HORIZONTAL DRILLING AND HYDRAULIC FRACTURING CONSIDERATIONS FOR SHALE GAS WELLS

Brian K. Bohm, P.G.
J. Daniel Arthur, P.E., SPEC
ALL Consulting

Bureau d’audiences publiques sur l’environement (BAPE)
Saint-Hyacinthe, Québec
October 13-14, 2010
OVERVIEW

• Introduction
• Unconventional Natural Gas
• Shale Gas
 – History
 – Plays
 – Projections
• Horizontal Drilling
 – Well Pads
 – Drilling Operations
 – Protection of Groundwater

• Hydraulic Fracturing
 – HVHF Design
 – HVHF Operations
 – Fracturing Fluids
 – Fracture Fluid Composition
 – Groundwater Risk
 – Water Sourcing
 – Water Disposal/Reuse
• Additional Information
INTRODUCTION

• Shale gas holds tremendous potential for North American energy supply.
• Environmental considerations, especially those related to horizontal drilling and water use for high volume hydraulic fracturing (HVHF), have generated spirited debate among all stakeholders.
• Many of the concerns raised by the public stem from a lack of technical awareness of how shale gas development occurs.
UNCONVENTIONAL NATURAL GAS

• Unconventional resource plays are a growing source of natural gas in North America
 – Coal Bed Methane
 – Tight Sands
 – Gas Shales
• Since 1998, Unconventional natural gas has increased by nearly 65% in the U.S.
• As of 2007, total gas from unconventional plays approached almost 50% of the total natural gas production in the U.S.

Source: John Perez, Copyright ©, 2008
SHALE GAS HISTORY

• First Commercial Gas well – Fredonia, NY (1821)
 – Production from “Dunkirk Shale” at a depth of < 30 feet
• Ohio Shale – Big Sandy Field (1880)
• First use of HVHF in Barnett Shale (1986)
• First horizontal well drilled in Barnett Shale (1992)
• Horn River Shale, Canada (2006)
• Montney Shale, Canada (2007)
THE SHALE GAS TRIFECTA

Three factors made shale gas production economically viable:

• Advances in horizontal drilling
• Advances in hydraulic fracturing
• Increases in natural gas prices
N.A. SHALE GAS PLAYS
SHALE GAS BENEFITS

- The United States: national energy security, the economy, environment
- Individual States: the economy, tax revenues, local resources, jobs
HORIZONTAL DRILLING

- Shale gas multi-well pads typically require 2-5 acres initially:
 - Reclaimed to less than 2 acres after drilling is complete
- Multiple wells on a pad
 - 4-8 wells is typical
 - 12-16 is possible given certain conditions
- Pad preparation takes approximately one week
DRILLING THE WELLS

• Drilling operations operator 24/7 with a well taking ~90 to 120 days to drill
• Depths range from 0.8 km to over 3 km below surface
• Wells are oriented for maximum production based on geology
• Horizontal drilling allows operators to drill under homes and schools from almost a mile away
• Computer driven, state-of-the-art technology
Groundwater resources are protected by multiple casing strings and cement coupled with strict construction requirements.
HIGH VOLUME HYDRAULIC FRACTURING

• Necessary due to low matrix permeability
• Key to successful fracture treatments is to keep fractures created in the target zone
• Fracturing out of the target zone is not cost effective:
 – Adds extra cost to stimulation job
 – Could adversely affect productivity of the well
Hydraulic Fracturing Design

HVHF Operations

- Extensive up-front work with computer modeling to help design stimulation job
- Models are used to evaluate variables
 - Fluid volumes
 - Proppant size
 - Pressures during treatment
 - Fluid design
- Monitoring of fracture propagation during the stimulation job
 - Micro-seismic fracture mapping
 - Tiltmeter measurements
HVHF OPERATIONS

- Fracturing a horizontal well uses between 3 to 5 Million gallons of water
 - Delivered by truck or temporary pipeline
 - Stored in tanks, or local or centralized impoundments
- Fracturing job takes a few days to one week
- 15% to 30% of the fracture fluid is recovered as flowback
- Produced water may continue long term
Fracture Fluids

- 98-99.5% of slickwater fracturing fluid is water
- Each additive has an engineered purpose
- Proppant (sand)
HF FLUID COMPOSITION

HF Fluid with 15% Recycled Water
- Fresh Water, 71.3%
- Recycled Water, 12.6%
- Sand, 15.6%
- Other, 0.004903923

HF Fluid with 100% Fresh Water
- Fresh Water, 90.23%
- Sand, 9.11%
- Other, 0.0065186

99.4% Water and Proppant
- Fresh Water, 99.4%
- Proppant, 0.6%
- Other, 0.004903923

99.3% Water and Proppant
- Fresh Water, 99.3%
- Proppant, 0.7%
- Other, 0.0065186

Components:
- Acid, 0.40%
- Friction Reducer, 0.08%
- Biocide, 0.01%
- Surfactant, 0.10%
- Scale Inhibitor, 0.02%
- Iron Control, 0.02%
- Gelling Agent, 0.001%
- Acid Corrosion Inhibitor, 0.0008%
- Breaker, 0.00006%
GROUNDWATER RISK

• A 1989 API & DOE study determined that in basins with “reasonable” likelihood of corrosion, the risk probability of injectate reaching a USDW ranged from 1 in 200,000 to 1 in 200,000,000 for UIC wells
 – Injection is on a continuous basis

• Shale Gas Hydraulic Fracturing Differences
 – Very short in duration
 – Within multiple installed concentric casing strings and cement

• Risk is very low
WATER SOURCING

• Options available to meet water needs for drilling and fracturing
 – Surface Water
 – Groundwater
 – Municipal Water
 – Industrial Water
 – Recycled Produced Water
 – Collected Water
 – Private Water Purchases

1,000,000 gallons = ~3,785 m³
SOURCING CHALLENGES

- Options vary by location and operator
- Competing water users and availability must be considered

Groundwater Use in Barnett shale counties ranges from 1.95 percent in Somervall County to 85 percent in Cooke County.
INVITATION TO READ

CONTACT INFORMATION

Brian K. Bohm, P.G.
J. Daniel Arthur, P.E. SPEC
ALL Consulting, LLC
1718 S. Cheyenne Avenue
Tulsa, Oklahoma 74119
www.ALL-LLC.com