LARGE LNG FIRE THERMAL RADIATION

MODELING ISSUES & HAZARD CRITERIA REVISITED

Phani K. Raj Technology & Management Systems, Inc Burlington, MA 01803-1839 USA

AIChE Spring Meeting, April 13, 2005 Session LNG VI – Risk & Safety

Introduction

- Compare, photographically, the characteristics of large (experimental) LNG fires and other hydrocarbon fires.
- □ Review the appropriate values to be used for various parameters used in thermal radiation calculations.
- □ Revisit the correlations used for fire size determination
- Propose a new diffusion LNG fire model which includes smoke effects
- □ Comment on common errors made in using the % energy radiation in the "point source thermal radiation model"
- Screen a 6 min film of the 35m diameter fire of the Montoir LNG tests.

15 m dia LNG Fire on Water

Similarities in burning characteristics in 35m dia LNG Pool Fire & an Oil Fire

Different Zones of Combustion in a Large Diffusion Fire

Fire Hazard Calculations

$$\dot{q} = E F \tau$$

 $E \equiv E(D, fuel characteristics, \frac{C}{H}, etc) = Emissive Power$

 $F \equiv F(Fire geometry, receiver location \& orientation)$

 $\tau \equiv \tau(RH, T_a, Fire emission spectrum) = Atmospheric transmissivity$

Flame Height Correlation and Experimental Data

Variation of Emissive Power with Fire Diameter

Source: Nedelka, et al. (1989)

Effect of Smoke on Radiation

Y = Mass of soot produced/Mass of fuel burned $Y = Y{Fuel C/H, \phi, D, ?}$ For <u>Crude Oil fires (Notarianni, et al, 1993)</u>

 $Y = 9.412 + 2.758 * log_{10}(D);$ D in meters

(about 13 % for 17 m dia fire)

- No field experimental data for LNG, propane or other large liquid fuel diffusion fires
- For laboratory propane diffusion flames, measured volume fraction of smoke is 2x10⁻² ppm @ fuel/air volume concentration of 3x10⁻² (Y value is of the order of 0.7 %!) [Sivathanu & Faeth, 1990]

Smoke Extinction of Radiation

• Transmissivity of smoke in a fire to thermal radiation is given by (SFPE, 2002)

 $\tau_s = Exp(-k_m C_s \ 0.63D)$

 $k_m =$ Specific soot extinction area (m²/kg)

= 130 for propane fires (McCaffrey, et al., 1988)

$$C_{s} = \rho_{a} Y \frac{1}{\left[1 + \frac{r}{\beta} + \frac{\Delta H_{c}}{C_{a}T_{a}}\right]}$$

Smoke Extinction of Radiation (cont'd)

Fire Diameter (m)	Soot mass yield (Y)* (%)	Soot Concentrat ion (C _s) kg/m ³	Soot Transmissivity $(au_{ m S})$	Effective SEP in the soot region (E _{eff}) kW/m ²	Remarks	
15	6.38	1.39 E-4	0.84	189.0	$k_m = 130 \text{ m}^2/\text{kg}$ r = 17.17 for CH ₄	
35	6.84	1.49 E-4	0.65	146.3	$1/\beta = 1/0.06 = 16.7$ E= 225 kW/m ²	
300	8.12	1.77 E-4	1.3E-2	2.9	T _a = 293 K	

* Modified Notarianni correlation (1/2 of crude yield for CH₄)

Combustion Energy Fraction Radiated LNG Pool Fire on Water

πDLE	=	220	$\left(\begin{array}{c} E \end{array} \right)$	<i>m</i> "	3
$\chi_R = \frac{1}{(\pi/4) D^2 \dot{m}'' \Delta H_C}$			$\left(\frac{\dot{m}'' \Delta H_C}{} \right)$	$\left[\overline{\rho_a \sqrt{g D}} \right]$	

Pool Diameter (m)	L/D	χ _R (%)			
15	3.6	21.0			
35	2.7	15.8			
300	1.3	7.6			
$E = 175 \text{ kW/m}^2; \Delta H_C = 50E6 \text{ J/kg}; \text{m}''=0.24 \text{ kg/m}^2 \text{ s}$					

Conclusions

- 1) When using "solid flame" model for radiation hazard evaluation, the SEP used must correspond to flame height correlation from which it was developed.
- 2) Thomas' second correlation with 2/3 power relationship to dimensionless burning rate should be used for large fires of concern.
- 3) Caution should be exercised when using (χ_R) % emission as the basis of hazard assessment. It should be noted that $\chi \alpha D^{-1/3}$, at the very least.

Conclusions (cont'd)

- Burning dynamics and radiative output characteristics are similar in large pool fires of LNG and other higher hydrocarbon liquids.
- 4) Zoned "Solid Flame" model should be used for LNG fire radiation hazard assessment.
- 5) Effect of soot/smoke and the intermittency of combustion in higher layers should be considered.

