HORIZONTAL DRILLING AND HYDRAULIC FRACTURING CONSIDERATIONS FOR SHALE GAS WELLS

Brian K. Bohm, P.G. J. Daniel Arthur, P.E., SPEC ALL Consulting

Bureau d'audiences publiques sur l'environement (BAPE) Saint-Hyacinthe, Québec October 13-14, 2010

OVERVIEW

- Introduction
- Unconventional Natural Gas
- Shale Gas
 - History
 - Plays
 - Projections
- Horizontal Drilling
 - Well Pads
 - Drilling Operations
 - Protection of Groundwater

- Hydraulic Fracturing
 - HVHF Design
 - HVHF Operations
 - Fracturing Fluids
 - Fracture Fluid Composition
 - Groundwater Risk
 - Water Sourcing
 - Water Disposal/Reuse
- Additional Information

INTRODUCTION

- Shale gas holds tremendous potential for North American energy supply.
- Environmental considerations, especially those related to horizontal drilling and water use for high volume hydraulic fracturing (HVHF), have generated spirited debate among all stakeholders.
- Many of the concerns raised by the public stem from a lack of technical awareness of how shale gas development occurs.

ONSULTING

UNCONVENTIO NAL NATURAL

- GAS
 Unconventional resource plays are a growing source of natural gas in North America
 - Coal Bed Methane
 - Tight Sands
 - Gas Shales
- Since 1998, Unconventional natural gas has increased by nearly 65% in the U.S.
- As of 2007, total gas from unconventional plays approached almost 50% of the total natural gas production in the U.S.

C) ALL Consulting, 200

SHALE GAS HISTORY

- First Commercial Gas well Fredonia, NY (1821)
 - Production from "Dunkirk Shale" at a depth of < 30 feet
- Ohio Shale Big Sandy Field (1880)
- Barnett Shale Ft. Worth Basin development (1982)
- First use of HVHF in Barnett Shale (1986)
- First horizontal well drilled in Barnett Shale (1992)
- US shale gas expands (2003)
- Horn River Shale, Canada (2006)
- Montney Shale, Canada (2007)

THE SHALE GAS TRIFECTA

Consulting

- Three factors made shale gas production economically viable:
- Advances in horizontal drilling
- Advances in hydraulic fracturing
- Increases in natural gas prices

N.A. SHALE GAS PLAYS

SHALE GAS BENEFITS

- The United States: national energy security, the economy, environment
- Individual States: the economy, tax revenues, local resources, jobs

Marcellus Shale Pennsylvania

Utica Shale Quebec

ALL Consulting, 2009

HORIZONTAL DRILLING

Barnett Shale Well, Johnson County, Texas

- Shale gas multi-well pads typically require 2-5 acres initially:
 - Reclaimed to less than 2 acres after drilling is complete
- Multiple wells on a pad
 - 4-8 wells is typical
 - 12-16 is possible given certain conditions
- Pad preparation takes approximately one week

DRILLING THE WELLS

ONSULTING

- Drilling operations operator 24/7 with a well taking ~90 to 120 days to drill
- Depths range from 0.8 km to over 3 km below surface
- Wells are oriented for maximum production based on geology
- Horizontal drilling allows operators to drill under homes and schools from almost a mile away
- Computer driven, state-of-the-art technology

GROUNDWATER PROTECTION

LL Consulting.

CONSULTING

Groundwater resources are protected by multiple casing strings and cement coupled with strict construction requirements

HIGH VOLUME HYDRAULIC FRACTURING

- Necessary due to low matrix permeability
- Key to successful fracture treatments is to keep fractures created in the target zone
- Fracturing out of the target zone is not cost effective:
 - Adds extra cost to stimulation job
 - Could adversely affect productivity of the well

Hydraulic Fracturing Design

ONSULTING

HVHF Operations

- Extensive up-front work with computer modeling to help design stimulation job
- Models are used to evaluate variables
 - Fluid volumes
 - Proppant size
 - Pressures during treatment
 - Fluid design
- Monitoring of fracture propagation during the stimulation job
 - Micro-seismic fracture mapping
 - Tiltmeter measurements

HVHF OPERATIONS

- Fracturing a horizontal well uses between 3 to 5 Million gallons of water
 - Delivered by truck or temporary pipeline
 - Stored in tanks, or local or centralized impoundments

Shale Fractures

Not to scale

- Fracturing job takes a few days to one week
- 15% to 30% of the fracture fluid is recovered as flowback
- Produced water may continue long term

CONSULTING

Private Well Treatable Groundwater Aquifers Municipal Water Well: < 1.000 ft. Additional steel casing and cement to protect groundwater **Protective Steel Casing** Approximate distance from surface: 8,000 fee

Fracture Fluids

- 98-99.5% of slickwater fracturing fluid is water
- Each additive has an engineered purpose
- Proppant (sand)

HF FLUID COMPOSITION

GROUNDWATER RISK

- A 1989 API & DOE study determined that in basins with "reasonable" likelihood of corrosion, the risk probability of injectate reaching a USDW ranged from 1 in 200,000 to 1 in 200,000,000 for UIC wells
 - Injection is on a continuous basis
- Shale Gas Hydraulic Fracturing Differences
 - Very short in duration
 - Within multiple installed concentric casing strings and cement
- Risk is very low

WATER SOURCING

- Options available to meet water needs for drilling and fracturing
 - Surface Water
 - Groundwater
 - Municipal Water
 - Industrial Water
 - Recycled Produced W
 - Collected Water

Consulting

- Private Water Purchas

1,000,000 gallons = $\sim 3,785$ m³

SOURCING CHALLENGES

INVITATI ON TO READ

http://www.all-llc.com/page.php?92

C) ALL Consulting, 2009

CONTACT INFORMATION

Brian K. Bohm, P.G. J. Daniel Arthur, P.E. SPEC ALL Consulting, LLC 1718 S. Cheyenne Avenue Tulsa, Oklahoma 74119 www.ALL-LLC.com

