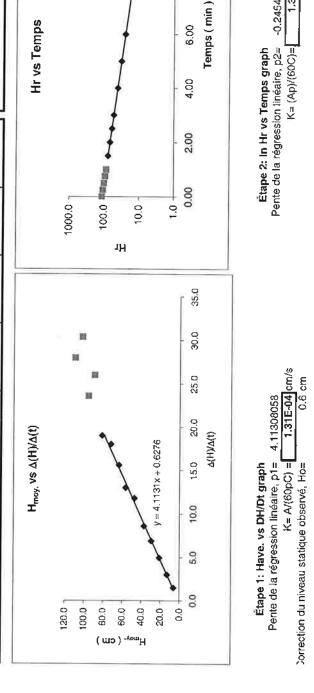
Étape 2: In Hr vs Temps graph Pente de la régression linéaire, p2= K= (Ap)/(60C)=[

1.23E-04 cm/s -0.222258449

* NAVFAC: Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

Étape 1: Have. vs DH/Dt graph
Pente de la régression linéaire, p1= 3.52960945 K = A/(60pC) = 1.57E-04 cm/s

Correction du niveau statique observé, Ho=


PO-03-06A

PUITS:

Sable fin, traces de silt St-Nicéphore Projet: Intersan Site: Stratigraphie:

				-			
1.9	1.5	6.3	7.5	2.5	1691.5	6.0	15.00
9.4	3.0	13.0	6.0	10.0	1684.0	2.0	10.00
15.4	4.9	21.0	9.9	16.0	1678.0	2.0	8.00
25.3	6.9	29.4	6.9	25.9	1668.1	1.0	6.00
32.2	8.6	37.1	8.6	32.8	1661.2	1.0	5.00
40.8	11.8	47.3	11.8	41.4	1652.6	1.0	4.00
52.6	13.0	56.5	6.5	53.2	1640.8	0.5	3.00
59.1	15.6	63.6	7.8	29.7	1634.3	0.5	2.50
6.99	18.0	72.0	9.0	67.5	1626.5	0.5	2.00
75.9	19.0	81.3	9.5	76.5	1617.5	0.5	1.50
85.4	26.0	89.3	6.5	86.0	1608.0	0.3	8
91.9	23.6	95.5	5.9	92.5	1601.5	0.3	0.75
87.8	30.4	102.2	7.6	98.4	1595.6	0.3	0.50
105.4	28.0	109.5	7.0	106.0	1588.0	0.3	0.25
112.4				113.0	1581.0		0.00
(cm)	(cm/min)	(cm)	(cm)	(cm)	(cm)	(min)	(min)
Hr=H-Ho	∆ H/∆ t	Hmoy.	НΔ	H=Hi-h	h (du datum)	Δţ	Temps

Interprétation : Graphique des vitesses Méthode : Niveau descendant Réalisé par : Francis Gagnon Interprété par : Francis Gagnon Approuvé par :	batum: PVC tion du Datum: 129.766 m evation du sol: 128.786 m ndeur du puits: 20.12 m au statique, H: 16.94 m 9 Retiré/Ajouté: 5 cm la lanterne, D: 11.43 cm ria lanterne, L: 412 cm Rapport L/D: 36.0454943 Constante, C*: 2*3,1416*L/In(2L/D) = 605.12	: 19,6 cm²
Interprétation : Méthode : Réalisé par : Interprété par : Approuvé par :	Datum: Élèvation du Datum: Élèvation du bol: Profondeur du puits: Niveau d'eau statique, H. Volume Retiré/Ajouté: Diamètre du tubage, d. Diamètre de la lanterne, D. Longueur de la lanterne, L. Constante, L. Rapport L/D:	Aire intérieure du tubage, A :

12.00

10.00

8,00

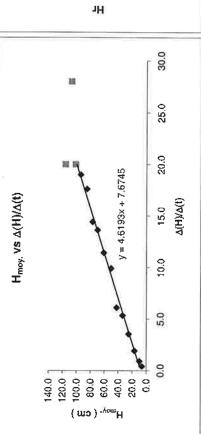
00.9

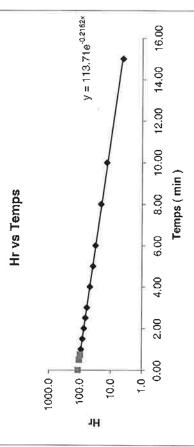
y = 109.47e ^{-0,2454}×

Sorrection du niveau statique observé, Ho=

* NAVFAC: Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

PO-03-06C


PUITS:


Interprétation : Graphique des vitesses

St-Nicéphore Till et roc Projet: Intersan Stratigraphie:

(min) (min) (cm) (cm) (cm) (cm) (cm) (cm) 0.00 - 1596.0 121.0 (cm) (cm) (cm) 0.50 0.5 1606.0 111.0 10.0 116.0 20.0 0.50 0.5 1613.0 104.0 7.0 107.5 28.0 1.00 0.3 1618.0 99.0 5.0 101.5 28.0 1.50 0.5 1627.5 89.5 9.5 94.3 19.0 2.00 0.5 1636.3 80.7 8.8 85.1 17.6 2.00 0.5 1643.5 73.5 7.2 77.1 14.4 3.00 0.5 1643.5 73.5 72 77.1 14.4 4.00 1.0 1661.7 55.3 11.4 61.0 11.4 5.00 1.0 1671.6 45.4 9.9 50.4 9.9 6.00 1.0 1671.5 21.5 7.	Temps	Δt	h (du datum)	H=Hi-h	Αħ	Hmoy.	∆ H/∆ t	Hr=H-Ho	
- 1596.0 121.0 10.0 116.0 0.3 1618.0 101.0 10.0 116.0 107.5 0.3 1618.0 99.0 5.0 107.5 0.5 1636.3 80.7 8.8 85.1 0.5 1643.5 73.5 7.2 77.1 0.5 1650.3 66.7 6.8 70.1 1.0 1677.7 39.3 6.1 42.4 1.0 1677.7 39.3 6.1 42.4 2.0 1695.5 21.5 7.1 25.1 5.0 1709.7 7.3 4.6 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9	(min)	(min)	(cm)	(cm)	(cm)	(cm)	(cm/min)	(cm)	
- 1596.0 121.0 10.0 116.0 10.5 1606.0 111.0 10.0 116.0 10.5 1618.0 99.0 5.0 101.5 0.5 1627.5 89.5 9.5 94.3 0.5 1636.3 80.7 8.8 85.1 0.5 1640.5 72.2 77.1 0.5 1650.3 66.7 6.8 70.1 1.0 1661.7 55.3 11.4 61.0 10.7 1.0 1677.7 39.3 6.1 42.4 22.0 1695.5 21.5 7.1 25.1 5.0 1709.7 7.3 4.6 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9									
0.5 1606.0 111.0 10.0 116.0 0.3 1613.0 104.0 7.0 107.5 0.3 1618.0 99.0 5.0 101.5 0.5 1627.5 89.5 9.5 94.3 0.5 1636.3 80.7 8.8 85.1 0.5 1636.3 80.7 8.8 85.1 0.5 1643.5 73.5 7.2 77.1 0.5 1650.3 66.7 6.8 70.1 1.0 1661.7 55.3 11.4 61.0 1.0 1677.6 45.4 9.9 50.4 1.0 1677.7 39.3 6.1 42.4 2.0 1685.5 21.5 7.1 25.1 5.0 1705.1 11.9 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 6.0 1771.8 5.2 2.1 <t< td=""><td>00'0</td><td></td><td>1596.0</td><td>121.0</td><td></td><td></td><td></td><td>113.3</td><td></td></t<>	00'0		1596.0	121.0				113.3	
0.3 1613.0 104.0 7.0 107.5 0.3 1618.0 99.0 5.0 101.5 0.5 1627.5 89.5 95.0 101.5 0.5 1636.3 80.7 8.8 85.1 0.5 1643.5 73.5 7.2 77.1 0.5 1650.3 66.7 6.8 70.1 1.0 1661.7 55.3 11.4 61.0 1.0 1677.7 39.3 6.1 42.4 2.0 1688.4 28.6 10.7 34.0 2.0 1695.5 21.5 7.1 25.1 5.0 1705.1 11.9 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 5.0 1711.8 5.2 2.1 6.3	0.50	0.5	1606.0	111.0	10.0	116.0	20.0	103.3	
0.3 1618.0 99.0 5.0 101.5 0.5 1627.5 89.5 9.5 94.3 0.5 1636.3 80.7 8.8 85.1 0.5 1643.5 73.5 7.2 77.1 0.5 1650.3 66.7 6.8 70.1 1.0 1661.7 55.3 11.4 61.0 1.0 1677.6 45.4 9.9 50.4 1.0 1677.7 39.3 6.1 42.4 2.0 1688.4 28.6 10.7 34.0 2.0 1695.5 21.5 7.1 25.1 5.0 1709.7 7.3 4.6 9.6 5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 6.0 1711.8 5.2 2.1 6.3	0.75	0.3	1613.0	104.0	7.0	107.5	28.0	96.3	
0.5 1627.5 89.5 9.5 94.3 0.5 1636.3 80.7 8.8 85.1 0.5 1643.5 73.5 7.2 77.1 0.5 1650.3 66.7 6.8 70.1 1.0 1661.7 55.3 11.4 61.0 1.0 1677.7 39.3 6.1 42.4 2.0 1688.4 28.6 10.7 34.0 2.0 1695.5 21.5 7.1 25.1 5.0 1705.1 11.9 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 6.0 1711.8 5.2 2.1 6.3	1.00	0.3	1618.0	0.66	5.0	101.5	20.0	91.3	
0.5 1636.3 80.7 8.8 85.1 0.5 1643.5 73.5 7.2 77.1 0.5 1650.3 66.7 6.8 70.1 1.0 1661.7 55.3 11.4 61.0 1.0 1677.6 45.4 9.9 50.4 1.0 1677.7 39.3 6.1 42.4 2.0 1688.4 28.6 10.7 34.0 2.0 1695.5 21.5 7.1 25.1 5.0 1705.1 11.9 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 6.0 1711.8 5.2 2.1 6.3	1.50	0.5	1627.5	89.5	9.5	94.3	19.0	81.8	
0.5 1643.5 73.5 7.2 77.1 0.5 1650.3 66.7 6.8 70.1 1.0 1661.7 55.3 11.4 61.0 1.0 1677.6 45.4 9.9 50.4 1.0 1677.7 39.3 6.1 42.4 2.0 1688.4 28.6 10.7 34.0 2.0 1695.5 21.5 7.1 25.1 5.0 1705.1 11.9 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 6.0 1711.8 5.2 2.1 6.3	2.00	0.5	1636.3	80.7	8.8	85.1	17.6	73.0	
0.5 1650.3 66.7 6.8 70.1 1.0 1661.7 55.3 11.4 61.0 1.0 1677.7 39.3 6.1 42.4 2.0 1688.4 28.6 10.7 34.0 2.0 1685.5 21.5 7.1 25.1 5.0 1705.1 11.9 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 6.0 1711.8 5.2 2.1 6.3 6.0 0.0	2.50	0.5	1643.5	73.5	7.2	77.1	14,4	65.8	
1.0 1661.7 55.3 11.4 61.0 1.0 1677.6 45.4 9.9 50.4 1.0 1677.7 39.3 6.1 42.4 2.0 1688.4 28.6 10.7 34.0 2.0 1695.5 21.5 7.1 25.1 5.0 1705.1 11.9 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 0.0 0.0	3.00	0.5	1650.3	66.7	6.8	70.1	13.6	59.0	Nive
1.0 1671.6 45.4 9.9 50.4 1.0 1677.7 39.3 6.1 42.4 2.0 1688.4 28.6 10.7 34.0 2.0 1695.5 21.5 7.1 25.1 5.0 1705.1 11.9 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 0.0 0.0	4.00	1.0	1661.7	55.3	11.4	61.0	11,4	47.6	>
1.0 1677.7 39.3 6.1 42.4 2.0 1688.4 28.6 10.7 34.0 2.0 1695.5 21.5 7.1 25.1 5.0 1705.1 11.9 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 0.0 0.0	5.00	1.0	1671.6	45.4	9.9	50.4	6.6	37.7	Ä
2.0 1688.4 28.6 10.7 34.0 2.0 1695.5 21.5 7.1 25.1 5.0 1705.1 11.9 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 0.0 0.0	6.00	1.0	1677.7	39.3	6.1	42.4	6.1	31.6	Diamet
2.0 1695.5 21.5 7.1 25.1 5.0 1705.1 11.9 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 0.0 0.0	8.00	2.0	1688.4	28.6	10.7	34.0	5.4	20.9	Longue
5.0 1705.1 11.9 9.6 16.7 5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 0.0 0.0	10.00	2.0	1695.5	21.5	7.1	25.1	3.5	13.8	
5.0 1709.7 7.3 4.6 9.6 5.0 1711.8 5.2 2.1 6.3 0.0 0.0	15.00	5.0	1705.1	11.9	9.6	16.7	6.1	4.2	
5.0 1711.8 5.2 2.1 6.3 0.0 0.0	20.00	5.0	1709.7	7.3	4.6	9.6	0.9	0.4	
0.0	25.00	5.0	1711.8	5.2	2.1	6.3	0.4	2.5	
0.0			0.0						Aire inté
			0.0						

-	Méthode:	Méthode: Niveau descendant
	Réalisé par : Interprété par :	Réalisé par : Francis Gagnon Interprété par : Francis Gagnon
	Datum :	PVC
_	Élévation du Datum :	129.473 m
_	Élévation du sol :	128.611 m
	Profondeur du puits :	33.22 m
_	Niveau d'eau statique, H:	17.17 m
_	Volume Retiré/Ajouté :	
	Diamètre du tubage, d:	5 cm
_	Diamètre de la lanterne, D :	9.6012 cm
_	Longueur de la lanterne, L:	442 cm
	Rapport L/D: 46.0359122	46.0359122
_	Constante, C*:	Constante, C*: 2*3,1416*L/ln(2L/D)
	11	614.07
	Aire intérieure du tubage, A :	19.6 cm ²

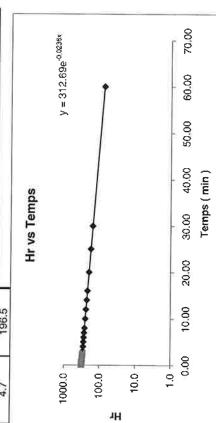
Étape 2: In Hr vs Temps graph Pente de la régression linéaire, p2= K= (Ap)/(60C)=[

1.15E-04 cm/s -0.216186689

* NAVFAC: Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

1.15E-04 cm/s

Étape 1: Have. vs DH/Dt graph
Pente de la régression linéaire, p1= 4.61929548
K= A/(60pC) = 1.15E-04


Zorrection du niveau statique observé, Ho=

PO-03-07A

PUITS:

Sable fin, traces de silt / argileuse silteuse Date: 2003-11-27 St-Nicéphore Projet: Intersan Stratigraphie:

Interprétation : Graphique des vitesses	Methode - Niveau accordant	c. meda ascendant	Réalise par : Francis Gagnon	Interprété par · Francie Gagoon			3/\0	5 E					7 C	Ŧ		19 9475	å	= 388 K3	20:00	19 8 cm ²		
Interprétation	Method		Réalise pa	Interprété na	Approlivé par	34.	Catin	Élévation du Datum	Élévation du sol	Profondelli dilibilità	Miveau d'eau station	Volume Retiré/Aiouté	Diamètre du tuhade d	Diamètre de la lanterne D	Londueur de la lanteme. I	Bapnort L/D	Constante			Aire intérieure du tubade A		
	Hr=H-Ho	(cm)		315.3	312.3	309.3	306.3	304.3	300.5	296.6	292.9	289.6	282.9	276.7	270.2	264.0	258.3	246.8	235.9	225.3	215.3	198.5
	Δ H/Δ t	(cm/min)			12.0	12.0	12.0	8.0	7.6	7.8	7.4	6.6	6.7	6.2	6.5	6.2	5.7	5.8	5.4	5.3	5.0	4.7
_	Hmoy.	(cm)			343.5	340.5	337.5	335.0	332.1	328.3	324.5	321.0	316.0	309.5	303.2	296.8	290.9	282.3	271.1	260.3	250.0	235.6
	НΔ	(cm)			3.0	3.0	3.0	2.0	3.8	3.9	3.7	3.3	6.7	6.2	6.5	6.2	5.7	11.5	10.9	10.6	10.0	18.8
	H=Hi-h	(cm)		345.0	342.0	339.0	336.0	334.0	330.2	326.3	322.6	319.3	312.6	306.4	299.9	293.7	288.0	276.5	265.6	255.0	245.0	226.2
	h (du datum)	(cm)		456.0	453.0	450.0	447.0	445.0	441.2	437.3	433.6	430.3	423.6	417.4	410.9	404.7	399.0	387.5	376.6	366.0	356.0	337.2
	Δt	(min)		100	0.3	0.3	0.3	0.3	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0	4.0
	Temps	(min)		0.00	0.25	0.50	0.75	1.00	1.50	2.00	2.50	3.00	4.00	5.00	00.9	7.00	8.00	10.00	12.00	14.00	16.00	20.00

1.92E-05 cm/s Étape 1: Have. vs DH/Dt graph
Pente de la régression linéaire, p1= 43.7469205 K= A/(60pC) =

Correction du niveau statique observé, Ho=

14.0

12.0

10.0

8.0

0.9

4.0

2.0

 $\Delta(H)/\Delta(t)$

y = 43,747x + 29,725

Н_{тоу} (ст.)

100.0 50.0 0.0

400.0 350.0 300.0

H_{moy.} vs ∆(H)/∆(t)

-0.023618248 1.99E-05 cm/s Étape 2: In Hr vs Temps graph Pente de la régression linéaire, p2= K= (Ap)/(60C)=[

* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

ESSAI DE PERMÉABILITÉ EN BOUT DE TUBAGE (LEFRANC)

PO-03-07C

PUITS:

St-Nicéphore Projet: Intersan Stratigraphie:

Argile, traces de sable

h (du c

₹

Temps

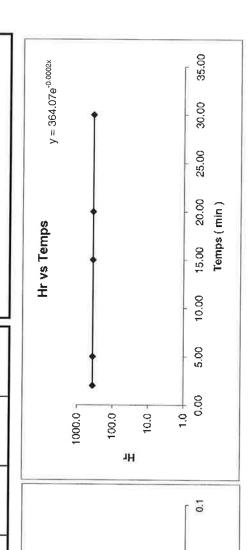
(min)

(min)

3.0

2.00 2.00 5.00 15.00 30.00

10.0


5.0

Interprétation : Graphique des vitesses	Méthode : Niveau descendant		Réalisé par : Svlvain Laforde	Interprété par : Francis Garnon	de par		Datim: PVC	-		-	i puits : 12.20 m	lue, H: 3.64 m	:	age. d: 7.62 cm		O.	Constante, C : 2*Pl*I /ln/2I /d)	178.83	
Interpré	Mé			Interpré	Approuvé par			Élévation du Datum	Élévation du sol :	7 11 11 11 11 11 11 11 11 11 11 11 11 11	Fratondeur du puits ;	Niveau d'eau statique, H :	Volume Retiré/Ajouté :	Diamètre du tubage, d :	Diamètre de la lanterne, D :	Londueur de la lanterne, L.	Constar		
	OH-H=1H	(cm)		364.0	363.9	363.7	363.2	362.7	362.0										
	1 A/H A	(cm/min)			0.1	0.1	0.1	0.1	0.1										
	Hmoy.	(cm)			364.0	363.8	363.5	363.0	362.4										
	νЧ	(cm)			0.1	0.2	0.5	0.5	0.7										
	H=Hi-h	(cm)		364.0	363.9	363.7	363.2	362.7	362.0										
	datum)	cm)		0	0.1	0.3	0.8	1.3	2										

45.6 cm²

Aire intérieure du tubage, A :

H_{moy.} vs Δ(H)/Δ(t)

7.90E-07 -0.000185903 Étape 2: In Hr vs Temps graph Pente de la régression linéaire, p2=_

K= (Ap)/(60C)=

cm/s E

Étape 1: Have, vs DH/Dt graph Pente de la régression linéaire, p1=

K= A/(60pC) = Correction du niveau statique observé, Ho=

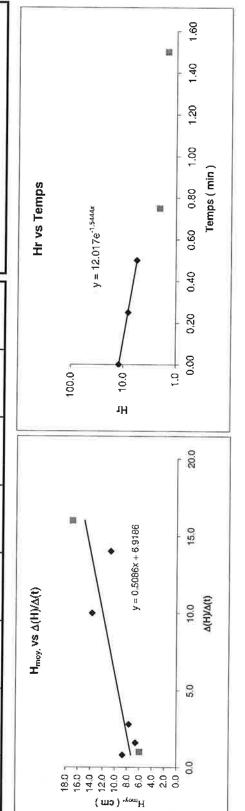
0.1 $y = -16.81x + 364.43^{0.1}$ $\Delta(H)/\Delta(t)$

0.0

0.0

0.0

PO-03-07C


PUITS:

Roc fracturé et till St-Nicéphore

Projet: Intersan Site: Stratigraphie:

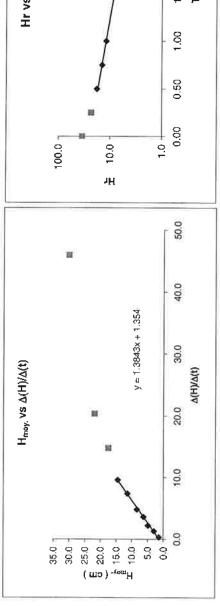
Interprétation : Graphique des vitesses	Méthode : Niveau descendant		Réalisé par : Francis Gaonon	Interprété nar : Francis Gagner	railors dagilor		5/\d	÷	•			ļ	, { u		9.6012 cm	376 cm	39.1617	0	(2007)	541.75	19 R cm ²	
Interprétation ;	Méthode		Réalisé par	Interprété nar	Appropriate par		Datum	Élévation du Datum	Flévation du sol	Profonderic di soiis	Niveau d'eau statique. H	Volume Retiré/Ajouté :	Diamètre du tubade A	Discussion on the design of	☐ Diametre de la Janterne, D :	Longueur de la lanterne, L	Rapport L/D	Constante C.	Collocality, C.	н	Aire intérieure du tubane A	· · · · · · · · · · · · · · · · · · ·
	Hr=H-H0	(cm)		12.1	1.00	5.6	2.1	1.5	0.1	0.7	1,2											
	Δ H/Δ t	(cm/min)			16.0	10.0	14.0	0.8	2.8	9.1	1.0											
	Hmoy.	(cm)			17.0	13.8	10.8	8.7	7.7	6.6	5.9											
	ВΔ	(cm)			4.0	2.5	3.5	0.6	4.1	8.0	0.5											
3	11=11	(cm)		19.0	15.0	12.5	9.0	8.4	7.0	6.2	5.7											
h (du dotum)	ו ומת חשותווו/	(cm)		345	349	351.5	355	355.6	357	357.8	358.3											
**	1	(mim)		ej	0.3	0.3	0.3	0.8	0.5	0.5	0.5											
Temns	Selling	(min)		0.00	0.25	0.50	0.75	1.50	2.00	2.50	3.00											

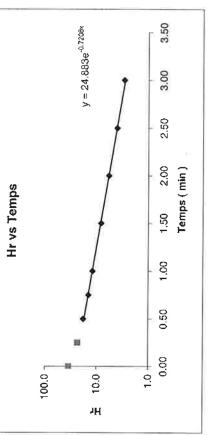
Méthode : Niveau descendant	Réalisé par : Francis Gagnon terprété par : Francis Gagnon prouvé par :	batum: PVC tion du Datum: 111.94 m évation du sol: 111.176 m ndeur du puits: 17.17 m au statique, H: 3.64 m : Retiré/Ajouté:	19.6 cm²
Méthode : N	Réalisé par : Francis Gagnon Interprété par : Francis Gagnon Approuvé par :	Datum: Élévation du Datum: Élévation du sol: Profondeur du puits: Niveau d'eau statique, H: Volume Retiré/Ajouté: - Diamètre du tubage, d: Diamètre de la lanterne, D: Longueur de la lanterne, L: Rapport L/D: Constante, C*: 2	Aire intérieure du tubage, A:
	TITI		T

-1.544447554 Étape 2: In Hr vs Temps graph Pente de la régression linéaire, p2= K= (Ap)/(60C)= Étape 1: Have. vs DH/Dt graph
Pente de la régression linéaire, p1= 0.50859796
''- A/f60bC) = 1.19E-03 cm/s Correction du niveau statique observé, Ho=

9.33E-04 cm/s

* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01


PO-03-08A


PUITS:

Sable fin, traces de silt St-Nicéphore Projet: Intersan Site: Stratigraphie:

Interprétation : Graphique des vitesses	Méthode: Niveau ascendant		ean Blouin	ancis Gagnon	5		DVG	111.247 m	110.278 m	5.79 m	£.99 m		2 Cm	11.43 cm	76.9 cm	6.72790901	3,1416*L/In(2L/D)	185.88		19.6 cm ²	
Interprétation : G	Méthode : Ni		Réalisé par : Jean Blouin	Interprété par : Francis Gaonon	Approuvé par		Datum	Élévation du Datum :	Élévation du sol :	Profondeur du puits :	Niveau d'eau statique. H	Volume Retire/Aiguté :	Diametre du tubade, d	Diamètre de la lanteme, D	Longueur de la lanterne. L		C4	ıı	900	Aire intérieure du tubage. A :	,
	Hr=H-Ho	(cm)		34.6	23.1	18.0	14.3	11.9	8.2	5.8	4.0	2.9	0.3	0.3							
	A H/A t	(cm/min)			46.0	20.4	14.8	9.6	7.4	4.8	3.6	2.2	1.3	0.3							
	Hmoy.	(cm)			30.3	22.0	17.6	14.5	11.5	8.4	6.3	4.9	3.0	1.4							
	ΔH	(cm)			11.5	5.1	3.7	2.4	3.7	2.4	1.8	1.1	2.6	9.0							
7 11.1	H=H-h	(cm)		36.0	24.5	19.4	15.7	13.3	9.6	7.2	5.4	4.3	1.7	1,1							
(n (du datum)	(cm)		635.0	623.5	618.4	614.7	612.3	608.6	606.2	604.4	603.3	2:009	600.1							
**	70	(min)			0.3	0.3	0.3	0.3	0.5	0.5	0.5	0.5	2.0	2.0							
Tanna	Scillos	(min)		0.00	0.25	0.50	0.75	1.00	1.50	2.00	2.50	3.00	5.00	7.00							

ievation du sol : 110.278 m ndeur du puits : 5.79 m su statique, H : 5.99 m 9. Retiré/Ajouté : 5 cm la lanterne, D : 11.43 cm la lanterne, L : 76.9 cm Rapport L/D : 6.72790901 Constante, C* : 2*3,1416*L/In(2L/D)	19.6 cm²
Elévation du sol : 110.278 Profondeur du puits : 5.79 Niveau d'eau statique, H : 5.99 Volume Retiré/Ajouté : 5 Diamètre de la lanterne, D : 11.43 Longueur de la lanterne, L : 76.9 Rapport L/D : 6.72790901 Constante, C* : 2*3,1416*L/In	Aire intérieure du tubage, A :
α α 4 α 0 0 α α ο α α α	

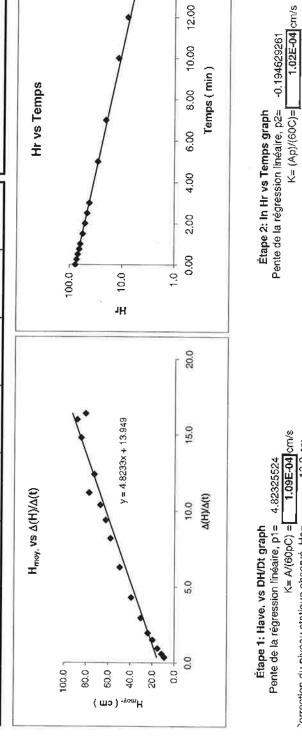
Étape 2: In Hr vs Temps graph Pente de la régression linéaire, p2= K= (Ap)/(60C)=[

-0.7207899 1.27E-03 cm/s

* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01 Remarque: Niveau statique inférieur au sommet de la lanterne

1.27E-03 cm/s

Étape 1: Have. vs DH/Dt graph Pente de la régression linéaire, p1=__1,38431687


K= A/(60pC) = C Correction du niveau statique observé, Ho=

PO-03-08C

Roc fracturé et till St-Nicéphore Projet: Intersan Site: Stratigraphie:

H=H-Ho	(cm)	76.8	72.8	69.1	65.0	62.2	56.0	50.8	46.1 Niv		29.4	Dia		Τ	3.6		4.0	5.8 Aire in	T
ΔH/Δt Hr=	(cm/min) (c	76	16.0	14.8		11.2 6	12.4 56									0.0		0.4	
Hmoy. A	(cm) (ci		88.7	84.9	81.0	77.5	73.0	67.3		58.0				24.0	19.8	15.2	11.4	9.0	
ΔH	(cm)		4.0	3.7	4.1	2.8	6.2	5.2	4.7	4.1	12.6	8.6	8.8	3.9	4.5	4.7	2.9	1.8	
H=Hi-h	(cm)	90.7	86.7	83.0	78.9	76.1	6.69	64.7	0.09	55.9	43.3	34.7	25.9	22.0	17.5	12.8	6.6	8.1	
h (du datum)	(cm)	756	760	7.63.7	8'292	9.022	776.8	782	786.7	8.067	803.4	812	820.8	824.7	829.2	6.558	836.8	838.6	
Δt	(min)	٠	0.3	0.3	0.3	0.3	0.5	0.5	0.5	0.5	2.0	2.0	3.0	2.0	3.0	5.0	5.0	5.0	
Temps	(min)	0.00	0.25	0.50	0.75	1.00	1.50	2.00	2.50	3.00	5.00	7.00	10.00	12.00	15.00	20.00	25.00	30.00	

Interprétation : Graphique or Méthode : Niveau asce Réalisé par : Jean blouin Interprété par : Francis Gaç Approuvé par : Francis Gaç Approuvé par : Francis Gaç Approuvé par : Francis Gaç Approuvé par : Francis Gaç Approuvé par : Francis Gaç Approuvé par : Francis Gaç Approuvé par : Francis Gaç Approuvé par : 110.30 Profondeur du puits : 18.20 Niveau d'eau statique, H : 8.46 Volume Retiré/Ajouté : Diamètre du tubage, d :	Interprétation: Graphique des vitesses Méthode: Niveau ascendant Réalisé par: Jean blouin Interprêté par: Francis Gagnon Approuvé par: Datum: PVC ion du Datum: 111.238 m svation du sol: 110.309 m ideur du puits: 18.24 m au statique, H: 8.467 m Retiré/Ajouté:
Diamètre de la lanterne, D : Longueur de la lanterne, L : Rapport L/D : Constante, C* :	la lanterne, D: 9.6012 cm 9 la lanterne, L: 45.2 cm Rapport L/D: 47.0774487 Constante, C*: 2*3,1416*L/ln(2L/D) = 624.87
Aire intérieure du tubage, A :	19.6 cm²

y = 76.403e^{-0.1946x}

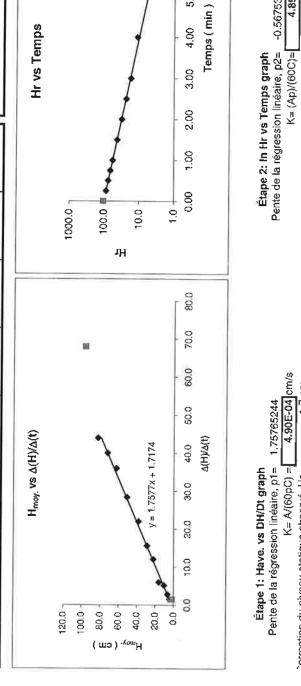
16.00

14.00

1.02E-04 cm/s -0.194629261 Étape 2: In Hr vs Temps graph Pente de la régression linéaire, p2= K= (Ap)/(60C)=[

* NAVFAC: Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

Correction du niveau statique observé, Ho=


PO-03-09A

PUITS:

Projet: Intersan	Date: 2003-11-21
Site:	St-Nicéphore
Stratigraphie:	Sable fin, un peu de silt

Aire intérieure								
	9.0	0.5	1.6	6.0	<u>:</u>	75.1	2.0	10.00
	0.3	1.5	2.8	1.5	2.0	92	1.0	8.00
	1.8	1,5	4.3	1.5	3.5	77.5	1.0	00.7
Longueur de	3.3	2.8	6.4	2.8	5.0	79	1.0	6.00
Diamètre de	6.1	5.2	10.4	5.2	7.8	81.8	0.	5.00
Diamètre	11.3	0.9	16.0	6.0	13.0	87	1.0	4.00
Volume	17.3	12.0	22.0	6.0	19.0	88	0.5	3.00
Niveau d'e	23.3	15.6	28.9	7.8	25.0	66	0.5	2.50
Profo	31.1	22.0	38.3	11.0	32.8	106.8	0.5	2:00
- <u>II</u>	42.1	28.4	50.9	14.2	43.8	117.8	0.5	1.50
Élèva	56.3	36.0	62.5	9.0	58.0	132	0.3	1.00
	65.3	40.0	72.0	10.0	67.0	141	0.3	0.75
	75.3	44.0	82.5	11.0	77.0	151	0.3	0.50
	86.3	68.0	96.5	17.0	88.0	162	0.3	0.25
	103.3		1.50		105.0	179	•	0.00
	(mo)	(cm/min)	(cm)	(cm)	(mo)	(cm)	(min)	(min)
	Hr=H-Ho	∆H/∆ t	Hmoy.	ΑH	H=Hi∙h	h (du datum)	Δţ	Temps

Interprétation : Graphique des vitesses	Méthode : Niveau ascendant		Réalisé par : Francis Gagnon	Interprété par : Francis Gagnon	Approuvé par:		Datum: PVC	Élévation du Datum : 115.692 m	Élévation du sol : 114,867 m	Profondeur du puits : 5.26 m	atique, H: 0.74 m	é/Ajouté : L	ubage, d: 5 cm	iterne, D: 11.43 cm	terne, L: 221 cm	Rapport L/D: 19,3350831	Constante, C* : 2*3,1416*L/ln(2L/D)	= 379.91	lbage, A: 19.6 cm ²
İ	H-H0	(m)		33.3 Inte	6.3 Ap	5.3	5.3		2.1 Éléva	1.1 Profonde	Niveau d'eau statique, H	7.3 Volume Retiré/Ajouté	1.3 Diamètre du tubage, d	Diamètre de la lanterne, D	.3 Longueur de la lanterne, L	8.	.3 Cor	φ.	Aire intérieure du tubage, A :

 $y = 99.233e^{-0.5675x}$

8.00

7,00

6.00

5.00

* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

 $K=A/(60 \mu C)=$ Sorrection du niveau statique observé, Ho=

PO-03-09B

PUITS:

Argile, traces de sable St-Nicéphore

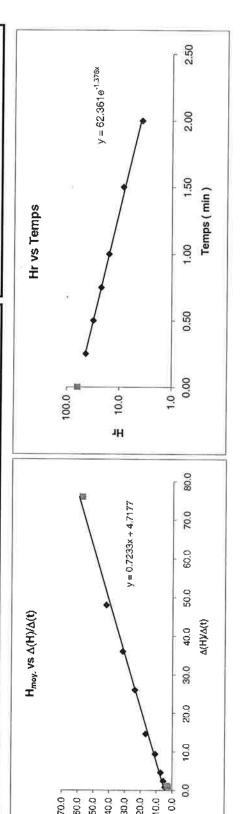
Projet: Intersan Site: Stratigraphie:

Interpretation : Graphique des vitesses Méthode : Niveau descendant		Réalisé par : Francis Gagnon	Interprété par : Francis Gagnon	Approuvé par		Datum: PVC	+	•	24	. 20	1	42	Diamètre de la lanteme, D : 11.43 cm	1644	Rapport L/D: 19.3350831	C	379.91	11.00	Aire intérieure du tubacie. A :			Hr vs Temps		y = 80.65e ^{-0.0012x}		1				30 40 50 60 70 80	Temps (min)	
Hr=H-Ho	(cm)		96.3	94.8	93.0	91.6	90.4	87.0	84.3	81.8	79.8	75.7	72.3	69.4	66.4	63.7	59.2	55.1	51.4	48.2	42.4			• """"						10 20		
Δ H/Δ t	(cm/min)			6.0	7.2	5.6	4.8	6.8	5.4	5.0	4.0	4.1	3.4	2.9	3.0	2.7	2.3	2.1	ο,	1.6	1,5		100.0	-		十 10.0 -			1.0	0		
Hmoy.	(cm)			124.8	123.1	121.5	120.2	117.9	114.9	112.3	110.0	107.0	103.2	100.1	97.1	94.3	2.06	86.4	82.5	79.0	74.5		11	==		16.2			ſ	8.0		
НΔ	(cm)			1.5	1.8	1.4	1.2	3.4	2.7	2.5	2.0	4.1	3.4	2.9	3.0	2.7	4.5	4.1	3.7	3.2	5.8									6.0 7.0		
H=Hi∙h	(cm)		125.5	124.0	122.2	120.8	119.6	116.2	113.5	111.0	109.0	104.9	101.5	98.6	95.6	92.9	88.4	84.3	9.08	77.4	71.6	Δ(t)		100 100 100				r + 29.166		2.0	Δ(t)	
h (du datum)	(cm)		109.5	111	112.8	114.2	115.4	118.8	121.5	124	126	130.1	133.5	136.4	139.4	142.1	146.6	150.7	154.4	157.6	163.4	H _{moy.} vs Δ(H)/Δ(t)		3,000		í		y = 32.579x + 29.166		0 3.0 4.0	Δ(H)/Δ(t)	
Δt	(min)		•	0.3	0.3	0.3	0.3	0.5	0.5	0.5	0.5	1.0	1,0	1.0	0.1	1.0	2.0	2.0	2.0	2.0	4.0				H III	To a second	4	e e	-	1.0 2.0		
Temps	(min)		0.00	0.25	0.50	0.75	1.00	1.50	2.00	2.50	3.00	4.00	5.00	9.00	7.00	8.00	10.00	12.00	14.00	16.00	20		140.0			o).4		20.0	0.0	0.0		

Étape 1: Have. vs DH/Dt graph
Pente de la régression linéaire, p1= 32.5793362
K= A/(60pC) = 2.64E-05] cm/s

-0.031202151 Étape 2: In Hr vs Temps graph Pente de la régression linéaire, p2= K= (Ap)/(60C)=[Correction du niveau statique observé, Ho=¯

* NAVFAC: Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01


PO-03-09C

PUITS:

Projet: Intersan	Date: 2003-11-21
Site:	St-Nicéphore
Stratigraphie:	Till et roc

Aire int							
2.7 Longu	1.0	2.5	1.0	2.0	477	1.0	00.9
1.7 Dia	1.2	3.6	1.2	3.0	476	1.0	2,00
0.5	9.0	4.6	0.8	4.2	474.8	1.0	4.00
0.3	2.4	5.6	1.2	5.0	474	0.5	3.00
1.5	4.6	7.4	2.3	6.2	472.8	0.5	2.50
3.8	9.4	10.9	4.7	8.5	470.5	0.5	2.00
8.5	14.6	16.9	7.3	13.2	465.8	0.5	1.50
15.8	26.0	23.8	6.5	20.5	458.5	0.3	1.00
22.3	36.0	31.5	8.0	27.0	452	0.3	0.75
31.3	48.0	42.0	12.0	36.0	443	0.3	0.50
43.3	76.0	57.5	19.0	48.0	431	0.3	0.25
62.3				67.0	412	2 4 5	0.00
(cm)	(cm/min)	(cm)	(cm)	(cm)	(cm)	(min)	(min)
Hr=H∗Ho	1 ∆/H/∆	Hmoy.	ΔН	H=Hi-h	h (du datum)	Δt	emps

Interprétation : G Méthode : Ni	Interprétation : Graphique des vitesses Méthode : Niveau ascendant
Réalisé par : Francis Gagnon Interprété par : Francis Gagnon Approuvé par :	ancis Gagnon ancis Gagnon
Datum :	PVC
Élévation du Datum :	115.679 m
Élévation du sol :	114,958 m
Profondeur du puits :	19.71 m
Niveau d'eau statique, H:	4.79 m
Volume Retiré/Ajouté :	
Diamètre du tubage, d	5 cm
Diamètre de la lanterne, D :	9.6012 cm
Longueur de la lanterne, L :	455 cm
Rapport L/D: 4	47.3899096
Constante, C*: 2*3,1416*L/ln(2L/D)	3,1416*L/ln(2L/D)
ait.	628,11
Aire intérieure du tubage, A :	19.6 cm²

70.07

60.0 50.0

(тэ)._{үөм}Н 8 8 8 8 9 0 0 0

20.0 10.0

* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

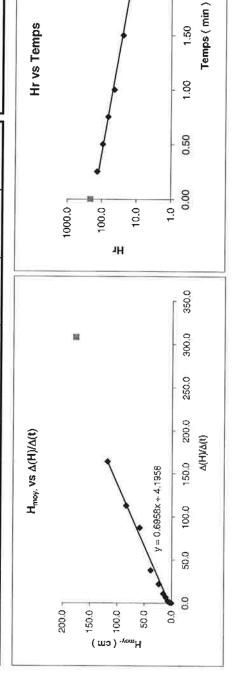
Étape 1: Have. vs DH/Dt graph

Pente de la régression linéaire, p1= 0.72332652

K= A/(60pC) = 7.20E-04 cm/s

Correction du niveau statique observé, Ho= 4.7 cm

PZ-92-01A


PUITS:

Interprétation : Graphique des vitesses

St-Nicéphore Sable fin, silteux Projet: Intersan Site: Stratigraphie:

	•				•			
Aire intérieur								
	3.6	0.0	0.7	0.1	9.0	204.8	10.0	30.00
	3.5	0.1	6.0	0.3	2.0	204.9	5.0	20.00
	3.2	0.2	1,5	6.0	1.0	205.2	5.0	15.00
Longueur d	2.3	0.4	2.5	1.2	ن ق:	206.1	3.0	10.00
Diamètre d	1.1	0.9	4.0	1.7	3.1	207.3	2.0	7.00
Diamet	9.0	2.1	6.9	4.2	4.8	209	2.0	5.00
Volun	4.8	9'9	10.7	3.3	9.0	213.2	0.5	3.00
Niveaud	8.1	11.0	15.1	5.5	12.3	216.5	0.5	2.50
Profe	13.6	22.0	23.3	11.0	17.8	222	0.5	2.00
	24.6	38.0	38.3	19.0	28.8	233	0.5	1.50
Élév	43.6	87.2	58.7	21.8	47.8	252	0.3	1.00
	65.4	112.8	83.7	28.2	69.6	273.8	0.3	0.75
	93.6	164.0	118.3	41.0	97.8	305	0.3	0.50
	134.6	308.0	177.3	77.0	138.8	343	0.3	0.25
	211.6				215.8	420		00.0
	(cm)	(cm/min)	(cm)	(cm)	(cm)	(cm)	(min)	(min)
	Hr=H⁴Ho	A H/A t	Hmoy.	ЧΔ	H=Hi-h	h (du datum)	177	Temps

유	Méthode:	Méthode : Niveau ascendant
	Réalisé par : Jean Blouin	Jean Blouin
	Interprété par :	Interprété par : Francis Gagnon
	Approuvé par :	
	Datum	PVC
П	Élévation du Datum	117.107 m
	Élévation du sol :	116,542 m
	Profondeur du puits :	4.6 m
	Niveau d'eau statique, H	2.042 m
	Volume Retiré/Ajouté :	10 L
	Diamètre du tubage, d :	10.16 cm
П	Diamètre de la lanterne, D :	20.32 cm
П	Longueur de la lanterne, L	199.3 cm
	Rapport L/D	9.80807087
	Constante, C:	Constante, C.: Bouwer et Rice (1976)
	88	574.68
	Aire intérieure du tubage, A :	81.1 cm ²
F	•	

Étape 2: in Hr vs Temps graph
Pente de la régression linéaire, p2= -1.249036915
K= (Ap)/(60C)= 2.94E-03 cm/s

3.00

2.50

2.00

1.50

y = 169,25e^{-1,248x}

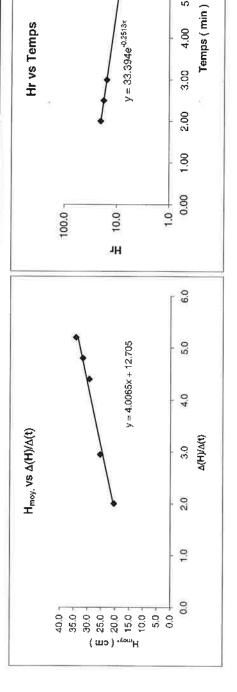
3.38E-03 cm/s

Étape 1: Have. vs DH/Dt graph

Pente de la régression linéaire, p1= 0.69576541

K= A/(60pC) = 3.38E-03

Correction du niveau statique observé, Ho= 4.2


PZ-92-01C

PUITS:

St-Nicéphore Till et roc Projet: Intersan Stratigraphie:

Aire								
3								
2 5	3	0.4	1	2:				
ć	L II	00	20.4	4.0	184	886.4	2.0	7.00
	9.7	2.9	25.4	5.9	22.4	890.4	2.0	5.00
	15.6	4.4	29.4	2.2	28.3	896.3	0.5	3.00
z	17.8	4.8	31.7	2.4	30.5	898.5	0.5	2.50
	20.2	5.2	34.2	2.6	32.9	6.006	0.5	2.00
	22.8	8.0	37.5	4.0	35.5	903.5	0.5	1,50
	26.8	10.0	40.8	2.5	39.5	907.5	0.3	1.00
	29.3	12.0	43.5	3.0	42.0	910.0	0.3	0.75
	32.3	116.0	59.5	29.0	45.0	913.0	0.3	0:20
	61.3	232.0	103.0	58.0	74.0	942.0	0.3	0.25
	119.3				132.0	1000.0	*	0.00
	(ma)	(cm/min)	(cm)	(cm)	(cm)	(cm)	(min)	(min)
	Hr=H-Ho	1 A/H A	Hmoy.	Н∇	H=Hi-h	h (du datum)	Δt	Temps

Interprétation : Graphique des vitesses Méthode : Niveau descendant
Réalisé par : Jean Blouin Interprété par : Francis Gagnon Approuvé par :
Datum: PVC Élévation du Datum: 117,25 m Elévation du sol: m Profondeur du puits: m Niveau d'eau statique, H; 8.68 m Volume Retrie/Ajouté: 60 L Diamètre du tubage, d: 5 cm Diamètre de la lanterne, D: 15 cm Longueur de la lanterne, L: 361 cm Rapport L/D: 24,0666667 Constante, C: 2*3,1416*L/In NAVFAC*
Aire intérieure du tubage, A : 19.6 cm²

8.00

7.00

00.9

5.00

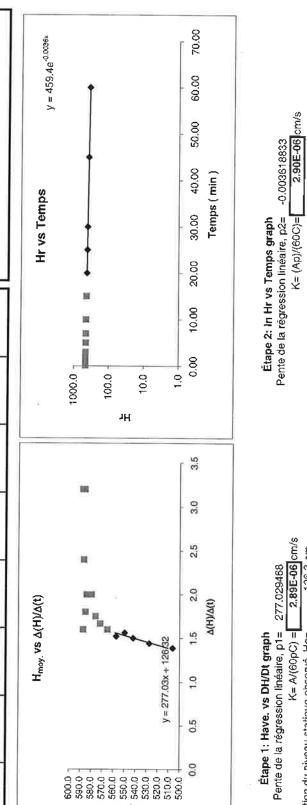
* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

1.40E-04 cm/s

Etape 1: Have. vs DH/Dt graph
Pente de la régression linéaire, p1= 4.00647561
K= A/(60pC) = 1.40E-04

?orrection du níveau statique observé, Ho≕

-0.251252591


PZ-98-03C

PUITS:

Sable silteux, traces de gravier (till) Date: 2003-10-22 St-Nicéphore Projet: Intersan Stratigraphie:

Aire intérieur	369.7	1.4	506.4	20.8	496.0	840.2	15.0	90.09
	390.5	1.4	527.6	21.6	516.8	861	15.0	45.00
	412.1	1.5	542.2	7.5	538.4	882.6	5.0	30.00
	419.6	1.6	549.8	7.8	545.9	890.1	5.0	25.00
)	427.4	7,5	557.5	9.2	553.7	897.9	5.0	20.00
Longueur d	435.0	1.6	565.3	8.0	561.3	905.5	5.0	15.00
Diamètre de	443.0	1.7	571.8	5.0	569.3	913.5	3.0	10.00
Diamèt	448.0	1.8	576.1	3.5	574.3	918.5	5.0	7.00
Volum	451.5	2.0	579.8	4.0	577.8	922	2.0	2.00
Niveau d'	455.5	2.0	582.8	2.0	581.8	926	1.0	3.00
Profe	457.5	2.0	584.3	1.0	583.8	928	0,5	2.00
-	458.5	1.8	585.3	6.0	584.8	929	0.5	1.50
Élév	459.4	3.2	586.1	9.0	585.7	829.9	0.3	1.00
	460.2	2,4	586.8	9.0	586.5	830.7	0.3	0.75
	460.8	1.6	587.3	0.4	587.1	931.3	0.3	0.50
	461.2	3.2	587.9	9.0	587.5	931.7	0.3	0.25
	462.0				588.3	932.5		0.00
	(cm)	(cm/min)	(cm)	(cm)	(cm)	(cm)	(min)	(min)
	Hr=H-Ho	∆H/∆ t	Hmoy.	РΥ	H=Hi-h	h (du datum)	Δt	Temps

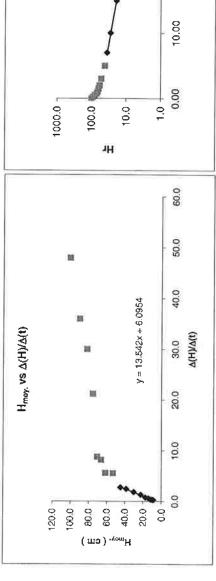
Interprétation: Graphique des vitesses Méthode: Niveau ascendant Réalisé par : Jean blouin Interprété par : Francis Gagnon Approuvé par : Datum : PVC Élévation du Datum : 108.12 m Élévation du sol : 107.53 m Profondeur du puits : 10.5 m Niveau d'eau statique, H : 3.442 m Volume Retiré/Ajouté : 30 L Diamètre du tubage, d : 5.08 cm Diamètre de la lanterne, D : 20.32 cm Longueur de la fanterne, L : 200 cm Rapport L/D : 9.84251969 Constante, C* : 2*3,14f6*L/In(2L/D) = 421.71					_					_
Interprétation : Réalise par : Interprété par : Approuvé par : Approuvé par : Elévation du Datum : Elévation du sol : Profondeur du puits : Niveau d'eau statique, H : Volume Retiré/Ajouté : Diamètre du tubage, d : Diamètre de la lanterne, D : Longueur de la fanterne, L : Rapport L/D : Constante, C : : =	Graphique des vitesses Niveau ascendant Jean blouin Francis Gagnon	, DVC	108.12 m 107.53 m	10.5 m 3 442 m	30 L	5.08 cm 20.32 cm	200 cm	9.84251959 2*3,1416*L/In(2L/D)	421.71	20.3 cm ^e
	Interprétation : . Méthode : . Réalise par : . Interprété par : .	Approuvé par : Datum :	Élévation du Datum : Élévation du sol :	Profondeur du puits : Niveau d'eau statique. H :	Volume Retiré/Ajouté:	Diamètre du tubage, d : Diamètre de la lanterne, D :	Longueur de la lanterne, L :	Constante, C* : 2	II	Aire interieure du tubage, A:

590.0 580.0 570.0 560.0 550.0 540.0 530.0 510.0 H_{moy}. (cm.)

Correction du niveau statique observé, Ho=

* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

126.3 cm


PZ-98-03A

PUITS:

Sable graveleux, silteux (till) St-Nicéphore Projet: Intersan Site: Stratigraphie:

Interprétation : Graphique des vitesses	Méthode : Niveau ascendant		Jean Blouin	Francis Gagnon			Ολα	108 10 B	107.57 m	5.94 m	3 934 m	101	5.08.0m	0.00 em	255 6 cm	12 5787402	Constants C*: 2*3 1416*1 (b)	497 96		20 2 cm2	
Interprétation :	Méthode		Réalisé par : Jean Blouin	Interprété par : Francis Gagnon	Approuvé nar		Datum	Élévation du Datum	Éfévation du sol	Profondeur du puits :	Niveau d'eau statione. H	Volume Betiré/Aiouté	Diamètre du tubade d	Diamètre de la lanterne D	Longueur de la lanterne	Bannort I (D.	Constant		K.	Aire intérieure du tubade A	
	Hr=H-Ho	(cm)		100.5	88.5	79.5	72.0	66.7	62.3	58.2	52.6	41.5	36.0	28.6	19.5	13.1	9.3	6.5	4.7	3.2	2.0
	Δ H/Δ t	(cm/min)			48.0	36.0	30.0	21.2	8.8	8.2	5.6	5.5	2.7	2.5	8.	1.3	0.8	0.6	0.4	0.3	0.2
	Hmoy.	(cm)			100.6	90.1	81.9	75.5	70.6	66.4	61.5	53.1	44.9	38.4	30.2	22.4	17.3	14.0	11.7	10.1	8.7
	∀∀	(cm)			12.0	9.0	7.5	5.3	4.4	4.1	5.6	11.1	5.5	7.4	9.1	6.4	3.8	2.8	1.8	7.5	1.2
	H=Hi-h	(cm)	0007	106.5	94.6	85.6	78.1	72.8	68.4	64.3	58.7	47.6	42.1	34.7	25.6	19.2	15.4	12.6	10.8	9.3	8.1
	h (du datum)	(cm)	0 000	0.000	488.0	479.0	471.5	466.2	461.8	457.7	452.1	441.0	435.5	428.1	419.0	412.6	408.8	406.0	404.2	402.7	401.5
	Δt	(min)			0.3	0.3	0.3	0.3	0.5	0.5	1.0	2.0	2.0	3.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
	Temps	(min)	000	00.0	0.25	0.50	0.75	1.00	1.50	2:00	3.00	5.00	7.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00

20.3 cm ²	
Alle Illerieure du lubage, A.:	Hr vs Temps
2.0	
-	

y = 59.879e^{-0.0742x}

50.00

40.00

30.00

20.00

Temps (min)

-0.074178868 5.03E-05 cm/s Étape 2: In Hr vs Temps graph Pente de la régression linéaire, p2= K= (Ap)/(60C)=[

* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01 Remarque: Niveau statique inférieur au sommet de la lanteme

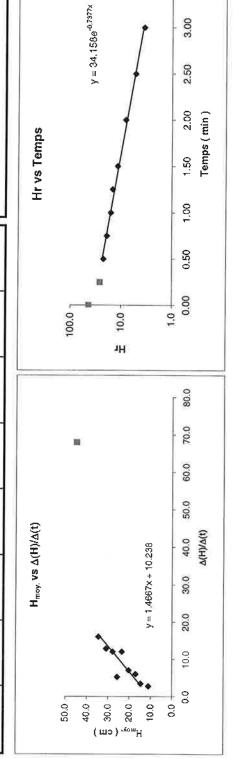
5.01E-05 cm/s

K= A/(60pC) =

Correction du niveau statique observé, Ho=

Étape 1: Have. vs DH/Dt graph
Pente de la régression linéaire, p1= 13.5423573

PZ-98-06A


Interprétation : Graphique des vitesses

Méthode: Níveau descendant

Date: 2003-10-22 Sable, un peu de silt St-Nicéphore Projet: Intersan Site: Stratigraphie:

Temps	Δť	h (du datum)	H=Hi-h	ΨР	Hmoy.	∆ H/∆ 1	Hr=H-Ho	
(min)	(min)	(cm)	(cm)	(am)	(cm)	(cm/min)	(cm)	
0.00	٠	550.0	53.5				43.3	
0.25	0.3	533.0	36.5	17.0	45.0	68.0	26.3	
0.50	0.3	529.0	32.5	4.0	34.5	16.0	22.3	
0.75	0.3	525.8	29.3	3.2	30.9	12.8	19.1	
1.00	0.3	522.8	26.3	3.0	27.8	12.0	16.1	Éléva
1.25	0.3	521.5	25.0	<u>د</u> دن	25.7	5.2	14.8	
1.50	0.3	518.5	22.0	3.0	23.5	12.0	11.8	Profe
2.00	0.5	515.0	18.5	3,5	20.3	7.0	8.3	Niveau d'
2.50	0.5	512.0	15.5	3.0	17.0	0.9	5.3	Volum
3.00	0.5	510.3	13.8	1.7	14.7	3.4	3.6	Diamet
5.00	2.0	504.8	8.3	5.5	11.1	2.8	1.9	Diamètre de
								Longueur
								Aire intérieur

		_
Réalisé par ; Jean Blouin Interprété par ; Francis Gagnon Approuvé par ;	Datum: PVC ion du Datum: 117.13 m veation du sol: 116.59 m deur du puits: 6.86 m tu statique, H: 4.965 m Retiré/Ajouté: 20 L du tubage, d: 5.08 cm la lanterne, D: 20.32 cm la lanterne, L: 243.5 cm Rapport L/D: 11.983 Constante, C: Bouwer et Rice (1976) = 765.79	
Réalisé par : Jean Blouin Interprété par : Francis Gag Approuvé par :	Datum: Élévation du Datum: Élévation du Sol: Profondeur du puits: Niveau d'eau statique, H: Volume Retiré/Ajouté: Diamètre du tubage, d: Diamètre de la lanterne, D: Longueur de la lanterne, L: Rapport L/D: Constante, C:	

3.50

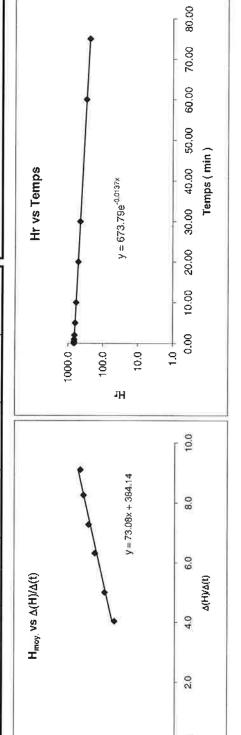
3.00

Étape 1: Have. vs DH/Dt graph
Pente de la régression linéaire, p1= 1.46671618

'\(\mathbb{L}\) = \frac{3.01\overline{1.46}}{3.01\overline{1.46}}\) cm/s Correction du niveau statique observé, Ho=

Remarque: Niveau statique inférieur au sommet de la lanterne

PZ-98-06C


PUITS:

Interprétation : Graphique des vitesses

Projet: Intersan Date:	Site: St-Nic	Argile
Date: 2003-10-22	St-Nicéphore	Argile silteuse

						_		
Aire inté								
Pongue								
Diamèti	239.4	4.0	653.8	60.5	623.5	1049.5	15.0	75.00
Dia	299.9	5.0	759.0	150.0	684.0	1110.0	30.0	60.00
^	449.9	6.3	865.6	63.2	834.0	1260.0	10.0	30.00
Nivea	513.1	7.3	933.6	72.8	897.2	1323.2	10.0	20.00
	585.9	8.3	990.7	41.3	970.0	1396.0	5.0	10.00
	627.2	9.1	1025.0	27.3	1011.3	1437.3	3.0	5.00
	654.5	9.7	1043.5	9.7	1038.6	1464.6	1.0	2.00
	664.2	10.6	1051.0	5.3	1048.3	1474.3	0.5	1.00
	669.5	8.8	1054.7	2.2	1053.6	1479.6	0.3	0.50
	671.7	12.8	1057.4	3.2	1055.8	1481.8	0.3	0.25
	674.9				1059.0	1485.0	•	00:0
	(mo)	(cm/min)	(cm)	(cm)	(cm)	(cm)	(min)	(min)
	Hr=H-Ho	∆ H/∆ t	Hmoy.	НΔ	H=HI-h	h (du datum)	Vζ	Temps

Methode: Niveau descendant	Réalisé par : Jean Blouin Interprété par : Francis Gagnon Approuvé par :	Datum : PVC	atum: 117.13 m	lu sol : 116.59 m	puits: 16.8 m	Je, H: 4.26 m	jouté : 20 L	ge, d : 5.08 cm	ne, D : 20.32 cm	ne, L: 185 cm	1L/D: 9.104	Constante, C: 2*3,1416*L/ln·NAVFAC*	= 400.56	ge, A: 20.3 cm²
Mét	Réalisé par : Interprété par : Approuvé par :	Õ	Élévation du Datum	Élévation du sol	Profondeur du puits	Niveau d'eau statique, H	Volume Retiré/Ajouté	Diamètre du tubage, d	Diamètre de la lanterne, D	Longueur de la lanterne, L	Rapport L/D	Constan		Aire intérieure du tubage, A :

1200.0 100001

0.009 800.0

Н^{шо}у∙ (ст.)

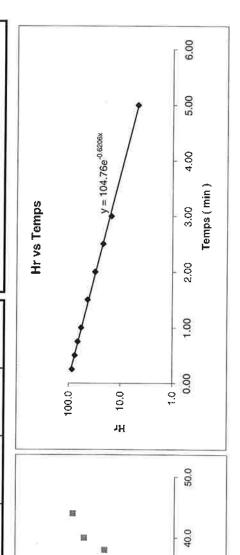
400.0 200.0 00

* NAVFAC : Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

Étape 1: Have. vs DH/Dt graph
Pente de la régression linéaire, p1= 73.0797103
K= A/(60pC) = 1.15E-05 cm/s

Correction du niveau statique observé, Ho=

ESSAI DE PERMÉABILITÉ DANS UN PIÉZOMÈTRE


F-2A

PUITS:

Sable, traces à un peu de silt St-Nicéphore Projet: Intersan Site: Stratigraphie;

(cm) (gm)											8,4	I	0.5		0.1	0.4	Air	
1	(cm/min)		44.0	40.0	36.0	38.0	29.0	24.0	18.4	13.2	5.3	L.	0.5	0.1	0.0	0.0		
. ioy.	(cm)		93.0	82.5	73.0	63.8	51.8	38.5	27.9	20.0	11.5	4.8	2.7	1.7	1.4	1.2		
D D	(cm)		11.0	10.0	9.0	9.5	14.5	12.0	9.2	9.9	10.5	2.7	1.6	0.4	0.2	0.3		
H=HI-N	(сш)	98.5	87.5	77.5	68.5	59.0	44.5	32.5	23.3	16.7	6.2	3.5	1.9	1.5	1,3	1.0		
n (an aanum)	(cm)	434	423	413	404	394.5	380	368	358.8	352.2	341.7	339	337.4	337	336.8	336.5		
ΔI	(min)	y • :	0.3	0.3	0.3	0.3	0.5	0.5	0.5	0.5	2.0	2.0	3.0	5.0	5.0	10.0		
sdwai	(min)	00.0	0.25	0.50	0.75	1.00	1.50	2:00	2.50	3.00	5.00	7.00	10.00	15.00	20.00	30.00		

	Interprétation :	Interprétation : Graphique des vitesses
우	Méthode :	Méthode: Niveau ascendant
٦		
	Réalisé par : Jean Blouin	Jean Blouin
	Interprété par :	Interprété par : Francis Gagnon
	Approuvé par :	
	Datum :	PVC
	Élévation du Datum :	115.56 m
	Élévation du sol :	115.14 m
	Profondeur du puits :	5.49 m
	Niveau d'eau statique, H:	3.355 m
	Volume Retiré/Ajouté :	10 L
	Diamètre du tubage, d :	5.08 cm
	Diamètre de la lanterne, D :	20.32 cm
	Longueur de la lanterne, L:	255.5 cm
	Rapport L/D:	12.5738189
	Constante, C:	Bouwer et Rice (1976)
П	Π	332.91
	Aire intérieure du tubage, A :	20.3 cm²

H_{moy.} vs Δ(H)/Δ(t)

1000

0.08 0.09 40.0 H_{moy} (cm)

-0.620619723 6.30E-04 cm/s Étape 2: In Hr vs Temps graph Pente de la régression linéaire, p2= K= (Ap)/(60C)=[

Etape 1: Have. vs DH/Dt graph

Pente de la régression linéaire, p1= 1.60276327 V = A/(RODC) = 6.33E-04 cm/s

30.0

20.0

10.0

0.0

0.0

20.0

 $\Delta(H)/\Delta(t)$

y=1.6028x + 1.4133

K= A/(60pC) = C Sorrection du niveau statique observé, Ho=

Remarque: Niveau statique inférieur au sommet de la lanterne

ESSAI DE PERMÉABILITÉ DANS UN PIÉZOMÈTRE

Date: 2003-10-23 St-Nicéphore Till et roc

Projet: Intersan

Site : Stratigraphie :

F-2C

PUITS:

Interpretation : Graphique des vitesses Méthode : Niveau ascendant		Réalisé par : Jean Blouin	Interprete par : Francis Gagnon	Apploave pal .	Datum: PVC	÷ 			Niveau d'eau statique, H : 3.98 m	;		-		31,933	C1	= 551.71		Aire intérieure du tubage, A :			Hr vs Temps	y = 343.05e ^{-0.1299x}		1				00 6.00 8.00 10.00 12.00 14.00 16.00	Temps (min)
Hr=H-Ho	(cm)	0 000	328.4	318.3	307.3	299.5	281.5	266.3	234.8	183.4	142.2	92.6	47.1	21.6	8.1	1,1	4.5	5.5	5.9	6.2		100			0			2.00 4.00	
A H/A 1	(cm/min)		44.8	39.2	44.0	31.2	36.0	30.4	31.5	25.7	20.6	15.5	9.7	5.1	2.7	1,4	9.0	0.2	0.1	0.1		1000.0	100.0	JI.	{	0.01		0.00	
Hmov.	(cm)		341.4	330.9	320.5	311.1	288.2	281.6	258.3	216.8	170.5	126.6	79.1	42.1	22.6	12.3	6.0	2.7	2.0	1.7	1							50.0	
ΑA	(cm)		110	8.6	11.0	7.8	18.0	15.2	31.5	51.4	41.2	46.6	48.5	25.5	13.5	7.0	5.6	1.0	0.4	0.3			\	E 0000	y = 8.0045x + 7.6867			40.0	
H=Hi-h	(cm)	347.0	335.8	326.0	315.0	307.2	289.2	274.0	242.5	191.1	149.9	103.3	54.8	29.3	15.8	8.8	3.2	2.2	1.8	1.5	(t)		•.	1	$y = g_1 U U v$			30.0	Δ(t)
h (du datum)	(cm)	775	733.8	724	713	705.2	687.2	672	640.5	589.1	547.9	501.3	452.8	427.3	413.8	406.8	401.2	400.2	398.8	399.5	H _{πογ.} vs Δ(H)/Δ(t)			1	+	†		20.0	A(H)/A(t)
Δt	(min)		0.3	0.3	0.3	0.3	0.5	0.5	1.0	2.0	2.0	3.0	5.0	5.0	5.0	5.0	10.0	5.0	5.0	5.0						+	1	10.0	
Temps	(min)	000	0.25	0.50	0.75	1.00	1.50	2.00	3.00	5.00	7.00	10.00	15.00	20.00	25.00	30.00	40.00	45.00	20.00	55.00		400.0 -	300.0	200.0	150.0 -	₩ 100.0	50.0	0.0	

* NAVFAC: Naval Facilities Engineering Command, Soil Mechanics, Design Manual 7.01

Étape 1: Have. vs DH/Dt graph

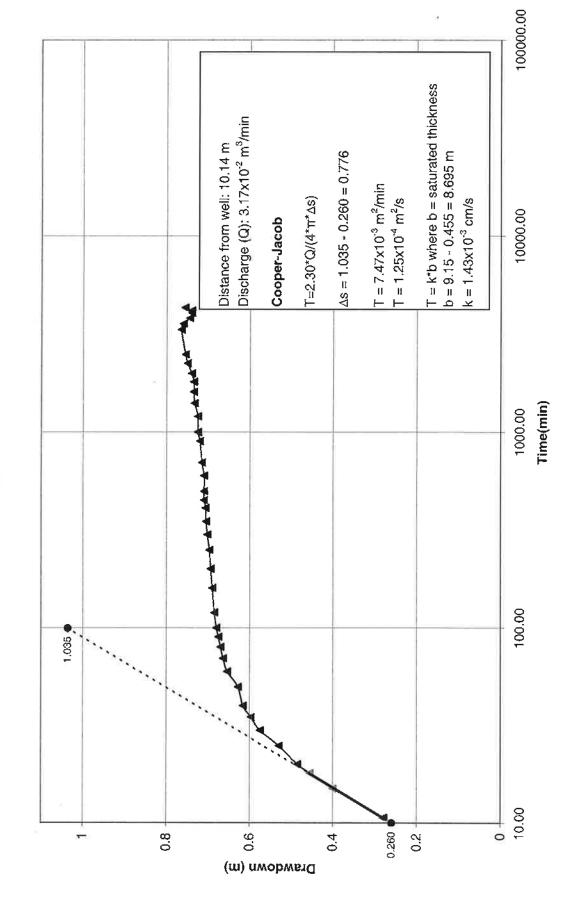
Pente de la régression linéaire, p1= 8.00449787

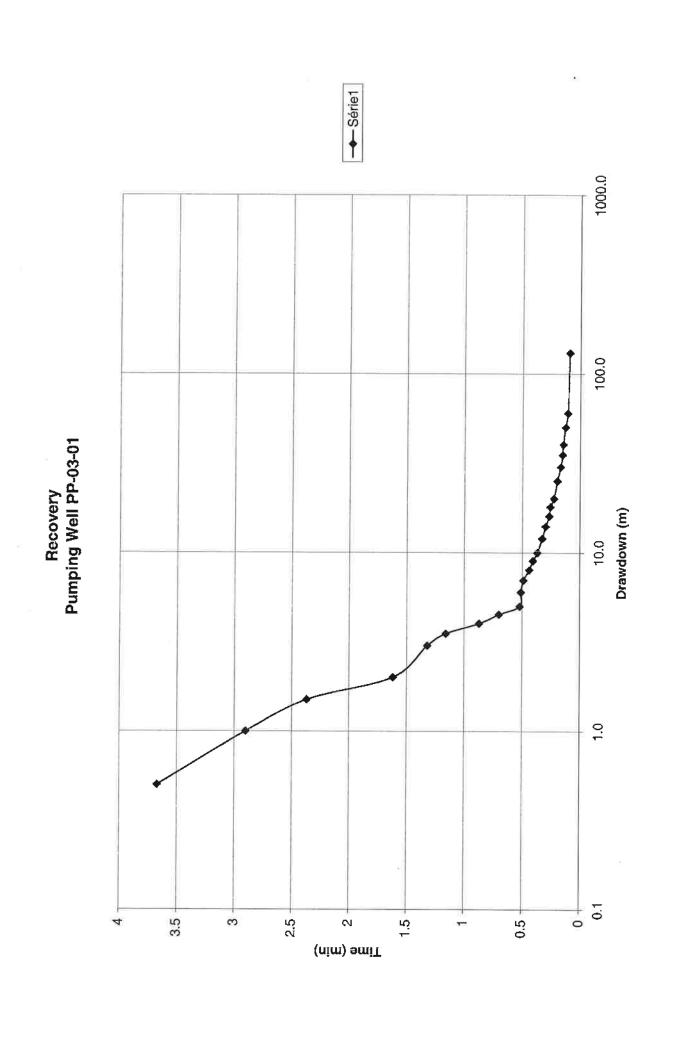
K= A/(60pC) = 7.41E-05 cm/s

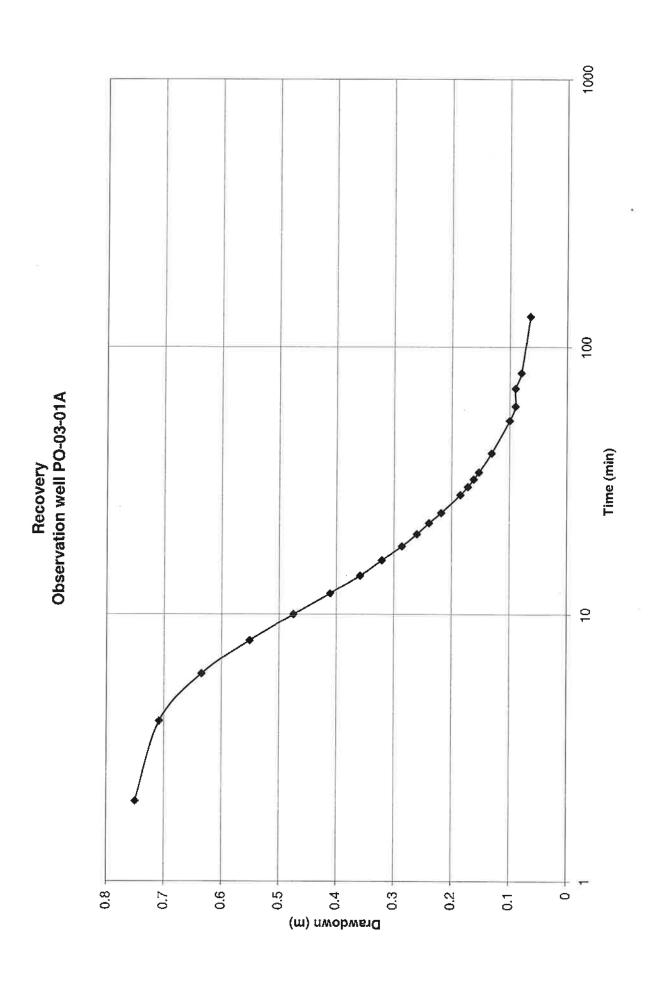
Sorrection du niveau statique observé, Ho= 7.7 cm

7.71E-05 cm/s

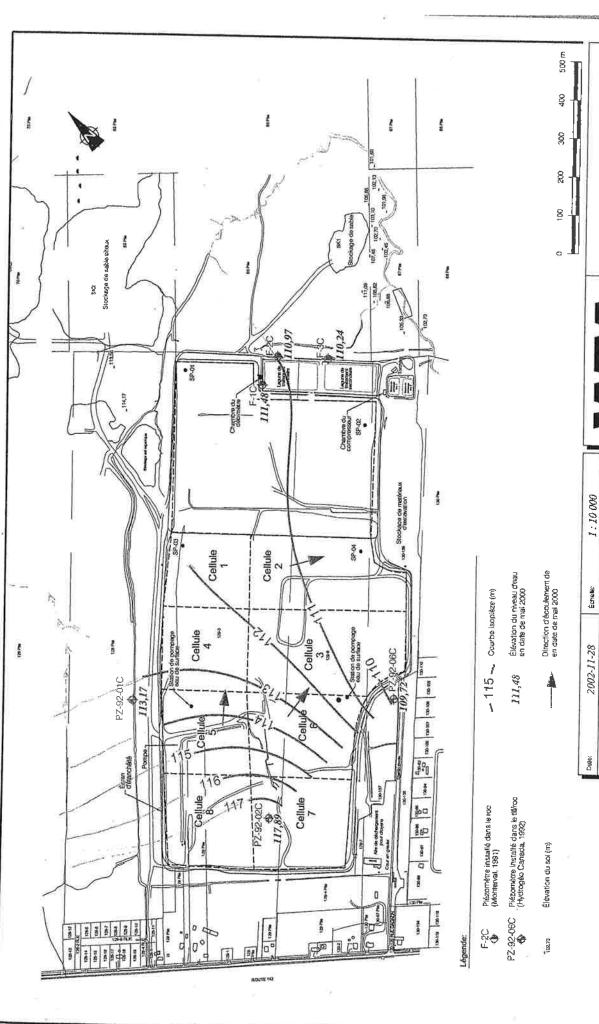
Étape 2: In Hr vs Temps graph
Pente de la régression linéaire, p2= -0.129906616
K= (Ap)/(60C)= 7.71E-05




		Step	Drawdov	vn Test					
eil: PP-03-01		Wate	er Level:	0.86	m				
ischarge:	$0.27 \text{ m}^3/\text{h}$								
nd of well development) imp;	Grunfos					Screen	From	7.00	m
epth of inst.:	6 m					Stainless	То	9.15	m
prii or nevi i	0 111						1		
	STÉP I	STEP 2	STEP 3	STEP 4	STEP 5				
ischarge (m³/h):	0.23	0.41	0.90	1.44	2.19				
rawdown (m)	0.48	0.91	1.99	3.23	4.98				
ecific Capacity (m3/h/m)): 0.48	0.45	0.45	0.45	0.44				
		DRA	WDOWN CU	JRVE					
			Time (min.)						
0.0 60.0	12	20,0	180.0	240	0.0	300.	0	360.0	P.
0									
1	*****	ŧ							
			S 4						
2			•						
3									
3 4				****					
4			- I.		<u> </u>				
1		1							
5 -					-	**			
5						****			
5 6			Discharge (m3/h						
		1.00	Discharge (m3/h	2.0	0			3.00	
0.00				Intersan - I	Hydrogeolo phore Land	ifill Site	ly	3.00	
0.00 0.00 1.00 2.00 3.00 4.00				Intersan - I	Hydrogeolo phore Land	ifill Site	ly	3.00	


100001 T = k*b where b = saturated thickness b = 9.15 - 3.3 = 5.85 m Discharge (Q): 3.17x10⁻² m³/min $\Delta s = 4.186 - 1.268 = 2.918$ Distance from well: 0 m $T = 1.99x10^{-3} \text{ m}^2/\text{min}$ $T = 3.31x10^{-5} \text{ m}^2/\text{s}$ T=2.30*Ω/(4*π*∆s) $k = 5.66 \times 10^{-4} \text{ cm/s}$ Cooper-Jacob 1000.0 Constant Rate Pumping Test Pumping Well PP-03-01 100.0 10.0 4.186 1.0 4.5 Drawdown (m) 3.5 2 1.268 ر تح 0.5

Time (min)


Constant Rate Pumping Test Observation Well PO-03-01A

CARTE PIÉZOMÉTRIQUE DE L'AQUIFÈRE CONFINÉE (Mai 2000)

NTERSAN INC

ÉTUDE HYDROGÉOLOGIQUE LET DE SAINT-NICÉPHORE

Dale:	2002-11-28	Échelle:	1:10 000
Dessiné par.	R. Gravel	Projetė par:	C. Tramblay
Vérifiè par	J. Côté	Apprové par	M. Poulin
No. de dessin	02040-4100-5a	No de projet	021-7040-4100

			Golder Associes
3	021-7040-4100	No de projet	02040-4100-5a
	M. Poulin	Approuvé par.	J. Côté
	C. Tranblay	Projetė par	R. Gravel

Plan de base de André Simard & Ass. Dossier 01-592 date: Sept 2001 Fichier: 592NICE.dwg

CONFIDENTIEL

SOURCE:

PIÉZOMÉTRIE DE L'AQUIFÈRE SEMI-CAPTIF MAI 2000

5A

FIGURE

ANNEXE C

RAPPORT DE SONDAGES AU PIÉZOCÔNE (Cogemat)

TECSULT INC.

SONDAGES AU PIÉZOCÔNE SITE D'INTERSAN ST-NICÉPHORE, CEP DRUMMOND

Préparée par :

COGEMATING.

14 janvier 2004

Distribution: Trois (3) exemplaires

- Mme Marie-Claude Wilson, ing. Tecsult inc.

- GÉOTECHNIQUE (Sondages, études)
- ENVIRONNEMENT (Hydrogéologie)
- CONTRÔLE ET ESSAIS SUR MATÉRIAUX (Sols, béton de ciment, béton bitumineux)

- 660, boul. Laure, SEPT-ÎLES, G4R 1X9
- 540, 91° rue, ST-GEORGES, Bce, G5Y 3K6

(418) 962-9878 (418) 227-6161

- 201, rue Blainville O., STE-THERESE, J7E 1Y4
- 803, rue Richard, JOLIETTE, J6E 279

(450) 435-6159 (450) 755-3201

ENREGISTREMENT BNQ, NORME ISO 9002 (94)

Le 30 janvier 2004

Madame Marie-Claude Wilson, ing. TECSULT INC. 85, rue Ste-Catherine Ouest Montréal (Québec) H2X 3P4

OBJET:

Sondages au piézocône

Site d'Intersan

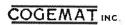
St-Nicéphore, CEP Drummond

N/Dossier: G-03504

Madame,

Veuillez trouver ci-après les pages de notre rapport qui ont été modifiées, suite à l'obtention des élévations des sondages au piézocône.

Nous espérons le tout satisfaisant et demeurons à la disposition des divers intervenants pour toute information complémentaire.


Veuillez agréer, Madame, l'expression de nos sentiments distingués.

COGEMAT INC.

Martin Blanchet, ing. M.Sc.A.

Directeur régional

MB/Ic

TABLE DES MATIÈRES

			Page
1.0	INTR	RODUCTION	1
2.0	DES	CRIPTION DU SITE	2
3.0	MÉTI	HODOLOGIE	3
4.0	PRÉS 4.1 4.2	SENTATION DES RÉSULTATS Données préliminaires Résultats de l'essai au piézocône (CPT	6 6 7
5.0	CON	CLUSION	10
ANNE	EXE 1	 Plan repère Dessin #03504-1 : Site Intersan – S localisation des 	•
ANNE	EXE 2	- Essais au piézocône # PZC-03-01 À	PZC-03-15

1.0 INTRODUCTION

Les services professionnels de COGEMAT INC. ont été retenus par la firme Tecsult inc., afin de réaliser des essais au piézocône dans le cadre d'un projet d'étude hydrogéologique au lieu d'enfouissement technique (L.E.T.) de Saint-Nicéphore. L'objectif principal du mandat était de déterminer en continu la nature et les propriétés des sols en place au droit du site étudié.

Vous trouverez successivement, dans le présent document, une description du site, la méthodologie d'investigation préconisée, ainsi que les résultats factuels obtenus.

2.0 DESCRIPTION DU SITE

Le site étudié correspond au lieu d'enfouissement technique (L.E.T.) de Saint-Nicéphore et appartient à la compagnie Intersan. L'accès au site se fait par la route 143. On pourra visualiser la position du site étudié sur le plan repère inséré à l'annexe 1.

Selon les informations qui nous avaient été transmises par la firme Tecsult inc., le terrain serait constitué d'une couche d'environ 8 m de sable fin en surface, d'une couche d'environ 10 m de silt en dessous et, finalement, d'une couche de till d'environ 3 m au dessus du socle rocheux.

3.0 MÉTHODOLOGIE

Les sondages au piézocône ont été effectués du 16 octobre au 05 novembre 2003. Préalablement à ces travaux, tous les sites de sondages avaient été implantés par le personnel technique de la firme Tecsult inc. Les positions des sondages au piézocône sont montrées sur le dessin #03504-1 à l'annexe 1.

Au total, quinze (15) sondages au piézocône, identifiés PZC-03-01 à PZC-03-15, ont été réalisés à l'aide d'une foreuse conventionnelle aux diamants de marque « Boyles », modèle « BBS-1 », de la compagnie « Les Laboratoires S.L. inc. », spécialement adaptée pour ce genre d'essai.

Étant donné la présence de sols pulvérulents au démarrage des essais, une sonde d'une capacité de 10 tonnes métriques (modèle 740TC), fabriquée par la compagnie « Hogentogler », a été utilisée pour débuter les investigations. Cette sonde mesure la résistance en pointe (q_c) jusqu'à une valeur maximale de 95 MPa, la résistance en friction (f_s) jusqu'à un maximum de 800 kPa, les pressions interstitielles (u₂) jusqu'à une valeur maximale de 3 000 kPa, ainsi que l'inclinaison (i) jusqu'à 8 degrés maximum.

La pointe de la sonde (cône) a une surface de 10 cm² avec un angle de 60°. Par ailleurs, le manchon de friction a une surface de 150 cm². Entre le cône et le manchon de friction se situe le capteur de pression interstitielle.

Lors de la réalisation de l'essai, l'enfoncement de la sonde s'effectue au taux de 20 mm/s ± 5 mm/s et l'enregistrement des lectures s'effectue à tous les 10 mm.

Il est à noter que la sonde utilisée, ainsi que la méthodologie de réalisation de l'essai, sont conformes à la norme internationale de l'« ISSMFE » pour la réalisation d'essais au piézocône ainsi qu'à la norme ASTM 3441.

À l'emplacement des sondages PZC-03-02 à PZC-03-06, PZC-03-08, PZC-03-10 et PZC-03-12, des refus au piézocône ont été observés obligeant l'équipe de forage à descendre un tubage de calibre NW pour pouvoir poursuivre les essais plus en profondeur.

La profondeur finale atteinte, lors des sondages, est variable et correspond, la plupart du temps, au refus dans le dépôt morainique.

La position de la nappe phréatique a été établie par interpolation à partir des niveaux de l'eau souterraine indiqués dans les fiches de sondage #PO-03-01 à

PO-03-09 qui nous ont été fournies par la firme Tecsult. La position de ces sondages est montrée sur le dessin #03504-1 à l'annexe 1.

L'élévation des sondages au piézocône nous a été fournie par la firme Tecsult et est résumée dans le tableau 3.1 ci-après.

Tableau 3.1 : Élévation des sondages

Sondage (#)	Élévation de la surface du sol (m)
PZC-03-01	117,55
PZC-03-02	117,29
PZC-03-03	115,54
PZC-03-04	115,44
PZC-03-05	114,90
PZC-03-06	122,32
PZC-03-07	115,02
PZC-03-08	115,50
PZC-03-09	112,95
PZC-03-10	126,72
PZC-03-11	114,30
PZC-03-12	108,66
PZC-03-13	111,43
PZC-03-14	115,00
PZC-03-15	110,26

4.0 PRÉSENTATION DES RÉSULTATS

4.1 Données préliminaires

Au cours du projet, des informations, acquises lors d'investigations antérieures, nous ont été fournies par Tecsult, soit :

- la position de forages réalisés antérieurement à la présente campagne, ainsi que les niveaux d'eau relevés ;
- les poids volumiques des horizons rencontrés.

Ainsi, sur la base de ces informations, les conditions suivantes ont été estimées pour les fins du présent mandat :

- La nappe libre a un gradient vertical nul (conditions hydrostatiques);
- Les poids volumiques totaux des sols fournis par Tecsult sont de 20,5 kN/m³
 pour le sable de surface, de 20,1 kN/m³ pour le silt argileux et de 23,1 kN/m³
 pour le dépôt morainique.

4.2 Résultats de l'essai au piézocône (CPTU)

Tel que mentionné précédemment, l'enfoncement d'une sonde (CPTU) dans le sol permet l'acquisition en continu de certains paramètres. Ces paramètres sont la résistance en pointe (q_c), la résistance en friction (f_s), la pression interstitielle (u₂) et l'inclinaison (i).

Toutefois, il est nécessaire d'appliquer une correction à la valeur de la résistance en pointe (q_c) afin de tenir compte des irrégularités de pressions interstitielles appliquées sur le cône. On obtiendra alors la résistance en pointe corrigée (q_t). Cette dernière est obtenue à l'aide de l'équation suivante :

$$q_t = q_c + u_2 (1 - a)$$

où q_t = résistance en pointe corrigée (kPa)

q_c = résistance en pointe mesurée (kPa)

u₂ = pression interstitielle mesurée à l'arrière du cône (kPa)

a = coefficient de forme

Le coefficient de forme (a) est généralement obtenu en laboratoire, lors de la calibration de la sonde.

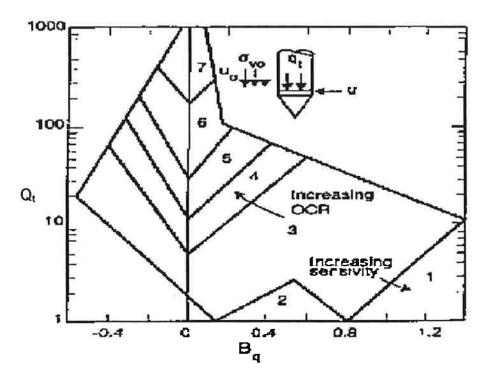

Le tableau 4.1 ci-après présente les caractéristiques de la sonde et la valeur du coefficient de forme, déterminés lors de la dernière calibration du fournisseur, en l'occurrence « Les Laboratoires S.L. inc. ».

Tableau 4.1 : Caractéristiques de la sonde et valeur du coefficient « a »

Sonde	Capacité	Coefficient de forme (a)	Date de la dernière
(#)	(t.m.)		calibration
740TC	10	0,690	2003-02-27

L'ensemble des données mesurées et calculées dans le cadre du présent projet est nécessaire pour permettre l'évaluation de la stratigraphie des dépôts rencontrés à l'aide de l'abaque de Robertson de 1990¹, dont un extrait est montré ci-dessous.

Robertson P.K. (1990) « Soil classification using the cone penetration test ».

$$Q_{t} = q_{t} - \sigma_{vo}$$

$$Q_{t} = q_{t} - \sigma_{vo}$$

$$Q_{t} = u_{2} - u_{0}$$

$$Q_{t} - \sigma_{vo}$$

Zones

Unité 1 : sol à grains fins, sensible

Unité 6 : sable propre à sable silteux

Unité 2 : sols organiques

Unité 7 : sable graveleux à sable

Unité 3 : argile à argile silteuse

Unité 8 : sable argileux très raide

Unité 4 : silt argileux à argile silteuse

Unité 9 : sol à grains fins très raide

Unité 5 : sable silteux à silt sableux

Toutes les données recueillies au chantier, lors de l'exécution des sondages, de même que la stratigraphie des sols interprétée à l'aide de l'abaque de Robertson (1990), ont été compilées sur les graphiques insérés à l'annexe 2 du présent document.

5.0 CONCLUSION

La présente étude a permis de déterminer de façon continue les propriétés de sols

(qt, fs et u2), de même que la nature des dépôts rencontrés.

L'ensemble des investigations de terrain a été réalisé par la firme « Les

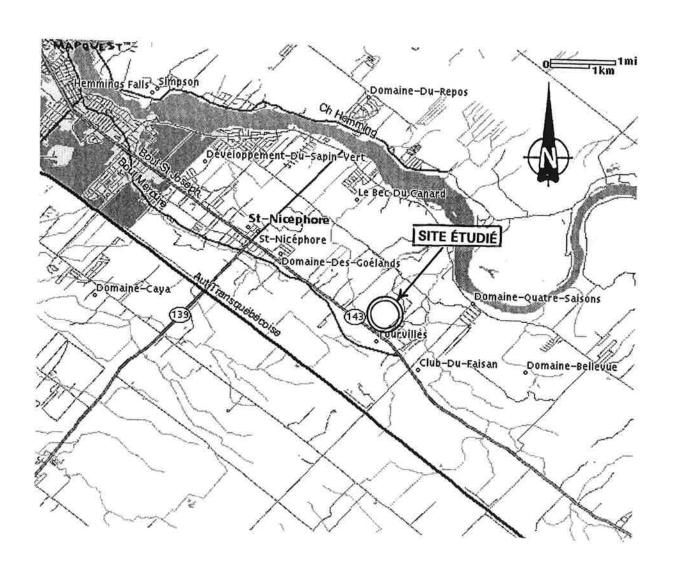
Laboratoires S.L. inc. », sous la supervision constante de M. Jean-Noël Boivin,

technicien spécialiste dans le domaine de la géotechnique. La rédaction du

présent document a été effectuée par le soussigné en collaboration avec

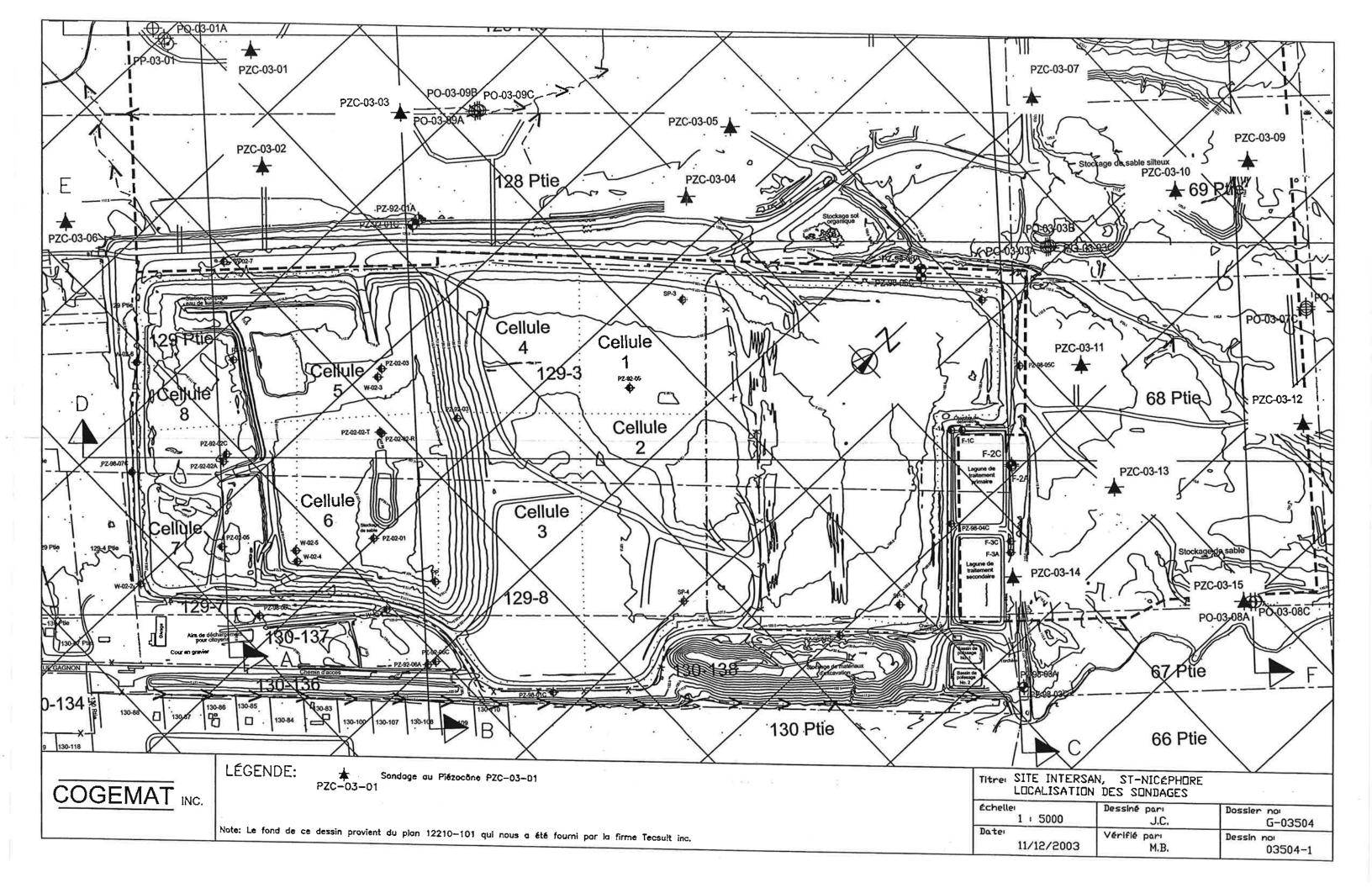
M. Jérémie Coloos, ing. stag.

COGEMATINC.


Jérémie Coloos, ing. stag.

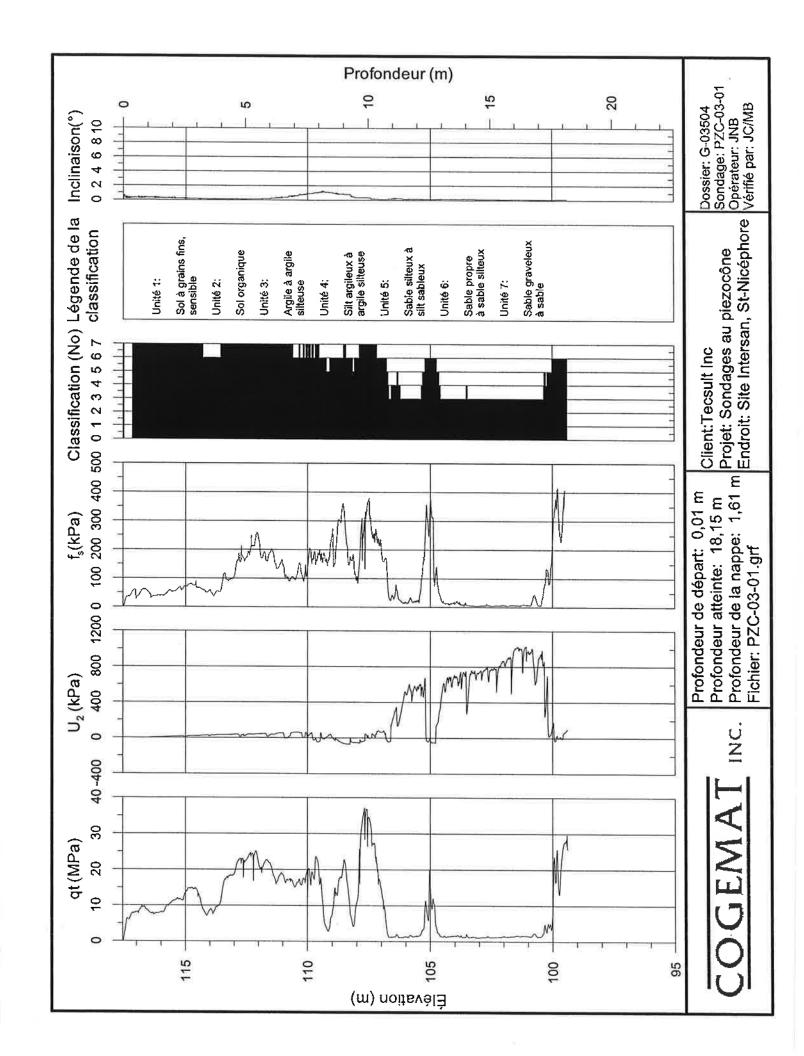
JC/lc

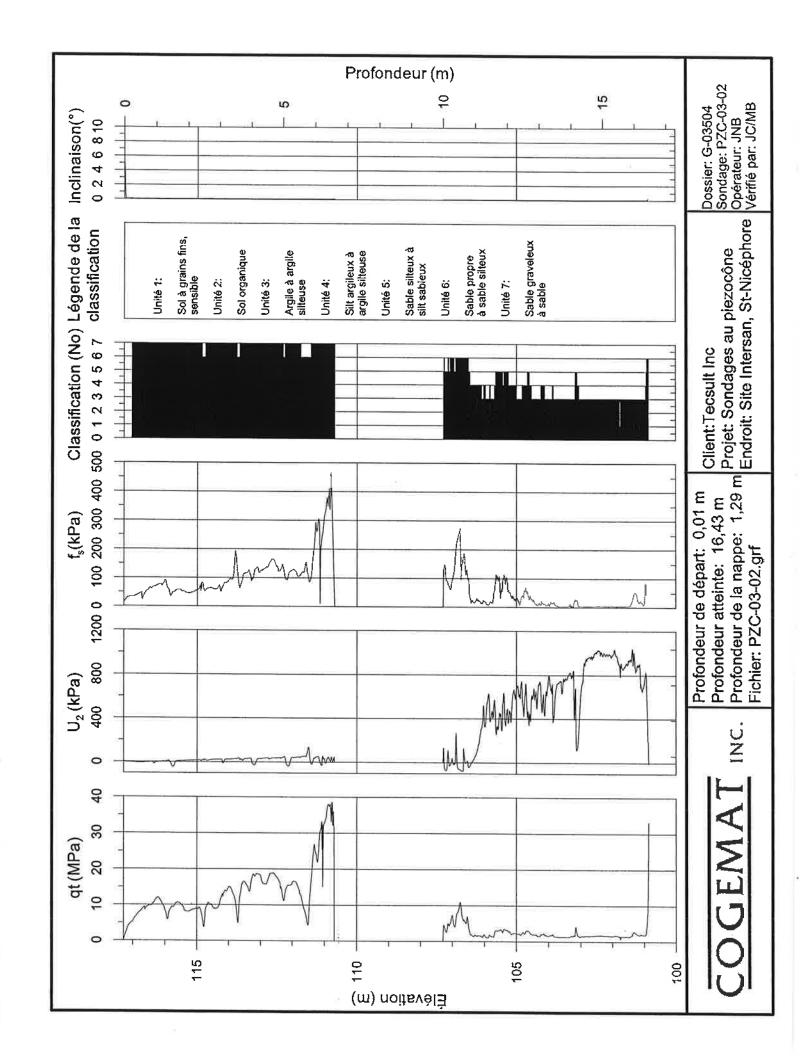
Martin Blanchet, ing. M.Sc.A.

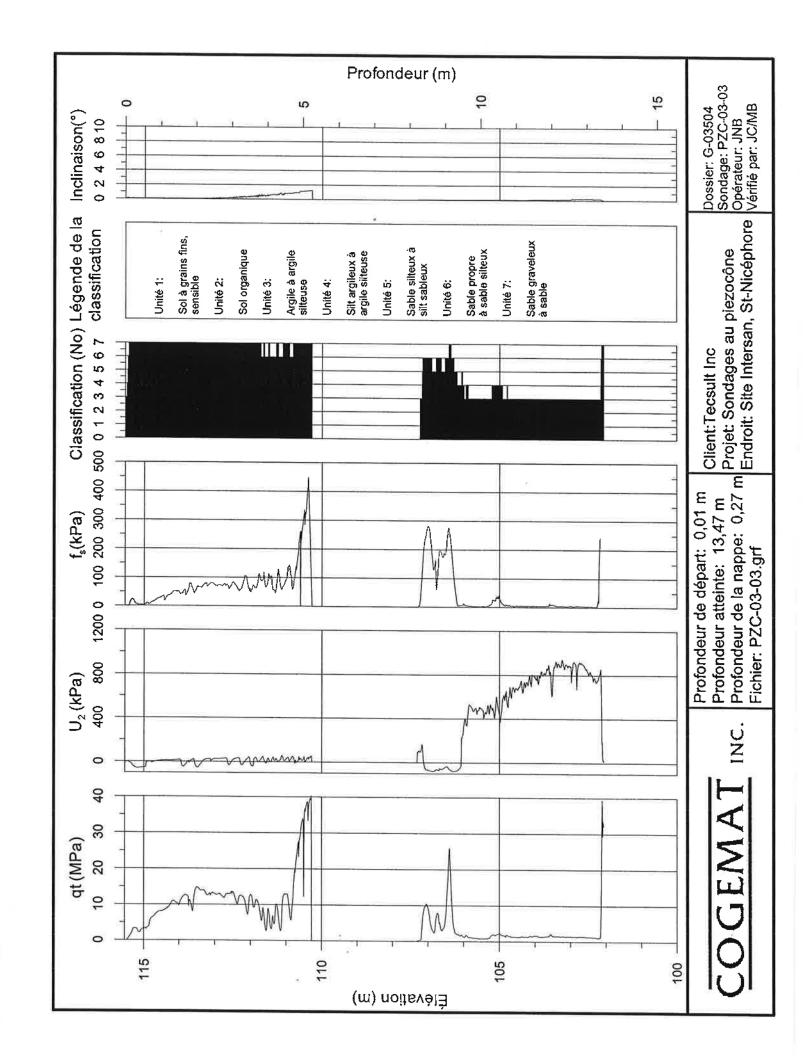

ANNEXE 1

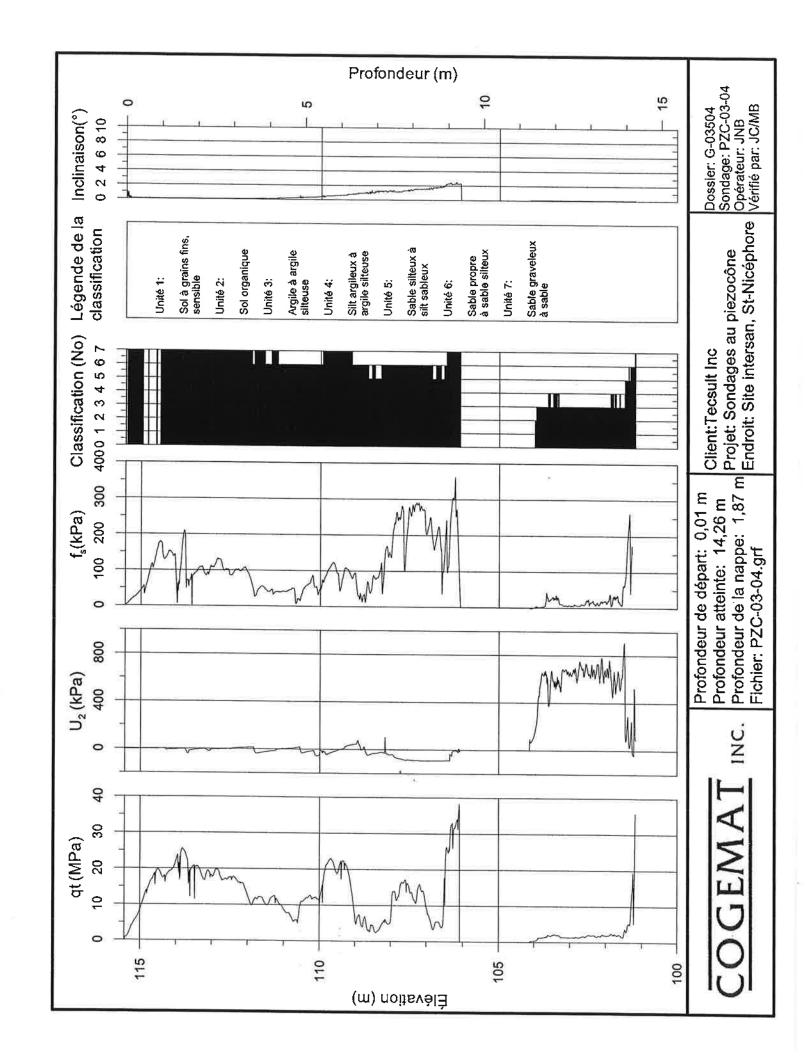
- Plan repère
- Dessin #03504-1 : Site Intersan St-Nicéphore localisation des sondages

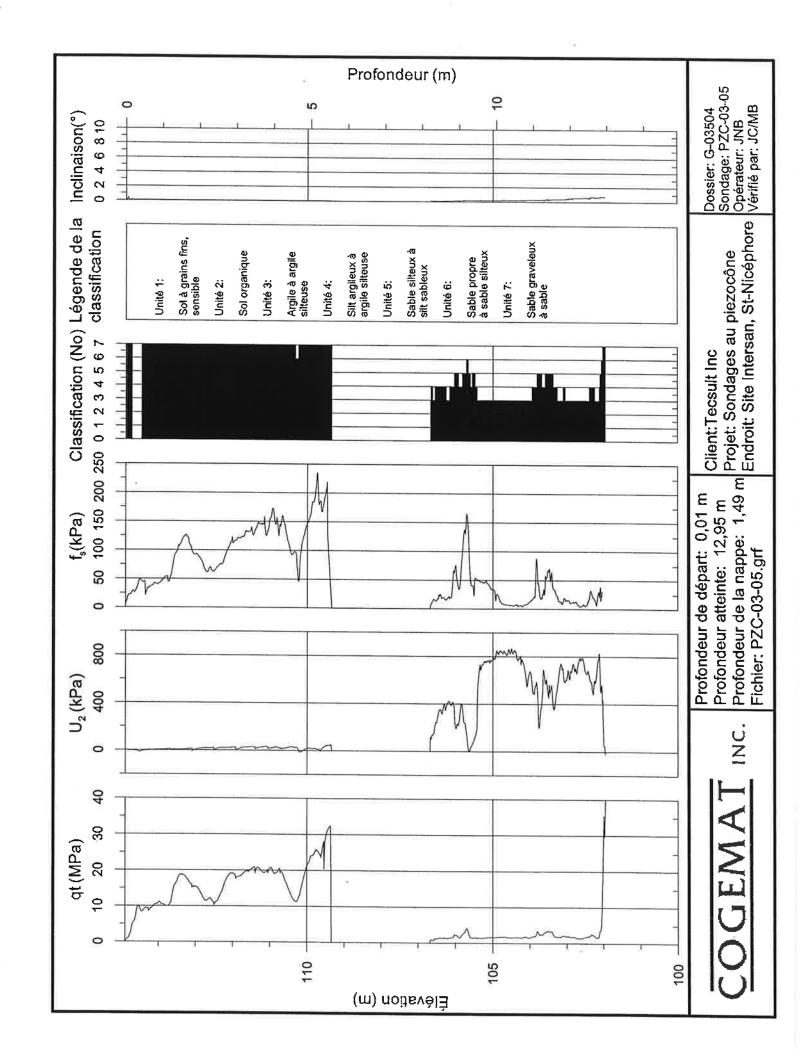
PLAN REPÉRE

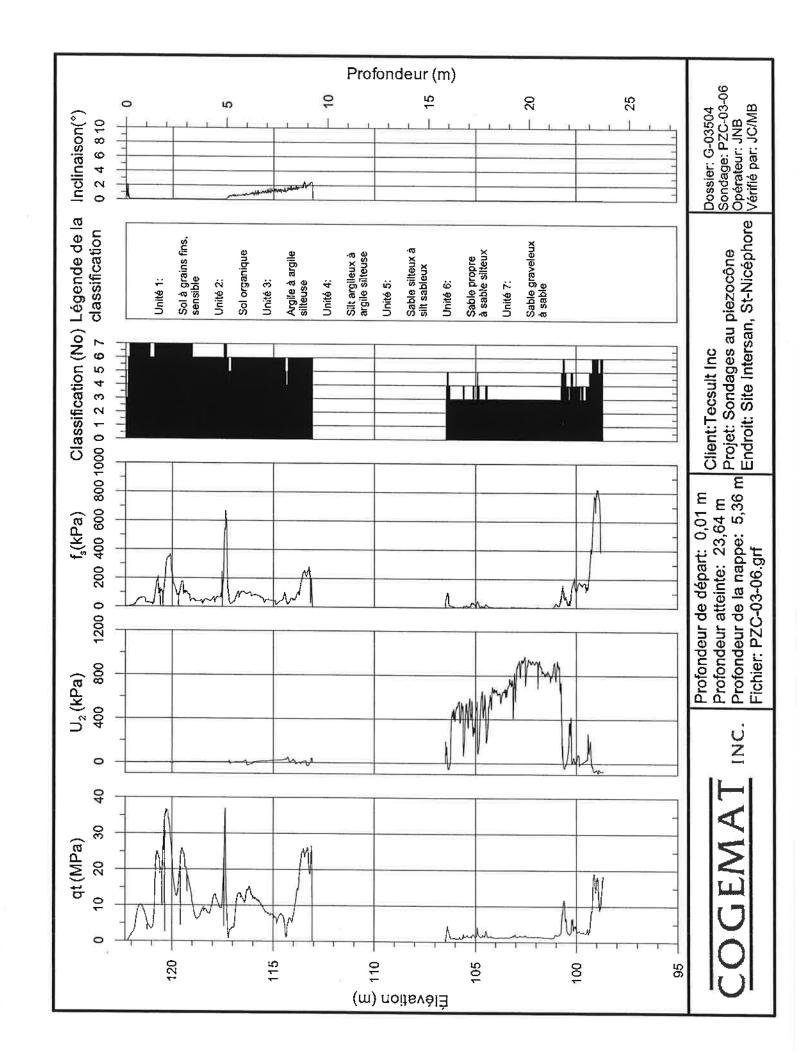

AUCUNE ÉCHELLE

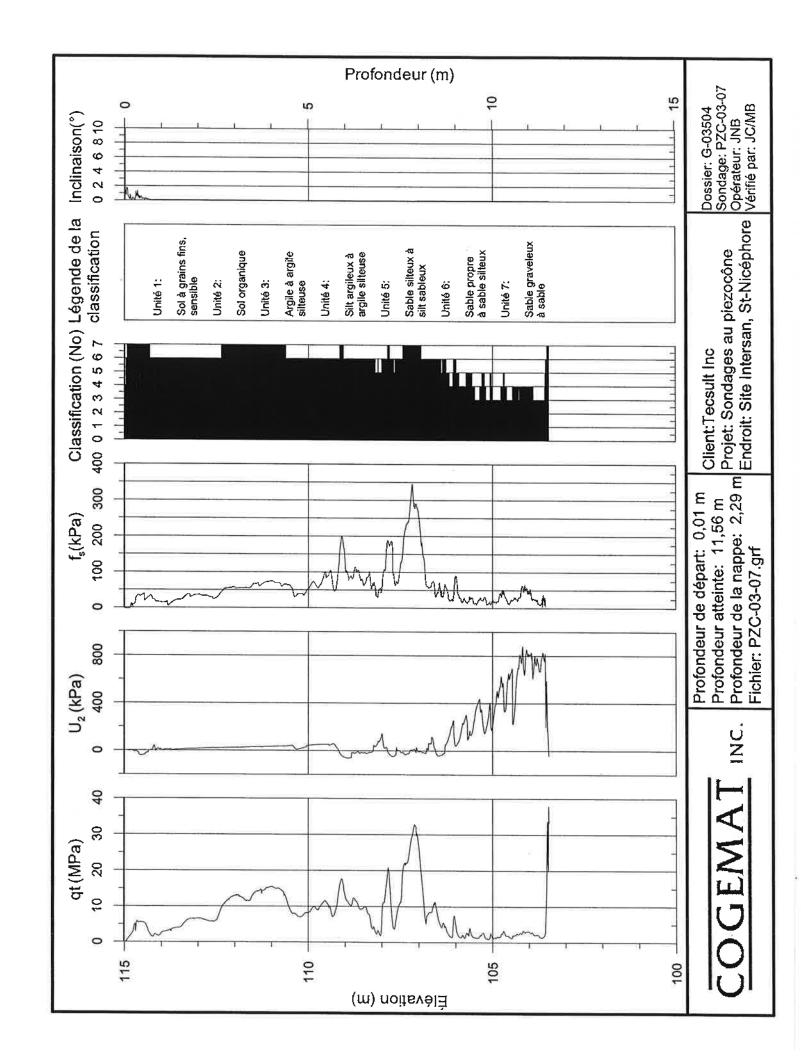


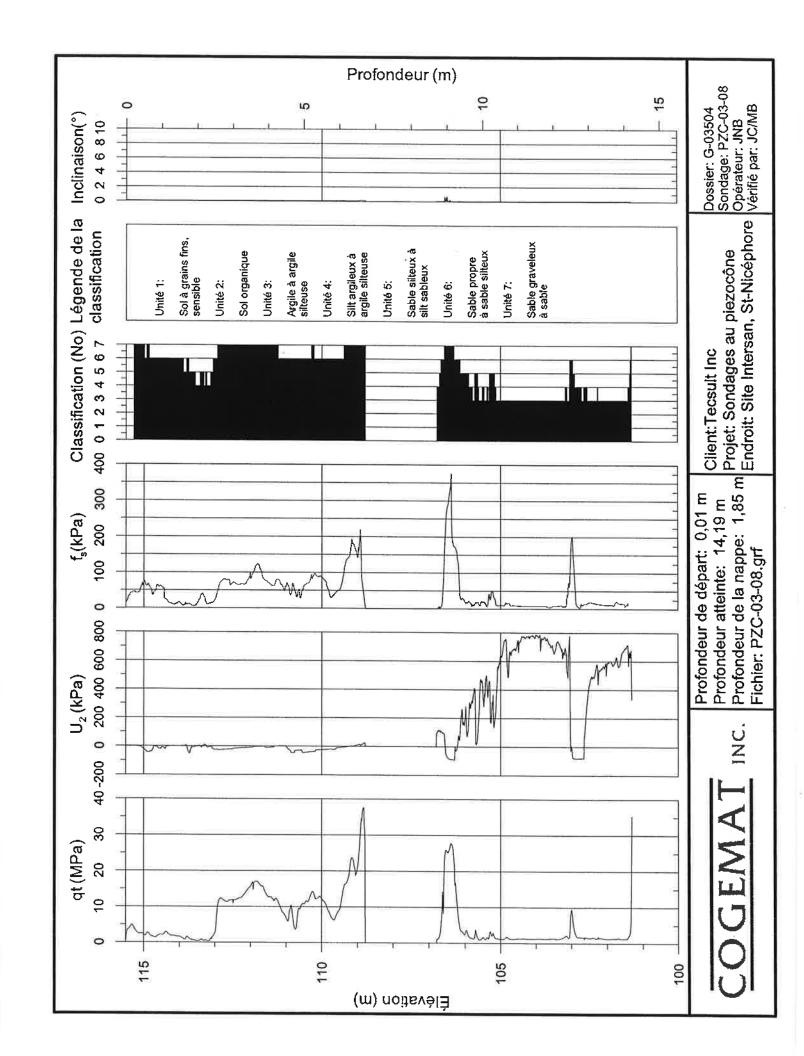


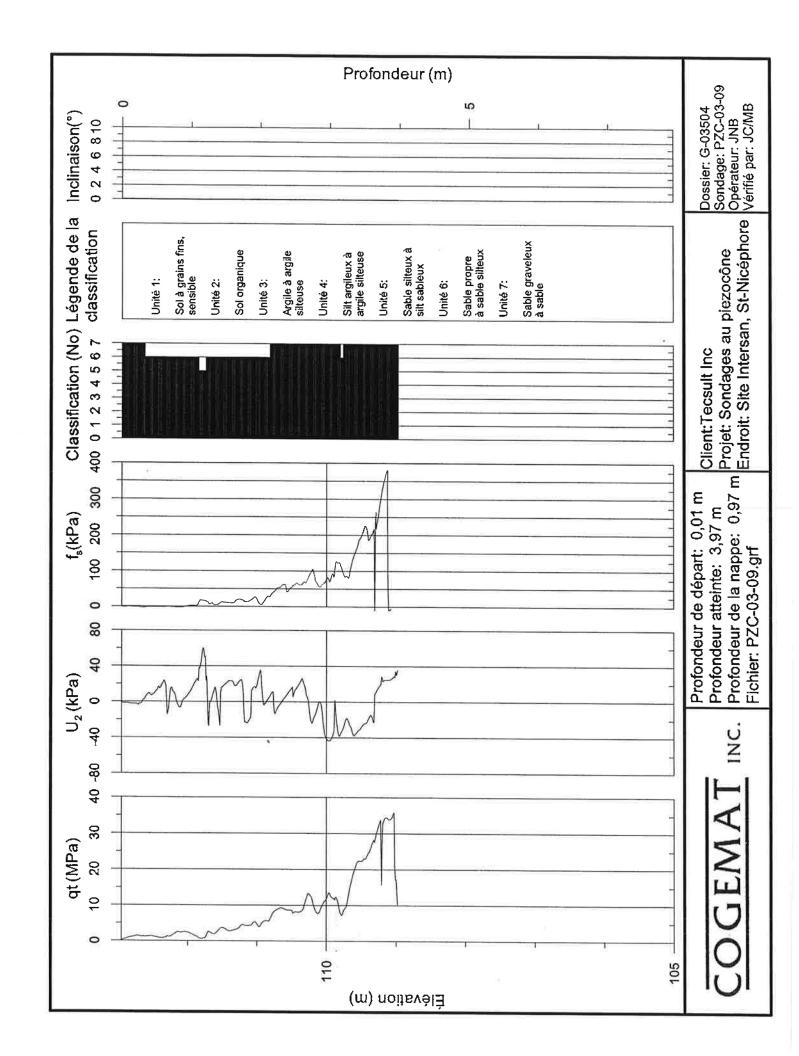

ANNEXE 2

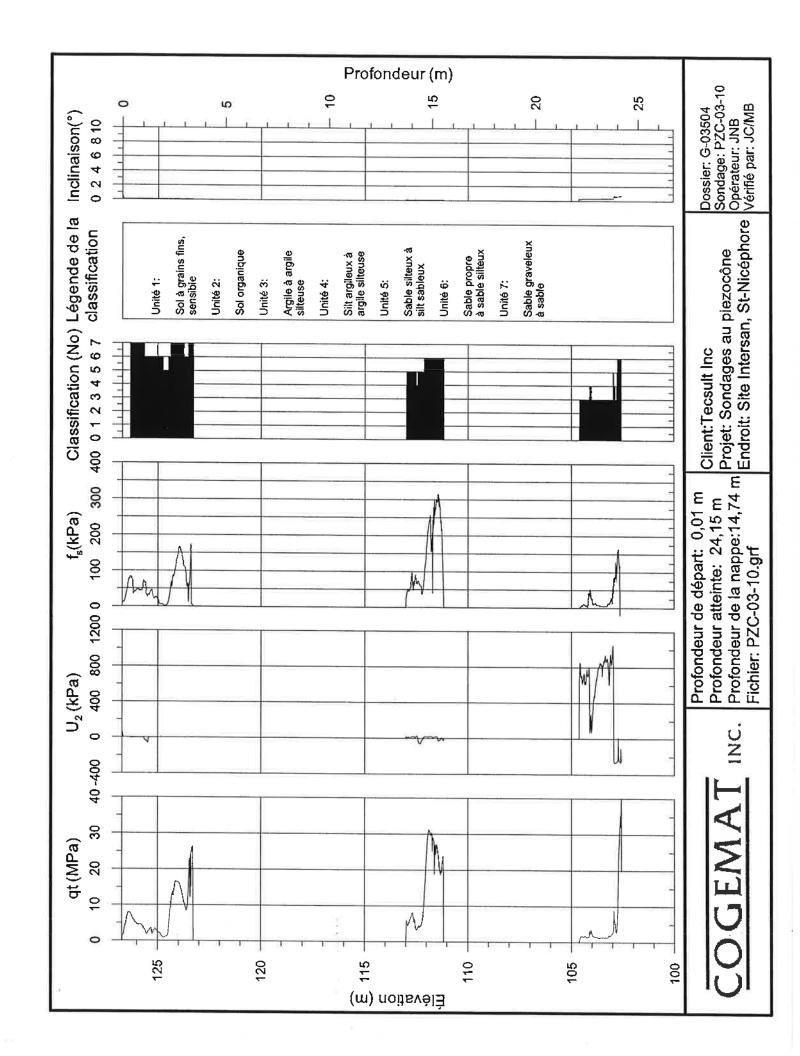

Essais au piézocône # PZC-03-01 À PZC-03-15

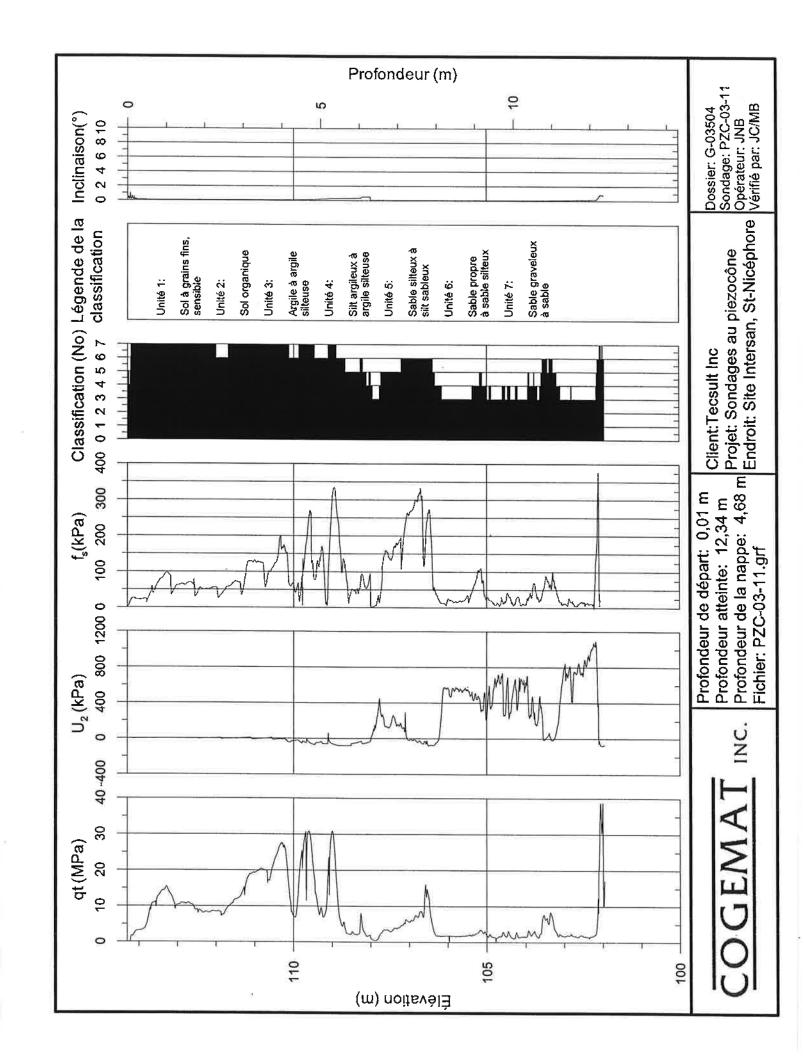


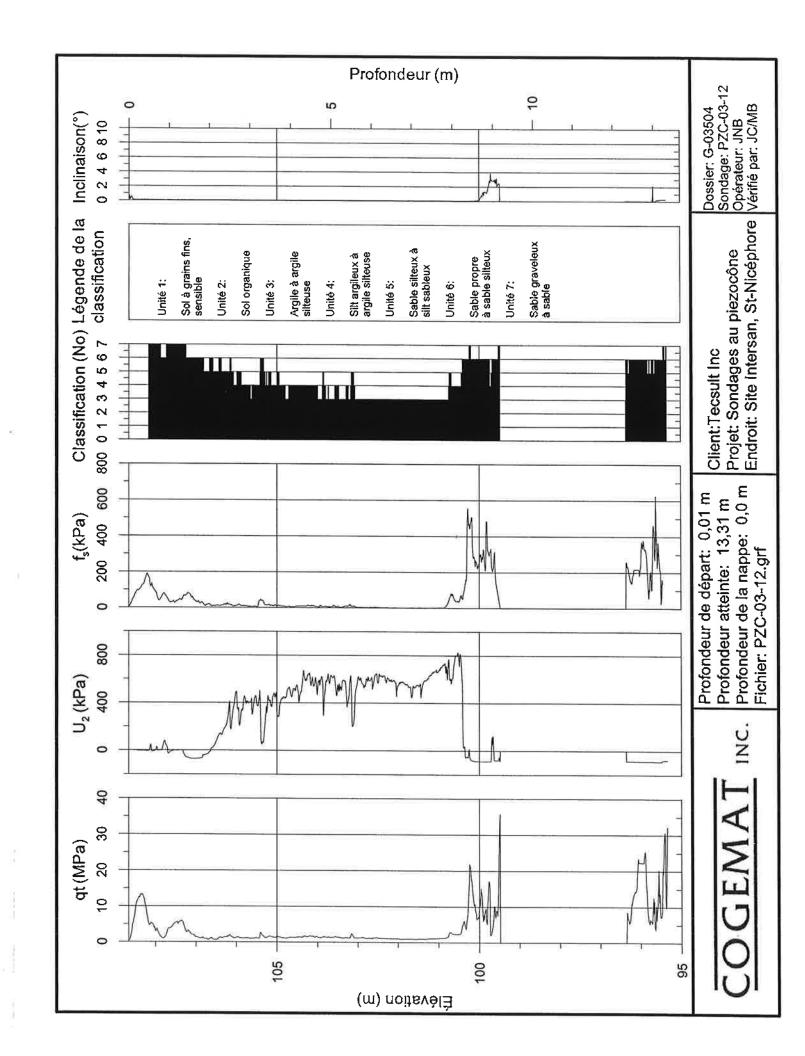


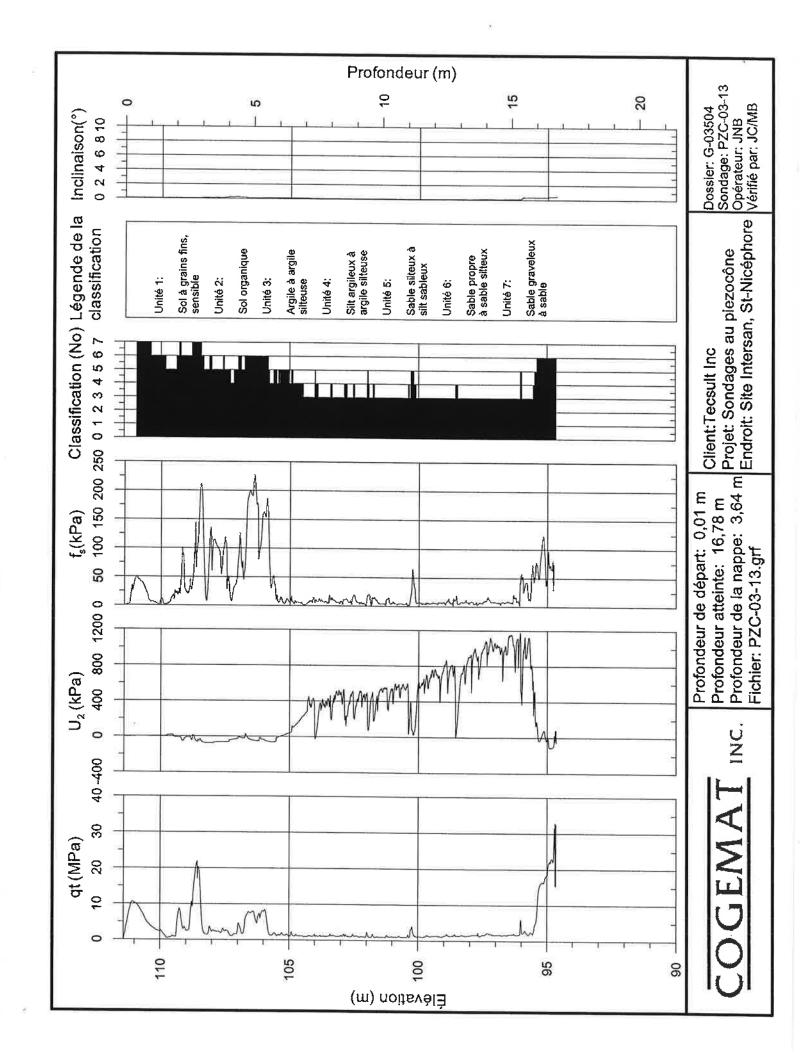


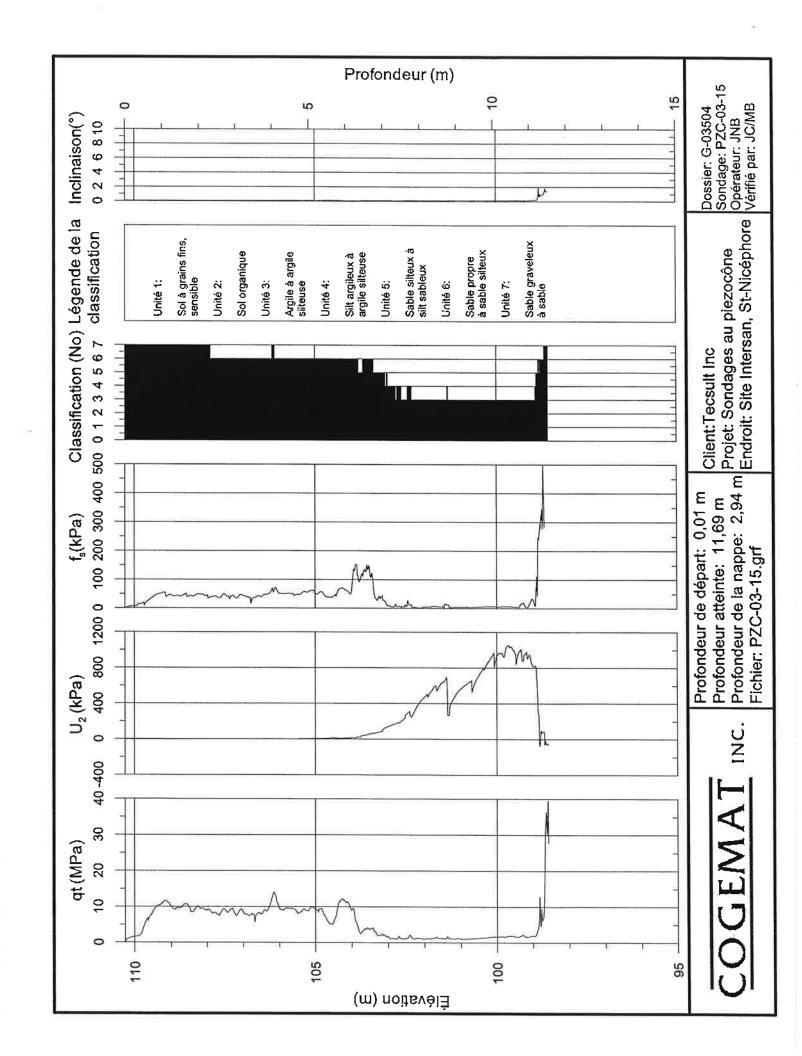












GONE BENETRATION IL ESTING

IN GEOTECHNICAL PACTICE

T. LUNNE, P.K. ROBERTSON AND J.J.M. POWELL

behind the cone (u_2) become very small, it may then be beneficial to change the location in the field and record pore pressures on the cone (u_1) . For quantitative interpretation of the pore pressures measured on the cone during penetration in stiff soils it is important to avoid, minimize or be aware of, potential errors due to filter element compression.

If, based on previous experience, stiff, fine-grained soils are expected, it may be advisable to measure pore pressures on the cone (u_1) .

5.2 SOIL STRATIGRAPHY

Figure 5.4 illustrates the excellent profiling capability of the piezocone.

The continuous monitoring of pore pressure during cone penetration can improve the identification of soil stratigraphy. The pore pressure develops in response to the soil type being penetrated in the immediate area of the pore pressure sensing element. For a pore pressure sensing element behind the cone (u_2) :

- soft to medium stiff clays can give very high pore pressures
- very stiff overconsolidated clays can give very low or negative pore pressures
- very dense fine or silty sands can give very low or negative pore pressures
- contractive silts can give high positive pore pressures
- dilative silts can also give low or negative pore pressures

The drainage characteristics of thin layers also become very important for identification of thin layers of sand, silt or clay in a thicker body of clay or sand (section 5.1.4).

The response time for a fully saturated piezocone is usually sufficiently fast to observe pore pressure changes for very thin layers (< 5 mm). Whether or not such thin layers are observed in practice depends on the response of the soil to the advancing cone, the depth interval of data recording and the location of the filter element.

The ability of the cone resistance and pore pressure to respond to changes in the material type is not restricted to

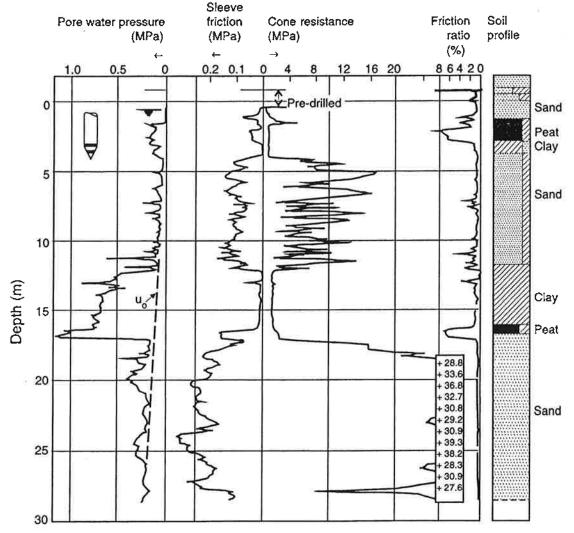


Figure 5.4 Example CPTU results showing excellent profiling capability (after Zuidberg et al., 1982).

the coarse or obvious stratigraphy changes of say soft and stiff layers; it can also be used to detect and map more subtle changes within a deposit. Powell and Quarterman (1995) show how, with a little care in calibration, facies variations down a soft clay profile can be detected with confidence by the piezocone (Figure 5.5a), and each facies can be assigned a piezocone signature which is then used to map the variations across the site.

At a slightly larger scale Powell and Quaterman (1995) showed that the CPTU gave potentially far better mapping of the lithological units in a deposit than could be obtained by visual descriptions of sample profiles (see Figure 5.5b).

Variations in CPTU signatures have also been used to identify thin failure surfaces within a potentially unstable clay slope.

5.3 SOIL CLASSIFICATION

!3

гy

19

is

Of

12

Яic

ng

to

Some of the most comprehensive work on soil classification using electric CPT data was presented by Douglas and Olsen (1981) (Figure 5.6). The correlation was based on extensive data collected from areas in western USA. The chart confirms early observations from Holland that sandy soils tend to produce high cone resistance and low friction ratio, whereas soft clay soils tend to produce low cone resistance and high friction ratio (Figure 1.6). Organic soils such as peat tend to have very low cone resistance and very high friction ratio. Sensitive soils, on the other hand, tend to have low cone resistance and low friction ratio. Soils with high horizontal stresses (that is, high OCR) tend to have higher cone resistance and friction ratio.

One important distinction made by Douglas and Olsen (1981) was that CPT classification charts cannot be expected to provide accurate predictions of soil type based on grain size distribution but provide a guide to soil behaviour type. The CPT data provide a repeatable index of the aggregate behaviour of the *in situ* soil in the immediate area of the probe.

In recent years, soil classification charts have been adapted and improved based on an expanded database (Robertson et al., 1986; Olsen and Farr, 1986). Also, research has illustrated the importance of cone design and the effect that water pressures have on the measured cone resistance and sleeve friction due to unequal end areas (Campanella et al., 1982; Baligh et al., 1981) (section 3.1.1). Thus, cone penetrometers of different designs, but conforming to the IRTP (ISSMFE, 1989) (Appendix A) can give different values of q_c and f_s , especially in soft clays and silts. Correction for pore pressure effects on cone resistance normally eliminates significant differences, when expressed in terms of q_t , from one cone design to another.

Recent studies have shown that even with careful procedures and corrections for pore pressure effects, the measurement of sleeve friction (f_s) is often less accurate and less reliable than the cone resistance (Lunne *et al.*, 1986; Gille-

spie, 1990). Cones of different designs will often produce different friction sleeve measurements. This can be caused by small variations in mechanical and electrical design features, as well as small variations in tolerances (for example, an oversize cone).

To overcome problems associated with sleeve friction measurements, several classification charts have been proposed based on q_t and pore pressures (Jones and Rust, 1982; Baligh *et al.*, 1980; Senneset and Janbu, 1985). The chart by Senneset and Janbu (1985) uses the pore pressure parameter ratio, B_q , defined as:

$$B_q = \frac{u_2 - u_o}{q_t - \sigma_{vo}} \tag{5.3}$$

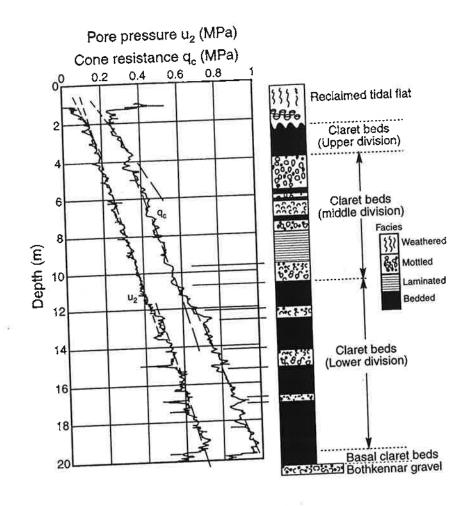
where:

 u_2 = pore pressure measured between the cone and the friction sleeve

 $u_o =$ equilibrium pore pressure

 σ_{vo} = total overburden stress

 q_t = cone resistance corrected for unequal end area effects.


The original chart by Senneset and Janbu (1985) used q_c . However, it is generally agreed that the chart and B_q should use the corrected total cone resistance, q_t .

Experience has shown that, although the sleeve friction measurements are not as accurate as q_t , and u, generally more reliable soil classification can be made using all three pieces of data (that is, q_t , f_s , u). A first attempt at defining a system that uses all three pieces of data was proposed by Robertson et al. (1986) and used q_t , B_a , and R_f (Figure 5.7).

A problem that has been recognized for some time with soil classification charts that use q_t and R_f is that soils can change in their apparent classification as cone penetration resistance increases with increasing depth. This is due to the fact that q_t , f_s and u all tend to increase with increasing overburden stress. For example, in a thick deposit of normally consolidated clay the cone resistance (q_c) will increase linearly with depth resulting in an apparent change in CPT classification for large changes in depth. Early classification charts were based predominantly on data obtained from CPT profiles extending to a depth of less than 30 m. Therefore, for CPT data obtained at significantly greater depths some error can be expected using early CPT classification charts that are based on q_t , (or q_c) and R_f .

Attempts have been made to account for the influence of overburden stress by normalizing the cone data (Olsen, 1984, 1995; Douglas et al., 1985; Olsen and Farr, 1986; Olsen and Mitchell, 1995). These approaches require different normalization methods for different soil types, which produce a somewhat complex iterative interpretation procedure that requires a computer program.

Conceptually, any normalization to account for increasing stress should also account for changes in horizontal stresses,

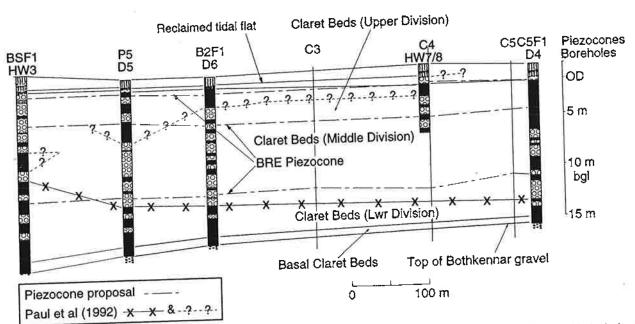


Figure 5.5 Example of CPTU in a soft clay, (a) showing ability to detect facies changes (b) showing better definition of lithological units (after Powell and Quatermann, 1995).

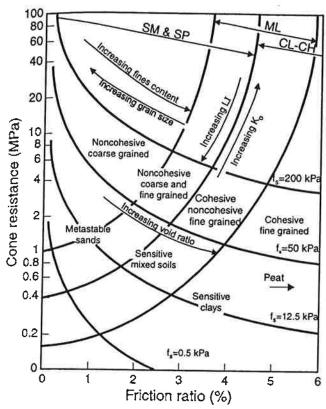


Figure 5.6 CPT soil behaviour type classification chart by Douglas and Olsen (1981).

since penetration resistance is influenced by the horizontal effective stresses (Jamiolkowski and Robertson, 1988). However, at present, this has little practical benefit without a prior detailed knowledge of the *in situ* horizontal stresses. Even normalization using only vertical effective stress requires some input of soil unit weights and ground water conditions.

Wroth (1984,1988) suggested that CPT data should be normalized using the following parameters:

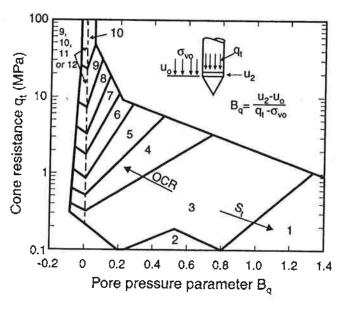
Normalized cone resistance.

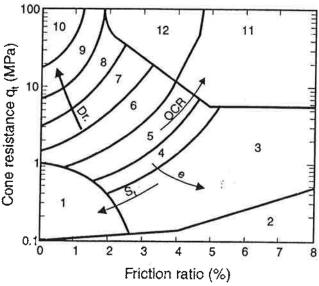
$$Q_t = \frac{q_t - \sigma_{vo}}{\sigma'_{vo}} \tag{5.4}$$

where σ'_{vo} = effective vertical stress, $\sigma_{vo} - u_o$

Normalized friction ratio,

$$F_r = \frac{f_s}{q_t - \sigma_{vo}} \tag{5.5}$$


(if possible f_t should be used)


Pore pressure ratio,

$$B_q = \frac{\Delta u}{q_t - q_{max}} \tag{5.6}$$

where $\Delta u = u_2 - u_o$.

Based on these normalized parameters and using the extensive CPTU data base now available in published

Zone: Soil Behaviour Type:

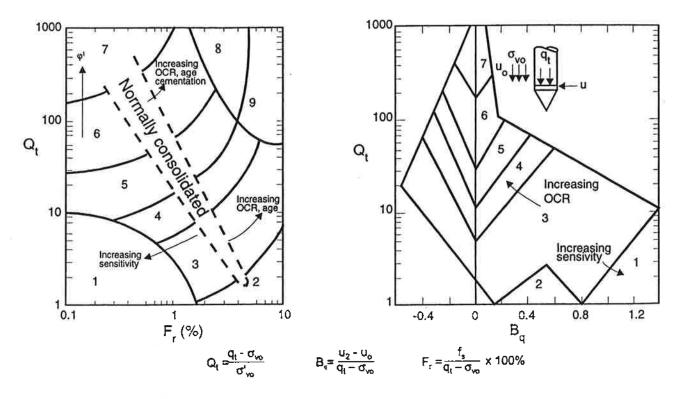
- Sensitive fine grained
 Organic material
- 3. Clay
- 4. Silty clay to clay
- 5. Clayey silt to silty clay
- 6. Sandy silt to clayey silt
- 7. Silty sand to sandy silt
- 8. Sand to silty sand

- 9. Sand
- 10. Gravelly sand to sand
- Very stiff fine grained*
- Sand to clayey sand*

Figure 5.7 Proposed soil behaviour type classification system from CPTU data (after Robertson et al., 1986).

^{*} Overconsolidated or cemented.

and unpublished sources, modified soil behaviour type classification charts have been proposed by Robertson (1990) and are shown in Figure 5.8. The linear normalization of cone resistance (Q_t) is best suited to clay soils, but is less suited to sand.


The two charts shown in Figure 5.8 represent a three-dimensional classification system that incorporates all three pieces of CPTU data. For basic CPT data where only q_c and f_s are available the left hand chart (Figure 5.8) can be used. The error in using uncorrected q_c data will generally only influence the data in the lower part of the chart where normalized cone resistance is less than about 10. This part of the chart is for soft, fine-grained soils where q_c can be small and penetration pore pressures (u_2) can be large.

Included on the normalized soil behaviour type classification chart is a zone that represents approximately normally consolidated soil behaviour. A guide is also provided to indicate the variation of normalized CPT and CPTU data for changes in: overconsolidation ratio (OCR), age and sensitivity (S_i) for fine-grained soils, where cone penetration is generally undrained, and OCR, age, cementation and friction angle (ϕ') for cohesionless soils, where cone penetration is generally drained.

Generally, soils that fall in zones 6 and 7 represent approximately drained penetration, whereas, soils in zones 1, 2, 3 and 4 represent approximately undrained penetration. Soils in zones 5, 8 and 9 may represent partially drained penetration. An advantage of pore pressure measurements during cone penetration is the ability to evaluate drainage conditions more directly.

Robertson (1990) suggested that the charts in Figure 5.8 are still global in nature and should be used as a guide to define soil behaviour type based on CPT and CPTU data. Factors such as changes in stress history, in situ stresses, sensitivity, stiffness, macrofabric, mineralogy and void ratio will also influence the classification.

Occasionally, soils will fall within different zones on each chart; in these cases judgement is required to correctly classify the soil behaviour type. Often the rate and manner in which the excess pore pressures dissipate during a pause in the cone penetration will significantly aid in the classification. For example, a soil may have the following CPTU

Zone Soil behaviour type

- 1. Sensitive, fine grained;
- 2. Organic soils-peats;
- 3. Clays-clay to silty clay;

Zone Soil behaviour type

- 4. Silt mixtures clayey silt to silty clay
- 5. Sand mixtures; silty sand to sand silty
- 6. Sands; clean sands to silty sands

Zone Soil behaviour type

- 7. Gravelly sand to sand;
- 8. Very stiff sand to clayey sand
- 9. Very stiff fine grained

Figure 5.8 Soil behaviour type classification chart based on normalized CPT/CPTU data (after Robertson, 1990).

parameters; $q_t = 0.9$ MPa, $f_s = 40$ kPa and $\Delta u = 72$ kPa at a depth where $\sigma_{vo} = 180 \text{ kPa}$ and $\sigma'_{vo} = 90 \text{ kPa}$. Hence, the normalized CPTU parameters are:

$$Q_t = 8$$

$$F_r = 5.6\%$$

$$B_q = 0.1$$

Using these normalized parameters the soil would classify as a slightly overconsolidated clay (clay to siity clay) on the normalized friction ratio chart and as a silt mixture (clayey silt to silty clay) on the normalized pore pressure ratio chart. However, if the rate of pore pressure dissipation during a pause in penetration were very slow this would add confidence to the classification as a clay. If the dissipation was more rapid, say 50% dissipation in four to six minutes (4 min $\leq t_{50} \leq 6$ min), the soil is more likely to be a clayey

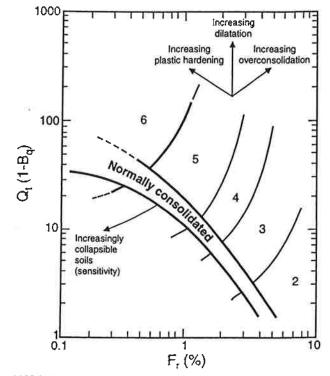
Larsson and Mulabdic (1991) have proposed that the normalized excess pore pressure remaining after one or five minutes can also be used as an indicator of soil type.

The manner in which the dissipation occurs can also be important. In stiff, overconsolidated clay soils, the pore pressure behind the cone can be very low and sometimes negative of the equilibrium pore pressure u_o , whereas the pore pressure on the face of the cone can be very large due to the large increase in normal stresses created by the conc penetration. When penetration is stopped in overconsolidated clays, pore pressures recorded behind the cone may initially increase before decreasing to the equilibrium pore pressure. The rise can be caused by local equalization of the high pore pressure gradient around the cone.

Jefferies and Davies (1991) proposed a modified classification chart that incorporates the pore pressure parameter directly into a modified penetration resistance, as shown in Figure 5.9. The chart requires a knowledge of the excess pore pressure Δu and hence can only be used with piezocone data. Accuracy can be a problem in soft sensitive clays

where B_{σ} can be greater than 1.0.

With the addition of shear wave velocity measurements using the seismic CPT (SCPT, section 7.3) Robertson et al. (1995) suggested a chart based on normalized cone resistance (Q_i) and the ratio of small strain shear modulus (G_o) to cone resistance (G_o/q_i) . The small strain shear modulus is linked to the shear wave velocity as follows:


$$G_o = \rho \cdot V_s^2 \tag{5.7}$$

where

$$\rho$$
 = mass density = y/g
 V_s = shear wave velocity

The chart, shown in Figure 5.10, can be used to identify "unusual" soils such as highly compressible sands, cemented and aged soils and clays with either a high or low void

Based on the above discussions it is recommended to use

NOTES:

- 1. Sensitive fine grained
- 2. Organic soils peats
- 3. Clays clay to silty clay
- Silt mixtures clayey silt to silty clay
- 5. Sand mixtures silty sand to sandy silt
- Sands clean sand to silty sand

$$Q_{t} = \frac{q_{t} - \sigma_{vo}}{\sigma_{vo}^{t}}$$
 $B_{q} = \frac{u_{2} - u_{o}}{q_{t} - \sigma_{vo}}$ $F_{r} = \frac{f_{s}}{q_{r} - \sigma_{vo}} \times 100\%$

Figure 5.9 Extended soil classification chart for CPTU data (after Jefferies and Davies 1991).

the normalized parameters shown in Figure 5.8 to evaluate soil behaviour type. If only measured CPT data are available and/or a preliminary estimate is required, the chart in Figure 5.7 is recommended.

It is important to note that these charts are global in nature and therefore provide only a guide to soil behaviour type. Overlap in some of the zones should be expected and the zones should be adjusted somewhat based on local experience.

In interbedded materials the cone resistance may not respond fully to stiff layers and soil classification based on the CPT may be incorrect.

The type and rate of pore water pressure dissipation can also be used to guide the interpretation (section 5.4.4).

INTERPRETATION IN FINE-GRAINED SOILS

Cone penetration in fine-grained soils, such as clays and silts, is generally undrained. When carrying out cone penetration tests under undrained conditions pore pressures will

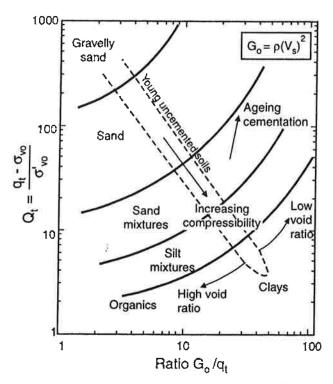
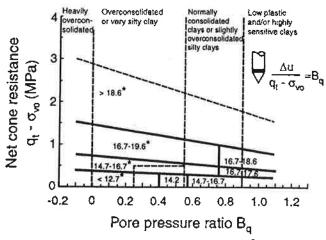


Figure 5.10 Soil classification chart based on normalized cone resistance and small strain shear modulus.

be generated and the measurement of pore pressures is extremely useful. As discussed in Chapters 2 and 3 the pore pressures generated affect measurements of both cone resistance and sleeve friction. Cone resistance and (if relevant) sleeve friction should be corrected using the measured pore pressures. The measured pore pressures can also be used directly for interpretation in terms of soil design parameters as outlined in the following sections.

5.4.1 State characteristics


The following sections detail interpretations related to parameters that describe state and stress history.

5.4.1.1 Soil unit weight

Larsson and Mulabdic (1991), based on their own tests in Swedish clays as well as tests in Norway (Rad and Lunne, 1988; Sandven, 1990) and the UK (Powell, 1990), proposed the chart shown in Figure 5.11 for obtaining a rough estimate of soil density for clays. An iteration is necessary since soil density is also needed for computation of net cone resistance $(q_t - \sigma_{vo})$ and B_q .

Soil unit weight can also be estimated using the soil classification chart shown in Figure 5.7 and the unit weights for each soil zone given in Table 5.2.

If no other information, such as adjacent boreholes or

* Approximate soil densities in kN/m³

Figure 5.11 Soil unit weight from CPTU results (after Larsson and Mulabdic, 1991).

local experience, is available, these charts can be used as a preliminary approximate estimate of soil unit weight.

5.4.1.2 Overconsolidation ratio

Overconsolidation ratio (OCR) is typically defined as the ratio of the maximum past effective consolidation stress and the present effective overburden stress. For mechanically overconsolidated soils where the only changes have been the removal of overburden stress, this definition of OCR is appropriate. However, for cemented or aged soils the OCR may represent the ratio of the yield stress and the present effective overburden stress. The yield stress will depend on the direction and type of loading. Hence caution should be taken when applying OCR to soils that are cemented or aged.

Since about 1978 the geotechnical literature has been rich with different approaches to obtain OCR from CPT and CPTU data.

Table 5.2 Estimate of unit weights based on soil description of Figure 5.7

Zone	Approximate unit weight (kN/m ³)
1	17.5
2	12.5
3	17.5
4	18
5	18
6	18
7	18.5
8	19
9	19.5
10	20
11	20.5
12	19

ANNEXE D

PROFIL GÉOTECHNIQUE ET RÉSULTATS DES ESSAIS EN LABORATOIRE

TECSULT				GEOTECHNICAL PROFILE -	- FIGURE D.1
PROJECT: Hydrogeological and Geotechnical Study	N°: 0512210			BOREHOLE N°: PO-03-01	PAGE: 1 of 3
CLIENT: Intersan	SITE: St-Nicéphore La	andfill Site	SURFACE ELEV. (m): 116.481	PIEZOMETERS: NUMBER: TUBE ELEV. (m): WATER LEVEL (m):	DATE:
DRILLING COMPANY: Forage Comeau	LABORATORY: Laboratoii	res d'expertises de Québec	COORDINATES (m): NAD 83	PO-03-01A 117.736 116.721 PO-03-01C 117.405 111.131	24-11-03 24-11-03
DATE STARTED: 14-10-03 DATE ENDED: 16-10-03 MAXIMUM DEPTH	1 (m): 20.30	ROCK DEPTH (m): 18.82	Y: 5075762.93 X: 391379.92		
DETAH (m) LEVEL (m) DEPTH (m) DEPTH (m) DEPTH (m) NOITHORD SAMPLE SAMPLE	PENETRATION TEST (SPT)	NATURAL WATER CONTEN? AND ATTERBERG LIMITS (%) Wp Wn WI H O (CALCULATED	IN SITU STRESS (kPa)	PARTICLE SIZE DISTRIBUTION % FINER Q 75mm Θ 80 μm Δ 5mm Ο 2 μm	PERMEABILITY (cm/s) O Piezometer S Lefranc
116.48 SITE SURFACE 50	20 40 60 80	10 20 30 40 18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80 0.5 1.0 1.5 2.0	1×10 ⁷ 1×10 ⁸ 1×10 ⁴ 1×10 ⁸
Fine SAND, traces of silt, loose, dark reddish grey (10R 3/1 - Munsell no.), wet, non-plastic, noncohesive, massive and granular structure, unoxidized.					
1 — 115.42 1.07 Fine SAND with few silt, medium dense, dark reddish grey (10R 4/1 - Munsell no.), wet, non-plastic, noncohesive, massive and granular structure, unoxidized (SM). Gs = 2.694		0 0		Φ 23	
3 113,43 3 05 Idem to SS-02, becoming dense and dark grey (5YR 4/1 - Munsell no.).			a s		
4—112.37 4.12 Fine SAND, traces of silt, medium dense, dark reddish grey (10R 4/1 - Munsell no.), wet, non-plastic, noncohesive, massive and granular structure, unoxidized. 5— 60					
110.84 5.64 Fine SAND with some silt, very dense, reddish grey (10R 5/1 - Munsell no.), moist, non-plastic, noncohesive, massive and granular structure, unoxidized, presence of two shells (white).					
108.86 7.62 Idem to SS-05, becoming dense (SM). phi' = 39.6° (CID) PO-03-01A: Gravel pack Gravel pack SS-06				B N	0

G:ENVIRONNEMENTIGEOTECH_ET_TCIGINTVMPROJECTS/05/12210-GEOTECH-GPJ-INTERSAN-11X17-2005-03-17 10:49:20

(TECSULT																									G	EOT	ECHN	VIC.	AL P	ROF	FILE	
PROJE	CT: Hydrogeological and Geote	echni	cal St	udy				N°: 051	2210	9												BOR	EHOL	E N°: I	PO-03	3-01				PAGE:	2	of 3	٦
DEPTH (m) LEVEL (m)	E SOIL DESCRIPTION		GRAPHIC SE LOG	ALLATION		TT	≿	F	STAND PENETF TEST	RATION	N	AND A	TTERBE //ITS (%)			UNIT WEIG	GHT)	Δ		ITU STRE (kPa)			PARTIC DISTRII	LE SIZE BUTION INER			LIQUIDITY	INDEX (IL	,	PERM Piezome	/EABILI	ITY (cm/s)	
DEPTH (STRATIGRAPHY	GR	DETAILS	TYPE & No.	SAMPLE	RECOV		MEASUR CORREC 40	CTED (N			Wn → 30	₩I —I 40		MEASU CALCUI 20 21 2	.ATED	0	POREW	ATER PRE	SSURE (kPa) 400 500	□ 7 △ 5	5mm	⊙ 8 ○ 2 60				1.5 2.0		Elefranc ,01 × 10, × 10 × 10 × 10 × 10 × 10 × 10	1 × 10°	1×10* 1×10*	
9-107	.34			Screen Open.: 0.025mm Diam.: 50mm Length: 2.54m		X	83																										Imminutum L
10-106		иа			SS-07	X	96											-															سلسملسملس
11-in	grey (7.5YR 4/0 - Munsell no.), moist, medium plasticity, massive structure, unoxidized.				SS-08	X	83	*				0				0						-0			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3							سلسيلسيلسيل
104.	Lean CLAY, traces of sand, thin sand layer (1 mm) at 12.65 m, soft, dark grey (7.5YR 4/0 - Munsell no.), moist, medium plasticity, cohesive, bedded structure, unoxidized (CL).				SS-09		100											· · · · · · · · · · · · · · · · · · ·	4														mhantanlankanlank
13-11-11-11-11-11-11-11-11-11-11-11-11-1	Gs = 2.730				SH-10								æ			0			4			0			• •	Z							<u>mlandantantanlan</u>
101. 14.7 15—	70 79 SILT with few gravel and sand (TILL), thin layer of gravel with few silt (8 cm) at 15.35 m, dark grey (5YR 4/1 to 7.5YR 3/0 - Munsell no.), moist, non to low plasticity, noncohesive, bedded structure, unoxidized.				SS-11A SS-11B SS-11C	×	54											#	4												700000000000000000000000000000000000000		minimization
<u>∃</u> 100.	18 11 SILT with some sand and traces of gravel (TILL), thin layers of gravel with few silt (3 to 5 cm) at 16.77 and 17.16 m, black to dark grey (5YR 4/1 and				SS-12A	₹	69			Comments of the comments of th		50 - 100 - 100 A 1			200000000000000000000000000000000000000								SIFM	WRONNEME	-NT/CFOTF	CH_ET_TO/G	NATI MOOO N	CT918542240	CEOTEC	4 OP LIMITED	CAN 14V4	2 20/15 02 4 7 4	and and and an

TECSULT				_				GEOTECHNIC	CAL PROFILE
DJECT: Hydrogeological and Geotec			N°: 0512210				BOREHOLE N°: PO-03	-01	PAGE: 3 of 3
SOIL DESCRIPTION 99.52	GRAPHIC GRAPHIC LOG LOG LOG LAILS	TYPE & No. SAMPLE SAMPLE RECOVERY %	PENETRATION TEST (SPT) MEASURED (N) CORRECTED (N ₁) ₆₀	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn Wi	UNIT WEIGHT (kN/m³) MEASURED CALCULATED	IN SITU STRESS (kPa) EFFECTIVE STRESS (kPa) POREWATER PRESSURE (kPa)	PARTICLE SIZE DISTRIBUTION % FINER □ 75mm ② 80 μm △ 5mm ○ 2 μm	☑ LIQUIDITY INDEX (1,)	PERMEABILITY (cm/s O Piezometer © Lefranc
7.5YR 2.5/0 - Munsell no.), moist,		SS-12B	20 40 60 80	10 20 30 40	18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80	0.5 1.0 1.5 2.0	× × × × ×
non-plastic, noncohesive, bedded structure, unoxidized (ML). 98.65 17.83 Coarse GRAVEL with few sand (TILL), traces of silt and clay, black to dark grey (7.5YR 2.5/0 and 2.5YR 4/0 - Munsell no.), moist, non-plastic, noncohesive, bedded structure, unoxidized. 97.66 BEDROCK: Calcareous SHALE, black	PO-03-01C: Gravel pack and PVC Screen Open: 0.025mm Diam::50mm Length: 4.88m	SS-12C SS-13A 76 SS-13B					9		O
to grey, inclined bedding (45°), some calciffed fracture with traces of pyrite. 98.18 20.30 End of borehole.		RC-2 93							

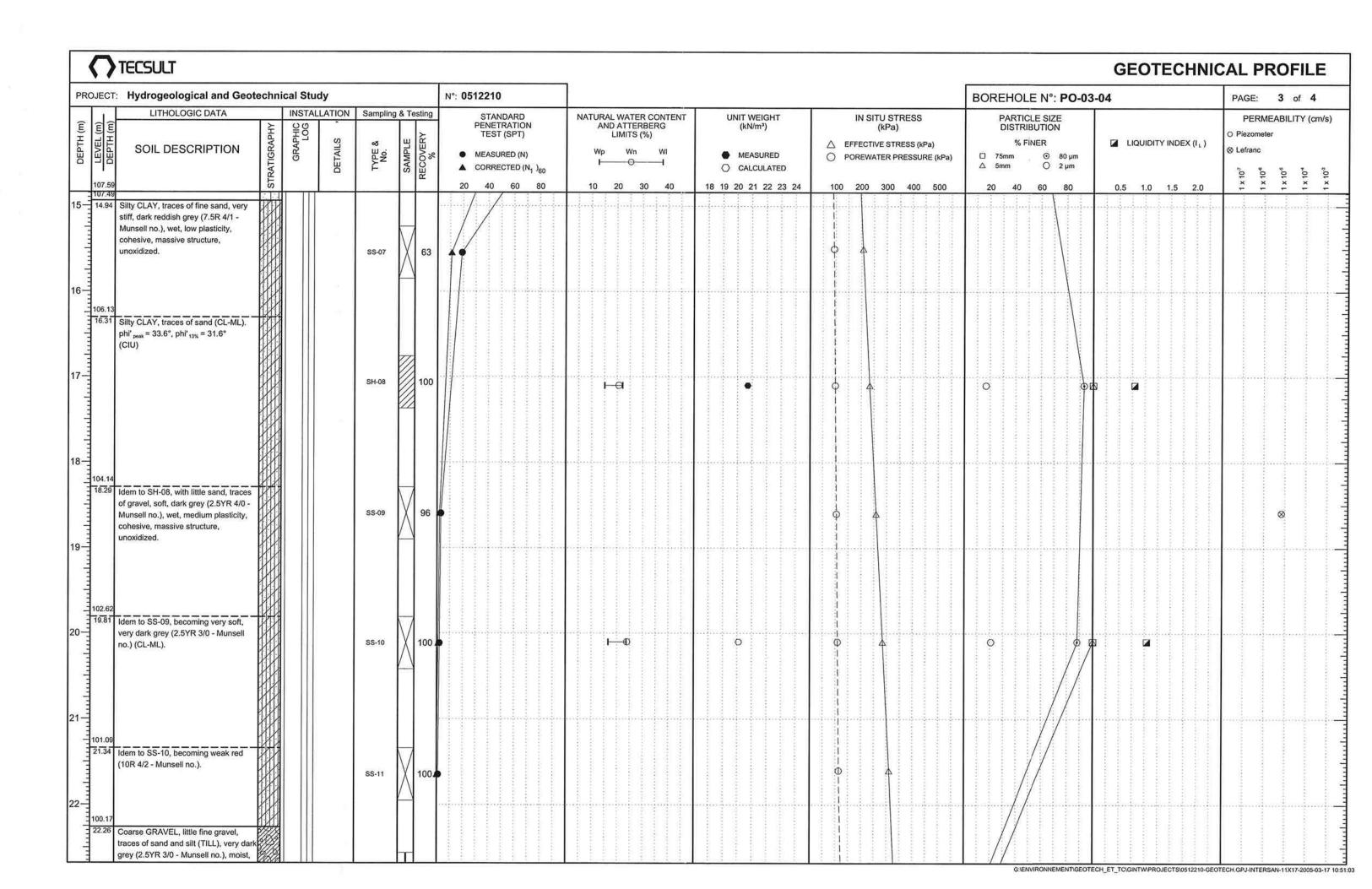
TECSULT			-							GEOTECHNIC	CAL PROFILE -	FIGURE D.2
PROJECT: Hydrogeological and	Geotechn	ical S	tudy			N°: 0512210				BOREHOLE N°: PO-03	-02	PAGE: 1 of 2
CLIENT: Intersan						SITE: St-Nicéphore L	andfill Site		SURFACE ELEV. (m): 115.900		LEV. (m): WATER LEVEL (m):	DATE:
DRILLING COMPANY: Forage Cor	neau					LABORATORY: Laborato	ires d'expertises de Québec	:	COORDINATES (m): NAD 83	PO-03-02A 116.788 PO-03-02C 116.942		24-11-03 24-11-03
DATE STARTED: 05-11-03	DATE ENDE	D: 07-	11-03	MAXIMU	IM DEP	TH (m): 18.39	ROCK DEPTH (m):	16.81	Y: 5076178.94 X: 391608.29			
LITHOLOGIC DATA	Σ		ALLATION	Sampling	& Testin	PENETRATION	NATURAL WATER CONTENT AND ATTERBERG	UNIT WEIGHT (kN/m³)	IN SITU STRESS (kPa)	PARTICLE SIZE DISTRIBUTION		PERMEABILITY (cm/s)
SOIL DESCRIPTION	Z	GRAPHIC	ILS I	oo Uu ⊰	PLE VERY	TEST (SPT) MEASURED (N)	LIMITS (%) We will will	■ MEASURED	△ EFFECTIVE STRESS (kPa)	% FINER	☑ LIQUIDITY INDEX (I _L)	○ Piezometer⊗ Lefranc
	RATIG	[<u>0</u>	DETAILS	TYPE No.	SAMPLE RECOVERY	CORRECTED (N ₁) ₆₀	F → →	CALCULATED	O POREWATER PRESSURE (kPa)	☐ 75mm ⊙ 80 μm △ 5mm ⊝ 2 μm		10.4
115,90 SITE SURFACE Fine SAND, very loose, dark re	S	1				20 40 60 80	10 20 30 40	18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80	0.5 1.0 1.5 2.0	1 x 10° 4 10
(2,5YR 3/6 - Munsell no.), mois non-plastic, noncohesive, mass	ւ [///		PO-03-02A	SS-01	X 6	7			4			
structure, unoxidized. Organic within the first 0,3 m.			(115,433 m)									Tul-
1.07 Fine SAND with little silt, mediu												
dense, olive grey (5Y 4/2 - Mur no.), wet, non-plastic, noncohe	sell											1
massive structure, unoxidized,				\$\$-02	M 6	3			1			
2-					\triangle							
l mi												
			PO-03-02C (113,092 m)					A1100				
3—112.85 3.05 Idem to SS-02, becoming dark		1111	(113,032 11)		\forall							
brown (10YR 4/2 - Munsell no.)	(SM).		*	55-03	5	¹	0	0 1 0 1 1 1	(A)	9	9	
4-111.79												4
4.11 Fine SAND with little medium s		$\parallel \parallel \parallel$										
very dense, dark grey (10YR 4 Munsell no.), moist, non-plastic												
noncohesive, massive structure unoxidized.	· [].]			SS-04	\ 6	3			6			
, all					\mathbb{H}							
110.26 5.64 Fine SAND, dense, dark grey (EVO 4/4											
6 - Munsell no.), wet, non-plastic noncohesive, massive structure	[4].											
unoxidized,				SS-05	$\sqrt{}_{4}$							
				50-00	ΔТ					\		
7 108.74												
7.16 Fine SAND with few silt, dense dark grey (5YR 3/1 - Munsell n					Н					\		
moist, non-plastic, noncohesive massive structure, unoxidized.			PO-03-02A: Gravel pack		\forall							O
8			and PVC Screen Open:: 0,025mm	SS-06	7	¹			A			
			0,025mm Diam.: 50mm Length: 2,59m									
	× 1.	ILE	Ш							G:\ENVIRONNEMENT\GEOT	ECH ET TC/GINTW/PROJECTS/05/12210-GEO	TECH.GPJ-INTERSAN-11X17-2005-03-17 10:36:29

ECT	: Hydrogeological and Geotechn	nical St	udy			N°: 0512210				BOREHOLE N°: PO-03-0	2	PAGE: 2 of 2
66 DEPTH (m)	SOIL DESCRIPTION	GRAPHIC LOG	DETAILS	Sampling & ON No.	SAMPLE SAMPLE RECOVERY %	STANDARD PENETRATION TEST (SPT) MEASURED (N) CORRECTED (N ₁) ₆₀ 20 40 60 80	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn WI I O 10 20 40 40	UNIT WEIGHT (kN/m³) MEASURED CALCULATED	IN SITU STRESS (kPa)	PARTICLE SIZE DISTRIBUTION % FINER □ 75mm ⊙ 80 μm Δ 5mm ○ 2 μm	☑ LIQUIDITY INDEX (I L)	PERMEABILITY (cm/s) O Piezometer S Lefranc
06.76 9.14 06.51 9.39	Idem to SS-06, becoming medium dense. Lean CLAY, traces of sand, dark grey (5YR 4/1 - Munsell no.), moist, stiff, cohesive, massive structure, unoxidized.			SS-07A SS-07B	83	20 40 50 80	10 20 30 40	18 19 20 21 22 23 24	100 200 300 400 500 0A	20 40 60 80 O	0.5 1.0 1.5 2.0	
	Idem to SS-07B, becoming of medium consistency and dark grey (2.5YR 4/0 - Munsell no.).			SS-08	100				ΦΔ			
	Idem to SS-08. phi' peak = 34.7°, phi' 13% = 33.1° (CIU)			SH-09	100		O	0•	ф Ф	О ФД		
wa ive	Idem to SH-09, soft, becoming very dark grey (2.5YR 3/0 - Munsell no.), wet, medium plasticity, cohesive, massive structure, unoxidized (CL).			SS-10	58		1 0	0	Φ Δ	• Ф		
	SAND with little silt and gravel (TILL), dense, dark grey (2.5YR 4/0 - Munsell no.), wet, non-plastic, thickly bedded and blocky structure, unoxidized.			SS-11	58				 - - - - - - - - - - - - -			
- 1	BEDROCK. Calcareous SHALE, black to grey, inclined bedding (60°), some calcified fractures with traces of pyrite.		PO-03-02C: Gravel pack and PVC Screen Open.: 0,025mm Diam.: 50mm Length: 3.96m									C
7.51	Sensitive tractures with traces of pyrite.			RC-12	100							

TECSULT				GEOTECHNICAL PROFILE -	FIGURE D.3
PROJECT: Hydrogeological and Geotechnical Study	N°: 0512210			BOREHOLE N°: PO-03-03	PAGE: 1 of 3
CLIENT: Intersan	SITE: St-Nicéphore La	andfill Site	SURFACE ELEV. (m): 113.72	PIEZOMETERS: NUMBER: TUBE ELEV. (m): WATER LEVEL (m):	DATE:
DRILLING COMPANY: Forage Comeau	LABORATORY: Laboratois	res d'expertises de Québec	COORDINATES (m): NAD 83	PO-03-03A 114.215 111.395 PO-03-03B 114.334 111.724	24-11-03 24-11-03
DATE STARTED: 18-11-03 DATE ENDED: 19-11-03 MAXIMUM DEPTH	(m): 24.29	ROCK DEPTH (m): 22.63	Y: 5076548.10 X: 392580.45	PO-03-03C 114.479 112.749	24-11-03
LITHOLOGIC DATA INSTALLATION Sampling & Testing DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) PROBLE (m) DEPTH (m) DEPTH (m) DEPTH (m) PROBLE (m) DEPTH (m) DEPTH (m) PROBLE (m) DEPTH (m) DEPTH (m) PROBLE (m) DEPTH (m) PROBLE (m	STANDARD PENETRATION TEST (SPT) MEASURED (N)	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn WI GOOD MEASURED	IN SITU STRESS (kPa) △ EFFECTIVE STRESS (kPa) ○ POREWATER PRESSURE (kPa)	PARTICLE SIZE DISTRIBUTION % FINER ☐ 15mm	PERMEABILITY (cm/s) O Piezometer & Lefranc
113.72 SITE SURFACE	▲ CORRECTED (N ₁) ₆₀	☐ CALGULATED		∆ 5mm () 2 μm	1 × 10° 1 × 10
FILL: SILT with little fine sand, medium density, dark grey (10YR 4/1 - Munsell no.), moist, medium plasticity, cohesive, massive structure, unoxidized. 1— FO-03-03C (112.749 m)	20 40 60 80	10 20 30 40 18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80 0.5 1.0 1.5 2.0	1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1
2- 110.83 2.90 Fine SAND with little medium sand, traces of coarse sand, presence of organic matter within the first 8 cm, loose, very dark greyish brown (2.5Y 3/2 - Munsell no.), moist, non-plastic, noncohesive, thickly bedded and blocky structure, unoxidized. 4 Fine SAND with little silt, traces of			Φ Δ Φ Δ		
medium sand, medium density, dark grey (5YR 4/1 - Munsell no.), wet, low plasticity, cohesive, massive structure; unoxidized. Fine SAND with some silt, traces of medium sand, dense, dark grey (5YR 4/1 - Munsell no.), wet, non-plastic,		0	о Ф Ф 	φ Δ	nuluuluuluu
noncohesive, massive structure, unoxidized (SM). 108.08 5.64 Idem to SS-02B, becoming very dense, dark grey (5YR 4/0 - Munself no.), moist.			0-4		Target Park
7—105.56 7.16 Idem to SS-03, becoming dark grey (7.5YR 4/0 - Munsell no.), wet (SM).		O			

(TECSULT								_				GEOTECHNI	CAL PROFILE
PROJEC	CT: Hydrogeological and Geot	echni	ical Stu	udy				N°: 0512210				BOREHOLE N°: PO-03	3-03	PAGE: 2 of 3
DEPTH (m)		STRATIGRAPHY	GRAPHIC LOG LOG	DETAILS	Sampling No. No.	SAMPLE & SECOVERY		STANDARD PENETRATION TEST (SPT) MEASURED (N) CORRECTED (N ₁) ₆₀ 20 40 60 80	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn WI I O 30 40	UNIT WEIGHT (kN/m³) MEASURED CALCULATED 18 19 20 21 22 23 24	IN SITU STRESS (kPa)	Δ 5mm	☐ LIQUIDITY INDEX (I _L) 0.5 1.0 1.5 2.0	PERMEABILITY (cm/s) O Piezometer S Lefranc
9-1														
104.	John SS-05A, becoming dark grey (2.5Y 4/0 - Munsell no.), medium plasticity.				SS-05A SS-05B	10	00		ı a	O		0	N a	_
11-	D5 Lean CLAY, traces of sand (CL).		11111		SH-06				I — ⊘	Ο		O	3	
12 101.	grey (2.5Y 4/0 - Munsell no.), medium plasticity.			PO-03-038: Gravel pack and PVC Screen Open.: 0.025mm Diam.: 50mm Length: 2.28m	SS-07	10	00							0
100.0	2 Idem to SS-07, becoming of medium consistency.		11111	1	SS-08	10	00							
15 98.4	4 Idem to SS-08, becoming very soft, very dark grey (2.5Y 3/0 - Munsell no.), high plasticity (CL).			4	SS-09	83	3		I • • • •	O		Q Q		
97.4	SAND with few gravel and silt, little coarse sand (TILL), dense, dark grey (7.5YR 4/0 - Munsell no.), wet, non-plastic, noncohesive, bedded and			8		\times								

G:IENVIRONNEMENT\GEOTECH_ET_TC\GINTWPROJECTS\0512210-GEOTECH.GPJ-INTERSAN-11X17-2005-03-17 10:50:39


* *	TECSULT						_			<u> </u>	GEOTECHNIC	CAL PROFILE
OJEC1	: Hydrogeological and Geotechr					N°: 0512210				BOREHOLE N°: PO-03	-03	PAGE: 3 of 3
5. DEPTH (m)	SOIL DESCRIPTION HAVE TRANSPORTED BY A STANDARD BY A STAND			Sampling & No.	SAMPLE SAMPLE RECOVERY %	PENETRATION TEST (SPT)	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn WI I O I 10 20 30 40	UNIT WEIGHT (kN/m³) MEASURED CALCULATED	IN SITU STRESS (kPa) △ EFFECTIVE STRESS (kPa) ○ POREWATER PRESSURE (kPa)	PARTICLE SIZE DISTRIBUTION % FINER □ 75mm	☑ LIQUIDITY INDEX (IL)	PERMEABILITY (cm/s O Piezometer S Lefranc
=	blocky structure, unoxidized (SM).			SS-10	46	20 40 60 80	0 20 30 40	18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80	0.5 1.0 1.5 2.0	
96.35 17.37	COBBLES and/or BOULDERS with few coarse gravel, traces of silt (TILL), black (2.5YR 2.5/0 - Munsell no.), moist, non-plastic, noncohesive, thickly bedded and blocky structure,			RC-11	17				- - - - - -			
	000											
94.21	COBBLES and/or BOULDERS with traces of coarse gravel (TILL), white (7.5YR 8/0 - Munsell no.), moist,	2.										
	non-plastic, noncohesive, bedded and blocky structure, unoxidized.											
		네 目										
	00.00.00			RC-12	1				δ Δ			
1	BEDROCK: Calcareous SHALE, dark grey to black, altered and fractured. Presence of calcified fractures.	4	PO-03-03C: Gravel pack and PVC Screen Open.: 0.025mm Diam.: 50mm Length: 3.81m	RC-13	90							0
				RC-14								
89.43				110-14	100							
24.29	End of borehole.											

G:/ENVIRONNEMENT/GEOTECH_ET_TC/GINTW/PROJECTS/0512210-GEOTECH/GPJ-INTERSAN-11X17-2005-03-17 10:50:40

TECSULT											N/P							G	EOT	ECHN	IICAL	PRO	FILE ·	FIGU	JRE	D.4
PROJECT: Hydrogeological an	nd Geotec	hnical S	tudy			Nº: 0	512210											BOR	EHOLE	N°: PO -	03-04			PAGE:	1 0	of 4
CLIENT: Întersan						SITE:	St-Ni	céphore La	andfill S	Site					SURFACI	E ELEV. (n	n): 122.433	PIEZOM NUMBE	R:		E ELEV. (m):		R LEVEL (m):	D/	NTE:	
DRILLING COMPANY: Forage Co	omeau					LABO	RATORY:	Laboratoi	ires d'e	xpertises	de Québe	ЭС			COORDIN			PO-03- PO-03-		123. 123.		116.95 112.00			-11-03 -11-03	
DATE STARTED: 27-10-03	DATE EN			MAXIMUI	M DEPTH	-l (m):		28.35	ROCH	CDEPTH (r	n):			25.26			7: 5075452.17 X: 391509.93									
E E E			ALLATION	Sampling		7	STANDA PENETRA	TION	NATU	AND ATTER	R CONTENT		UNIT WEIGI (kN/m²)	-IT		IN SITU S (kPa	TRESS		PARTICLE DISTRIBU	E SIZE JTION						TY (cm/s)
(w) HL4 (w) DESCRIPTI	ION	GRAPHY GRAPHIC LOG	NILS	⊗5 Ш.;;	PLE VERY		TEST (S		v	LIMITS Vp Wn		١.	. Mexener			FECTIVE ST	TRES\$ (kPa)		% FINI	ER		LIQUIDITY	INDEX (IL)	○ Piezom⊗ Lefrance		
		STRATIGRAPHY GRAPHIC LOG	DETAILS	TYPE & No.	SAMPLE RECOVERY %	Į,	CORRECTI			i		1 -	MEASURE CALCULA		() PO	REWATER	PRESSURE (kPa)	□ 7 △ 5		Θ 80 μmΟ 2 μm				10.4		.0°
122.43 SITE SURFACE		ե] Ծ				20	40	80 80	10	20	30 40	18 19	20 21 22	23 24	100	200 300	400 500	20	40	60 80	0,6	1.0	1,5 2.0	1 × 10	1 × 10, 10,	1 × 10°3
1																										
2-																					100000000000000000000000000000000000000			***************************************		
3-																										Lintenstein
4-														0.000.0												lm.lm.lm.
5-1																					65145504504504504004604					milantantan
5-117.25 5.18 Fine SAND with few silt, trace gravel, medium dense, dark g (10YR 4/1 - Munsell no.), wet non-plastic, noncohesive, masstructure, unoxidized (SM).	grey	▼	PO-03-04A (116.959 m)																							milminimi
lumlumlum				SS-01	46	1							0		P			•	G-JENVIE	RONNEMENTA	FOLECH ET TO	(ICINTAMPPA	ECTS/0543240 OF	DTECH GB I INT	ERSANI 44VA	7-2005-03-17 10:51:02

0	TECSULT												11										GE	OTE	CHN	ICA	L PR	OF	ILE
PROJECT	: Hydrogeological and Geot	echnica	l Study				N°: 05 1	2210		7									ВОЕ	REHOLI	E N°: P	O-03-	04			Р	AGE:	2 of	4
DEPTH (m) LEVEL (m) 12. A September 1. A Septembe	SOIL DESCRIPTION		OITALIATE CORPUSATION CONTRACTOR CORPUSATION CONTRACTOR		\neg	RECOVERY %	•	STANDA PENETRA TEST (S MEASURE CORRECT	ATION SPT) D (N) ED (N ₁) ₆₀	3	AND AT LIMI Wp \	ATER CO TERBER (TS (%)	G WI H	•	IT WEIGHT (kN/m³) MEASURED CALCULATED 0 21 22 23 24	0	POREV		<u>о</u>	PARTIC DISTRIE % FII 75mm 5mm	LE SIZE BUTION	μm μm	☑ LIG		NDEX (I _L)	0	PERME Piezometer Lefranc	ABILITY	
114.51 8—7.92	Idem to SS-01, becoming loose.			SS-0.	2	42											A												
nluml	Fine SAND with little silt, very dense, dark grey (5YR 4/1 - Munsell no.), moist, non-plastic, noncohesive, massive structure, unoxidized (SP-SM).		PO-03-04C (112.002 m)		3	46		•			C)		C		Н Н Н Н Н	A		•			ß							
111.46	Idem to SS-03, becoming dense.			SS-04	4	58		•								ф	4			\(\frac{1}{2}\)									
12—110.39	Idem to SS-04, becoming dense, dark grey (2.5YR 4/0 - Munsell no.), moist.		PO-03-04A Gravel pack and PVC Screen Open.: 0.025mm Diam.: 50m Length: 2.2:	SS-05	5	50											4									(
111111111111111111111111111111111111111																			H 100000 10000 100000 10000000000000000									O	***************************************
14.02	Idem to SS-05, very dense.			SS-06	3	58))								4						88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8						

G:\text{ENVIRONNEMENT}\text{GEOTECH_ET_TC\text{GINTWPROJECTS\text{\text{\text{0512210-GEOTECH.GPJ-INTERSAN-11X17-2005-03-17 10:51:03}}

<	TECSULT										GEOTECHNIC	CAL PROFILE
PROJE	ECT: Hydrogeological and Geotec	chnical S	Study	1 _ ,		N°: 0512210				BOREHOLE N°: PO-03	-04	PAGE: 4 of 4
- 1	LITHOLOGIC DATA	STRATIGRAPHY	DETAILS DETAILS		SAMPLE RECOVERY %	STANDARD PENETRATION TEST (SPT) MEASURED (N) CORRECTED (N ₁) ₆₀ 20 40 60 80	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn WI I OI	UNIT WEIGHT (kN/m³) MEASURED CALCULATED 18 19 20 21 22 23 24	!N SITU STRESS (kPa) △ EFFECTIVE STRESS (kPa) ○ POREWATER PRESSURE (kPa) 100 200 300 400 500	PARTICLE SIZE DISTRIBUTION % FINER □ 75mm	✓ LIQUIDITY INDEX (I₁)0.5 1.0 1.5 2.0	PERMEABILITY (cm) ○ Piezometer ⊗ Lefranc 10 10 10 10 10 10 10 10 10 10 10 10 10 1
34	non-plastic, noncohesive, thickly bedded and blocky structure, unoxidized (GP-GM).			RC-12	75		O)	Ø.Δ. [
98 23	3.78 Idem to RC-12, with few sand and traces of silt.		PO-03-04C: Gravel pack and PVC Screen Open.: 0.025mm Diem.: 50mm Length: 2.13m	RC-13	79				Φ 4			
97 5 24 97 25	7.44 7.99 SILT with little fine gravel and traces of sand (TILL), dark grey (5YR 4/1 - 5.26 Munsell no.), moist, non-plastic, noncohesive, bedded and blocky structure, unoxidized. BEDROCK: Calcareous SHALE, black, graphitic, with slaty cleavage		<u> </u>	RC-14 RC-15	100				Φ Δ -			
26	i.61 i.62 Idem to RC-16, with calcified fractured			RC-16	100							
Jumpontoni	zone and traces of pyrite.			RC-17	100							
94	.08 End of borehole.											
diamilian handeneda												

G:ENVIRONNEMENTIGEOTECH_ET_TC/GINTWPROJECTS/0512210-GEOTECH_GPJ-INTERSAN-11X17-2005-03-17-10:51:04

TECSULT					GEOTECHNIC	CAL PROFILE -	FIGURE D.5		
PROJECT: Hydrogeological and Geotechnical Study	N°: 0512210]			BOREHOLE N°: PO-03	-05	PAGE: 1 of 5		
CLIENT: Intersan	SITE: St-Nicéphore La	ndfill Site SURFACE ELEV. (m): 11		SURFACE ELEV. (m): 114.172	PIEZOMETERS: NUMBER: TUBE EL	LEV. (m): WATER LEVEL (m):	DATE:		
DRILLING COMPANY: Forage Comeau	LABORATORY: Laboratoi	res d'expertises de Québec		COORDINATES (m): NAD 83	PO-03-05A 114.990 PO-03-05C 114.967		24-11-03 24-11-03		
DATE STARTED: 03-11-03 DATE ENDED: 05-11-03 MAXIMUM DEPT	(m): 28.04 ROCK DEPTH (m): 26.47			Y: 5076612.21 X: 392160.09					
DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) ALEC (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) ALEC (m) DEPTH (m	PENETRATION	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn WI I	UNIT WEIGHT (kN/m²) MEASURED CALCULATED	IN SITU STRESS (kPa)	PARTICLE SIZE DISTRIBUTION % FINER □ 75mm	✓ LIQUIDITY INDEX (I _L)	PERMEABILITY (cm/s) O Piezometer S Lefranc		
114.17 SITE SURFACE	20 40 60 80	10 20 30 40	18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80	0,5 1,0 1,5 2,0	1 × 10°, 1 × 10°, 1 × 10°, 1 × 10°,		
Fine SAND with little silt, loose, red (2.5YR 4/8 - Munsell no.), moist, non-plastic, noncohesive, massive structure, unoxidized. 83									
112.65 1.52 Idem to SS-01, becoming medium dense, red (2.5YR 4/6 - Munsell no.), wet (SP-SM).		0	O		Θ	3			
111.58 2.59 Fine SAND with few silt, medium dense, dark grey (5YR 4/1 Munsell no.), moist, non-plastic, noncohesive, massive structure, unoxidized. SS-03									
4 — 109.60 4.57 Idem to SS-03, becoming very dense, very dark grey (2.5Y 3/0 - Munsell no.), moist (SM). phi' = 43.2° (CID) SS-04 PO-03-05A: Gravel pack and PVC Screen Open.: Open.: 0 025:mm Diam: 50:mm Length: 2.19m		O					0		

G:ENVIRONNEMENT/GEOTECH_ET_TC/GINTWPROJECTS/05/12210-GEOTECH GPJ-INTERSAN-11X17-2005-03-17 10:51:27

\Box	TECSULT												GEOTECHNIC	CAL PR	OFILE	
PROJECT	PROJECT: Hydrogeological and Geotechnical Study N°: 05							N°: 0512210				BOREHOLE N°: PO-03	-05	PAGE: 2 of 5		
DEPTH (m)	SOIL DESCRIPTION		GRAPHIC LOG LOG	DETAILS	Sampling Sampling Sampling		RECOVERY Suits	STANDARD PENETRATION TEST (SPT) MEASURED (N) CORRECTED (N ₁) ₆₀ 20 40 60 80	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn WI I O 10 20 30 40	UNIT WEIGHT (kN/m³) MEASURED CALCULATED 18 19 20 21 22 23 24	IN SITU STRESS (kPa) A EFFECTIVE STRESS (kPa) POREWATER PRESSURE (kPa) 100 200 300 400 500	PARTICLE SIZE DISTRIBUTION % FINER 75mm Θ 80 μm Δ 5mm Ο 2 μm 20 40 60 80	■ LIQUIDITY INDEX (IL) 0.5 1,0 1.5 2,0	O Piezometer S Lefranc	ABILITY (cm/s)	
_ 108.07		+	HIII				1	//			1	25 45 55 65	0.0 1,0 1,0 2,0	1 0		
6.34	Silty CLAY with little sand, medium consistency, very dark grey (2.5Y 3/0 - Munsell no.), moist, medium plasticity, cohesive, massive structure, unoxidized.				SS-05A SS-05B	X	79		О	O		0				
7.62	Idem to SS-05B, with traces of sand, very stiff, dark reddish grey (7.5R 3/1 - Munsell no.).				SS-06	X	63				8					
9-105.03	Idem to SS-06, becoming soft.				\$\$-07	X	67									
10 —	Lean CLAY, traces of sand (CL). phil peak = 35.5°, phil 13% = 33.2° (CIU)				SH-08											
	Idem to SH-08, with little sand, traces of clay, becoming very stiff.				SS-09A	X	98				<u> </u>					

G:\ENVIRONNEMENT\GEOTECH_ET_TC\G\nt\mpro\jects\0512210-GEOTECH_GPJ-\ntersan-11X17-2005-03-17 10:51:28

TECSULT							GEOTECHNIC	CAL PROFILE
T: Hydrogeological and Geotechnical Study		N°: 0512210				BOREHOLE N°: PO-03-0	-05	PAGE: 3 of 5
APHY LOG LOG	Samble & Sample & SAMPLE SAMPL	PENETRATION TEST (SPT) MEASURED (N) CORRECTED (N ₁) ₆₀	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn Wi I O 30 40	UNIT WEIGHT (kN/m²) MEASURED CALCULATED 18 19 20 21 22 23 24	IN SITU STRESS (kPa)	Δ 5mm 🔘 2 μm	☐ LiQUIDITY INDEX (I,)	PERMEABILITY (cm/s O Piezometer & Lefranc
	SS-09B	20 40 60 80	10 20 30 40	18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80	0.5 1.0 1.5 2.0	
SAND with some silt, few clay and little gravel (TILL), very dark grey (2.5YR 3/0 - Munsell no.), non-plastic, noncohesive (SC-SM).		45	ан		φ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O		
Idem to RC-11.								
COBBLES and/or BOULDERS, little sand, traces of silt (TILL), dark grey (7.5YR 4/0 - Munsell no.), wet, non-plastic, noncohesive, bedded and blocky structure, unoxidized.	RC-12 33	3						
F	RC-13 13	13			0 A			

2 (38)	TECSULT	nical (Study			Nº. 0512210	٦			DODELIOLE Nº BO OF	GEOTECHNIC	
DEPTH (m)	SOIL DESCRIPTION	INST	STALLATION		SAMPLE 8 8 SECOVERY %	PENETRATION	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn WI	UNIT WEIGHT (kN/m³)	IN SITU STRESS (kPa) A EFFECTIVE STRESS (kPa) O POREWATER PRESSURE (kPa)	PARTICLE SIZE DISTRIBUTION # FINER 75mm 80 80 µm	3-05 ■ LIQUIDITY INDEX (IL)	PAGE: 4 of 5 PERMEABILITY (cm/s O Piezometer S Lefranc
94.73		5	<u> </u>	<u> </u>	SAI	▲ CORRECTED (N ₁) ₆₀ 20 40 60 80	10 20 30 40	CALCULATED 18 19 20 21 22 23 24	100 200 300 400 500	Δ 5mm	0.5 1.0 1.5 2.0	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19.51	SILT with few coarse gravel and little sand (TILL), dark grey (5YR 4/1 - Munsell no.), wet, non-plastic, noncohesive, bedded and blocky structure, unoxidized.	No. Landa San Anna Sa										
.14	SILT with few coarse gravel and little sand (TILL), dark grey (5YR 4/1 - Munsell no.), wet, non-plastic, noncohesive, bedded and blocky structure, unoxidized.	23 11		RC-14	7				0			
03	Idem to RC-14, with few sand and gravel, traces of cobbles, becoming reddish black (10R 2.5/1 - Munsell no.), thickly bedded and blocky structure.			RC-15	40				0 4			
	SAND with few silt and gravel, little clay (TILL), becoming reddish black (7.5R 2.5/0 - Munsell no.), low plasticity, cohesive, thickly bedded and											
	(7.34 2.5/0 - Munsell no.), low plasticity, cohesive, thickly bedded and blocky structure.			RC-16	63		0	O	ф ф ф		1	
79 38	Idem to RC-16, becoming dusk red (10R 3/2 - Munsell no.).			RC-17	69				φ Δ			
9	Idem to RC-17, becoming dark reddish grey (10R 3/1 - Munsell no.), non-plastic, noncohesive.			RC-18	67				Φ 4			
			0.025mm Diam.: 50mm Length: 3.74m	0	$\prod J$							O

	$\overline{\Box}$	TECSULT																											GEO	TEC	HNIC	٠Δ١	DD()EII	F
_	• •	Hydrogeological and Geof		and Ch				T.,,	2: 0512	240		i.																		, i E C	THAI				
	,	LITHOLOGIC DATA	.ecm			Sampling	& Testine			STANDA		-	AVAT/IE	A 1 14/4	TCD 00	AIT FAIT	T	NIX 14151	N. IT	1	20.1	0174 (07					N°: PO-0	03-05					≣: 5		
DEPTH (m)	LEVEL (m) DEPTH (m)	SOIL DESCRIPTION	STRATIGRAPHY	GRAPHIC	DETAILS		SAMPLE RECOVERY	7	PE	ENETRAT TEST (SF EASURED	TION PT)		W _F	ND ATT	ERBER S (%)	ONTENT RG WI ⊢i		NIT WEI((kN/m²) MEASUI CALCUL	RED		EFFE(SITU SI (kPa) CTIVE STI WATER P) RESS (kf		☐ 75 △ 5i	PARTICLI DISTRIBI % FIN	JTION		LiQU	DITY IND.	≣Χ (Ι _ι)	PE O Piezo ⊗ Lefra:		·	
<u>_</u>	88.01 87.96			ļ.,,,					20	40 E	08 0		10	20	30	40	18 19	20 21 2	2 23 24	10	0 20	0 300	400	500	20	40	60 80		0.5 1.	0 1,5	2.0	×	* *	×	×
Line	26.21 87.70 26.47	COBBLES and/or BOULDERS with little coarse gravel, traces of sand, silt and little gravel (till), very dark grey (7.5YR 2.5/0 - Munsell no.), wet, non-plastic, noncohesive, bedded and blocky structure, unoxidized. BEDROCK: Calcareous SHALE, black, graphitic, with slaty cleavage				RC-19	10	0																											
28	86.13	(45°) and calcified fractured zone from 26.80 to 28.04 m.				RC-20	100	0																								****************			on the state of th
		End of borehole.	1		l			7.020			1	1			1 1			1 1					ri conium									extend to	<u></u>		
29												Militari sanggi sangga sangga sangga sangga sangga sangga																							
30-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1												cere i ce i ce i ce e contro di contro di contro di di contro di																***************************************							in han han familian han
32-																																			

TECSULT				GEOTECHNIC	CAL PROFILE -	FIGURE D.6
PROJECT: Hydrogeological and Geotechnical Study	№: 0512210			BOREHOLE N°: PO-03	-06	PAGE: 1 of 4
CLIENT: Intersan	SITE: St-Nicéphore La	andfill Site	SURFACE ELEV. (m): 128.611	PIEZOMETERS: NUMBER: TUBE EX		DATE:
DRILLING COMPANY: Forage Comeau	LABORATORY: Laboratoi	ires d'expertises de Québoc	COORDINATES (m): NAD 83	PO-03-06A 129.766 PO-03-06C 129.473		24-11-03 24-11-03
DATE STARTED: 17-10-03 DATE ENDED: 22-10-03 MAXIMUM DEPTH	(m): 33.22	ROCK DEPTH (m): 31.64	Y: 5077022.16 X: 392508.29			
LITHOLOGIC DATA INSTALLATION Sampling & Testing E E E	STANDARD PENETRATION	NATURAL WATER CONTENT UNIT WEIGHT (kN/m³)	IN SITU STRESS (kPa)	PARTICLE SIZE DISTRIBUTION		PERMEABILITY (cm/s)
DEPTH (m) LEVEL (m) DEPTH (m) NOITHINGRAPHY RECOVERY RECOVERY RECOVERY RECOVERY	TEST (SPT) ■ MEASURED (N) ■ CORRECTED (N ₁) ₆₀	LIMITS (%) Wp Wn WI MEASURED CALCULATED	△ EFFECTIVE STRESS (kPa) ○ POREWATER PRESSURE (kPa)	% FINER □ 75mm	☑ LIQUIDITY INDEX (IL)	O Piezometer ⊗ Lefranc
128,61 SITE SURFACE	20 40 60 80	10 20 30 40 18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80	0.5 1.0 1.5 2.0	1 x 1 0 x 1
FILL: Fine SAND, traces of silt, medium dense, brown (7.5YR 4/2 - Munsell no.), moist, non-plastic, 63			A			
noncohesive, massive and granular structure, unoxidized. 125.26 3.36 FILL: SILT, traces of fine sand, very stiff, dark reddish grey (10R 4/1 - Munsell no.), moist, low plasticity, cohesive, bedded structure, unoxidized.						
6.26 FiLL: Fine SAND, medium dense, dark grey (10YR 4/1 - Munsell no.), moist, non-plastic, noncohesive, bedded structure, unoxidized.			Φ Δ			
8 7.93 FILL: SILT, traces of fine sand, stiff, dark grey (5YR 4/1 - Munsell no.), moist, low plasticity, cohesive, massive structure, unoxidized.						

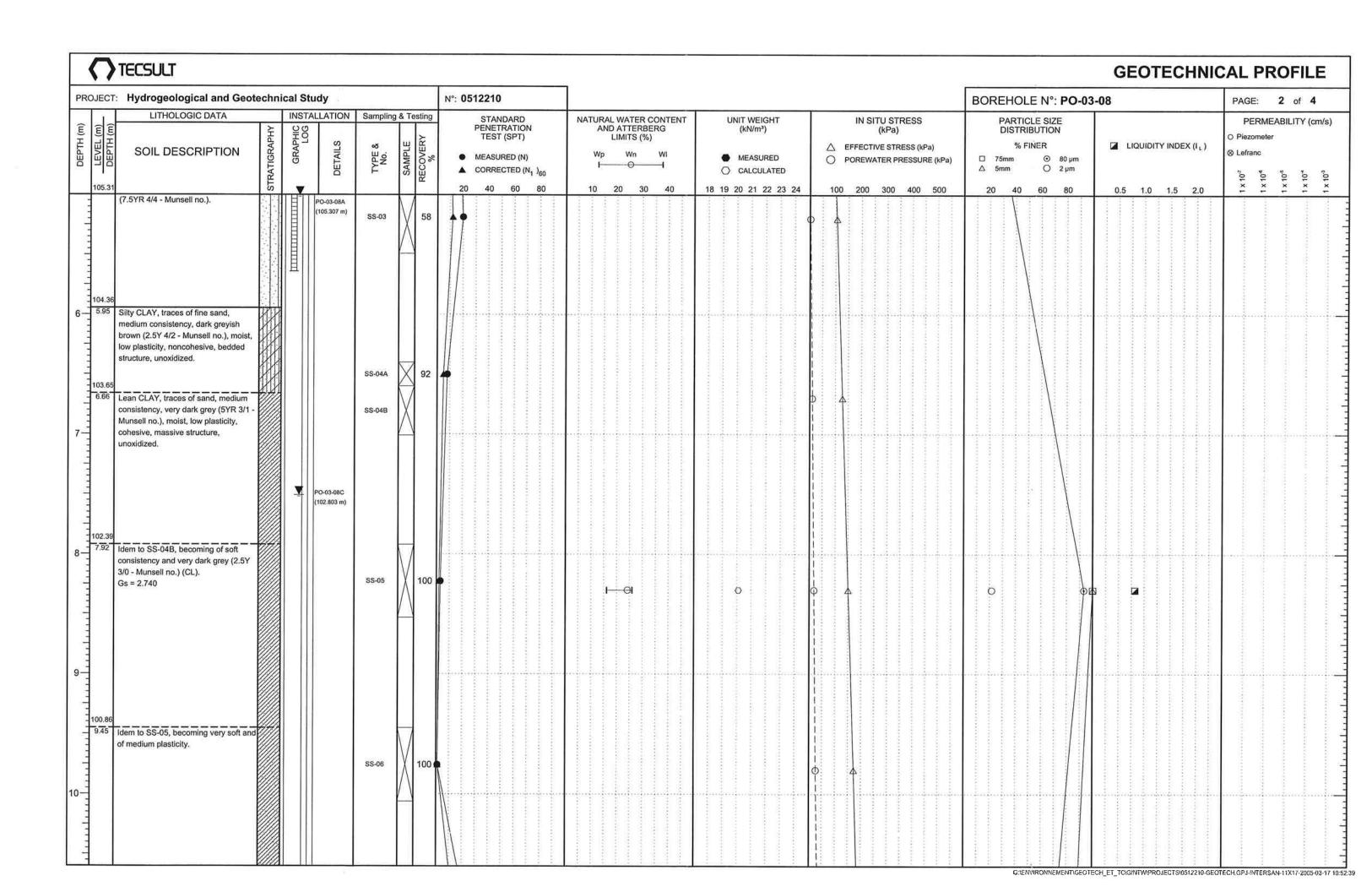
V 4	TECSULT											GEOTECHNIC	AL PROFILE
JECT:	Hydrogeological and Geotechn	nical Stu	ıdy			N°:	0512210				BOREHOLE N°: PO-03-	06	PAGE: 2 of 4
9 DEPTH (m)	SOIL DESCRIPTION LITHOLOGIC DATA ALE SOIL DESCRIPTION	GRAPHIC	DETAILS		SAMPLE RECOVERY	%	STANDARD PENETRATION TEST (SPT) MEASURED (N) CORRECTED (N ₁) ₆₀ 20 40 60 80	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn WI I G G G G G G G G G G G G G G G G G G	UNIT WEIGHT (kN/m³) MEASURED CALCULATED 18 19 20 21 22 23 24	IN SITU STRESS (kPa) EFFECTIVE STRESS (kPa) POREWATER PRESSURE (kPa) 100 200 300 400 500	PARTICLE SIZE DISTRIBUTION % FINER □ 75mm	LIQUIDITY INDEX (IL) 0.5 1.0 1.5 2.0	PERMEABILITY (cm
				SS-03	54	Ш				Φ Δ			
7.94 0.67	Idem to SS-03.		LI .	SS-04	o	111111111111111111111111111111111111111				0			
35	Idem to SS-04, becoming dark reddish grey (10R 4/1 - Munsell no.). Thin sand layer at 12.50 m.			SS-05	69					Φ Δ			
3	FILL: SILT, very stiff, dark reddish grey (10R 4/1 - Munsell no.), moist, low plasticity, cohesive, massive structure, unoxidized.			SS-06	67					Φ			
1	FILL: Well graded SAND, very dense, olive (5Y 4/3 - Munsell no.), moist, non-plastic, noncohesive, massive structure, unoxidized. Traces of wood and organic matter at 15.78 m.		PO-03-06A (112-900 m)	SS-07A SS-07B	85					Φ. Δ.			
1.85	Idem to SS-07, traces of wood,		PO-03-06C (112.313 m)										
0.87	becoming dark greyish brown (2.5Y 4/2) - Munsell no.).			SS-08	56								
1	SAND with traces of silt, very dense, olive (5Y 4/3 - Munsell no.), moist, non-plastic, noncohesive, massive structure, unoxidized (SP-SM).		PO-03-06A: Gravel pack and PVC Screen Open.: 0.025mm Diam.: 50mm Length: 3.81m	SS-09	63			0	O	 	9 B		0

>	TECSULT										GEOTECHNI	CAL PROFILE
СТ	⊓: Hydrogeological and Geoteo	chnic	al Stud	ly			N°: 0512210]			BOREHOLE N°: PO-03-06	PAGE: 3 of 4
S DEPTH (m)	SOIL DESCRIPTION	STRATIGRAPHY	GRAPHIC LOG LOG	DETAILS NOITE	Sampling % LAMPE & No.	SAMPLE SAMPLE RECOVERY %	PENETRATION	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn WI I U U U	UNIT WEIGHT (kN/m³) MEASURED CALCULATED 18 19 20 21 22 23 24	IN SITU STRESS (kPa)	PARTICLE SIZE DISTRIBUTION % FINER 75mm Θ 80 μm Δ 5mm Ο 2 μm 20 40 60 80 0.5 1.0 1.5 2.0	PERMEABILITY (cm/s O Piezometer S Lefranc
3.80	Idem to SS-09, becoming dark reddish grey (7.5Y 4/1 - Munsell no.).				SS-10	50				Φ		
	SILT with few sand, hard, dark grey (5YR 4/1 - Munsell no.), wet, non-plastic, noncohesive, massive structure (ML).			, and the second	SS-11	46				Q A		
	SAND with some silt and little gravel (TILL), traces of silt, very dense, dark grey (2.5YR 4/0 - Munsell no.), wet, bedded structure (SM).				SS-12	42		Ò	Q	0 0		
99	l''''			п	RC-13A RC-13B RC-13C	0 100		0	O	1 1 1 1 1 1 0		
	Boulders of calcareous shale.				RC-14	18				φ Δ		
57	GRAVEL with few silt (TILL), traces of fine sand, dark grey (2.5YR 4/0 - Munsell no.), wet, non-plastic, noncohesive.				RC-15	67				D A		
96 65	Coarse GRAVEL (TILL), traces of silt, moist.				RC-16	63				o o		

PRINCE Hydrogenological and Geneticities Study Sec. 95/2219 STUDIOUS Sec. 9 Sec.	TECSULT			_				GEOTECHNIC	CAL PROFILE
Section Principle Princi	PROJECT: Hydrogeological and Geotechnical Study		N°: 0512210				BOREHOLE N°: PO-03	-06	PAGE: 4 of 4
41-Australino (and Cos) 150			PENETRATION TEST (SPT) MEASURED (N) CORRECTED (N ₁) ₆₀	AND ATTERBERG LIMITS (%) Wp Wn WI 1	(kN/m²) ■ MEASURED ○ CALCULATED	(kPa) △ EFFECTIVE STRESS (kPa) ○ POREWATER PRESSURE (kPa)	% FINER □ 75mm		O Piezometer ⊗ Lefranc
	99.45 4/1 - Munsell no.), moist, low plasticity, cohesive (GM-GC). 29.57 Gs = 2.700 Boulders. 30	RC-17 58 RC-18 2! -06C: pack	MEASURED (N) CORRECTED (N ₁) ₆₀ 20 40 60 80	Wp Wn WI I → I		POREWATER PRESSURE (kPa) 100 200 300 400 500	☐ 75mm		4

G/IENVIRONNEMENT/GEOTECH_ET_TC/IGINTW/PROJECTS/0512210-GEOTECH/GPJ-INTERSAN-11X17-2005-03-17 10:51:53

TECSULT					GEOTECHNIC	CAL PROFILE -	FIGURE D.7
PROJECT: Hydrogeological and Geotechnical Study	N°: 0512210				BOREHOLE N°: PO-03	-07	PAGE: 1 of 3
CLIENT: Intersan	SITE: St-Nicéphore La	ndfill Site		SURFACE ELEV. (m): 111.176	PIEZOMETERS: NUMBER: TUBE EL		DATE:
DRILLING COMPANY: Forage Comeau	LABORATORY: Laboratoin	es d'expertises de Québec		COORDINATES (m): NAD 83	PO-03-07A 112.144 PO-03-07C 111.940		24-11-03 24-11-03
DATE STARTED: 10-11-03 DATE ENDED: 11-11-03 MAXIMUM DEPTH	(m): 17.17	ROCK DEPTH (m):	15.52	Y: 5076769.75 X: 392925.34			
PEPTH (m) LEVEL (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) Sambling & Testing AMPLE SOIVERY NO. "Tigraphic Logic Manuel of the converse of the conv	STANDARD PENETRATION TEST (SPT)	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%)	UNIT WEIGHT (kN/m³)	IN SITU STRESS (kPa) △ EFFECTIVE STRESS (kPa)	PARTICLE SIZE DISTRIBUTION % FINER	☑ LIQUIDITY INDEX (I L)	PERMEABILITY (cm/s) O Piezometer
DEPTH (m) LEVEL (m) DEPTH (m) LEVEL (m) DEPTH (m) LOG RAPHIC SAMPLE SAMPLE RECOVERY %	 MEASURED (N) ▲ CORRECTED (N₁)₆₀ 	Wp Wn WI I───────────────────────────────────	MEASUREDCALCULATED	O POREWATER PRESSURE (kPa)	☐ 75mm ⊙ 80 μm △ 5mm ⊝ 2 μm		⊗ Lefranc
- Fine SAND with faw ailt traces of	20 40 60 80	10 20 30 40	18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80	0.5 1.0 1.5 2.0	1 × 10° 1 × 1 × 10° 1 × 1 × 10° 1 × 1 × 10° 1 × 1 × 10° 1 × 1 × 10° 1
roots, very loose, red (2.5YR 4/6 - Munsell no.), moist, non-plastic, noncohesive, massive structure, unoxidized.							
1.07 Fine SAND with some silt, dense, dark grey (5Y 4/1 - Munsell no.), moist, non-plastic, noncohesive, massive structure, unoxidized (SM). phi' = 40.7° (CID)		•	0		•		
108.59 2.59 Fine SAND with traces of silt, medium dense, dark grey (5YR 4/1 - Munsell no.), moist, non-plastic, noncohesive, massive structure, unoxidized. 108.03 PO-03-07C (108.335 m)							n dundamla
3.15 Silty CLAY, traces of sand, dark grey (5YR 4/1 - Munsell no.), moist, low plasticity, cohesive, massive structure, unoxidized.		O	O		0		0
PO-03-07A: Gravel pack and PVC Screen Open.: 0.025mm Diam.: 50mm Length: 2.18m				<u> </u>			
105.54 5.64 Lean CLAY, traces of sand, soft, dark grey (7.5YR 4/0 - Munsell no.), wet, medium plasticity, cohesive, massive					GRENVIRONNEMENT/GEOTE/	ZH ET TCKGINTWPROJECT80051221n.ceo	TECH.GPJ-INTERSAN-11X17-2005-03-17 10:52:15


_	TECSULT						-				GEOTECHNIC	AL PROFILE
CT:	: Hydrogeological and Geot					N°: 0512210				BOREHOLE N°: PO-03-	07	PAGE: 2 of 3
E DEPTH (m)	SOIL DESCRIPTION	GRAPHIC LOG LOG	DETAILS	Sampling No.	SAMPLE SAMPLE RECOVERY %	PENETRATION TEST (SPT)	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn WI I Graph H 10 20 30 40	UNIT WEIGHT (kN/m³) MEASURED CALCULATED	IN SITU STRESS (kPa)	PARTICLE SIZE DISTRIBUTION % FINER □ 75mm	☑ LIQUIDITY INDEX (I L)	PERMEABILITY (cm.
_	structure, unoxidized.	Ш			H	20 40 60 80	10 20 30 40	18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80	0.5 1.0 1.5 2.0	2 2 2 2
			-	SS-05	100		O	O	A	O GE		
.56	Idem to SS-05, becoming stiff, very dark grey (5YR 3/1 - Munsell no.).			SS-06	80				ΦΔ			
			=	SH-07	92				4			
51 57 j	Idem to SH-06, becoming soft, very dark grey (7.5YR 3/0 - Munsell no.).			SS-08	100		0	0				
d	ldem to SS-08, becoming, very stiff, dark grey (7.5YR 4/0 - Munsell no.), moist (CL).			į			9	V	Φ Δ 			⊗
				SS-09	79		⊢	O	ф ф	O 993	i da da da da	

110	CSULT										GEOTECHNIC	CAL PRO	FILE
DJECT: H	ydrogeological and Geotechn	rical Stu	dy			N°: 0512210	7			BOREHOLE N°: PO-03	-07	PAGE: 3	of 3
% LEVEL (m)	LITHOLOGIC DATA A HAVIORA PICTURE A HAVE A		DETAILS	Sampling &	RECOVERY %	STANDARD PENETRATION TEST (SPT) MEASURED (N) CORRECTED (N ₁) ₆₀ 20 40 60 80	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn WI I U U U U U U U U U U U U U U U U U U	UNIT WEIGHT (kN/m³) MEASURED CALCULATED	IN SITU STRESS (kPa)	PARTICLE SIZE DISTRIBUTION % FINER 75mm	☑ LIQUIDITY INDEX (IL)	○ Piezometer ⊗ Lefranc	BILITY (cm/s)
97.92 13.26 Coai (TILi - Mu bedd 97.34 unox 13.84 COE few trace - Mu thick unox	rse GRAVEL with few fine gravel L), very dense, black (2.5YR 2.5/0 Insell no.), moist, noncohesive, ded and blocky structure,			SS-10 S	21 70	20 40 60 80	10 20 30 40	18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80	0.5 1.0 1.5 2.0		1
95.66 (TILI no.), block 95.66 BED grey	AVEL with little sand, traces of silt L), black (2.5YR 2.5/0 - Munsell moist, noncohesive, bedded and ky structure, unoxidized (GP-GM). ROCK: Calcareous SHALE, dark to black, inclined bedding (45°), e calcified fractures with traces of e.		PC-03-07C: Gravel pack and PVC Screen Open: 0.025mm Diam: 50mm Length: 3.85m	RC-12 RC-13	92 91 81		0	C	о <u>А</u>	⊗ ∠ □			0
94,01 17.17 End	of borehole.			RC-15	100								

G:\ENVIRONNEMENT\GEOTECH_ET_TC\G\GINTWPROJECTS\0512210-GEOTECH.GPJ-\INTERSAN-11X17-2\050-03-17 10:52:16

TECSULT		_			GEOTECHNIC	CAL PROFILE -	FIGURE D.8
PROJECT: Hydrogeological and Geotechnical Study	N°: 0512210	8_			BOREHOLE N°: PO-03	-08	PAGE: 1 of 4
CLIENT: Intersan	SITE: St-Nicéphore La	andfill Site		SURFACE ELEV. (m): 110.309	PIEZOMETERS: NUMBER: TUBE & 111.247	LEV. (m): WATER LEVEL (m): 7 105.307	DATE: 24-11-03
DRILLING COMPANY: Forage Comeau	LABORATORY: Laboratoi	res d'expertises de Québec	:	COORDINATES (m): NAD 83	PO-03-08C 111.238		24-11-03
DATE STARTED: 23-10-03 DATE ENDED: 27-10-03 MAXIMUM DEPT	H (m): 18.24	ROCK DEPTH (m):	16.84	Y: 5076391.36 X: 393206.27			
SAMPLE SAMPLE SAMPLE STEE STEEL STEE	PENETRATION TEST (SPT)	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn WI I	UNIT WEIGHT (kN/m²) MEASURED CALCULATED	IN SITU STRESS (kPa) A EFFECTIVE STRESS (kPa) O POREWATER PRESSURE (kPa)	PARTICLE SIZE DISTRIBUTION % FINER ☐ 75mm	☑ LIQUID!TY INDEX (I _L)	PERMEABILITY (cm/s) O Piezometer ⊗ Lefranc
110,31 SITE SURFACE	20 40 60 80	10 20 30 40	18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80	0,5 1,0 1,5 2.0	1×10° 1×10° 1×10° 1×10°
Fine SAND, traces of silt, traces of root, medium dense, yellowish brown (10YR 5/4 - Munsell no.), moist, non-plastic, noncohesive, massive and granular structure, unoxidized (SP-SM).							
SS-01 SS-01		0	О	Ο Δ	0	5	
3—107.26							
- 3.05 Idem to SS-01, becoming dark greyish brown (2.5Y 4/2 - Munsell no.) (SP-SM).		Q	O	Φ 4	Φ	3	
PO-03-08A: Gravel pack and PVC Screan Open: Qu25mm Diam: 50mm Length: 2.29m							0

G:ENVIRONNEMENTIGEOTECH_ET_TCIGINTWPROJECTSI0512210-GEOTECH.GPJ-INTERSAN-11X17-2005-03-17 10:52:38

<u>, </u>	TECSULT					т.	7			GEOTECHN	NICAL PROFILE
ECT;	Hydrogeological and Geotechni				/	№: 05122 10				BOREHOLE N°: PO-03-08	PAGE: 3 of 4
DEPTH (m)	SOIL DESCRIPTION 설명	GRAPHIC	DETAILS		SAMPLE SAMPLE RECOVERY & 64	PENETRATION	NATURAL WATER CONTENT AND ATTERBERG LIMITS (%) Wp Wn Wi 1 O 1	UNIT WEIGHT (kN/m³) MEASURED CALCULATED 18 19 20 21 22 23 24	IN SITU STRESS (kPa)	PARTICLE SIZE DISTRIBUTION % FINER 20 40 60 80 0.5 1.0 1.5 2.0	& Lefranc
			(4)			1		10 13 20 2. 22	100 200 000 700 000	20 40 00 60 0.0 1.0	
99.28 [1 11.03]	SILT with few gravel (TILL), traces of sand, very stiff, very dark grey (5YR [3/1 - Munsell no.), moist, non-plastic, Inoncohesive, bedded and blocky structure, unoxidized. Medium SAND (TILL), with few silt and fine sand, very dense, very dark grey (2.5Y 3/0 - Munsell no.), non-plastic, noncohesive, massive structure.			SS-07A SS-07B	54				0		
8.08 2.23 7.88	coarse gravel, medium dense, dark grey (7.5YR 2.5/0 - Munsell no.), moist, non-plastic, noncohesive, bedded and i btocky structure, unoxidized.			SS-08A SS-08B	54						
51	SILT with few sand (TILL), stiff, very ldark grey (7.5YR 3/0 - Munsell no.), moist, low plasticity, cohesive, bedded and blocky structure, unoxidized. Coarse SAND with few gravet (TILL),			SS-08C							
	Imedium dense, very dark grey (2.5Y 3/0 - Munsell no.), bedded and blocky structure, unoxidized. SILT with few sand and little gravel (TILL), very dark grey (2.5YR 3/0 - Munsell no.), moist, low plasticity, cohesive, massive and blocky		1	RC-09	67						
- 14	GRAVEL with some sand, few silt, little clay (TILL), very dark grey (2.5Y 3/0 -			NO-10					Φ		
τ	Munsell no.), moist, non-plastic, noncohesive, massive and blocky structure, unoxidized (GM).										
		Seg-	O-03-08C; ravel pack nd PVC	RC-11	55		O		φ 4		
4.16		and F Scr	nd PVC creen pen.; 025mm	1 '	111 '						

<	7	TECSULT												GEOTECHNICAL PROFILE					
PROJ	ECT:	Hydrogeological and Geote	echni	ical Stu	ıdy			ļ	N°: 0512210						BOREHOLE N°: PO-03	PAGE: 4 of 4			
DEPTH (m)	T DEPTH (m)		STRATIGRAPHY	GRAPHIC	DETAILS	Sampling So ov	SAMPLE RECOVERY		STANDARD PENETRATION TEST (SPT) MEASURED (N) CORRECTED (N ₁) ₆₀ 20 40 60 80	NATURAL WATER (AND ATTERBI LIMITS (% Wp Wn	ERG) WI ———]	UNIT WEK (kN/m³) MEASUS CALCUL 18 19 20 21 2	RED ATED	IN SITU STRESS (kPa) A EFFECTIVE STRESS (kPa) POREWATER PRESSURE (kPa) 100 200 300 400 500	PARTICLE SIZE DISTRIBUTION % FINER □ 75mm Θ 80 μm Δ 5mm	LIQUIDITY INDEX (I ←) 0.5 1.0 1.5 2.0	PERME		TY (cm/s)
	3.47	Coarse GRAVEL with few silt (TILL), traces of fine sand, very dark grey (2.5YR 3/0 - Munsell no.), non-plastic, noncohesive, massive and blocky structure, unoxidized. BEDROCK: Calcareous SHALE, black			Diam.: 50mm Length: 4.34m	RC-12	64	4						1					
17-		to grey, with slaty cleavage (45°), some calcified joints (45°).				RC-13	83												
18-						RC-14 RC-15	100												
92	2.07 8.24	End of borehole.				RC-16	100	0											
19—																			
20-1																			

TECSULT				GEOTECHNIC	CAL PROFILE -	FIGURE D.9		
PROJECT: Hydrogeological and Geotechnical Study	N°: 0512210		BOREHOLE N°: PO-03	PAGE: 1 of 3				
CLIENT: Intersan	SITE: St-Nicéphore La	andfill Site	SURFACE ELEV. (m): 114.958	PIEZOMETERS: NUMBER: TUBE EL	LEV. (m): WATER LEVEL (m):	DATE:		
DRILLING COMPANY: Forage Comeau	LABORATORY: Laboratoin	res d'expertises de Québec	COORDINATES (m): NAD 83 PO-03-09B 115.510 113.17			24-11-03 24-11-03		
DATE STARTED: 12-11-03 DATE ENDED: 13-11-03 MAXIMUM DEPTH	(m): 19.71	ROCK DEPTH (m): 16.87	Y: 5076045.36 X: 391822.10	PO-03-09C 115.679	110.914	24-11-03		
E E E	STANDARD PENETRATION	NATURAL WATER CONTENT UNIT WEIGHT (kN/m²)	IN SITU STRESS (kPa)	PARTICLE SIZE DISTRIBUTION		PERMEABILITY (cm/s)		
DEPTH (m) LEVEL (m) DEPTH (m) DEPTH (m) ATIGRAPHY ANTIGRAPHY ANTIGRAPHIC LOG LOG LOG SAMPLE ECOVERY %	TEST (SPT) MEASURED (N)	LIMITS (%)	△ EFFECTIVE STRESS (kPa)	% FINER	LIQUIDITY INDEX (I,)	O Piszometer ⊗ Lefranc		
	▲ CORRECTED (N ₁) ₆₀	MEASURED CALCULATED	O POREWATER PRESSURE (kPa)	☐ 75mm		- 50		
114.96 SITE SURFACE 50 PO-03-09A	20 40 60 80	10 20 30 40 18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80	0.5 1.0 1.5 2.0	1 x 10° 1 x 10° 1 x 10° 1 x 10°		
traces of roots, very loose, yellowish red (5YR 4/6 - Munsell no.), moist, non-plastic, noncohesive, massive structure, unoxidized.								
1.07 SAND with few silt, medium dense, dark grey (10YR 4/1 - Munsell no.), wet, non-plastic, noncohesive, massive structure, unoxidized (SM).		0				Leafandam		
2-3-111.91								
3.05 Idem to SS-02, becoming dense, dark grey (2.5Y 4/0 - Munsell no.), moist. SS-03 SS-03 PO-03-09C (110.914 m)								
110.39 110.39 4.57 Idem to SS-03, becoming very dense, dark grey (10YR 4/1 - Munseli no.) (SM). Gs = 2.700		o				o o		
109.32 5.64 Lean CLAY with little sand, stiff, very						Transferration of the state of		
dark grey (SYR 3/1 - Munsell no.), moist, medium plasticity, cohesive, massive structure, unoxidized.						TECH,GPLINTERSAN-11X17-2005-03-17 10:52-5		

\Diamond	TECSULT										*	GEOTECHNIC	CAL PROFILI	Ε
PROJECT	: Hydrogeological and Geotechr	nical	Study				N°: 0512210				BOREHOLE N°: PO-03	PAGE: 2 of 3	,	
DEPIH (m) 6.00 LEVEL (m) 96 DEPTH (m)	SOIL DESCRIPTION YHGRAPHY	PENETRATION TEST (SPT)		AND ATTERBERG LIMITS (%) Wp Wn WI CALCULATED AND ATTERBERG (kN/m³) (k EFFECTIVE OPOREWATE		IN SITU STRESS (kPa)	PARTICLE SIZE DISTRIBUTION % FINER □ 75mm · ③ 80 μm △ 5mm · ○ 2 μm 20 40 60 80	☐ LIQUIDITY INDEX (I L) 0.5 1.0 1.5 2.0	PERMEABILITY (cr					
107.34	Idem to SS-05, becoming very stiff (CL).			SS-06	X	69		L O I	O	ф Ф		3 2		
<u> </u>	Idem to SS-06, becoming very dark grey (2.5YR 3/0 - Munsell no.), wet, high plasticity, cohesive.	////AII HII		SS-07	X	1								
4	Idem to SS-07, becoming of medium consistency, black (2.5YR 2.5/0 - Munsell no.) (CL).		2/11 H I	PO-03-09B: Gravel pack and PVC Screen Open: 0.025mm Diam:: 50mm Length: 2.13m	SS-08	X	100		1 • • • • • • • • • • • • • • • • • • •		Φ Δ			О
102.77	Idem to SS-08, becoming soft.			SS-09	X	100								
dundin	SAND with few silt and gravel, traces of clay (TILL), medium dense, dark reddish grey (7.5R 3/1 - Munsell no.), wet, non-plastic, thickly bedded and blocky structure, unoxidized (SM). Gs = 2.720		8	SS-10	$\overline{\bigvee}$	58		•	O	↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓<				
100.17	blocky structure, unoxidized (SM). Gs = 2.720												000000000000000000000000000000000000000	

G/ENVIRONNEMENT/GEOTECH_ET_TC/GINTWPROJECTS/05/12210-GEOTECH/GPJ-INTERSAN-11X17-2005-03-17 10:52:57

<u> </u>	TECSULT										a	GEOTECHNIC	CAL P	RO	FILE
PROJE	CT: Hydrogeological and	Geotechi	nical St	tudy			N°: 0512210				BOREHOLE N°: PO-03	i-09	PAGE:	3	of 3
DEPTH (m)		Z. STRATIGRAPHY		DETAILS		SAMPLE SAMPLE RECOVERY	PENETRATION TEST (SPT) MEASURED (N) CORRECTED (N ₃)		UNIT WEIGHT (kN/m³) MEASURED CALCULATED	IN SITU STRESS (kPa) △ EFFECTIVE STRESS (kPa) ○ POREWATER PRESSURE (kPa)	PARTICLE SIZE DISTRIBUTION % FINER □ 75mm	☑ LIQUIDITY INDEX (I _L)	PERM O Piezome ⊗ Lefranc	ter	TTY (cm/s)
15-	Medium SAND with few coarse	sand,				H	20 40 60 8	0 10 20 30 40	18 19 20 21 22 23 24	100 200 300 400 500	20 40 60 80	0.5 1.0 1.5 2.0			1 1
19 	little fine sand, traces of fine gr (TILL), dark grey (2.5YR 4/0 - 1 no.), moist, non-plastic, thickly and blocky structure, unoxidize														
16-				PO-03-09C: Gravel pack		Ш.							9		
98.	(TILL), dark grey (2.5YR 4/0 - I no.), moist, non-plastic, thickly and blocky structure, unoxidize unoxidize			PO-03-09C: Gravel pack and PVC Screen Open.: 0.025mm Diam.: 50mm Length: 4.09m	RC-11	13				δ Δ					a
17- 16.	.87 BEDROCK: Calcareous SHALI grey to black, inclined bedding,	, dark			RC-12	10	o						r servijesser		
mhamha	grey to black, inclined bedoing, calcified fractures (60°).												3000		
=					RC-13	92	?								
18—					RC-14	10									
95.					.10-14										
_ 3	71 End of borehole.			-											-
20														25-1323-1023-00230-2020-2071-174/1220-0030-0020-003-075-0753-0530-0530-0530-0530	

G!ENVIRONNEMENT/GEOTECH_ET_TC/GINTW/PROJECTS/05/12210-GEOTECH/GPJ-INTERSAN-11X17-2005-03-17 10:52:57