308 INFO28

Les enjeux de la filière uranifère au Québec

6211-08-012

Radiation Protection

in Modern Canadian Uranium Mines

Lucien Nel, MSc, CSP, CIH.

March Consulting Associates Inc.

- Purpose
- ► Topics
 - ► Conventional Safety in Uranium Mines
 - ► Radiation Protection
 - ► Saskatchewan Radiation Protection Performance
 - **▶** Conclusion

Conventional Safety in Saskatchewan Uranium Mines

- Safety a state of being free from harm, danger, injury and damage
- Conventional safety (nonradiological safety)
 - ▶ Biological safety
 - Ergonomic safety
 - Chemical safety
 - Physical safety
 - Psychosocial safety
 - Operational

Radiation Protection

Purpose

► Ensure no significant adverse health effect or environmental impact occurs

Objective

"As Low As Reasonably Achievable" (ALARA), economic and social factors considered

Regulatory Limits

- Nuclear Energy Workers (NEW)
 - ▶ 100 mSv in 5 years (20 mSv /year average)
 - ▶ Maximum of 50 mSv in any 1 year
- Public
 - ▶ 1 mSv/year

(Cameco 2014)

Radiation protection Management Programs

- Radiation safety issues in the design and operation of the mine
- Implementation of comprehensive work procedures and administrative controls
- Development of a radiation Code of Practice specific to the operation
- Use of personal protective equipment
- Monitoring, recording and reporting of radiological exposures, doses and conditions
- Corrective action when exposure and radiation levels exceed normal operating levels

Exposure and Dose Control

- Regulatory Limits
 - Nuclear Energy Workers (NEW)
 - ▶ 100 mSv in 5 years (20 mSv /year average)
 - ► Maximum of 50 mSv in any 1 year
 - ▶ Public
 - ▶ 1 mSv/year
- Action Levels
- Administrative levels

Forms of Radiation that are Controlled

- ► Internal radiation (airborne)
 - ► Radon Progeny Alpha
 - ▶ Long Lived Radioactive Dust Alpha, Gamma
- External Radiation
 - ▶ Gamma

Contamination Control

- Single pass ventilation systems
- Layouts that allow separation of workers from sources
- Washing down facilities, removal of outer layers of protective clothing
- Zone control
- Laundry facilities
- ► Changing facilities with clean and dirty sides separated by personal showers
- ► Equipment decontamination areas
- ▶ Wash water collection and treatment
- Appropriate drainage and water collection systems to facilitate routine washing down of areas
- Routine radiation scanning

Radiation Code of Practice

- ► Intended to trigger a two step system of risk based controls to reduce potential exposure before the maximum regulated limits are exceeded.
 - ► Administrative levels signifies higher than normal radiation levels
 - ► Action levels signifies a potential loss of control

ALARA in action

- As Low As Reasonably Achievable (ALARA), social and economic factors considered
 - Operating Experience
 - > Training
 - Radiation Work Permits, change control procedure, and carefully planned maintenance
 - Mine layouts
 - Non-entry ore mining methods
 - > Remotely operated equipment
 - > Secure storage of nuclear substances for analytical purposes
 - > General dilution ventilation augmented by local extraction ventilation systems
 - Shielding

Exposure Reduction

- Exposures and doses are reviewed on a regular basis with supervisors and workers
- ► An ALARA analysis is conducted and where possible, exposure reduction targets are set for individuals or work groups
- ▶ Performance against these targets is routinely monitored
- Where necessary action is initiated to reduce exposures

Radiation Hazard Risk Analysis

- Process of identifying risks, assessing potential impacts and developing appropriate control strategies
- ► Hazard = ability to cause harm
- ► Risk = Hazard X Probability
- ► Hazard = Radiation exposure / Dose
- Probability = likelihood of exposure

Radiation Monitoring

- Gamma
- Radon Progeny
- ► Long Lived Radioactive Dust
- Radon Gas
- Urinalysis
- Contamination
- ▶ Records & reports

Environmental Monitoring

- Ongoing operational monitoring of effluent quality (air and water)
- Monitoring stations set up to monitor air, water and soil
- Stations strategically located on site and around perimeter
- Additional stations located preselected distance from the site

Training

- Orientation
- Radiation training
- Supervisor's training

Radiation Protection Performance -

Saskatchewan

- "Statistics collected by government agencies show that Saskatchewan's uranium mines are among the safest workplaces in the province, even at times surpassing office jobs" (SMA 2012)
- **▶ 2012** Workers' average total effective dose:

3% of the annual average allowable limit (20 mSv)

Highest individual exposure recorded

27.5% of the annual maximum allowable Limit (50 mSv)

Uranium Miner Average Radon Progeny Exposures

Conclusion

- Uranium mining can be done successfully
 - ▶ Effective health and safety management systems
 - ▶ Effective radiation protection management systems
- Modern existing Canadian mines provide useful experience and a template for effective environmental and radiation management programs

Thank you

