Appendix 2

208

DC4

Les effets potentiels du projet d'exploitation d'une mine et d'une usine de niobium à Oka sur les eaux de surface et les eaux souterraines ainsi que sur leurs utilisations Oka

6211-08-003

le 15 juin 2002

Gordon Edwards Ph.D.

Consultant in Radioactivity for the Mohawk Council of Kanesatake

M. Joseph Zayed, président M. Pierre Béland, commissaire M. Jean Roberge, analyste M. Guy R. Fortin, analyste Bureau des audiences publiques sur l'environnement Édifice Lomer-Gouin 575, rue St. Amable, bureau 2.10 Québec QC G1R 6A6

Objet: Projet minier Niocan - miscalculations and other errors in DA21

I have just reviewed exhibit DA21, "Caractérisation des matériaux du site minier St-Lawrence Columbium", a report dated May 2002 prepared by Roche for Niocan.

I am writing to inform you of some miscalculations and incorrect inferences in the document.

Background

Earlier this year (February 2002) I pointed out in testimony before the TAQ that Roche had seriously miscalculated all the radioactivity coefficients for the samples cited in the Niocan Environmental Assessment document of 2001. These calculations were carried out for samples of slag [scories], tailings [sandy residues], and barren rocks [stériles].

The miscalculations occurred because Roche simply neglected to include in the calculation the majority of the radioactive isotopes present in the samples, in violation of the procedure that is quite clearly described in the Reglement sur les matières dangereuses.

As a result, all of the reported radioactivity coefficients in the Environmental Assessment Report were too low by a factor of ten or more. In the case of one sample of sterile, for example, Roche had calculated a coefficient of 0,4 when the actual coefficient was more than 4,0. Roche then used this miscalculation to reach the incorrect conclusion that that particular sample of stérile was below the regulatory limit and should therefore not be classified as a dangerous radioactive material (defined as a material for which the radioactivity coefficient exceeds 1).

ATTACHMENT 2: CALCULATION OF RADIOACTIVE COEFFICIENT SAMPLE OF SLC STERILES 2002 - CORRECTION (2) TO DA21

MINIMUM ESTIMATES FOR U-238, Th-234, Pa-234m, U-234 BASED ON MEASURED ACTIVITY OF Pa-234m - LESS 10 percent (all activity is measured in Bq/kg)

THORIUM SERIES			·	Δ	C/A
Th-232		infa	rad .	·Dec Limit	Batio
thorium-232		<u> </u>	112	4 000	
radium-228			112	40 000	0.020
actinium-228		1110	116	40,000	0.0020
thorium-228			117	40,000	0.00275
molum 224		Ì	112	40,000	0.020
10000002257		{	112	40,000	0.0028
nolonium-216	•		112	40,000	0.0028
polocilocitre (0)		175	ιι <mark>ς</mark>	40,000	0.0028
12 12 12 12 12 12 12 12 12 12 12 12 12 1		110		40,000	0.00313
			80	40,000	0.00275
[[2/3] polonium-212	} -	40	80	40,000	0.002
		40	st	40,000	0.001
1620-208) what	TIVE	stable	0
URANIUM SERIES				A	
U-238	.	Infe	rred	Reg. Limit	Ratio
uranium-238			460	4,000	0.115
thorium-234			460	4,000	0.115
protactinium-234		l	460	4,000	0,115
uranium-234		[460	4,000	0.115
thorium-230		{	393	4,000	0.09825
radium-226		393		4,000	0.09825
radon-222	}		380	40,000	0.0095
polonium-218			380	40.000	0.0095
lead-214		390		40.000	0.00975
bismuth-214		370		40.000	0.00925
polonium-214			380	40.000	0.0095
lead-210			380	4.000	0.095
bismuth-210			380	40.000	0.0095
polonium-210			380	4.000	0.095
lead-206		inac	tive	stable	0
					-
ACTINIDE SERIES	ì	(A	C/A
U-23S		Infe	rred	Reg. Limit	Ratio
uranium-235		19.7		4,000	0.00493
thorium-231			19.7	4,000	0.00493
protactinium-231		۱.	19.7	4,000	0.00493
actinium-227	1	l	19.7	4,000	0.00493
thorium-227			19.7	4.000	0.00493
radium-223		ł	19.7	40.000	0.00049
radon-219		İ	19.7	40.000	0.00049
polonium-215			19.7	40.000	0.00049
lead-211		Į	19.7	40.000	0.00013
bismuth-211			197	40 000	0.00045
thallium-207		}	19.7	40,000	0100010
lead-207		Inar	tina	etable	0.00049
				atduic	U
OTHER Primordial	1	(<u>`</u>	A	C/A
K-40		infe	fred	Reg. Limit	Ratio
potassium-40		640		400,000	0.0016
SUM OF ALL CZA's		COFFEICIENT -			101151

Additional Errors: Incorrect Inferences

The largest contributor to my 0,974 figure comes from Pa-234m, whose activity was measured as 512 becquerels per kilogram (\pm 10 %). For some unexplained reason, the actual measurement was disregarded by Roche in favour of the fictitious estimated value of 393 Bq/kg. Any well-trained scientist or mathematician would ask why this should be considered a reasonable thing to do. (Especially since it is not in accordance with the procedure laid down in the Reglement.) I have chosen to use the measured values wherever they exist, because that is the correct procedure.

If the 512 Bq/kg of Pa-234m is correct, or even approximately correct (in the range 460 to 563, using the \pm 10 % specified in the table), then there must also be 460 to 563 Bq/kg EACH of U-238, Th-234, and U-234. Why? Because the sterile is 20 years old, while Th-234 and Pa-234m have half-lives of less than a month. Unless there is 460 to 563 Bq/kg of U-238 to replenish the supply of Th-234 and Pa-234m, these short-lived isotopes could not possibly exist at such activity levels in the sample.

Uranium-238 --> Thorium-234 --> Protactinium-234m --> Uranium-234

Moreover, U-234 is chemically inseparable from U-238 under natural conditions: the ratio between their masses is immutable, and since they belong to the same decay chain, they must maintain the same activity level.

Given the half-lives of the three isotopes U-238, Th-234, Pa-234m, it is clear that even if the radioactive equilibrium were broken at some point in time due to weathering or leaching, it wouldn't matter much — because that equilibrium would be re-established again within 5 or 6 months. Meanwhile the U-234 activity will always match the U-238 activity for reasons stated in the previous paragraph:

Thus there is every reason to believe that U-238, Th-234, Pa-234m, and U-234 all have equal levels of activity in this sample, and those levels are at least 460 Bq/kg.

Using the lowest value of 460 Bq/kg for all four, we get a radioactivity coefficient of 1,01 [attachment 2]. If we use the measured value of 512 for Pa-234m – as required by the Règlement – and use 460 for the others, we get a coefficient of 1,025. [attachment 3] Thus the radioactivity coefficient for this sample of stérile, using the procedure required by the Règlement, is at least $2^{1}/_{2}$ percent higher than the regulatory limit used to define a hazardous radioactive material.

If we use the higher value of 563 Bq/kg for U-238, Th-234, and U-234, and the measured value of 512 for Pa-234m, we get a coefficient of 1,10 – ten percent over the regulatory limit. [attachment 4]

The possibility that such a release into the environment can occur in only two or three decades underscores the necessity of treating the stériles as potentially hazardous materials and protecting the environment from them.

Third, it appears desirable for the Ministry of Environment to maintain an independent expertise in the field of low-level radioactivity to ensure that regulations are properly followed.

Stund.

Gordon Edwards, Ph.D., Consultant in Radioactivity for the Mohawk Council of Kanesatake.